Article

https://doi.org/10.1038/s41467-023-35984-5

Benchmark single-step ethylene purification from ternary mixtures by a customized fluorinated anion-embedded MOF

Received: 28 October 2022

Accepted: 11 January 2023

Published online: 25 January 2023

Check for updates

Yunjia Jiang,^{1,4}, Yongqi Hu,^{1,4}, Binquan Luan,², Lingyao Wang,¹, Rajamani Krishna, ⁽⁰⁾, Haofei Ni,¹, Xin Hu¹ & Yuanbin Zhang ⁽⁰⁾

Ethylene (C₂H₄) purification from multi-component mixtures by physical adsorption is a great challenge in the chemical industry. Herein, we report a GeF₆² anion embedded MOF (ZNU-6) with customized pore structure and pore chemistry for benchmark one-step C₂H₄ recovery from C₂H₂ and CO₂. ZNU-6 exhibits significantly high C_2H_2 (1.53 mmol/g) and CO_2 (1.46 mmol/g) capacity at 0.01 bar. Record high C₂H₄ productivity is achieved from C₂H₂/ CO_2/C_2H_4 mixtures in a single adsorption process under various conditions. The separation performance is retained over multiple cycles and under humid conditions. The potential gas binding sites are investigated by density functional theory (DFT) calculations, which suggest that C₂H₂ and CO₂ are preferably adsorbed in the interlaced narrow channel with high affOinity. In-situ single crystal structures with the dose of C₂H₂, CO₂ or C₂H₄ further reveal the realistic host-guest interactions. Notably, rare C₂H₂ clusters are formed in the narrow channel while two distinct CO₂ adsorption locations are observed in the narrow channel and the large cavity with a ratio of 1:2, which accurately account for the distinct adsorption heat curves.

Ethylene (C_2H_4) is the foremost olefin as well as the highest volume product in the petrochemical industry, with an annual production capacity exceeding 214 million tons in 2021¹. The manufacture of C_2H_4 and C_3H_6 accounts for 0.3% of global energy². Current C_2H_4 production mainly relies on stream cracking of hydrocarbons^{3–6}. Alternatively, oxidative coupling of methane (CH₄) has emerged as a promising technique to produce C_2H_4 , among which acetylene (C_2H_2) and carbon dioxide (CO₂) are generated as byproducts and need to be deeply removed to produce polymer grade (>99.996%) $C_2H_4^7$. Presently, multi-step purification process is adopted for purification of C_2H_4 from $C_2H_4/C_2H_2/CO_2$ mixtures in industry⁸. C_2H_2 is removed by catalytic hydrogenation using expensive noble-metal catalysts or solvent extraction, which is either energy intensive or associated with pollution^{9,10}. CO_2 is removed by chemical adsorption using caustic soda, which causes huge waste of costly solvents¹¹.

Physical adsorption offers potential to significantly reduce the energy footprint of separation processes¹²⁻²¹. Nonetheless, C₂H₄ purification from ternary C₂H₄/C₂H₂/CO₂ mixtures remains an unmet challenge due to the similarity in molecular size and polarity (Supplementary Table 2), although separation of C₂H₂/C₂H₄²²⁻²⁶ or C₂H₂/CO₂²⁷⁻³² binary mixtures has been realized by a plethora of porous materials. Besides, single-step purification of C₂H₄ from ternary C₂H₂/C₂H₄/C₂H₆^{33,34} or quaternary C₂H₂/C₂H₄/C₂H₆/CO₂³⁵ mixtures has also been realized by several porous materials. To date, less than ten materials have been demonstrated to separate C₂H₄ from C₂H₄/C₂H₄/CO₂.

¹Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China. ²IBM Thomas J. Watson Research, Yorktown Heights, New York, NY 10598, USA. ³Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands. ⁴These authors contributed equally: Yunjia Jiang, Yongqi Hu. Se-mail: ybzhang@zjnu.edu.cn

and metal organic framework (MOFs)^{36–39}. TIFSIX-17-Ni³⁶, NTU-65³⁷, and NTU-67³⁸ are so far the three optimal materials. TIFSIX-17-Ni³⁶ exhibits high C_2H_2/C_2H_4 and CO_2/C_2H_4 selectivity due to the negligible uptake of C_2H_4 under ambient condition. However, the capacity of C_2H_2 (3.30 mmol/g) and CO_2 (2.20 mmol/g) is relatively low due to the over-contracted channel. NTU-65³⁷ can selectively capture C_2H_2 and CO_2 by tuning the gate opening. However, the applied temperature must be at 263 K because lower temperatures lead to the adsorption of all the gases while higher temperatures cause the exclusion of CO_2 . NTU-67³⁸ displays similar C_2H_2 (3.29 mmol/g) and CO_2 (2.04 mmol/g) capacity, but the C_2H_2/C_2H_4 and CO_2/C_2H_4 selectivity is greatly reduced as the C_2H_4 capacity (1.41 mmol/g) is relatively high. Additionally, the separation performance is deteriorated under humid conditions. Therefore, there is still a lack of ideal and stable materials to realize the simultaneous removal of C_2H_2 and CO_2 in $C_2H_2/CO_2/C_2H_4$ mixtures.

In this work, we reported a GeF_6^{2-} anion embedded MOF ZNU-6 (ZNU = Zhejiang Normal University) with large cages (~8.5 Å diameter) connected by narrow interlaced channels (~4 Å diameter) for benchmark one-step C₂H₄ recovery from C₂H₂ and CO₂. ZNU-6 is constructed by CuGeF₆ and tri(pyridin-4-yl)amine (TPA) and exhibits excellent chemical stability. Static gas adsorption isotherms showed that ZNU-6 takes up 1.53/8.06 mmol/g of C₂H₂ and 1.46/4.76 mmol/g of CO₂ at 0.01 and 1.0 bar (298 K), respectively. The calculated IAST selectivities for C₂H₂/C₂H₄ (1/99) and CO₂/C₂H₄ (1/99) are 43.8-14.3 and 52.6-7.8 (0.0001–1.0 bar), respectively. The calculated Q_{st} values at near-zero loading for C₂H₂ and CO₂ are 37.2 and 37.1 kJ/mol, indicative of its facility for material regeneration but much higher than that of C₂H₄ (29.0 kJ/mol). Modeling study indicates that there are two potential binding sites for C₂H₂, C₂H₄, and CO₂. One is in the interlaced channel and the other locates in the large cage. Moreover, all gas molecules prefer to be adsorbed in the interlaced channel with higher affinity. The realistic binding sites and host-guest interactions under normal conditions (298 K and 1.0 bar) were further demonstrated by in-situ single crystal structures with the saturated dose of gases. Notably, rare C₂H₂ clusters formed by π ··· π packing and C-H···C=C interactions are observed in the interlaced channel with a small proportion of C₂H₂ molecules adsorbed in the large cage additionally. In sharp contrast, only 1/3 of CO₂ molecules are located in the narrow channel while 2/3 of CO₂ molecules are accommodated in the large cavity. This distinct gas distribution is highly consistent with the difference of adsorption heat curves. The practical C₂H₄ purification performance is further demonstrated by dynamic breakthroughs and record high C₂H₄ productivity is achieved from ternary C₂H₂/CO₂/C₂H₄ mixtures in a single adsorption process under various conditions. The separation performance is retained over multiple cycles and under humid conditions.

Results

Violet single crystals of ZNU-6 (Supplementary Fig. 1) were produced by layering a MeOH solution of TPA onto an aqueous solution of CuGeF₆ (Fig. 1a) X-ray crystal analysis revealed that ZNU-6 [Cu₆(GeF₆)₆(TPA)₈] crystallizes in a three-dimensional (3D) framework in the cubic Pm-3n space group. Every unit cell consists of six Cu²⁺ ions, six GeF₆²⁻ anions, and eight tridentate TPA ligands (Supplementary Table 1). The combination of Cu²⁺ and TPA produces a cationic pto network first (Fig. 1b), which determines the main pore size. The network is further embedded by GeF₆²⁻ pillar to give a ith-d topology framework with optimal pore chemistry (Fig. 1c). The frameworks are composed of large icosahedral cage-like pores (~8.5 Å) and interlaced narrow channels (-4 Å) (Fig. 1d–f). Each large cage is surrounded by 12 channels and every interlaced channel connects 4 cages. The adjacent two cages and two channels share the same GeF_6^{2} anions at the edge. Both large pores and interlaced channels are abundant of Lewis basic F functional sites on the surface for gas binding. Such interconnected large cages and narrow channels are distinct from previous straight 1D channels of anion pillared MOFs (e.g., SIFSIX-1-Cu, SIFSIX-3-Ni). Besides, the narrow channel size may provide kinetic selectivity for C₂H₂ (3.3 Å) and CO₂ (3.3 Å) given their small molecular size compared to C₂H₄ (4.2 Å). Thus, ZNU-6 with abundant functional GeF₆²⁻ binding sites, high porosity for C₂H₂ and CO₂ accommodation and narrow channel for kinetic preference features the promising characteristics for efficient purification of C₂H₄ from ternary C₂H₂/CO₂/C₂H₄ mixture.

The intrinsic porosity of ZNU-6 was investigated by N2 adsorption at 77 K. As shown in Fig. 2a, ZNU-6 exhibited a type I adsorption isotherm. The Brunauer-Emmett-Teller surface area and pore volume were calculated to be $1330.3 \text{ m}^2/\text{g}$ and $0.554 \text{ cm}^3/\text{g}$ (Supplementary Fig. 10). The calculated pore size ranges from 8.22 to 10.76 Å with the summit in 9.0 Å, highly close to the pore aperture of ~8.5 Å evaluated from the single crystal structure (Fig. 2a). Then, single-component adsorption isotherms of C₂H₂, CO₂, and C₂H₄ were collected at 298 K (Fig. 2b). At 1.0 bar, the C_2H_2 and CO_2 uptakes are 8.06 and 4.76 mmol/ g, higher than those of most APMOFs (Fig. 2c). The capacities are equal to 4.68 and 2.77 gas molecules per GeF_6^{2-} anion. Such high C_2H_2 /anion and CO₂/anion uptakes have never been realized in anion pillared MOFs (Supplementary Table S7)^{36-38,40-44}. Particularly, C₂H₂/anion and CO₂/anion uptakes in benchmark TIFSIX-17-Ni³⁶, SIFSIX-17-Ni³⁶ and NTU-67³⁸ are only 1.36/0.91, 1.29/0.9 and 2.06/1.28, respectively (Supplementary Fig. 25). So far, isomorphic SIFSIX-Cu-TPA⁴⁰ displays the ever highest C₂H₂/anion (4.44) uptake while SIFSIX-1-Cu⁴¹ displays the ever highest CO₂/anion (2.72) uptake. It is worth mentioning that these records have been marginally surpassed by ZNU-6's (Supplementary Fig. 25). Notably, the uptakes of C₂H₂ and CO₂ on ZNU-6 at 0.01 bar are as high as 1.53 and 1.46 mmol/g, superior to those of all the porous materials in the context of ternary C₂H₂/CO₂/C₂H₄ separation, such as TIFSIX-17-Ni (1.38/0.32 mmol/g)³⁶, SIFSIX-17-Ni (0.91/0.20 mmol/g)³⁶, NTU-67 (0.47/0.65 mmol/g)³⁸, and TpPa-NO₂ $(0.17/0.03 \text{ mmol/g})^{39}$. At 0.1 bar, the capacities of C₂H₂ and CO₂ reach up to 4.64 and 2.21 mmol/g (Fig. 2b), even higher than the uptakes of many porous materials at 1 bar and 298 K, for example, TIFSIX-17-Ni $(3.30/2.20 \text{ mmol/g})^{36}$. In the meantime, the C₂H₄ uptakes on ZNU-6 at 0.01 and 0.1 bar are only 0.15 and 1.07 mmol/g, much lower than those of C₂H₂ and CO₂ under the same conditions. The C₂H₂, CO₂, and C₂H₄ adsorption isotherms were further collected at 278 and 308 K (Fig. 2d). The adsorption capacities of C₂H₂ and CO₂ at 1 bar increase to 8.74 and 6.26 mmol/g at 278 K. As selectivity is also an important parameter to assess the separation performance, we further calculated the C₂H₂/ C₂H₄ and CO₂/C₂H₄ selectivities on ZNU-6 using ideal adsorbed solution theory (IAST) after fitting isotherms into dual site Langmuir or single site Langmuir equation with excellent accuracy. The IAST selectivity for 1/99 C₂H₂/C₂H₄ is 43.8-14.3 (Fig. 2e), higher than those of NTU-67 (8.1)³⁸ and TpPa-NO₂ (5.9)³⁹. The IAST selectivities for 1/99 CO₂/C₂H₄ mixture is also as high as 52.6-7.8 (Fig. 2e). Besides, both C_2H_2/C_2H_4 and CO_2/C_2H_4 selectivity on ZNU-6 is improved with the pressure decrease or the increase of C₂H₄ ratios (from 90% to 99%) in the binary mixtures (Supplementary Figs. 13, 14), indicating ZNU-6 is favored for trace C₂H₂ and CO₂ capture from bulky C₂H₄ mixtures. Apart from the IAST selectivity, the Henry coefficients were also calculated to evaluate the Henry's selectivity of ZNU-6 (Supplementary Figs. 15–17), the Henry's selectivity for C_2H_2/C_2H_4 and CO_2/C_2H_4 is 8.2 and 7.8, respectively, superior to those of NTU-67 (2.4/4.2)³⁸ and TpPa-NO₂ (4.0/1.8)³⁹ (Supplementary Tables 4, 5). We further calculated the isosteric enthalpy of adsorption (Q_{st}) for ZNU-6 by using the Clausius-Clapeyron equation. Q_{st} values at near-zero loading for C₂H₂, CO₂, and C₂H₄ are 37.2, 37.1, and 29.0 kJ/mol (Fig. 2f), respectively, indicative of the preferred affinity of C_2H_2 and CO_2 over C_2H_4 . Notably, the Q_{st} values for C₂H₂ and CO₂ on ZNU-6 are only modestly high and slightly lower than those of many top-performing materials in the context of C₂H₄ purification, such as SIFSIX-17-Ni (44.2/40.2 kJ/mol)³⁶, TIFSIX-17-Ni (48.3/37.8 kJ/mol)³⁶, and NTU-67 (44.1/41.5 kJ/mol)³⁸. Such moderate Q_{st} endows facile regeneration of ZNU-6 under mild conditions.

Fig. 1 | **Porous structure of ZNU-6. a**-**c** Exquisite control of pore size/shape and pore chemistry in ZNU-6 from pillared (3,4)-connected pto network to $\text{GeF}_6^{2^-}$ embedded ith-d topology framework; **d** Overview of ZNU-6 structure with cage-like

pores and interlaced channels. **e** Structure and size of the cage-like pore. **f** Structure and size of the interlaced channel connecting four cages.

Fig. 2 | **The sorption performance. a** N₂ adsorption and desorption isotherms for ZNU-6 and the calculated pore size distribution. **b** C₂H₂, CO₂, and C₂H₄ adsorption isotherms of ZNU-6 at 298 K. **c** Comparison of the saturated C₂H₂ and CO₂ uptake (1 bar, 298 K) among anion pillared MOFs. **d** C₂H₂, CO₂, and C₂H₄ adsorption

isotherms of ZNU-6 at 278/308 K. e C₂H₂/C₂H₄ and CO₂/C₂H₄ IAST selectivity of ZNU-6 at 298 K. fQ_{st} of C₂H₂, CO₂, and C₂H₄ in ZNU-6. Source data are provided as a Source Data file.

To gain more insights into the gas adsorption behavior, density functional theory (DFT)-based calculations (see Method section) were applied to identify the adsorption configuration and binding energies of C_2H_2 , CO_2 , and C_2H_4 . For all gases, two different binding sites were observed. Site I is in the interlaced channel and Site II is in the large cavity (Fig. 3). For C_2H_2 in Site I, the two hydrogen atoms interact strongly with three F atoms with the distances of 1.80, 1.93, and 2.37 Å. The calculated binding energy is 57.1 kJ/mol (Fig. 3a). As for C₂H₂ adsorbed in Site II, only one hydrogen atom can interact with the adjacent F atoms with the distance of 2.23 and 2.24 Å, and the corresponding binding energy decreases to 37.9 kJ/mol (Fig. 3b), indicating that C₂H₂ is preferentially adsorbed in the narrow channel. The same results are also observed for CO₂ and C₂H₄, the binding energies in the channel are much higher than those in the large cage. In Site I, CO₂ is trapped by two strong and two weak electrostatic F···C=O interactions in the distance of 2.89, 3.02, 3.60, and 3.90 Å, the binding energy is 52.8 kJ/mol (Fig. 3c); C₂H₄ is adsorbed via two F···H interactions (2.29 and 2.37 Å) with the binding energy of 43.3 kJ/mol (Fig. 3e). In Site II, the binding energy of CO₂ drops to 40.7 kJ/mol with the number of electrostatic F···C=O interactions (2.74 and 2.87 Å) decreasing to two (Fig. 3d); the binding energy of C_2H_4 reduces to 25.3 kJ/mol with the length of F. H extending to 2.55 and 2.32 Å (Fig. 3f). In addition, it is notable that either in Site I or II, the binding energy of C₂H₂ or CO₂ is superior to that of C_2H_4 , confirming that the adsorption of C_2H_2 or CO_2 in ZNU-6 is more preferable than that of C₂H₄.

Although DFT calculations have identified two different binding sites for each gas, it is still difficult to understand the distinct adsorption heat curves. Therefore, we further studied the in-situ structures of ZNU-6 with gas loading (Fig. 4). We found that averagely 25.78 C₂H₂, 18 CO₂, or 13.07 C₂H₄ molecules can be adsorbed per unit cell of ZNU-6 (Supplementary Table 1), corresponding to 4.3 C₂H₂, 3.0 CO₂, and 2.2 C₂H₄ molecules for each GeF₆²⁻ anion, which are close to the saturated values from gas adsorption isotherms (4.63 C₂H₂, 2.77 CO₂, and 2.75 C₂H₄). Both of C₂H₂ and CO₂ have two binding sites, i.e., Site I in the interlaced channel and Site II in the large cage. Notably, the amount of C₂H₂ molecules distributed to the two locations is 3.8 and 0.5 per GeF_6^{2} anion while that for CO₂ is 1 and 2 per GeF_6^{2-} anion (Fig. 4a, b). Such different gas distribution can precisely account for the C₂H₂ Q_{st} curve with a modest decrease and the CO₂ Q_{st} curve with a sharp decrease along the gas loading. Specifically, C₂H₂ molecules adsorbed in Site I bind to F atoms on the surface of the channels via multiple cooperative hydrogen bonds (C-H...F = 1.97-2.55 Å), and the others in Site II interact F atoms via single H…F hydrogen bond with the distance of 2.51 Å (Fig. 4a and Table 1). Besides, the C₂H₂ molecules in Site I aggregate to form a stacked gas cluster by π --- π packing and C-H…C=C interactions, which has rarely been observed previously. Regarding CO₂, it is trapped by F···C=O electrostatic interaction in Site I and II (Fig. 4b). The only difference is that the C…F distance is 2.64 Å in Site I and 2.80 Å in Site II (Table 1). From the single crystal structure, two different CO₂ molecules that are very close and opposite to each other in the narrow channel (site I) are observed. However, these two CO₂ molecules cannot exist in the same narrow channel at the same time and thus both CO₂ molecules display the occupancy of 50%. In Site II, the C atom of CO₂ is ordered while the O atoms are disordered to two perpendicular positions with the occupancy of 50% for each configuration. Besides, the linear CO2 molecules are slightly bent due to the strong attraction from GeF_6^{2-} anion. The bent angle of 157.5° (in Site I) and 170.8° (in Site II) are consistent with the interaction strength. In term of C₂H₄, only one site in the narrow channel is found. The C atoms of C₂H₄ molecule are ordered while the H atoms are disordered. The distances of C-H…F interactions between C₂H₄ and framework are 2.31–2.64 Å (Fig. 4c and Table 1). Considering the slight lower $C_2H_4/$ GeF_6^{2-} ratio observed in the single crystal structure, there should be some C₂H₄ molecules adsorbed in the large cage. However, due to the probable disorder of C₂H₄ molecules over the whole cage, the C₂H₄ molecules in Site II were not solved. Nonetheless, this uniform adsorption configuration is consistent with the flat Q_{st} curve for C_2H_4 .

Apart from the C₂H₂, CO₂, or C₂H₄ molecules, some water molecules were also identified in the framework (Supplementary Fig. 4). As there is still a lot of space in the large cavity after saturated adsorption of C₂H₂, CO₂, or C₂H₄ gases at 100 kPa, the water adsorption behavior probably occurred during the single crystal measurement, which is

Fig. 4 | Single crystal structure of gas-loaded ZNU-6. a C_2H_2 @ ZNU-6 [$Cu_6(GeF_6)_6(TPA)_8$ (C_2H_2)_{25.78}]; b CO_2 @ ZNU-6 [$Cu_6(GeF_6)_6(TPA)_8$ (CO_2)₁₈]; c C_2H_4 @ ZNU-6 [$Cu_6(GeF_6)_6(TPA)_8$ (C_2H_4)_{13.07}].

exposed to air. Interestingly, these water molecules are distant from GeF_{6}^{2} , indicating that these H₂O molecules do not occupy the binding sites for the targeted gases. Instead, some unique interactions are observed between the gas molecules and water molecules, e.g., O-H···C=O hydrogen bonds between CO₂ and H₂O. Notably, our resolved single crystal structures show completely different C₂H₂ and CO₂ adsorption configurations from those of isomorphic SIFSIX-Cu-TPA for C₂H₂/CO₂ separation in Wu's work³⁹.

Motivated by the high adsorption capacity and selectivity in single-component adsorption as well as the in-situ single crystal structure analysis, breakthrough experiments were conducted for C₂H₂/C₂H₄, CO₂/C₂H₄, and C₂H₂/CO₂/C₂H₄ mixtures. The results showed that highly efficient separations can be accomplished by ZNU-6 for all the gas mixtures under various conditions. For 1/99 C₂H₂/C₂H₄ mixtures, C₂H₄ is eluted at 12 mins while C₂H₂ is detected until 192 min. For 10/90 CO₂/C₂H₄ mixtures, C₂H₄ and CO₂ are detected at 12 and 43.5 min, respectively (Fig. 5a). For 1/1/98 C₂H₂/CO₂/C₂H₄ mixtures, $C_{2}H_{2}$ and CO_{2} broke out simultaneously and 64.42 mol/kg of polymer grade C₂H₄ is produced by single adsorption process (Fig. 5b). The productivity is improved to 80.89 mol/kg when decreasing the temperature to 283 K (Supplementary Fig. 46). The CO₂ breakthrough time becomes shortened with the increase of CO₂ ratio, which is 72 and 52 min for 1/5/94 (Figs. 5c) and 1/9/90 (Fig. 5d) C₂H₂/CO₂/C₂H₄ mixtures. The polymer grade C₂H₄ productivity is 21.37 and 13.81 mol/kg, respectively. As most reported C₂H₄ productivity from C₂H₂/CO₂/C₂H₄ mixtures are compared under 1/9/90, a comparison plot of the C_2H_4 productivity and dynamic C_2H_2 capacity from 1/9/90 $C_2H_2/CO_2/$ C₂H₄ mixtures is presented in Fig. 5e. ZNU-6 displays the record high C₂H₄ productivity and second highest C₂H₂ dynamic capacity. The C₂H₄ productivity of ZNU-6 is >2.5 folds of the previous benchmark of NTU-67 (5.42 mol/kg)³⁸. C₂H₄ productivity with the unit of mol/kg/h is also calculated for comparison (Supplementary Table S10). ZNU-6 with the productivity of 15.93 mol/kg/h is the highest reported value.

In view of the importance of the recyclability and stability of porous materials for practical applications, the water and thermal stability of ZNU-6 was investigated. There was no noticeable loss in the CO_2 adsorption capacity after six cycles of adsorption/desorption experiments (Supplementary Fig. 26). Long time soaking of ZNU-6 in water or polar organic solvents such as DMSO, DMF and MeCN did not change the porous structure of ZNU-6, as demonstrated by the PXRD

Table 1 | The distances of the host-guest interactions

Crystals	Site I	Site II
25.78 C ₂ H ₂ @ ZNU-6	1.97/2.55 Å (C-H…F)	2.51 Å (C-H…F)
18 CO ₂ @ ZNU-6	2.64 Å (C…F)	2.80 Å (C…F)
13.07 C ₂ H ₄ @ ZNU-6	2.31/2.54/2.64 Å (C-H…F)	-

patterns as well as the gas adsorption isotherms (Supplementary Fig. 7). Thermogravimetric analysis (TGA) and temperature varied PXRD indicated ZNU-6 is stable below 200 °C (Supplementary Figs. 8, 9). Breakthroughs under humid conditions or over four cycles preserved nearly the identical separation performance (Fig. 5f). Although many water molecules can be adsorbed in ZNU-6, as described in insitu crystals and water adsorption isotherms (Supplementary Fig. 27), the presence of humid has negligible influence on the separation performance (Fig. 5f). This is probably due to the co-adsorption of water and target gases as well as the fast $C_2H_2/CO_2/C_2H_4$ diffusion kinetics (Supplementary Fig. 29–31).

Discussion

In conclusion, we reported a GeF_6^{2-} anion embedded metal organic framework ZNU-6 with optimal pore structure and pore chemistry for benchmark one-step C₂H₄ purification by simultaneous removal of C₂H₂ and CO₂. ZNU-6 exhibits remarkably high C₂H₂ and CO₂ capacity under both low and high pressures. The C₂H₂/anion and CO₂/anion uptakes are the highest among all the anion pillared MOFs. 64.42, 21.37. 13.81 mol/kg polymer grade C_2H_4 can be produced from $C_2H_2/CO_2/$ C₂H₄ (1/1/98, 1/5/94, 1/9/90) mixtures, all superior to the previous benchmarks. The separation performance is sustained over multiple cycles or under humid conditions. The potential gas binding sites are investigated by DFT calculation, which indicate that C2H2 and CO2 are preferentially adsorbed in the interlaced narrow channel with high affinity. In-situ single crystal structures with the dose of C₂H₂, CO₂ or C₂H₄ further reveal the realistic host-guest interactions, accounting for the distinct shapes of the adsorption heat curves. In general, our work highlights the significance of regulating pore structure and pore chemistry in porous materials to construct multiple cooperative functionalities for gas separation.

Methods

Synthesis of ZNU-6

To a 5 mL long thin tube was added a 1 mL of aqueous solution with $Cu(NO_3)_2$ ·3H₂O (-1.3 mg) and (NH₄)₂GeF₆ (-1.0 mg). 2 mL of MeOH/H₂O mixture (v:v = 1:1) was slowly layered above the solution, followed by a 1 mL of MeOH solution of TPA (-1.0 mg). The tube was sealed and left undisturbed at 298 K. After -1 week, purple single crystals were obtained.

Preparation of gas loaded ZNU-6

The crystalline sample of ZNU-6 was filled into a glass tube and heated at 120 °C under vacuum for 24 h. After the sample cooling down, CO_2 , C_2H_2 , or C_2H_4 was introduced into the sample respectively with Builder SSA 7000 (Beijing) instrument until the pressure reach to 1 bar at 298 K and the state is maintained for another hour. Then, the crystals were picked out, covered with the degassed oil, and single crystal X-ray diffraction measurements were then carried out at 298 K as soon as possible.

Fig. 5 | **C**₂**H**₄ **purification.** Experimental breakthrough curves of ZNU-6 for binary mixture **a** C₂H₂/C₂H₄ (1/99) and CO₂/C₂H₄ (10/90) at 298 K. Experimental breakthrough curves of ZNU-6 for ternary mixture **b** C₂H₂/CO₂/C₂H₄ (1/1/98), **c** C₂H₂/CO₂/C₂H₄ (1/5/94), and **d** C₂H₂/CO₂/C₂H₄ (1/9/90). **e** Comparison of the captured

 C_2H_2 amount and C_2H_4 productivity from $C_2H_2/CO_2/C_2H_4$ (1/9/90) ternary mixture. **f** Five cycles of experimental breakthrough curves of ZNU-6 for $C_2H_2/CO_2/C_2H_4$ (1/ 9/90) at 298 K (1–4: dry condition, 5: humid condition). Source data are provided as a Source Data file.

Single-crystal X-ray diffraction

Single-crystal X-ray diffraction studies were conducted on the BrukerAXS D8 VENTURE diffractometer equipped with a PHOTON-100/ CMOS detector (GaK α , λ = 1.34139 Å). Indexing was performed using APEX2. Data integration and reduction were completed using SaintPlus 6.01. Absorption correction was performed by the multiscan method implemented in SADABS. The space group was determined using XPREP implemented in APEX2.1 The structure was solved with SHELXS-97 (direct methods) and refined on F2 (nonlinear least-squares method) with SHELXL-97 contained in APEX2, WinGX v1.70.01, and OLEX2 v1.1.5 program packages. All non-hydrogen atoms were refined anisotropically. The contribution of disordered solvent molecules was treated as diffuse using the Squeeze routine implemented in Platon.

Powder X-ray diffraction

Powder X-ray diffraction (PXRD) data were collected on the SHI-MADZU XRD-6000 diffractometer (Cu K $\alpha\lambda$ = 1.540598 Å) with an operating power of 40 kV, 30 mA and a scan speed of 4.0°/min. The range of 2 θ was from 5° to 50°.

Thermal gravimetric analysis

Thermal gravimetric analysis was performed on the TGA STA449F5 instrument. Experiments were carried out using a platinum pan under nitrogen atmosphere which conducted by a flow rate of 60 mL/min nitrogen gas. The data were collected at the temperature range of 50 °C to 600 °C with a ramp of 10 °C /min.

The static gas/vapor adsorption equilibrium measurements

The static gas adsorption equilibrium measurements were performed on the Builder SSA 7000 instrument. The water vapor adsorption equilibrium measurements were performed on the BeiShiDe DVS instrument. Before measurements, the sample of ZNU-6 (-100 mg) was evacuated at 25 °C for 2 h firstly, and then at 120 °C for 12 h until the pressure dropped below 7 μ mHg. The sorption isotherms were collected at 77 K, 278, 298, and 308 K on activated samples. The experimental temperatures were controlled by liquid nitrogen bath (77 K) and water bath (278, 298, and 308 K), respectively.

Breakthrough experiments

The breakthrough experiments were carried out on a dynamic gas breakthrough equipment. The experiments were conducted using a stainless steel column (4.6 mm inner diameter × 50 mm length). The weight of ZNU-6 powder packed in the columns were 0.5806 g. The column was activated at 75 °C for 2 h under vacuum, and then raised to 120 °C for overnight. The mixed gas of C_2H_2/C_2H_4 (1/99, v/v), CO_2/C_2H_4 (10/90, v/v), or $C_2H_2/CO_2/C_2H_4$ (1/9/90, 1/5/94, 1/1/98, 5/5/90, v/v/v) was then introduced. $C_2H_2/CO_2/C_2H_4$ mixtures are produced by mixing three pure gases or mixing binary mixture with pure gas. Every flowrate was calibrated by self-made soap film flowmeter. Outlet gas from the column was monitored using gas chromatography (GC-9860-5CNJ) with the thermal conductivity detector TCD. After the breakthrough experiment, the sample was regenerated with an Ar flow of 5 mL min⁻¹ under 120 °C for 8 h or under vacuum at 120 °C for 8 h.

Fitting of experimental data on pure component isotherms

The unary isotherms for C_2H_2 and CO_2 measured at three different temperatures 278 K, 298 K, and 308 K in ZNU-6 were fitted with excellent accuracy using the dual-site Langmuir model, where we distinguish two distinct adsorption sites A and B:

$$q = \frac{q_{sat,A}b_Ap}{1+b_Ap} + \frac{q_{sat,B}b_Bp}{1+b_Bp}$$
(1)

In Eq (S1), the Langmuir parameters b_A, b_B are both temperature dependent

$$b_A = b_{A0} \exp\left(\frac{E_A}{RT}\right); b_b = b_{B0} \exp\left(\frac{E_B}{RT}\right)$$
 (2)

In Eq. (2), E_A , E_B are the energy parameters associated with sites A, and B, respectively.

The corresponding unary isotherms for C_2H_4 measured at three different temperatures 278 K, 298 K, and 308 K in ZNU-6 were fitted with excellent accuracy using the single-site Langmuir model.

$$q = \frac{q_{sat,A}b_A p}{1+bp} \tag{3}$$

The unary isotherm fit parameters for C_2H_2 , CO_2 , and C_2H_4 are provided in Table S1.

IAST calculations

The adsorption selectivity for separation of binary mixtures of species 1 and 2 is defined by

$$S_{ads} = \frac{q_1/q_2}{p_1/p_2}$$
(4)

where q_1 , q_2 are the molar loading (units: mol kg⁻¹) in the adsorbed phase in equilibrium with a gas mixture with partial pressures p_1 , p_2 in the bulk gas.

Calculation of isosteric heat of adsorption (Q_{st})

The isosteric heat of adsorption, Q_{st} , is defined as

$$Q_{st} = -RT^2 \left(\frac{\partial \ln p}{\partial T}\right)_q \tag{5}$$

where the derivative in the right member of Eq. (5) is determined at constant adsorbate loading, *q*. The calculations are based on the Clausius-Clapeyron equation.

Density functional theory calculation

In this work, the DFT-based calculations were carried out using the CP2K package⁴⁵. The Perdew-Burke-Ernzerhof (PBE) exchange functional⁴⁶, Gaussian plane wave (PAW) pseudopotentials⁴⁷ and DZVP basis sets⁴⁸ for carbon, oxygen, fluorine, nitrogen, germanium and copper atoms, were used to describe the exchange–correlation interactions and electron–ion interaction, respectively. At the same time, the PBE-D3 method⁴⁹ with Becke–Jonson damping for all atoms and Hubbard U corrections for the open-shell 3d transition metal (Cu) was used for geometry optimizations. The *U* value of 5.0 eV was used in this study. In all calculations, the net charges of simulation systems were set to zero. The adsorption energy can be obtained from formula below:

$$E_{ads} = E_{adsorbate + substrate} - E_{substrate} - E_{adsorbate}$$
(6)

where $E_{adsorbate+substrate}$ and $E_{substrate}$ were the total energies of the substrate with and without adsorbate, and $E_{adsorbate}$ was the energy of the adsorbate.

Data availability

The authors declare that the data supporting the findings of this study are available within the article and Supplementary Information. The X-ray crystallographic data related to ZNU-6 have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition numbers 2192744–2192747, respectively. These data can be obtained free of charge from the CCDC via www.ccdc.cam.ac.uk/data_ request/cif. The data that support the findings of this study are available from the corresponding author. Besides, Source data are provided with this paper.

References

- Fernández, L. Global production capacity of ethylene 2018–2021, https://www.statista.com/statistics/1067372/global-ethyleneproduction-capacity/ (2022).
- 2. Sholl, D. S. & Liverly, R. P. Seven chemical separations to change the world. *Nature* **532**, 435–437 (2016).
- 3. Wang, Q. et al. One-step removal of alkynes and propadiene from cracking gases using a multi-functional molecular separator. *Nat. Commun.* **13**, 2955 (2022).
- Suo, X. et al. Synthesis of ionic ultramicroporous polymers for selective separation of acetylene from ethylene. *Adv. Mater.* 32, 1907601 (2020).
- Li, J. et al. Metal-organic framework containing planar metalbinding sites: efficiently and cost-effectively enhancing the kinetic separation of C₂H₂/C₂H₄. J. Am. Chem. Soc. 141, 3807–3811 (2019).
- Sahoo, R. et al. C_{2s}/C₁ hydrocarbon separation: the major step towards natural gas purification by metal-organic frameworks (MOFs). *Coord. Chem. Rev.* 442, 213998 (2021).
- Farrell, B. L. et al. A viewpoint on direct methane conversion to ethane and ethylene using oxidative coupling on solid catalysts. ACS Catal. 6, 4340–4346 (2016).
- Chen, K.-J. et al. Synergistic sorbent separation for one-step ethylene purification from a four-component mixture. *Science* **366**, 241–246 (2019).
- Zhang, R. et al. The cost-effective Cu-based catalysts for the efficient removal of acetylene from ethylene: the effects of Cu valence state, surface structure and surface alloying on the selectivity and activity. *Chem. Eng. J.* **351**, 732–746 (2018).
- 10. Huang, Y. et al. Separation of light hydrocarbons with ionic liquids: a review. *Chin. J. Chem. Eng.* **27**, 1374–1382 (2019).
- Ren, T. et al. Olefins from conventional and heavy feedstocks: energy use in steam cracking and alternative processes. *Energy* 31, 425–451 (2006).
- 12. Chai, Y. et al. Control of zeolite pore interior for chemoselective alkyne/olefin separations. *Science* **368**, 1002–1006 (2020).
- 13. Li, H. et al. Porous metal-organic frameworks for gas storage and separation: status and challenges. *EnergyChem* **1**, 100006 (2019).
- Adil, K. et al. Gas/vapour separation using ultra-microporous metalorganic frameworks: insights into the structure/separation relationship. *Chem. Soc. Rev.* 46, 3402–3430 (2017).
- Yang, L. et al. Energy-efficient separation alternatives: metalorganic frameworks and membranes for hydrocarbon separation. *Chem. Soc. Rev.* 49, 5359–5406 (2020).
- Wang, H. & Li, J. Microporous metal-organic frameworks for adsorptive separation of C5-C6 alkane isomers. Acc. Chem. Res 52, 1968–1978 (2019).
- Barnett, B. R. et al. Recent progress towards light hydrocarbon separations using metal-organic frameworks. *Trends Chem.* 1, 159–171 (2019).
- Zhao, X. et al. Metal-organic frameworks for separation. Adv. Mater. 30, 1705189 (2018).
- Zeng, H. et al. Orthogonal-array dynamic molecular sieving of propylene/propane mixtures. *Nature* 595, 542–548 (2021).
- Zhang, P. et al. Ultramicroporous material based parallel and extended paraffin nano-trap for benchmark olefin purification. *Nat. Commun.* 13, 4928 (2022).
- Jiang, Y. et al. Comprehensive pore tuning in an ultrastable fluorinated anion cross-linked cage-like MOF for simultaneous benchmark propyne recovery and propylene purification. *Angew. Chem. Int. Ed.* **61**, e202200947 (2022).
- Peng, Y.-L. et al. Robust ultramicroporous metal-organic frameworks with benchmark affinity for acetylene. *Angew. Chem. Int. Ed.* 57, 10971–10975 (2018).

- Zhang, Y. et al. Rational design of microporous MOFs with anionic boron cluster functionality and cooperative dihydrogen binding sites for highly selective capture of acetylene. *Angew. Chem. Int. Ed.* 59, 17664–17669 (2020).
- Lin, R.-B. et al. Optimized separation of acetylene from carbon dioxide and ethylene in a microporous material. *J. Am. Chem. Soc.* 139, 8022–8028 (2017).
- Zhang, Z.-Q. et al. Hexafluorogermanate (GeFSIX) anionfunctionalized hybrid ultramicroporous materials for efficiently trapping acetylene from ethylene. *Ind. Eng. Chem. Res.* 57, 7266–7274 (2018).
- Ke, T. et al. Molecular sieving of C₂-C₃ alkene from alkyne with tuned threshold pressure in robust layered metalorganic frameworks. *Angew. Chem. Int. Ed.* 59, 12725–12730 (2020).
- Yang, L. et al. Adsorption site selective occupation strategy within a metal-organic framework for highly efficient sieving acetylene from carbon dioxide. *Angew. Chem. Int. Ed.* 60, 4570–4574 (2021).
- Niu, Z. et al. A MOF-based ultra-strong acetylene nano-trap for highly efficient C₂H₂/CO₂ separation. Angew. Chem. Int. Ed. 60, 5283–5288 (2021).
- Zhang, L. et al. Benchmark C₂H₂/CO₂ Separation in an Ultra-Microporous Metal-Organic Framework via Copper(I)-Alkynyl Chemistry. Angew. Chem. Int. Ed. 60, 15995–16002 (2021).
- 30. Wang, L. et al. Interpenetration symmetry control within ultramicroporous robust boron cluster hybrid MOFs for benchmark purification of acetylene from carbon dioxide. *Angew. Chem. Int. Ed.* **60**, 22865–22870 (2021).
- Di, Z. et al. Cage-like porous materials with simultaneous High C₂H₂ storage and excellent C₂H₂/CO₂ separation performance. *Angew. Chem. Int. Ed.* **60**, 10828–10832 (2021).
- 32. Lou, W. et al. Screening Hoffman-type metal organic frameworks for efficient C_2H_2/CO_2 separation. *Chem. Eng. J.* **452**, 139296 (2023).
- Xu, Z. et al. A robust Th-azole framework for highly efficient purification of C₂H₄ from a C₂H₄/C₂H₂/C₂H₆ mixture. *Nat. Commun.* 11, 3163 (2020).
- Gu, X.-W. et al. Immobilization of lewis basic sites into a stable ethane-selective mof enabling one-step separation of ethylene from a ternary mixture. J. Am. Chem. Soc. 144, 2614–2623 (2022).
- Cao, J.-W. et al. One-step ethylene production from a fourcomponent gas mixture by a single physisorbent. *Nat. Commun.* 12, 6507 (2021).
- Mukherjee, S. et al. Amino-functionalised hybrid ultramicroporous materials that enable single-step ethylene purification from a ternary mixture. *Angew. Chem. Int. Ed.* 60, 10902–10909 (2021).
- Dong, Q. et al. Tuning gate-opening of a flexible metal-organic framework for ternary gas sieving separation. *Angew. Chem. Int. Ed.* 59, 22756–22762 (2020).
- Dong, Q. et al. Shape- and size-dependent kinetic ethylene sieving from a ternary mixture by a trap-and-flow channel crystal. *Adv. Funct. Mater.* 32, 2203745 (2022).
- Xiong, X.-H. et al. Nitro-decorated microporous covalent organic framework (TpPa-NO₂) for selective separation of C₂H₄ from a C₂H₂/ C₂H₄/CO₂ mixture and CO₂ capture. ACS Appl. Mater. Interfaces 14, 32105–32111 (2022).
- Li, H. et al. An unprecedented pillar-cage fluorinated hybrid porous framework with highly efficient acetylene storage and separation. *Angew. Chem. Int. Ed.* 60, 7547–7552 (2021).

- 41. Cui, X. et al. Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene. *Science* **353**, 141–144 (2016).
- 42. Li, B. et al. An ideal molecular sieve for acetylene removal from ethylene with record selectivity and productivity. *Adv. Mater.* **29**, 1704210 (2017).
- 43. Xu, N. et al. A TIFSIX pillared MOF with unprecedented zsd topology for efficient separation of acetylene from quaternary mixtures. *Chem. Eng. J.* **450**, 138034 (2022).
- 44. Wang, J. et al. Optimizing pore space for flexible-robust metalorganic framework to boost trace acetylene removal. *J. Am. Chem.* Soc. **142**, 9744–9751 (2020).
- Hutter, J. et al. _{CP}2_K: atomistic simulations of condensed matter systems. WIREs Comput. Mol. Sci. 4, 15–25 (2014).
- 46. Perdew, J. P. et al. Generalized gradient approximation made simple. *Phys. Rev. Lett.* **77**, 3865–3868 (1996).
- Hartwigsen, C. et al. Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. *Phys. Rev. Lett.* 58, 3641–3663 (1998).
- VandeVondele, J. et al. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J. Chem. Phys. 127, 114105 (2007).
- 49. Klimeš, J. et al. Perspective: Advances and challenges in treating van der Waals dispersion forces in density functional theory. *J. Chem. Phys.* **137**, 120901 (2012).

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21908193 and 22205207) and Jinhua Industrial Key Project (2021A22648). We thank the help of Dr. Yunlei Peng from CUP.

Author contributions

Y.J. and Y.H. contributed equally to this work. Y.Z. designed and guided the project. Y.J. and Y.H. designed and synthesized the materials, performed the majority of the structural characterization, collected gas sorption data and conducted breakthrough experiments. B. L. conducted the DFT calculations. L.W. and H.N. collected X-ray diffraction data and solved the structures. R.K. performed the IAST and $Q_{\rm st}$ calculation. Y.J. and Y.Z. draft the paper. X.H. provided important advice and revised the paper. All authors contributed to the discussion of results and commented on the paper.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-023-35984-5.

Correspondence and requests for materials should be addressed to Yuanbin Zhang.

Peer review information *Nature Communications* thanks Zhang-Wen Wei, Soumya Mukherjee and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permissions information is available at http://www.nature.com/reprints

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/ licenses/by/4.0/.

© The Author(s) 2023

Supplementary information

Benchmark Single-Step Ethylene Purification from Ternary Mixtures by a Customized Fluorinated Anion Embedded MOF

Jiang et al

I	General Information and Procedures	р. 3
II	Characterization (SCXRD, PXRD, TGA, IR)	p. 4–9
III	Adsorption data, Selectivity and Q_{st}	p. 10–28
IV	Kinetic studies	p. 29–32
v	Breakthrough experiments	p. 33–44
VI	References	p. 45–46

I General Information and Procedures

Unless otherwise noted, all the reactions were performed under air without N_2 or Ar protection. All reagents were used as received without purification unless stated otherwise.

Chemicals: Tri(pyridin-4-yl)amine (TPA, 99%), Cu(NO₃)₂·3H₂O (99%) and (NH₄)₂GeF₆ (99.99%) were purchased from Energy Chemical. C₂H₂ (99.9%), C₂H₄ (99.9%), CO₂ (99.99%), N₂ (99.9999%), He (99.9999%), Ar (99.9999%), C₂H₂/C₂H₄ (1:99), CO₂/C₂H₄ (10:90), C₂H₂/CO₂ (50:50) were purchased from Datong Co., Ltd.

II Characterization (SCXRD, PXRD, TGA, IR)

Supplementary Figure 1. Photography of the single crystals of ZNU-6.

Supplementary Figure 2. $2 \times 2 \times 2$ packing diagrams of ZNU-6 viewed along the crystallographic *a*-, *b*-, and *c*-axis (a, b, c) and $1 \times 1 \times 1$ packing diagrams of ZNU-6 with pore surface in green representing the inside and yellow the outside determined using a probe with the radius of 1.2 Å by PLATON.

		ZNU-6 as synthesized	ZNU-6·C ₂ H ₂	ZNU-6·C ₂ H ₄	ZNU-6·CO ₂	
a a 11	a=b=c	17.5352(3)	17.5343(3)	17.5392(3)	17.5395(2)	
cell	α=β=γ	90°	90°	90°	90°	
Tem	perature	298 K	298 K	298 K	298 K	
Spac	ce group	Pm-3n	Pm-3n	Pm-3n	Pm-3n	
Hal	l group	-P4n23	-P4n23	-P4n23	-P4n23	
Formula		C ₂₀ H ₁₆ Cu F ₆ GeN _{5.33} Cu(GeF ₆)(TPA) _{1.33}	C ₂₀ H ₁₆ CuGeF ₆ N _{5.33} ·4.296C ₂ H ₂ Cu(GeF ₆)(TPA) ₁ . 33 (C ₂ H ₂)4.296	$\begin{array}{c} C_{20}H_{16}CuGeF_6\\ N_{5.33}\cdot 2.178C_2H_4\\ Cu(GeF_6)(TPA)_{1.33}\\ (C_2H_4)_{2.178}\end{array}$	C ₂₀ H ₁₆ CuGeF ₆ N _{5.33} ·3CO ₂ Cu(GeF ₆)(TPA) _{1.} ₃₃ (CO ₂) ₃	
MW		581.21	701.29	660.38	767.85	
density		1.074	1.296	1.219	1.418	
comp	Data pleteness	0.988	0.985	0.967	0.971	
	R	0.1146	0.1460 0.1314		0.1451	
wR2		0.2588	0.3304	0.2816	0.2970	
S		0.986	1.201	1.059	1.002	
CC	DC. No	2192744	2192745	2192746	2192747	

Supplementary Table 1. Single crystal data of as synthesized ZNU-6, activated ZNU-6, ZNU-6, ZNU-6.C₂H₂, ZNU-6.C₂H₄ and ZNU-6.CO₂

Supplementary Figure 3. The adsorption configuration of C_2H_2 moleucles inside the norrow channel (site I) of ZNU-6 with the formation of rare C_2H_2 clusters. The C-H interaction and $\pi \cdots \pi$ packing distance is highlighted.

There are two kinds of interactions between C_2H_2 molecules in the site I. One is the C···H interactions, whose distances are between 2.2 and 2.6 Å, and the other is $\pi \cdots \pi$ interactions between C=C bonds, which are all in the distance of 2.4 Å.

Supplementary Figure 4. Single crystals structure of gas loaded ZNU-6. a. $CuGeF_6C_{20}H_{16}N_{5.33}$ (CO₂)₃ (H₂O)_{3.274}. b. $CuGeF_6C_{20}H_{16}N_{5.33}$ (C₂H₄)_{2.178} (O)_{1.137}. c. $CuGeF_6C_{20}H_{16}N_{5.33}$ (C₂H₂)_{4.296} (O)_{0.517}.

Due to the serious disorder of H atoms of H₂O molecules, we haven't solve the H atoms in C₂H₂ and C₂H₄ loaded ZNU-6. In CO₂ loaded crystal, besides 18 CO₂ molecules, there are 19.644 water molecules in each unit cell (sum formula Cu₆Ge₆F₃₆C₁₂₀H₉₆N₃₂). As to C₂H₄ loaded crystals, there are 13.068 C₂H₄ molecules and 6.822 H₂O molecules in an unit cell. In the C₂H₂ loaded crystals, the number of H₂O (3.102) is much lower than that of CO₂ or C₂H₄ loaded crystals. These H₂O vapor molecules don't occupy the adsorption site of targeted gas molecules. Instead, some weak interactions between H₂O and targeted gas molecules were observed. As shown above, The distances of H (H₂O) and O (CO₂) are 2.3-3.2 Å, those of O (H₂O) and H (C₂H₄) are 2.2 and 2.9 Å, and those of O (H₂O) and H (C₂H₂) are 3.2 Å.

Supplementary Figure 5. In-situ IR spectra for **a.** activated ZNU-6 (black), $-C_2H_2@ZNU-6$ (blue) and re-activated ZNU-6 (purple); **b.** activated ZNU-6 (black) and CO₂@ZNU-6 (green); **c.** activated ZNU-6 (black) and C₂H₄@ZNU-6 (red).

All the IR spectroscopic data are recorded in a Nicolet iS5 ATR-FTIR spectrometer. The samples of gas-loaded crystals were prepared by the method described in **Preparation of gas loaded ZNU-6** in manuscript.

As shown in the Supplementary Figure 5, new and obvious stretching bands that belong to C_2H_2 and CO_2 are observed in the C_2H_2 and CO_2 dosed single crystals. The $v_{as}(C_2H_2)$ and v(C=C) stretching band of adsorbed C_2H_2 down-shifted to 3160 and 1720 cm⁻¹ respectively with reference to the gas-phase value at 3287 and 2500-1900 cm⁻¹, indicating the existence of guest-host interactions. Similarity, $v(CO_2)$ band also undergoes a downward shift from gas-phase value 2349 cm⁻¹ to 2335 cm⁻¹, showing the interactions between CO₂ and framework. In contrast, the stretching band of C_2H_4 is not obvious in C_2H_4 @ZNU-6.

Supplementary Figure 6. PXRD patterns of ZNU-6.

Supplementary Figure 7. PXRD patterns of ZNU-6 after soaking in solvents for 6 months.

Supplementary Figure 8. PXRD patterns of ZNU-6 after treatment under different temperatures.

Experimental method: The fresh samples of **ZNU-6** were evacuated at 25 °C for 2 h firstly, and then evacuated at the corresponding temperature (393/423/448/473/503 K) for 40 mins. After cooling to room temperature, PXRD data were collected.

Supplementary Figure 9. TGA curve of **ZNU-6**. The weight loss before 110 °C is because of the loss of MeOH and water from the sample. The weight keeps consistent until ~253 °C.

III Adsorption data, Selectivity and Q_{st}

Supplementary Figure 10. Pore size distribution (b) of **ZNU-6** calculated from 77 K N₂ adsorption isotherms (a, c).

The BET surface area calculated from the N₂ adsorption isotherms under the pressure range of $P/P_0 = 0.01-0.05$ (for micropores) is 1330.3 m²/g.

The total pore volume calculated from the N_2 adsorption isotherms is 0.554 cm³/g.

Supplementary Figure 11. The adsorption isotherm of N_2 at 77 K on as-synthesized ZNU-6, and ZNU-6 after soaking in water for 6 months.

Analysis: The overlapping of the N_2 adsorption isotherms suggests its good stability towards water.

Gas	Kinetic	Molecular size	Boiling	Polarizability
molecules	Diameter (Å)	(Å ³)	point (K)	$(\times 10^{-25} \text{ cm}^3)$
C_2H_2	3.3	3.32 x 3.34 x 5.70	189.3	33.3-39.3
C_2H_4	4.2	3.28 x 4.18 x 4.84	169.5	42.5
CO_2	3.3	3.18 x 3.33 x 5.36	194.7	25.93

Supplementary Table 2. Comparison of C₂H₂, C₂H₄ and CO₂.

Supplementary Figure 12. The adsorption and desorption isotherms of C_2H_2 (a), $CO_2(b)$, and C_2H_4 (c) on ZNU-6 at 278, 298, and 308 K.

	0	0 1		1		
	Site A			Site B		
	$\frac{q_{A,sat}}{\text{mol/kg}}$	$\frac{b_{A0}}{\mathrm{Pa}^{-1}}$	$\frac{E_A}{\text{kJ mol}^{-1}}$	$\frac{q_{B,sat}}{\text{mol/kg}}$	$\frac{b_{B0}}{\mathrm{Pa}^{-1}}$	$\frac{E_B}{\text{kJ mol}^{-1}}$
C_2H_2	1.2	1.067E-09	37.5	7.6	5.015E-11	35.4
CO ₂	7.7	2.01E-10	25.5	1.8	1.06E-10	37.2
C ₂ H ₄	7.6	1.339E-10	29			

Supplementary Table 3. Dual-site Langmuir parameter fits for C₂H₂, CO₂ adsorption isotherms and single-site Langmuir parameter fit for C₂H₄ adsorption isotherms in ZNU-6.

Supplementary Figure 13. IAST selectivity of ZNU-6 towards gas mixtures of C_2H_2/C_2H_4 with different ratios at 298 K and 1 bar.

Supplementary Figure 14. IAST selectivity of ZNU-6 towards gas mixtures of CO_2/C_2H_4 with different ratios at 298 K and 1 bar.

Supplementary Figure 15. C₂H₂ adsorption isotherm of **ZNU-6** at 298 K fitted with Henry's equation at low pressure (0.2 kPa-0.7 kPa).

Supplementary Figure 16. CO₂ adsorption isotherm of **ZNU-6** at 298 K fitted with Henry's equation at low pressure (0.2 kPa-0.7 kPa).

Supplementary Figure 17. C₂H₄ adsorption isotherm of **ZNU-6** at 298 K fitted with Henry's equation at low pressure (0.2 kPa-0.7 kPa).

Supplementary	Table	4.	Summary	of	Henry	constant	and	Henry's	selectivity	of
ZNU-6										

	Henry constant (cm ³ g ⁻¹ kPa ⁻¹)
C_2H_2	26.2
CO ₂	25.1
C_2H_4	3.2
C ₂ H ₂ /C ₂ H ₄ Henry's selectivity	8.2
CO ₂ /C ₂ H ₄ Henry's selectivity	7.8

Supplementary Figure 18. $CO_2/C_2H_2/C_2H_4$ adsorption isotherm of **TpPa-NO**₂ at 298 K fitted with Henry's equation at low pressure (0-7 kPa). Data of adsorption was from Reference 1.

Supplementary Figure 19. $CO_2/C_2H_2/C_2H_4$ adsorption isotherm of **NTU-67** at 298 K fitted with Henry's equation at low pressure (0-1.2 kPa). Data of adsorption was from Reference 2.

Supplementary Figure 20. $CO_2/C_2H_2/C_2H_4$ adsorption isotherm of activated carbon at 298 K fitted with Henry's equation at low pressure (0-11.0 kPa). Data of adsorption was from Reference 2.

Supplementary Figure 21. $CO_2/C_2H_2/C_2H_4$ adsorption isotherm of SIFSIX-1-Cu at 298 K fitted with Henry's equation at low pressure (0-8.0 kPa). Data of adsorption was from Reference 2.

Supplementary Figure 22. $CO_2/C_2H_2/C_2H_4$ adsorption isotherm of Zeolite 5A at 298 K fitted with Henry's equation at low pressure (0-1.2 kPa). Data of adsorption was from Reference 2.

Supplementary Figure 23. $CO_2/C_2H_2/C_2H_4$ adsorption isotherm of SIFSIX-17-Ni at 298 K fitted with Henry's equation at low pressure (0-1.8 kPa). Data of adsorption was from Reference 3.

Supplementary Figure 24. $CO_2/C_2H_2/C_2H_4$ adsorption isotherm of SIFSIX-2-Cu-i at 298 K fitted with Henry's equation at low pressure (0-0.6 kPa). Data of adsorption was from Reference 2.

	C ₂ H ₂	CO ₂	C ₂ H ₄		
	Henry	Henry	Henry	C_2H_2/C_2H_4	CO_2/C_2H_4
	constant	constant	constant	Henry's	Henry's
	$(cm^3 g^{-1})$	$(cm^3 g^{-1})$	$(cm^3 g^{-1})$	selectivity	selectivity
	kPa ⁻¹)	kPa ⁻¹)	kPa ⁻¹)		
TpPa-NO ₂	2.0	0.9	0.5	4.0	1.8
NTU-67	5.9	10.6	2.5	2.36	4.24
Activated carbon	1.7	1.3	6.8	0.25	0.19
SIFSIX-1-Cu	11.3	1.1	0.9	12.56	1.22
Zeolite 5A	3.0	21.8	31.6	0.09	0.69
SIFSIX-17-Ni	14.6	4.0	0.06	243.33	66.67
SIFSIX-2-Cu-i	30.2	2.9	0.9	33.56	3.22
ZNU-6	26.2	25.1	3.2	8.19	7.84

Supplementary Table 5. Comparison of Henry constants and Henry's selectivity among absorbents used in single-step C₂H₄ purification from ternary gas mixture.

	$\begin{array}{c} C_2H_2 \text{ uptake cm}^3/g \\ (\text{cm}^3/\text{cm}^3) \end{array}$	$\frac{\text{CO}_2 \text{ uptake cm}^3/\text{g}}{(\text{cm}^3/\text{cm}^3)}$	Ref
TIFSIX-3-Ni	67.2	52.0	3
SIFSIX-3-Ni	73.9	60.5	3-5
SIFSIX-17-Ni	73.9	51.5	3
SIFSIX-3-Zn	81.5	57.1	4-6
TIFSIX-17-Ni	73.9	49.3	3
SIFSIX-3-Cu	83.5	56.0	4, 6
UTSA-300a	68.9	3.3	7
NTU-67	73.7	45.7	2
NTU-65	75.4	2.3	8
UTSA-200a	81.8	105.5	9, 10
SIFSIX-2-Cu-i	89.6	108.6	4, 10, 11
ZU-62	82.2	/	12
ZNU-4	85.1	44.1	13
NCU-100a	102.3	13.7	14
ZNU-5	128.6	15.2	15
SIFSIX-1-Cu	190.4	117.6	4
(p=0.864 g/cm ³)	(164.5)	(101.6)	
SIFSIX-Cu-TPA	185.0	107.0	16
(ρ=0.995 g/cm ³)	(184.1)	(106.5)	
ZNU-6	180.44 (193.8)	106.7 (114 6)	This work

Supplementary Table 6. Comparison of saturated C₂H₂ and CO₂ uptake (298 K, 1 bar).

		_ 1		1	
	Molecule formula	Molecular weight	C ₂ H ₂ /anion ratio	CO ₂ /anion ratio	Ref.
TIFSIX-3-Ni	Ni(TiF ₆)(C ₄ H ₄ N ₂) ₂	379.95	1.14	0.88	3
SIFSIX-3-Ni	Ni(SiF ₆)(C ₄ H ₄ N ₂) ₂	360.96	1.19	0.97	3-5
SIFSIX-17-Ni	Ni(SiF6)(C4H5N3)2	390.98	1.29	0.9	3
SIFSIX-3-Zn	$Zn(SiF_6)(C_4H_4N_2)_2$	367.64	1.34	0.93	4-6
TIFSIX-17-Ni	Ni(TiF6)(C4H5N3)2	410.76	1.36	0.91	3
SIFSIX-3-Cu	$Cu(SiF_6)(C_4H_4N_2)_2$	365.80	1.37	0.92	4,6
UTSA-300a	$Zn(SiF_6)(C_{10}H_8SN_2)_2$	583.95	1.8	0.09	7
NTU-67	$Cu(SiF_6)(C_{12}H_{10}N_4)_2$	626.12	2.06	1.28	2
NTU-65	Cu(SiF ₆)(C ₁₂ H ₁₀ N ₄) ₂	626.12	2.11	0.06	8
UTSA-200a	$Cu(SiF_6)(C_{10}H_8N_4)_2$	574.04	2.10	2.71	9-10
SIFSIX-2-Cu-i	$Cu(SiF_6)(C_{12}H_8N_2)_2$	565.78	2.27	3.06	4,10-11
ZU-62	Cu(NbOF5)(C12H8N2)2	627.86	2.31	/	12
ZNU-4	Cu(TiF ₆)(C ₁₂ H ₁₀ N ₄) ₂	645.88	2.45	1.27	13
NCU-100a	Cu(SiF ₆)(C ₁₀ H ₁₄ N ₂ O ₃ S) ₂	690.21	3.15	0.42	14
ZNU-5	$Cu(TiF_6)(C_{12}H_{10}N_4)_2$	645.88	3.71	0.44	15
SIFSIX-1-Cu	$Cu(SiF_6)(C_{10}H_8N_2)_2$	517.78	4.40	2.72	4
SIFSIX-Cu-TPA	Cu(SiF ₆)(C ₁₅ H ₁₂ N ₄) _{1.33}	536.67	4.44	2.57	16
				2.55	This
ZNU-6	Cu(GeF6)(C15H12N4)1.33	581.21	4.68	2.77	work

Supplementary Table 7. Comparison of C₂H₂ and CO₂ uptake per anion among anion pillared MOFs.

Guest/anion ratio=Q_{gas} \times M \div 22.4 \div 1000

Qgas: the gas uptake of APMOFs, mL/g

M: Molecular weight of crystals, g/mol

Supplementary Figure 25. Comparison of the saturated C₂H₂ and CO₂ uptake (1 bar, 298 K) among anion pillared MOFs.

Supplementary Figure 26. Six cycles of CO₂ adsorption of ZNU-6 at 298 K.

The reactivation condition between 5th and 6th cycle: Under vacuum, at room temperature for 3 hours.

Supplementary Figure 27. H₂O adsorption isotherms of ZNU-6 at 298 K.

Supplementary Figure 28. H₂O adsorption capacity-time curve (adsorption kinetics) of **ZNU-6** at 298 K.

IV Kinetic studies

Supplementary Figure 29. Time-dependent adsorption curves of C_2H_2 , CO_2 , C_2H_4 and C_3H_8 .

Analysis: Despite the narrow channel size in ZNU-6, the diffusion of C_2H_2 , CO_2 and C_2H_4 are very fast. The measurements are finished within 350 min to reach saturated uptake. When compared, C_3H_8 with larger molecular size is less kinetic-favoured, the measurement takes over 800 min under the same conditions.

Supplementary Figure 30. Typical breakthrough curves (a) and the calculated kinetic curves therefrom.

1. Ideal materials (red curves) feature nearly vertical breakthrough curves, which is almost impossible to realize in real system due to the lateral diffusion as well as the diffusion between the particles in the fixed bed.

2. Materials with fast kinetic (blue curves) feature very sharp breakthrough curves, indicating the gas diffusion within the pores are very fast. The breakthrough phenomenon occurs when the material is nearly get saturated.

3. Materials with slow kinetic (green curves) feature relatively flat breakthrough curves. Due to the slow diffusion within the pores, tested gas flows through the space between particles instead of diffusion into the pores to be captured. Thus, the breakthrough phenomenon occurs when the material is far from gas-saturation.

Supplementary Figure 31. Experimental breakthrough curves of pure gases in ZNU-6 and the calculated kinetic curves therefrom (a, b) CO_2 ; (c, d) C_2H_4 ; (e, f) C_2H_2 .

The breakthrough curves of C_2H_2 , CO_2 and C_2H_4 increase sharply after the gas break out, and the corresponding kinetic curves rises rapidly, indicating that ZNU-6 has fast kinetic for CO_2 , C_2H_4 and C_2H_2 adsorption. Notably, the flow rate of > 5mL/min is relatively fast for breakthrough experiments; most breakthrough experiments reported in published papers were performed at ~ 2 mL/min. Thus, the retained sharp breakthrough curves under such high flowrate fully confirm the fast diffusion of CO₂, C_2H_4 and C_2H_2 in the pores of ZNU-6, which is very advantageous for practical applications **Experimental method:** The column packed with ZNU-6 was activated completely firstly, and then pure CO_2 , C_2H_4 or C_2H_2 was introduced at a specific flow rate. The measure range of our flowmetre is 0-10 sccm. The real flowrate is calibrated by self-made soapfilm flowmetre. The displayed and real flowrate is shown in Supplementary Table S8.

	Displayed flow rate (mL/min)	Actual flow rate (mL/min)
CO ₂	6.8	5.0
CO ₂	10.0	7.4
C ₂ H ₄	10.0	6.0
C ₂ H ₂	10.0	5.8

Supprementally fuble of Comparison of the alsofayed and canonated actual no mi
--

V Breakthrough experiments

Supplementary Figure 32. Experimental breakthrough curves of ZNU-6 for C_2H_4/C_2H_2 (1/99).

Supplementary Figure 33. Experimental dynamic desorption curves of ZNU-6 after breakthrough experiment of C_2H_2/C_2H_4 (1/99). Desorption conditions: Ar flow rate 10 mL/min at 75 °C.

Supplementary Figure 34. Experimental breakthrough curves of ZNU-6 for C_2H_2 / C_2H_4 (1/99) at different flow rate.

Supplementary Figure 35. Experimental breakthrough curves of ZNU-6 for C_2H_2/C_2H_4 (1/99) at different flow rate.

Supplementary Figure 36. Experimental breakthrough curves of ZNU-6 for CO_2/C_2H_4 (10/90).

Supplementary Figure 37. Experimental dynamic desorption curves of ZNU-6 after breakthrough experiment of CO_2/C_2H_4 (10/90). Desorption conditions: Ar flow rate 10 mL/min at 75 °C.

Supplementary Figure 38. Experimental breakthrough curves of ZNU-6 for $C_2H_2/CO_2/C_2H_4$ (1/1/98). Flow rate: 5 mL/min.

Supplementary Figure 39. Experimental dynamic desorption curves of **ZNU-6** after breakthrough experiment of $C_2H_2/CO_2/C_2H_4$ (1/1/98). Desorption conditions: Ar flow rate 10 mL/min at 75 °C.

Supplementary Figure 40. Experimental breakthrough curves of ZNU-6 for $C_2H_2/CO_2/C_2H_4$ (1/5/94). Flow rate: 5 mL/min.

Supplementary Figure 41. Experimental dynamic desorption curves of ZNU-6 after breakthrough experiment of $C_2H_2/CO_2/C_2H_4$ (1/5/94). Desorption conditions: Ar flow rate 10 mL/min at 75 °C.

Supplementary Figure 42. Experimental breakthrough curves of ZNU-6 for $C_2H_2/CO_2/C_2H_4$ (1/9/90). Flow rate: 5 mL/min.

Supplementary Figure 43. Experimental dynamic desorption curves of ZNU-6 after breakthrough experiment of $C_2H_2/CO_2/C_2H_4$ (1/9/90). Desorption conditions: Ar flow rate 10 mL/min at 75 °C.

Supplementary Figure 44. Experimental breakthrough curves of ZNU-6 for $C_2H_2/CO_2/C_2H_4$ (5/5/90). Flow rate: 5 mL/min.

Supplementary Figure 45. Experimental dynamic desorption curves of ZNU-6 after breakthrough experiment of $C_2H_2/CO_2/C_2H_4$ (5/5/90). Desorption conditions: Ar flow rate 10 mL/min at 75 °C.

Supplementary Figure 46. Experimental breakthrough curves of ZNU-6 for $C_2H_2/CO_2/C_2H_4$ (1/1/98) at 283, 298 and 323 K. Flow rate: 5 mL/min.

Supplementary Figure 47. Experimental breakthrough curves of ZNU-6 for $C_2H_2/CO_2/C_2H_4$ (1/9/90) at 283 and 298 K. Flow rate: 5 mL/min.

Supplementary Figure 48. H_2O uptake in breakthrough experiments (N₂, RH=100%). Flow rate: 5 mL/min.

Experimental method: The column packed with ZNU-6 was activated completely firstly, and then N_2 with saturated moisture was introduced at a flow rate of 5 mL/min. After each period, the column was picked out and weighted by balance to calculate the adsorbed amount of water. The adsorbed N_2 amount is neglected.

Conditions	Experimental C ₂ H ₄ productivity (mol/kg)	Experimental C ₂ H ₂ captured amount (mol/kg)	Experimental CO2 captured amount (mol/kg)	
C ₂ H ₂ -CO ₂ -C ₂ H ₄ (1-1-98) 283 K	80.89	0.96	0.98	
C ₂ H ₂ -CO ₂ -C ₂ H ₄ (1-1-98) 298 K	64.42	0.78	0.84	
C ₂ H ₂ -CO ₂ -C ₂ H ₄ (1-1-98) 323 K	36.73	0.48	0.53	
C ₂ H ₂ -CO ₂ -C ₂ H ₄ (1-5-94) 298 K	21.37	0.60	1.52	
C ₂ H ₂ -CO ₂ -C ₂ H ₄ (1-9-90) 298 K (dry)	13.81	0.56	1.97	
C ₂ H ₂ -CO ₂ -C ₂ H ₄ (5-5-90) 298 K	11.04	2.65	0.55	
C ₂ H ₂ -CO ₂ -C ₂ H ₄ (1-9-90) 298 K (humid)	13.79	-	-	

Supplementary Table 9. Experimental dynamic C_2H_4 productivity and captured C_2H_2/CO_2 amount for ZNU-6 from different gas ratios and under different conditions.

	C ₂ H ₂ /CO ₂ /C ₂ H ₄ =1/9/90 (v/v/v) Flow rate: 5 mL/min					
	ZNU-6	NTU-67	Activated carbon	zeolite 5A	SIFSIX-2-Cu-i	SIFSIX-17-Ni
Mass (g)	0.58	1.20	0.98	1.74	0.52	0.82
Time 1 ^a (min)	52.00	43.59	21.40	13.18	12.61	12.24
Time 2 ^b (min)	196.00	84.38	34.19	45.89	170.08	83.82
Time 1 (min g ⁻¹)	89.56	36.17	21.84	7.58	24.20	14.96
Time 2 (min g ⁻¹)	337.58	70.03	34.89	26.40	326.44	102.42
Productivity per adsorption cycle (mol kg ⁻¹)	13.81	5.42	0.49	0.36	2.40	2.47
Productivity based on Time 1 (mol kg ⁻¹ h ⁻¹)	15.93	7.46	1.38	1.62	11.41	12.10
Productivity based on Time 2 (mol kg ⁻¹ h ⁻¹)	4.23	3.85	0.86	0.46	0.85	1.77

Supplementary Table 10. Experimental dynamic C₂H₄ productivity for different adsorbents.

 $^{a}\mbox{ Time 1}$ is the time when the second gas can be detected after $C_{2}H_{4};$

 $^{\rm b}$ Time 2 is the time when C_A/C_0 reaches 1.0 for all the gases.

		8					
	ZNU-6 Flow rate: 5 mL/min						
C ₂ H ₂ /CO ₂ /C ₂ H ₄	1-1-98	1-1-98	1-1-98	1.5.04	1-9-90	5 5 00	1-9-90
(v/v/v)	283 K	298 K	323 K	1-5-94	dry	5-5-90	humid
Time 1	222.00	184.00	112.00	72.00	52.00	44.00	112.00
(min)	232.00						
Time 2	204.00	240.00	100.00	102.00	100.00	100.00	100.00
(min)	284.00	248.00	180.00	192.00	196.00	180.00	180.00
Productivity per							
adsorption cycle	80.89	64.42	36.73	21.37	13.81	11.04	13.79
(mol kg ⁻¹)							
Productivity							
based on Time 1	20.92	21.01	19.68	17.81	15.93	15.05	7.39
(mol kg ⁻¹ h ⁻¹)							
Productivity							
based on Time 2	17.09	15.59	12.24	6.68	4.23	3.68	4.60
(mol kg ⁻¹ h ⁻¹)							

Supplementary Table 11. Experimental dynamic C₂H₄ productivity for ZNU-6 from different gas ratios and under different conditions.

VI Supplementary References

[1] X.-H. Xiong, L. Zhang, W. Wang, N.-X. Zhu, L.-Z. Qin, H.-F. Huang, L.-L. Meng, Y.-Y. Xiong, M. Barboiu, D. Fenske, P. Hu, Z.-W. Wei, ACS Appl. Mater. Interfaces 2022, 14, 32105–32111.

- [2] Q. Dong, Y. Huang, K. Hyeon-Deuk, I.-Y. Chang, J. Wan, C. Chen, J. Duan, W. Jin,
 S. Kitagawa, *Adv. Funct. Mater.* 2022, 2203745.DOI: 10.1002/adfm.202203745.
- [3] S. Mukherjee, N. Kumar, A. A. Bezrukov, K. Tan, T. Pham, K. A. Forrest, K. A. Oyekan, O. T. Qazvini, D. G. Madden, B. Space, M. J. Zaworotko, *Angew. Chem. Int. Ed.* 2021, 60, 10902–10909.
- [4] X. Cui, K. Chen, H. Xing, Q. Yang, R. Krishna, Z. Bao, H. Wu, W. Zhou, X. Dong,
 Y. Han, B. Li, Q. Ren, M. J. Zaworotko, B. Chen, *Science* 2016, *353*, 141–144.
- [5] X. Cui, Q. Yang, L. Yang, R. Krishna, Z. Zhang, Z. Bao, H. Wu, Q. Ren, W. Zhou,
 B. Chen, H. Xing, *Adv. Mater.* 2017, *29*, 1606929.
- [6] O. Shekhah, Y. Belmabkhout, Z. Chen, V. Guillerm, A. Cairns, K. Adil, M. Eddaoudi, *Nat. Commun.* **2014**, *5*, 4228.
- [7] R.-B. Lin, L. Li, H. Wu, H. Arman, B. Li, R.-G. Lin, W. Zhou, B. Chen, J. Am. Chem. Soc. 2017, 139, 8022–8028.
- [8] Q. Dong, X. Zhang, S. Liu, R.-B. Lin, Y. Guo, Y. Ma, A. Yonezu, R. Krishna, G. Liu, J. Duan, R. Matsuda, W. Jin, B. Chen, *Angew. Chem. Int. Ed.* 2020, 59, 22756–22762.
- [9] B. Li, X. Cui, D. O'Nolan, H.-M. Wen, M. Jiang, R. Krishna, H. Wu, R.-B. Lin, Y.-S. Chen, D. Yuan, H. Xing, W. Zhou, Q. Ren, G. Qian, M. J. Zaworotko, B. Chen, *Adv. Mater.* 2017, 29, 1704210.
- [10] M. Jiang, B. Li, X. Cui, Q. Yang, Z. Bao, Y. Yang, H. Wu, W. Zhou, B. Chen, H. Xing, ACS Appl. Mater. Interfaces 2018, 10, 16628–16635.
- [11] Z. Zhang, Q. Ding, J. Cui, H. Xing, Small 2020, 16, 2005360.
- [12] D. O'Nolan, A. Kumar, K.-J. Chen, S. Mukherjee, D. G. Madden, M. J. Zaworotko, ACS Appl. Nano Mater. 2018, 1, 6000–6004.
- [13] N. Xu, J. Hu, L. Wang, D. Luo, W. Sun, Y. Li, Y. Hu, D. Wang, X. Cui, H. Xing,Y. Zhang, *Chem. Eng. J.* 2022, 450, 138034.

[14] J. Wang, Y. Zhang, P. Zhang, J. Hu, R.-B. Lin, Q. Deng, Z. Zeng, H. Xing, S. Deng, B. Chen, J. Am. Chem. Soc. 2020, 142, 9744–9751.

[15] L. Wang, N. Xu, Y. Hu, W. Sun, R. Krishna, J. Li, Y. Jiang, S. Duttwyler, Y. Zhang, *Nano Res.* **2022** (in revision).

[16] H. Li, C. Liu, C. Chen, Z. Di, D. Yuan, J. Pang, W. Wei, M. Wu, M. Hong, Angew. Chem. Int. Ed. 2021, 60, 7547–7552.

nature portfolio

Peer Review File

Benchmark Single-Step Ethylene Purification from Ternary Mixtures by a Customized Fluorinated Anion Embedded MOF

Open Access This file is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to

the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. In the cases where the authors are anonymous, such as is the case for the reports of anonymous peer reviewers, author attribution should be to 'Anonymous Referee' followed by a clear attribution to the source work. The images or other third party material in this file are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit <u>http://creativecommons.org/licenses/by/4.0/</u>.

REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author):

In this work authors reported GeF62- anion incorporated MOF named ZNU-6. The MOF has optimum pore structure and environment for one step ethylene purification and also high selective for carbon di oxide separation as well. This research area is very promising epically today when we need to find better alternative for energy storage and separation. The authors investigated the MOF in different conditions and proved its viability and effectiveness. The chemical approach of this work is strong, and the results are clearly visible from the experiments

However here are some of my questions and concerns

1. The topic of ethylene purification/ separation using MOF is not very new, even incorporation of anions in MOFs has been reported by the authors group recently (Wang et al, Nano Research 2022). It would be great if authors can describe the novelty of this research as suitable of Nature common

2. Its seems that the customized pore environment helps to help achieve higher selectivity however DFT studies, and in-situ X ray have been performed to corroborate the statement. Have the authors performed any in-situ IR to verify the conclusions? This evidence will help strengthen the case

3. Heat of adsorption values and isotherm dependency with temp indicates the physisorption nature of guest /host chemistry. However, the additional interaction with anions and even TPA can provide some chemisorption in CO2. Have the authors performed any Temp programed desorption studies in terms of gases of choice to see the binding behavior?

4. What is the relative humidity used in this study?

5. We can see ZNU-6 is strong water adsorbent however in humid conditions shows negligible deterioration of separation performance. However, the reasoning and data is not very clear, has the authors tried to quantify the effect of humidity in this case, 6. In similar topic, what happen in desorption cases in breakthrough, I mean when the fixed bed is undergoing regeneration, have the authors quantified the effect of humidity in gas desorption cases and in cyclic performance?

Reviewer #2 (Remarks to the Author):

The authors reported a GeF62- anion embedded MOF, ZNU-6, with optimized pore structure and environment for highly efficient C2H4 recovery from various C2H2/CO2/C2H4 ternary mixtures. The material exhibited good recyclability and resistance toward moisture during breakthrough experiments. Ethylene (C2H4) purification from multi-component mixtures by physical adsorption is an important industrial challenging, and this work will be very interesting for the readers. The experiments were well performed and the manuscript has been written well. I agree that this manuscript to be accepted for Nature Communications after some minor revision. The following are the suggestions for the authors to improve the manuscript. 1. Figure 1 Caption, (f) is inconsistent with other numbering.

2. Supplementary Figure 10-11, the authors should provide the pressure of these IAST selectivities.

3. For the in-situ gas-loaded MOF structure, the authors should add a figure to describe the C2H2 gas molecule cluster and the interactions between the molecules, either in main text or SI. A figure illustrating the interaction between adsorbed water and gas molecules should also be added.

Reviewer #3 (Remarks to the Author):

Thanks to its potential to introduce energy-efficient, single-step ethylene purification

approaches, this manuscript by Jiang et al. is of high topical relevance to gas purifications, and MOFs for separations. Considering high importance of the new findings, and their general relevance in controlling the pore electrostatics (F···C=O interactions) driven gas separation/purification properties, I support publication subject to necessary revisions as follows:

• Molecular formulae are missing including that of the new as-synthesised ZNU-6 (although I find this formula in Table S7, should be clearly noted in the manuscript too). All molecular formulae for the gas-loaded phases should be clearly written in the main article, if needed, using a table with analysis of sorbate-sorbent interactions (distances).

• The authors should not be presenting the adsorption data with respect to molecules per GeF62- anion, this makes the data skewed in favour of this adsorbent, ZNU-6. Also, the units for adsorption uptakes and pressure need to be consistent. Right now, with mixed use of cm3/g, mmol/g, mol/mol and mmol/g, these are all mixed up; same mix-up is observed in the units used for pressure, bar and kPa. Collectively, all these mistakes come together in the manuscript Figure 2. I strongly recommend replotting the isotherm-based uptakes in one consistent pair of units: mmol/g and bar. This not only makes this manuscript coherent but also helps the whole community working in this are with regard to comparing performance parameters across different adsorbents.

• Page 2, lines 33-34, the authors need to discuss "Presently, multi-step purification process is adopted for purification of C2H4 from C2H4/C2H2/CO2 mixtures." This needs to take cognisance of the recent reports on single-step C2H4 purification from ternary (1:1:1 for C2H2/C2H4/C2H6) and quaternary (1:1:1:1 for C2H2/C2H4/C2H6/CO2) gas mixtures. Some examples include: Cao, JW. et al., Nat Commun. 2021, 12, 6507. Xu, Z. et al., Nat Commun. 2020, 11, 3163.

I don't quite agree with the authors use of the word "static" in the heading of Figure 2. Should just be written as "The sorption performance." In another instance, the authors use this phrase "static adsorption" (page 11, line 202), which I object to.
It is stated that the C2H4 productivity is 309 mL/g, again this unit is far from the standard unit typically used in other literature reports in this area, i.e., mol kg-1 h-1.
Importantly, the authors have calculated productivity by integrating the effluent flow rate of C2H4 (cm3/min). However, all the breakthrough curves (in Fig. 5) are showed in with the effluent concentration (C/C0). It is obvious that integrating the concentration curve cannot give the amount, although a few references adopt this wrong method. Therefore, it is necessary to show the details for direct measurement and/or indirect

calculation of the effluent flow rate and concentration in this study. See Shen, J. et al., Nat Commun. 2020, 11, 6259 as a reference.

• How common / rare is the ith-d topology among the anion-pillared MOF library? It would greatly help the article / future readers, if the authors can address this by a thorough literature-based contextualisation of the structural topology of ZNU-6.

• Section 7 in the supplementary information has a header "Breakthrough simulations and experiments", the following figure captions for Supplementary Figures 28-43 are all including "Experimental" in their figure captions, nonetheless. I wonder where the simulation-derived breakthrough data is?

Overall, an interesting idea executed by the authors that should advance this area in the near future. I will be glad to look at a suitably revised article, when ready.

Reviewer #4 (Remarks to the Author):

This manuscript by Jiang et al, report a metal organic framework (ZNU-6) for the application of simultaneous removal of C2H2 and CO2 from C2H4 stream. This area is of important practical applications and has been extensively investigated in the past few years. The overall quality of this manuscript is high with detailed investigation of the structure characterisation of the MOF, study of its adsorption properties using isotherm and breakthrough experiments, and thorough investigation of the host-guest interactions. Below are some comments and questions from me, and I would recommend the publication of this manuscript after the authors fully address them: 1. I think it is necessary that the authors reference some highly relevant publications in

the inttroduction, e.g. Hexafluorogermanate (GeFSIX) Anion-Functionalized Hybrid Ultramicroporous Materials for Efficiently Trapping Acetylene from Ethylene, Ind. Eng. Chem. Res. 2018, 57, 21, 7266–7274.

2. The cif. File for CO2 loaded ZNU-6 shows an O-C-O bond angle of CO2 being 157 ° instead of the theoretical 180°, could the authors please explain this discrepancy. 3. Figure 2f, the Qst for CO2, why it showed a sudden drop at 2mmol/g coverage? 4. From the isotherms for CO2 and C2H4 (Figure 2b, 2d), the saturation uptake for CO2 and C2H4 are very close; and the kinetic data (supplementary figure 25) of CO2 and C2H4 are also similar with C2H4 being slightly faster in adsorption. For Qst, CO2 started higher than C2H4 then fall to be lower than C2H4. These three parameters (uptake, kinetic, Qst), all seem indicating the interaction between the gas molecules and the framework is very similar. In this case, how do the authors rationalise the observed separation in breakthrough experiments? what do the authors think is the really reason that ZNU-6 can retain CO2 from mixtures containing mainly C2H4 and small percentage of CO2.

REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author)

In this work authors reported GeF_6^{2-} anion incorporated MOF named ZNU-6. The MOF has optimum pore structure and environment for one step ethylene purification and also high selective for carbon dioxide separation as well. This research area is very promising especially today when we need to find better alternative for energy storage and separation. The authors investigated the MOF in different conditions and proved its viability and effectiveness. The chemical approach of this work is strong, and the results are clearly visible from the experiments

However here are some of my questions and concerns

1. The topic of ethylene purification/ separation using MOF is not very new, even incorporation of anions in MOFs has been reported by the authors group recently (Wang et al, Nano Research 2022). It would be great if authors can describe the novelty of this research as suitable of Nature common.

2. Its seems that the customized pore environment helps to achieve higher selectivity however DFT studies, and in-situ X ray have been performed to corroborate the statement. Have the authors performed any in-situ IR to verify the conclusions? This evidence will help strengthen the case

3. Heat of adsorption values and isotherm dependency with temp indicates the physisorption nature of guest /host chemistry. However, the additional interaction with anions and even TPA can provide some chemisorption in CO₂. Have the authors performed any Temp programed desorption studies in terms of gases of choice to see the binding behavior?

4. What is the relative humidity used in this study?

5. We can see ZNU-6 is strong water adsorbent however in humid conditions shows negligible deterioration of separation performance. However, the reasoning and data is not very clear, has the authors tried to quantify the effect of humidity in this case.

6. In similar topic, what happen in desorption cases in breakthrough, I mean when the fixed bed is undergoing regeneration, have the authors quantified the effect of humidity in gas desorption cases and in cyclic performance?

Reviewer #2 (Remarks to the Author)

The authors reported a GeF_6^{2-} anion embedded MOF, ZNU-6, with optimized pore structure and environment for highly efficient C₂H₄ recovery from various C₂H₂/CO₂/C₂H₄ ternary mixtures. The material exhibited good recyclability and resistance toward moisture during breakthrough experiments. Ethylene (C₂H₄) purification from multi-component mixtures by physical adsorption is an important industrial challenging, and this work will be very interesting for the readers. The experiments were well performed and the manuscript has been written well. I agree that this manuscript to be accepted for Nature Communications after some minor revision. The following are the suggestions for the authors to improve the manuscript.

1. Figure 1 Caption, (f) is inconsistent with other numbering.

2.Supplementary Figure 10-11, the authors should provide the pressure of these IAST

selectivities.

3. For the in-situ gas-loaded MOF structure, the authors should add a figure to describe the C_2H_2 gas molecule cluster and the interactions between the molecules, either in main text or SI. A figure illustrating the interaction between adsorbed water and gas molecules should also be added.

Reviewer #3 (Remarks to the Author)

Thanks to its potential to introduce energy-efficient, single-step ethylene purification approaches, this manuscript by Jiang et al. is of high topical relevance to gas purifications, and MOFs for separations. Considering high importance of the new findings, and their general relevance in controlling the pore electrostatics (F····C=O interactions) driven gas separation/purification properties, I support publication subject to necessary revisions as follows:

1. Molecular formulae are missing including that of the new as-synthesized ZNU-6 (although I find this formula in Table S7, should be clearly noted in the manuscript too). All molecular formulae for the gas-loaded phases should be clearly written in the main article, if needed, using a table with analysis of sorbate-sorbent interactions (distances) 2. The authors should not present the adsorption data with respect to molecules per GeF₆²⁻ anion, this makes the data skewed in favour of this adsorbent, ZNU-6. Also, the units for adsorption uptakes and pressure need to be consistent. Right now, with mixed use of cm³/g, mmol/g, mol/mol and mmol/g, these are all mixed up; same mix-up is observed in the units used for pressure, bar and kPa. Collectively, all these mistakes come together in the manuscript Figure 2. I strongly recommend replotting the isotherm-based uptakes in one consistent pair of units: mmol/g and bar. This not only makes this manuscript coherent but also helps the whole community working in this area with regard to comparing performance parameters across different adsorbents.

3. Page 2, lines 33-34, the authors need to discuss "Presently, multi-step purification process is adopted for purification of C₂H₄ from C₂H₄/C₂H₂/CO₂ mixtures." This needs to take cognisance of the recent reports on single-step C2H4 purification from ternary (1:1:1 for C₂H₂/C₂H₄/C₂H₆) and quaternary (1:1:1:1 for C₂H₂/C₂H₄/C₂H₆/CO₂) gas mixtures. Some examples include: Cao, JW. et al., Nat Commun. 2021, 12, 6507. Xu, Z. et al., Nat Commun. 2020, 11, 3163.

4. I don't quite agree with the authors use of the word "static" in the heading of Figure 2. Should just be written as "The sorption performance." In another instance, the authors use this phrase "static adsorption" (page 11, line 202), which I object to.

5. It is stated that the C_2H_4 productivity is 309 mL/g, again this unit is far from the standard unit typically used in other literature reports in this area, i.e., mol kg⁻¹ h⁻¹

6. Importantly, the authors have calculated productivity by integrating the effluent flow rate of C_2H_4 (cm³/min). However, all the breakthrough curves (in Fig. 5) are showed in with the effluent concentration (C/C₀). It is obvious that integrating the concentration curve cannot give the amount, although a few references adopt this wrong method. Therefore, it is necessary to show the details for direct measurement and/or indirect calculation of the effluent flow rate and concentration in this study.

See Shen, J. et al., Nat Commun. 2020, 11, 6259 as a reference.

7. How common / rare is the ith-d topology among the anion-pillared MOF library? It would greatly help the article/future readers, if the authors can address this by a thorough literature-based contextualisation of the structural topology of ZNU-6.

8. Section 7 in the supplementary information has a header "Breakthrough simulations and experiments", the following figure captions for Supplementary Figures 28-43 are all including "Experimental" in their figure captions, nonetheless. I wonder where the simulation-derived breakthrough data is?

Overall, an interesting idea executed by the authors that should advance this area in the near future. I will be glad to look at a suitably revised article, when ready.

Reviewer #4 (Remarks to the Author)

This manuscript by Jiang et al, report a metal organic framework (ZNU-6) for the application of simultaneous removal of C_2H_2 and CO_2 from C_2H_4 stream. This area is of important practical applications and has been extensively investigated in the past few years. The overall quality of this manuscript is high with detailed investigation of the structure characterisation of the MOF, study of its adsorption properties using isotherm and breakthrough experiments, and thorough investigation of the host-guest interactions. Below are some comments and questions from me, and I would recommend the publication of this manuscript after the authors fully address them:

1. I think it is necessary that the authors reference some highly relevant publications in the introduction, e.g. Hexafluorogermanate (GeFSIX) Anion-Functionalized Hybrid Ultramicroporous Materials for Efficiently Trapping Acetylene from Ethylene, Ind. Eng. Chem. Res. 2018, 57, 21, 7266–7274.

2. The cif. File for CO₂ loaded ZNU-6 shows an O-C-O bond angle of CO₂ being 157° instead of the theoretical 180° , could the authors please explain this discrepancy.

3. Figure 2f, the Qst for CO₂, why it showed a sudden drop at 2 mmol/g coverage?

4. From the isotherms for CO₂ and C₂H₄ (Figure 2b, 2d), the saturation uptake for CO₂ and C₂H₄ are very close; and the kinetic data (supplementary figure 25) of CO₂ and C₂H₄ are also similar with C₂H₄ being slightly faster in adsorption. For Qst, CO₂ started higher than C₂H₄ then fall to be lower than C₂H₄. These three parameters (uptake, kinetic, Qst), all seem indicating the interaction between the gas molecules and the framework is very similar. In this case, how do the authors rationalise the observed separation in breakthrough experiments? what do the authors think is the really reason that ZNU-6 can retain CO₂ from mixtures containing mainly C₂H₄ and small percentage of CO₂.

Comments from Reviewer 1:

Overall comment. In this work authors reported GeF_6^{2-} anion incorporated MOF named ZNU-6. The MOF has optimum pore structure and environment for one step ethylene purification and also high selective for carbon dioxide separation as well. This research area is very promising especially today when we need to find better alternative for energy storage and separation. The authors investigated the MOF in different conditions and proved its viability and effectiveness. The chemical approach of this work is strong, and the results are clearly visible from the experiments

However here are some of my questions and concerns

Comment 1. The topic of ethylene purification/ separation using MOF is not very new, even incorporation of anions in MOFs has been reported by the authors group recently (Wang et al, Nano Research 2022). It would be great if authors can describe the novelty of this research as suitable of Nature common.

Author response: Thank you for your comment. The topic of using MOFs for ethylene purification is not very new indeed. Presently, ethylene purification from C_2H_2/C_2H_4 , C_2H_2/C_2H_4 , C_2H_2/C_2H_4 , $C_2H_2/C_2H_4/C_2H_6$ has been realized by a plenty of MOFs materials. Compared with those, the investigation on the single-step C_2H_4 purification from $C_2H_2/CO_2/C_2H_4$ has been investigated much less (no more than 10 materials). The reference mentioned in comment 1 (Wang et al, Nano Research 2022) is for C_2H_2 purification from other mixtures, different from this work. So far, TIFSIX-17-Ni, NTU-65 and NTU-67 are the optimal materials. However, each material has significant drawback. The capacity of C_2H_2 (3.30 mmol/g) and CO_2 (2.20 mmol/g) is relatively low in TIFSIX-17-Ni due to the over-contracted channel. NTU-65 capture C_2H_2 and CO_2 by tuning the gate opening, but the applied temperature must be at 263 K because lower temperatures lead to the adsorption of all the gases while higher temperatures cause the exclusion of CO₂. NTU-67 displays modest C_2H_2 (3.29 mmol/g) and CO_2 (2.04 mmol/g) capacity as well as reduced C_2H_2/C_2H_4 and CO_2/C_2H_4 selectivity compared to TIFSIX-17-Ni. Besides, the separation performance of NTU-67 is deteriorated under

humid conditions. Therefore, the trade-off between adsorption capacity and selectivity in the C_2H_4 purification from $C_2H_2/CO_2/C_2H_4$ is still challenging to overcome by existing porous materials. ZNU-6 reported in this work is a novel MOF with both narrow interlaced channels, large pores and abundant functional sites for record $C_2H_2/CO_2/C_2H_4$ separation. MOFs with such kind of optimal pore chemistry and pore size/shape are rare. Besides, such high stability in humid air and water is difficult to realize in anion pillared MOFs due to the weak Cu-N coordination bonds. Notably, our study include in-situ single crystal structure analysis, in-situ IR spectra analysis and DFT calculation. All the results are consistent and lead to the same conclusion. There has never been a report that provides such detailed mechanism study in $C_2H_2/CO_2/C_2H_4$ separation. Therefore, there are several novel points in this research and all of these can be found in the main text.

Comment 2. Its seems that the customized pore environment helps to achieve higher selectivity however DFT studies, and in-situ X ray have been performed to corroborate the statement. Have the authors performed any in-situ IR to verify the conclusions? This evidence will help strengthen the case

Author response: Thank you for your suggestion, the in-situ IR spectroscopy was conducted on gas-loaded and activated samples, and the results have added into supplementary materials. New and obvious stretching bands that belong to C_2H_2 and CO_2 are observed in the C_2H_2 and CO_2 dosed single crystals. The $v_{as}(C_2H_2)$ and $v(C\equiv C)$ stretching band of adsorbed C_2H_2 down-shifted to 3160 and 1720 cm⁻¹ respectively with reference to the gas-phase value at 3287 and 2500-1900 cm⁻¹, indicating the existence of guest-host interactions. Similarity, $v(CO_2)$ band also undergoes a downward shift from gas-phase value 2349 cm⁻¹ to 2335 cm⁻¹, showing the interactions between CO_2 and framework. In contrast, the stretching band of C_2H_4 is not obvious in $C_2H_4@ZNU-6$.

Modification:

Supplementary: Page 7 Figure 5

Supplementary Figure 5. In-situ IR spectra for **a.** activated ZNU-6 (black), $-C_2H_2@ZNU-6$ (blue) and re-activated ZNU-6 (purple); **b.** activated ZNU-6 (black) and CO₂@ZNU-6 (green); **c.** activated ZNU-6 (black) and C₂H₄@ZNU-6 (red).

All the IR spectroscopic data are recorded in a Nicolet iS5 ATR-FTIR spectrometer.

The samples of gas-loaded crystals were prepared by the method described in **Preparation of gas loaded ZNU-6** in manuscript.

As shown in the Supplementary Figure 5, new and obvious stretching bands that belong to C_2H_2 and CO_2 are observed in the C_2H_2 and CO_2 dosed single crystals. The $v_{as}(C_2H_2)$ and v(C=C) stretching band of adsorbed C_2H_2 down-shifted to 3160 and 1720 cm⁻¹ respectively with reference to the gas-phase value at 3287 and 2500-1900 cm⁻¹, indicating the existence of guest-host interactions. Similarity, $v(CO_2)$ band also undergoes a downward shift from gas-phase value 2349 cm⁻¹ to 2335 cm⁻¹, showing the interactions between CO₂ and framework. In contrast, the stretching band of C₂H₄ is not obvious in C₂H₄@ZNU-6.

Comment 3. Heat of adsorption values and isotherm dependency with temp indicates the physisorption nature of guest /host chemistry. However, the additional interaction with anions and even TPA can provide some chemisorption in CO₂. Have the authors performed any Temp programed desorption studies in terms of gases of choice to see the binding behavior?

Author response: Thank you for your suggestion. Firstly, there is no hysteresis in the desorption curves, indicating that the interactions between gas molecules and framework are not too strong. Secondly, we have performed the desorption at room temperature. The reactivation condition between the 5th cycle and 6th cycle adsorption experiment is under dynamic vacuum at room temperature for three hours, as shown in Supplementary Fig. 26, the uptake of 6th cycle is similar with that of 5th cycle. Such mild regeneration condition shows that the interactions between CO₂ and ZNU-6 are relatively week. Thus, it belongs to physisorption rather than chemisorption. Finally, as shown in in-situ crystals, the binding sites of CO₂ are close to GeF₆²⁻ anion in either large cage or small interlaced channel, this shows that the interactions between CO₂ and TPA. Besides, due to the steric hinderance of pyridine rings, the CO₂ molecules are difficult to approach TPA ligands. In summary, we believe that the whole CO₂ and GeF₆²⁻ anion.

Comment 4. What is the relative humidity used in this study?

Author response: The relative humidity used in the breakthrough experiments is 60%.

Comment 5. We can see ZNU-6 is strong water adsorbent however in humid conditions shows negligible deterioration of separation performance. However, the reasoning and data is not very clear, has the authors tried to quantify the effect of humidity in this case.

Author response: We have quantified the effect of humidity on the breakthrough by calculating the C₂H₄ productivity. As shown in Table S9 in supplementary, the C₂H₄ productivity is 13.81 and 13.79 mol/kg respectively under dry and humid conditions. The productivity decrease is only 0.14%, in the range of measurement error. The reasons for the negligible deterioration are mainly attributed to the slow diffusion of water molecules in the framework. As shown in supplementary Fig 28 and 48, the H₂O adsorption is very slow. In real breakthrough conditions, less than 30% of saturated H₂O amount is adsorbed within 10.6 h while the gas mixture breakthrough experiments at 298 K are all finished within 200 min. The quite slow diffusion may be resulted from the small hydrophobic widows between large cage and interlaced channel. On the other hands, our in-situ single crystal structure have showed the water can be co-adsorbed in ZNU-6 without the reduction of gas loading. In the original main text (line 226-230), we have showed the reasons: "Although many water molecules can be adsorbed in ZNU-6, as described in in-situ crystals and water adsorption isotherms (Supplementary Fig. 27), the presence of humid has negligible influence on the separation performance (Fig. 5f). This is probably due to the co-adsorption of water and target gases as well as the fast C₂H₂/CO₂/C₂H₄ diffusion kinetics (Supplementary Fig. 29-31)."

Modifications:

Supplementary: Page 41 Figure 48

Supplementary Figure 48. H₂O uptake in breakthrough experiments (N₂, RH=100%). Flow rate: 5 mL/min.

Supplementary: Page 42 Table S9

Supplementary Table S9. Experimental dynamic C_2H_4 productivity and captured C_2H_2/CO_2 amount for ZNU-6 from different gas ratios and under different conditions.

Conditions	Experimental C2H4 productivity (mol/kg)		
C ₂ H ₂ -CO ₂ -C ₂ H ₄ (1-9-90) 298 K (dry)	13.81		
C ₂ H ₂ -CO ₂ -C ₂ H ₄ (1-9-90) 298 K (humid)	13.79		

Comment 6. In similar topic, what happen in desorption cases in breakthrough, I mean when the fixed bed is undergoing regeneration, have the authors quantified the effect of humidity in gas desorption cases and in cyclic performance?

Author response: Thank you for your comment. We have conducted the desorption experiments respectively after the breakthrough experiments under dry and humid

conditions, the results are shown in the graph below. It is obviously that the influence of moisture is negligible on the process of the regeneration. This is also reflected by the overlapping (adsorption) breakthrough curves (Fig 5f).

Comments from Reviewer 2:

Overall comment. The authors reported a GeF_6^{2-} anion embedded MOF, ZNU-6, with optimized pore structure and environment for highly efficient C₂H₄ recovery from various C₂H₂/CO₂/C₂H₄ ternary mixtures. The material exhibited good recyclability and resistance toward moisture during breakthrough experiments. Ethylene (C₂H₄) purification from multi-component mixtures by physical adsorption is an important industrial challenging, and this work will be very interesting for the readers. The experiments were well performed and the manuscript has been written well. I agree that this manuscript to be accepted for Nature Communications after some minor revision. The following are the suggestions for the authors to improve the manuscript.

Comment 1. Figure 1 Caption, (f) is inconsistent with other numbering.

Author response: Thanks for your reminder. We have corrected the Figure 1 Caption

Modification:

Manuscript: Page 5 Fig. 1

Fig. 1: a-c Exquisite control of pore size/shape and pore chemistry in ZNU-6 from pillared (3,4)-connected pto network to GeF_6^{2-} embedded ith-d topology framework; **d** Overview of ZNU-6 structure with cage-like pores and interlaced channels. **e** Structure and size of the cage-like pore. **f** Structure and size of the interlaced channel connecting four cages.

*Comment 2.*Supplementary Figure 10-11, the authors should provide the pressure of these IAST selectivities.

Author response: Thanks for your suggestion. We have added the pressure to the Supplementary Figure 13, 14.

Modification:

Supplementary: Page 14 Figure 13, 14

Supplementary Figure 13. IAST selectivity of **ZNU-6** towards gas mixtures of C_2H_2/C_2H_4 with different ratios at 298 K and 1 bar.

Supplementary Figure 14. IAST selectivity of ZNU-6 towards gas mixtures of

 CO_2/C_2H_4 with different ratios at 298 K and 1 bar.

Comment 3. For the in-situ gas-loaded MOF structure, the authors should add a figure to describe the C_2H_2 gas molecule cluster and the interactions between the molecules, either in main text or SI. A figure illustrating the interaction between adsorbed water and gas molecules should also be added.

Author response: Thanks for your suggestion. We have added the figures and the description to SI.

Modifications:

Supplementary: Page 6 Figure 3, 4

Supplementary Figure 3. The adsorption configuration of C_2H_2 moleucles inside the norrow channel (site I) of ZNU-6 with the formation of rare C_2H_2 clusters. The C-H interaction and $\pi \cdots \pi$ packing distance is highlighted.

There are two kinds of interactions between C_2H_2 molecules in the site I. One is the C···H interactions, whose distances are between 2.2 and 2.6 Å, and the other is $\pi \cdots \pi$ interactions between C=C bonds, which are all in the distance of 2.4 Å.

Supplementary Figure 4. Single crystals structure of gas loaded ZNU-6. a. $CuGeF_6C_{20}H_{16}N_{5.33}$ (CO₂)₃ (H₂O)_{3.274}. b. $CuGeF_6C_{20}H_{16}N_{5.33}$ (C₂H₄)_{2.178} (O)_{1.137}. c. $CuGeF_6C_{20}H_{16}N_{5.33}$ (C₂H₂)_{4.296}(O)_{0.517}.

Due to the serious disorder of H atoms of H₂O molecules, we haven't solve the H atoms in C₂H₂ and C₂H₄ loaded ZNU-6. In CO₂ loaded crystal, besides 18 CO₂ molecules, there are 19.644 water molecules in each unit cell (sum formula Cu₆Ge₆F₃₆C₁₂₀H₉₆N₃₂). As to C₂H₄ loaded crystals, there are 13.068 C₂H₄ molecules and 6.822 H₂O molecules in an unit cell. In the C₂H₂ loaded crystals, the number of H₂O (3.102) is much lower than that of CO₂ or C₂H₄ loaded crystals. These H₂O vapor molecules don't occupy the adsorption site of targeted gas molecules. Instead, some weak interactions between H₂O and targeted gas molecules were observed. As shown above, The distances of H (H₂O) and O (CO₂) are 2.3-3.2 Å, those of O (H₂O) and H (C₂H₄) are 2.2 and 2.9 Å, and those of O (H₂O) and H (C₂H₂) are 3.2 Å.

Comments from Reviewer 3:

Thanks to its potential to introduce energy-efficient, single-step ethylene purification approaches, this manuscript by Jiang et al. is of high topical relevance to gas purifications, and MOFs for separations. Considering high importance of the new findings, and their general relevance in controlling the pore electrostatics (F...C=Ointeractions) driven gas separation/purification properties, I support publication subject to necessary revisions as follows:

Comment 1. Molecular formulae are missing including that of the new as-synthesized
ZNU-6 (although I find this formula in Table S7, should be clearly noted in the manuscript too). All molecular formulae for the gas-loaded phases should be clearly written in the main article, if needed, using a table with analysis of sorbate-sorbent interactions (distances).

Author response: Thank you for you valuable suggestion, we have added the formulae to the table and the corresponding places in the manuscript.

Modifications:

Manuscript: Page 4 Line 78-79

X-ray crystal analysis revealed that ZNU-6 ($Cu_6Ge_6F_{36}C_{120}H_{96}N_{32}$) crystallizes in a three-dimensional (3D) framework in the cubic Pm-3n space group.

Manuscript: Page 11 Fig. 4.

Fig. 4: Single crystal structure of gas-loaded ZNU-6. a C_2H_2 @ ZNU-6 [$Cu_6Ge_6F_{36}C_{120}H_{96}N_{32}$ (C_2H_2)_{25.78}]; b CO₂ @ ZNU-6 [$Cu_6Ge_6F_{36}C_{120}H_{96}N_{32}$ (CO₂)₁₈]; c C_2H_4 @ ZNU-6 [$Cu_6Ge_6F_{36}C_{120}H_{96}N_{32}$ (C_2H_4)_{13.07}]; d Table of the distances of the host-guest interactions.

Comment 2. The authors should not present the adsorption data with respect to

molecules per GeF_6^{2-} anion, this makes the data skewed in favour of this adsorbent, ZNU-6. Also, the units for adsorption uptakes and pressure need to be consistent. Right now, with mixed use of cm^3/g , mmol/g, mol/mol and mmol/g, these are all mixed up; same mix-up is observed in the units used for pressure, bar and kPa. Collectively, all these mistakes come together in the manuscript Figure 2. I strongly recommend replotting the isotherm-based uptakes in one consistent pair of units: mmol/g and bar. This not only makes this manuscript coherent but also helps the whole community working in this area with regard to comparing performance parameters across different adsorbents.

Author response: Thanks for your suggestion, to make the manuscript coherent and also helps the whole community working in this area with regard to comparing performance parameters across different adsorbents. we have unified the pressure units to bar, and the uptake units to mmol/g in the manuscript, especially in the Fig. 2. The Fig. 2c that was the adsorption data with respect to molecules per anion before has been replaced by the adsorption data in the units of mmol/g as suggested and the origin Fig.2c has been moved to supplementary. However, we want to make an interpretation why we chose different units to present the adsorption data at first. Different units have different significance, mmol/g (or STP cm³/g) is the basic uptake unit, the data in this units can be straightly obtained from the adsorption equilibrium measurements. While the density of single crystal is identified, the uptake data in cm^3/g can be converted to that in cm^3/cm^3 to evaluate the uptake of the adsorbent at a certain volume which is more useful for industrial application. To evaluate the influence of anions on the adsorption accurately, and to eliminate the effect brought by density and molecular mass simultaneously, mol/mol was chosen to be the uptake unit. The uptake data in mol/mol represents the number of the gas molecules those are adsorbed by per anion.

Modifications:

Manuscript: Page 2 Line 17

ZNU-6 exhibits significantly high C_2H_2 (1.53 mmol/g) and CO_2 (1.46 mmol/g) capacity at 0.01 bar.

Manuscript: Page 3 Line 47

However, the capacity of C_2H_2 (3.30 mmol/g) and CO_2 (2.20 mmol/g) is relatively low due to the over-contracted channel.

Manuscript: Page 3 Line 50-53

similar C_2H_2 (3.29 mmol/g) and CO_2 (2.04 mmol/g) capacity, but the C_2H_2/C_2H_4 and CO_2/C_2H_4 selectivity is greatly reduced as the C_2H_4 capacity (1.41 mmol/g) is relatively high.

Manuscript: Page 3 Line 58-61

Static gas adsorption isotherms showed that ZNU-6 takes up 1.53/8.06 mmol/g of C₂H₂ and 1.46/4.76 mmol/g of CO₂ at 0.01 and 1.0 bar (298 K), respectively. The calculated IAST selectivities for C₂H₂/C₂H₄ (1/99) and CO₂/C₂H₄ (1/99) are 43.8-14.3 and 52.6-7.8 (0.0001-1.0 bar), respectively.

Manuscript: Page 6 Line 104-106

At 1.0 bar, the C_2H_2 and CO_2 uptakes are 8.06 and 4.76 mmol/g (Fig 2c), higher than those of most APMOFs. The capacities are equal to 4.68 and 2.77 gas molecules per GeF_6^{2-} anion.

Manuscript: Page 6 Line 112-120

Notably, the uptakes of C_2H_2 and CO_2 on ZNU-6 at 0.01 bar are as high as 1.53 and 1.46 mmol/g, superior to those of all the porous materials in the context of ternary $C_2H_2/CO_2/C_2H_4$ separation, such as TIFSIX-17-Ni (1.38/0.32 mmol/g),³⁶ SIFSIX-17-Ni (0.91/0.20 mmol/g),³⁶ NTU-67 (0.47/0.65 mmol/g)³⁸ and TpPa-NO₂ (0.17/0.03 mmol/g)³⁹. At 0.1 bar, the capacities of C_2H_2 and CO_2 reach up to 4.64 and 2.21 mmol/g (Fig. 2b), even higher than the uptakes of many porous materials at 1 bar and 298 K, for example, TIFSIX-17-Ni (3.30/2.20 mmol/g).³⁶ In the meantime, the

 C_2H_4 uptakes on ZNU-6 at 0.01 and 0.1 bar are only 0.15 and 1.07 mmol/g, much lower than those of C_2H_2 and CO_2 under the same conditions. The C_2H_2 , CO_2 and C_2H_4 adsorption isotherms were further collected at 278 and 308 K (Fig. 2d). The adsorption capacities of C_2H_2 and CO_2 at 1 bar increase to 8.74 and 6.26 mmol/g at 278 K.

Manuscript: Page 7 Fig.2

Fig. 2: The sorption performance. **a** N₂ adsorption and desorption isotherms for ZNU-6 and the calculated pore size distribution. **b** C_2H_2 , CO_2 and C_2H_4 adsorption isotherms of ZNU-6 at 298 K. **c** Comparison of the saturated C_2H_2 and CO_2 uptake (1 bar, 298 K) among anion pillared MOFs. **d** C_2H_2 , CO_2 and C_2H_4 adsorption isotherms of ZNU-6 at 278/308 K. **e** C_2H_2/C_2H_4 and CO_2/C_2H_4 IAST selectivity of ZNU-6 at 298 K. **f** Q_{st} of C_2H_2 , CO_2 and C_2H_4 in ZNU-6.

Comment 3. Page 2, lines 33-34, the authors need to discuss "Presently, multi-step purification process is adopted for purification of C_2H_4 from $C_2H_4/C_2H_2/CO_2$ mixtures." This needs to take cognisance of the recent reports on single-step C_2H_4 purification from ternary (1:1:1 for $C_2H_2/C_2H_4/C_2H_6$) and quaternary (1:1:1:1 for $C_2H_2/C_2H_4/C_2H_6/CO_2$) gas mixtures. Some examples include: Cao, JW. et al., Nat

Commun. 2021, 12, 6507. Xu, Z. et al., Nat Commun. 2020, 11, 3163.

Author response: Thanks for your suggestion. However, we have to make a clarity: lines 33-34 in page 2 shows the industrial situation instead of the current status of C_2H_4 purification by physical adsorption. To avoid misunderstanding, we have modified the manuscript according to your advice, and we have added the references to the corresponding places in page 3 line 41-42.

Modifications:

Manuscript: Page 2 Line 33-34

Presently, multi-step purification process is adopted for purification of C_2H_4 from $C_2H_4/C_2H_2/CO_2$ mixtures in industry.

Manuscript: Page 3 Line 41-42

Besides, single-step purification of C_2H_4 from ternary $C_2H_2/C_2H_4/C_2H_6^{33, 34}$ or quaternary $C_2H_2/C_2H_4/C_2H_6/CO_2^{35}$ mixtures has also been realized by several porous materials.

Manuscript: Page 22

33. Xu, Z. et al. A robust Th-azole framework for highly efficient purification of C_2H_4 from a $C_2H_4/C_2H_2/C_2H_6$ mixture. *Nat. Commun.* **11**, 3163 (2020).

34. Gu, X.-W. et al. Immobilization of Lewis Basic Sites into a Stable Ethane-Selective MOF Enabling One-Step Separation of Ethylene from a Ternary Mixture. *J. Am. Chem. Soc.* **144**, 2614-2623 (2022).

35. Cao, J. -W. One-step ethylene production from a four-component gas mixture by a single physisorbent. *Nat. Commun.* **12**, 6507 (2021).

Comment 4. I don't quite agree with the authors use of the word "static" in the heading of Figure 2. Should just be written as "The sorption performance." In another instance, the authors use this phrase "static adsorption" (page 11, line 202),

which I object to.

Author response: Thank you for your suggestion. We have modified the Figure 2 caption and the sentence in the manuscript.

Modifications:

Manuscript: Page 7-8 Fig.2

Fig. 2: The sorption performance.

Manuscript: Page 11, line 206-207

Motivated by the high adsorption capacity and selectivity in single-component adsorption as well as the in-situ single crystal structure analysis, breakthrough experiments were conducted for C_2H_2/C_2H_4 , CO_2/C_2H_4 and $C_2H_2/CO_2/C_2H_4$ mixtures.

Comment 5. It is stated that the C_2H_4 productivity is 309 mL/g, again this unit is far from the standard unit typically used in other literature reports in this area, i.e., mol $kg^{-1}h^{-1}$

Author response: Thank you for the reminder. However, the flow rate play a key role on the time of breakthrough experiment, as shown in Supplementary Fig. 34, 35, it is obvious that although the C_2H_2 captured amount is similar, the break time of C_2H_2 is evidently different under different flow rate. Therefore, it is unable to compare the separation performance with other materials under different flow rate if choosing mol kg⁻¹ h⁻¹ as the unit. Thus, we modified the units of productivity and captured amount to mol/kg, which is used quite often in literature.

Modifications:

Manuscript: Page 11-12, Line 211-220

For $1/1/98 \text{ C}_2\text{H}_2/\text{CO}_2/\text{C}_2\text{H}_4$ mixtures, C_2H_2 and CO_2 broke out simultaneously and 64.42 mol/kg of polymer grade C_2H_4 is produced by single adsorption process (Fig. 5b). The productivity is improved to 80.89 mol/kg when decreasing the temperature to

283 K (Supplementary Fig. 42). The CO₂ breakthrough time becomes shortened with the increase of CO₂ ratio, which is 72 and 52 mins for 1/5/94 (Fig. 5c) and 1/9/90 (Fig. 5d) C₂H₂/CO₂/C₂H₄ mixtures. The polymer grade C₂H₄ productivity is 21.37 and 13.81 mmol/kg, respectively. As most reported C₂H₄ productivity from C₂H₂/CO₂/C₂H₄ mixtures are compared under 1/9/90, a comparison plot of the C₂H₄ productivity and dynamic C₂H₂ capacity from 1/9/90 C₂H₂/CO₂/C₂H₄ mixtures is presented in Fig. 5e. ZNU-6 displays the record high C₂H₄ productivity and second highest C₂H₂ dynamic capacity. The C₂H₄ productivity of ZNU-6 is >2.5 folds of the previous benchmark of NTU-67 (5.42 mol/kg).

Manuscript: Page 13, line 245

The C₂H₂/anion and CO₂/anion uptakes are the highest among all the anion pillared MOFs. 64.42, 21.37, 13.81 mol/kg polymer grade C₂H₄ can be produced from C₂H₂/CO₂/C₂H₄ (1/1/98, 1/5/94, 1/9/90) mixtures, all superior to the previous benchmarks.

Supplementary: Page 42, Table S9

Supplementary Table S9. Experimental dynamic C_2H_4 productivity and captured C_2H_2/CO_2 amount for ZNU-6 from different gas ratios and under different conditions.

Conditions	Experimental C2H4 productivity (mol/kg)	Experimental C2H2 captured amount (mol/kg)	Experimental CO2 captured amount (mol/kg)	
C ₂ H ₂ -CO ₂ -C ₂ H ₄ (1-1-98) 283 K	80.89	0.96	0.98	
C ₂ H ₂ -CO ₂ -C ₂ H ₄ (1-1-98) 298 K	64.42	0.78	0.84	
C ₂ H ₂ -CO ₂ -C ₂ H ₄ (1-1-98) 323 K	36.73	0.48	0.53	
C ₂ H ₂ -CO ₂ -C ₂ H ₄ (1-5-94) 298 K	21.37	0.60	1.52	
C ₂ H ₂ -CO ₂ -C ₂ H ₄ (1-9-90) 298 K	13.81	0.56	1.97	
C ₂ H ₂ -CO ₂ -C ₂ H ₄ (5-5-90) 298 K	11.04	2.65	0.55	
C ₂ H ₂ -CO ₂ -C ₂ H ₄ (1-9-90) 298 K (humid)	13.79	-	-	

Comment 6. Importantly, the authors have calculated productivity by integrating the effluent flow rate of C_2H_4 (cm³/min). However, all the breakthrough curves (in Fig. 5) are showed in with the effluent concentration (C/C₀). It is obvious that integrating the concentration curve cannot give the amount, although a few references adopt this wrong method. Therefore, it is necessary to show the details for direct measurement and/or indirect calculation of the effluent flow rate and concentration in this study.

See Shen, J. et al., Nat Commun. 2020, 11, 6259 as a reference.

Author response: Thank you for your question. However, we need to clarify one point that we choose mL/g as the unit of x-axis instead of cm³/min, the normalized flow volume is calculated by the formula "Flow volume (mL/g)= flowrate (mL/min) × time (min) /sample weight (g)". The real flow rates and original figures of experiments with time (min) as x-axis had been presented in the supplementary. According to formula and the figure below, the flow rates have been considered in the calculation of C₂H₄ productivity. Therefore, the productivity can be straightly calculated out by the y-axis which represents effluent concentration (C/C₀).

Flow volume (mL/g)= flowrate (mL/min) × time (min) /sample weight (g)

C₂H₄ productivity=S1 (min) x flowrate (mL/min) × time (min) /sample weight (g) = S2 (mL/g)

Comment 7. How common / rare is the ith-d topology among the anion-pillared MOF library? It would greatly help the article/future readers, if the authors can address this by a thorough literature-based contextualisation of the structural topology of ZNU-6.

Author response: Thank you for your reminder. To help the article/future readers understand clearly, we will give an introduction. According to the previous research papers and reviews [Li, Xu. et al. *Coord. Chem. Rev.* **470**, 214714 (2022)], among the APMOFs, just two MOFs with ith-d topology have been reported previously, namely SIFSIX-Cu-TPA [Li, H. et al. *Angew. Chem. Int. Ed.* **60**, 7547-7552 (2021)], ZNU-2

[TIFSIX-Cu-TPA, Jiang, Y. et al. Angew. Chem. Int. Ed. 61, e202200947 (2022)].

Comment 8. Section 7 in the supplementary information has a header "Breakthrough simulations and experiments", the following figure captions for Supplementary Figures 28-43 are all including "Experimental" in their figure captions, nonetheless. I wonder where the simulation-derived breakthrough data is?

Author response: Thank you for your kind reminder, we have corrected the header of section 7.

Modification:

Supplementary: Page 33

V Breakthrough experiments

Overall, an interesting idea executed by the authors that should advance this area in the near future. I will be glad to look at a suitably revised article, when ready.

Comments from Reviewer 4:

This manuscript by Jiang et al, report a metal organic framework (ZNU-6) for the application of simultaneous removal of C_2H_2 and CO_2 from C_2H_4 stream. This area is of important practical applications and has been extensively investigated in the past few years. The overall quality of this manuscript is high with detailed investigation of the structure characterisation of the MOF, study of its adsorption properties using isotherm and breakthrough experiments, and thorough investigation of the host-guest interactions. Below are some comments and questions from me, and I would recommend the publication of this manuscript after the authors fully address them:

Comment 1. I think it is necessary that the authors reference some highly relevant publications in the introduction, e.g. Hexafluorogermanate (GeFSIX)

Anion-Functionalized Hybrid Ultramicroporous Materials for Efficiently Trapping Acetylene from Ethylene, Ind. Eng. Chem. Res. 2018, 57, 21, 7266–7274.

Author response: Thank you for your suggestion, we have added some references to the introduction, such as ref. 25, 26.

Modifications:

Manuscript: Page 21

25. Zhang, Z.-Q. et al. Hexafluorogermanate (GeFSIX) Anion-Functionalized Hybrid Ultramicroporous Materials for Efficiently Trapping Acetylene from Ethylene. *Ind. Eng. Chem. Res.* **57**, 7266-7274 (2018).

26. Ke, Tian. et al. Molecular Sieving of C_2 - C_3 Alkene from Alkyne with Tuned Threshold Pressure in Robust Layered Metal-Organic Frameworks. *Angew.Chem. Int. Ed.* **59**, 12725-12730 (2020).

Comment 2. The cif. File for CO₂ loaded ZNU-6 shows an O-C-O bond angle of CO₂ being 157° instead of the theoretical 180°, could the authors please explain this discrepancy.

Author response: Thank you for your valuable comment. The slight distortion of CO_2 is caused by the relatively strong interaction between F atoms and C atom of CO_2 . Similar phenomena have been observed in other research papers [*Chem. Commun.* **41**, 5125-5127 (2008), *Chem* **5**, 950-963 (2019)].

CO₂ @ CPO-27-Ni [*Chem. Commun.* **41**, 5125-5127 (2008)] The angle of C-O-C is 162°

CO₂ @ dptz-CuTiF₆ [Chem 5, 950-963 (2019)] The angle of C-O-C is 167°

Comment 3. Figure 2f, the Qst for CO₂, why it showed a sudden drop at 2 mmol/g coverage?

Author response: Thank you for your comment. From in-situ crystal CO₂ @ ZNU-6, two binding sites can be observed, and the ratio of the number of CO₂ molecules adsorbed in the site I/II is 1:2. According to the DFT calculations, the binding energy in site I is stronger than that in site II, so CO₂ prefer to be adsorbed in site I. Therefore, at the first stage of the whole adsorption, CO₂ is adsorbed in site I until the uptake in site I reach to saturated point (\approx 1.72 mmol/g), at the following stage, CO₂ begin to be adsorbed in the site II, while the binding energy in site II is lower, so the whole Q_{st} begins to decrease. Because the ratio of CO₂ molecules adsorbed in site I/II is 1:2, the decrease of Q_{st} is sharp. Line 173-174 has described the phenomenon.

Comment 4. From the isotherms for CO_2 and C_2H_4 (Figure 2b, 2d), the saturation uptake for CO_2 and C_2H_4 are very close; and the kinetic data (supplementary figure 25) of CO_2 and C_2H_4 are also similar with C_2H_4 being slightly faster in adsorption. For Qst, CO_2 started higher than C_2H_4 then fall to be lower than C_2H_4 . These three parameters (uptake, kinetic, Qst), all seem indicating the interaction between the gas molecules and the framework is very similar. In this case, how do the authors rationalise the observed separation in breakthrough experiments? what do the authors think is the really reason that ZNU-6 can retain CO_2 from mixtures containing mainly C_2H_4 and small percentage of CO_2 .

Author response: Thank you for your valuable comment. The near-zero loading Qst is more important to distinguish the adsorption affinity. Thus, CO₂ and C₂H₂ are more favored to be adsorbed in ZNU-6. Besides, according to the DFT calculations, C₂H₂, CO₂ and C₂H₄ are all preferentially adsorbed in the site I, and according to the binding energy, the affinity sequence in site I is also C₂H₂~CO₂>C₂H₄. From the in-situ crystals, nearly all C₂H₄ molecules are adsorbed in the site I. So the Q_{st} of C₂H₄ calculated from single-component adsorption isotherms reflects the isosteric enthalpy of C₂H₄ in the interlaced channel. However, when the single-component C₂H₄ adsorption changes to competitive C₂H₂/CO₂/C₂H₄ mixture adsorption, the situation will become different. Because the affinity towards C₂H₂ and CO₂ in site I is higher than that towards C₂H₄, the C₂H₂ and CO₂ gases will occupy the interlaced channel (site I) and C₂H₄ adsorption sites will have to be changed to the large cage (site II). While in site II, the binding energy of C₂H₄ is much lower. In brief, it is mainly the much higher Q_{st} of CO₂ at near-zero loading that distinguishes CO₂ from C₂H₄.

REVIEWERS' COMMENTS

Reviewer #1 (Remarks to the Author):

The authors in this manuscript have very reasonably addressed all of my and other reviewers' comments and made/performed the necessary changes and experiments required for the quality of the manuscript. I agree with the technical soundness of this paper. I have no other concerns or reservations about this manuscript.

Reviewer #2 (Remarks to the Author):

The authors have done a good job of improving the manuscript by performing necessacry experiments and analyses. And they have answered the all questions of the reviewers. I agree that this manuscript now can be published on Nature Communications.

Reviewer #3 (Remarks to the Author):

I will be glad to see a revised article published, below are my revision comments:

• Regarding the molecular formula, the authors write Cu6Ge6F36C120H96N32 as the formula. This is not the right way of writing formula for MOFs, the authors need to revise all these places having formula with something like [Cun(TPA)x(GeF6)y], where, n, x and y are integers suites to the molecular formula of ZNU-6.

• Regarding the use of units mmol/g and bar, I am satisfied with the revisions done by the authors.

- Glad about the authors edits on including a few updated citations from 2020, 2021, and 2022.
- I appreciate the authors omitting the word "static" before "adsorption".

• I do not quite agree with the authors arguing that use of the more commonly used unit for productivity, mol kg-1 h-1 will neglect flow rate. The calculation of productivity with respect to this unit takes into account the flow rate used, and therefore, the authors are again advised to use the unit mol kg-1 h-1 for quantifying the C2H4 productivity.

• I am glad about the authors argument on the productivity calculations based on the plots presented in C/C0 vs. time (min).

• The authors' response (in the revised introduction) on quantifying the rarity of ith-d topology among anion-pillared family of MOFs is satisfactory.

Overall, I will be glad to look at a suitably revised article, when ready.

Reviewer #4 (Remarks to the Author):

The authors have fully addressed my comments, and I feel the manuscript is ready for publication.

Reviewer #3 (Remarks to the Author):

I will be glad to see a revised article published, below are my revision comments:

1. Regarding the molecular formula, the authors write $Cu_6Ge_6F_{36}C_{120}H_{96}N_{32}$ as the formula. This is not the right way of writing formula for MOFs, the authors need to revise all these places having formula with something like $[Cu_n(TPA)_x(GeF_6)_y]$, where, n, x and y are integers suites to the molecular formula of ZNU-6.

2. Regarding the use of units mmol/g and bar, I am satisfied with the revisions done by the authors.

3. Glad about the authors edits on including a few updated citations from 2020, 2021, and 2022.

4. I appreciate the authors omitting the word "static" before "adsorption".

5. I do not quite agree with the authors arguing that use of the more commonly used unit for productivity, mol kg-1 h-1 will neglect flow rate. The calculation of productivity with respect to this unit takes into account the flow rate used, and therefore, the authors are again advised to use the unit mol kg-1 h-1 for quantifying the C_2H_4 productivity.

6. I am glad about the authors argument on the productivity calculations based on the plots presented in C/C_0 vs. time (min).

7 The authors' response (in the revised introduction) on quantifying the rarity of ith-d topology among anion-pillared family of MOFs is satisfactory.

Overall, I will be glad to look at a suitably revised article, when ready.

I will be glad to see a revised article published, below are my revision comments:

Comment 1 Regarding the molecular formula, the authors write $Cu_6Ge_6F_{36}C_{120}H_{96}N_{32}$ as the formula. This is not the right way of writing formula for MOFs, the authors need to revise all these places having formula with something like $[Cu_n(TPA)_x(GeF6)_y]$, where, n, x and y are integers suites to the molecular formula of ZNU-6.

Author response: Thank you for your suggestion. We have modified the molecular formula in the manuscript and supplementary material.

Modification:

Manuscript: Page 4 Line 78-79

X-ray crystal analysis revealed that ZNU-6 $[Cu_6(GeF_6)_6(TPA)_8]$ crystallizes in a three-dimensional (3D) framework in the cubic Pm-3n space group.

Supplementary: Table S1.

Formula	$C_{20}H_{16}Cu$	$C_{20}H_{16}CuGeF_6$	$C_{20}H_{16}CuGeF_6$	$C_{20}H_{16}CuGeF_6$	
	$F_6GeN_{5.33}$	N _{5.33} ·4.296C ₂ H ₂	N _{5.33} ·2.178C ₂ H ₄	N _{5.33} · 3CO ₂	
	Cu(GeF ₆)(TPA) _{1.33}	Cu(GeF ₆)(TPA) _{1.33} (C ₂ H ₂) _{4.296}	$\begin{array}{c} Cu(GeF_6)(TPA)_{1.33} \\ (C_2H_4)_{2.178} \end{array}$	Cu(GeF ₆)(TPA) _{1.33} (CO ₂) ₃	

Comment 2 Regarding the use of units mmol/g and bar, I am satisfied with the revisions done by the authors.

Author response: Thank you for your positive comment.

Comment 3 Glad about the authors edits on including a few updated citations from 2020, 2021, and 2022.

Author response: Thank you for your positive comment.

Comment 4 I appreciate the authors omitting the word "static" before "adsorption".

Author response: Thank you for your positive comment.

Comment 5 I do not quite agree with the authors arguing that use of the more commonly used unit for productivity, mol $kg^{-1} h^{-1}$ will neglect flow rate. The calculation of productivity with respect to this unit takes into account the flow rate used, and therefore, the authors are again advised to use the unit mol $kg^{-1} h^{-1}$ for quantifying the C_2H_4 productivity.

Author response: Thank you for your suggestion. We have added the productivity in the unit of mol kg⁻¹ h⁻¹ to the corresponding places. We have chose two time period, one is from 0 to **Time 1**, and the other is from 0 to **Time 2** as shown in Supplementary Table 10..

Modification:

Manuscript: Page 12 Line 220-222

 C_2H_4 productivity with the unit of mol/kg/h is also calculated for comparison (Supplementary Table S10). ZNU-6 with the productivity of 15.93 mol/kg/h is still the best material.

Supplementary: Table 10/11

	C ₂ H ₂ /CO ₂ /C ₂ H ₄ =1/9/90 (v/v/v) Flow rate: 5 mL/min					
	ZNU-6	NTU-67	Activated carbon	zeolite 5A	SIFSIX-2-Cu-i	SIFSIX-17-Ni
Mass (g)	0.58	1.20	0.98	1.74	0.52	0.82
Time 1 ^a (min)	52.00	43.59	21.40	13.18	12.61	12.24
Time 2 ^b (min)	196.00	84.38	34.19	45.89	170.08	83.82
Time 1 (min g ⁻¹)	89.56	36.17	21.84	7.58	24.20	14.96
Time 2 (min g ⁻¹)	337.58	70.03	34.89	26.40	326.44	102.42
Productivity per adsorption cycle (mol kg ⁻¹)	13.81	5.42	0.49	0.36	2.40	2.47
Productivity based on Time 1 (mol kg ⁻¹ h ⁻¹)	15.93	7.46	1.38	1.62	11.41	12.10
Productivity based on Time 2 (mol kg ⁻¹ h ⁻¹)	4.23	3.85	0.86	0.46	0.85	1.77
^a Time 1 is the time when the second gas can be detected after C ₂ H ₄ ;						

Supplementary Table S10. Experimental dynamic C₂H₄ productivity for different adsorbents.

 $^{\rm b}$ Time 2 is the time when $C_A\!/C_0$ reaches 1.0 for all the gases.

Supplementary Table S11. Experimental dynamic C₂H₄ productivity for ZNU-6 from different gas ratios and under different conditions.

	ZNU-6 Flow rate: 5 mL/min						
C ₂ H ₂ /CO ₂ /C ₂ H ₄	1-1-98	1-1-98	1-1-98	1 5 04	1-9-90	5 5 00	1-9-90
(v/v/v)	283 K	298 K	323 K	1-5-94	dry	5-5-90	humid
Time 1 (min)	232.00	184.00	112.00	72.00	52.00	44.00	112.00
Time 2 (min)	284.00	248.00	180.00	192.00	196.00	180.00	180.00
Productivity per adsorption cycle (mol kg ⁻¹)	80.89	64.42	36.73	21.37	13.81	11.04	13.79
Productivity based on Time 1 (mol kg ⁻¹ h ⁻¹)	20.92	21.01	19.68	17.81	15.93	15.05	7.39
Productivity based on Time 2 (mol kg ⁻¹ h ⁻¹)	17.09	15.59	12.24	6.68	4.23	3.68	4.60

Comment 6 I am glad about the authors argument on the productivity calculations based on the plots presented in C/C_0 vs. time (min).

Author response: Thank you for your positive comment.

Comment 7 *The authors' response (in the revised introduction) on quantifying the rarity of ith-d topology among anion-pillared family of MOFs is satisfactory.*

Author response: Thank you for your positive comment.

Overall, I will be glad to look at a suitably revised article, when ready