Supplementary Material (2) to accompany Investigating the Influence of Diffusional Coupling on Mixture Permeation across Porous Membranes

Characteristics of Maxwell-Stefan Diffusivities \mathcal{D}_1 , \mathcal{D}_2 , and \mathcal{D}_{12} in Nanoporous Crystalline Materials

Rajamani Krishna*, Jasper M. van Baten

Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904,

1098 XH Amsterdam, The Netherlands

CORRESPONDING AUTHOR *Tel +31 20 6270990; Fax: + 31 20 5255604;

email: r.krishna@uva.nl

Table of Contents

1.	Abstract	. 3
2.	Introduction	. 5
3.	Estimating D_1 and D_2	. 6
4.	Relating D_{12} in <i>meso</i> -porous materials to fluid phase $D_{12,fl}$. 7
5.	Relating D_{12} in <i>micro</i> -porous materials to fluid phase $D_{12,fl}$. 8
6.	Relating \mathcal{D}_{ii} in <i>micro</i> -porous materials to fluid phase $\mathcal{D}_{ii,fl}$	9
7.	Estimating D_{12} from information on self-exchange coefficients D_{ii}	. 9
8.	Degree of correlations D_1/D_{12}	10
9.	Influence of cluster formation due to hydrogen bonding	10
10.	Intersection blocking and traffic-junction effects	12
11.	Conclusions	14
12.	Notation	16
13.	References	17
14.	Listing of additional Figures containing MD data	39

1. Abstract

Mixture diffusion within nanoporous crystalline materials such as zeolites, and metal-organic frameworks (MOFs), is often strongly influenced by the extent to which the diffusivity of one species is *correlated* to that of its partner. Most commonly, the less-mobile species *slows* down its more mobile partner by not vacating an adsorption site quick enough for its more mobile partner to occupy that position. Such slowing-down effects, also termed *correlation effects*, are quantified by the exchange coefficient D_{12} in the Maxwell-Stefan (M-S) diffusion formulation. With increasing concentrations of guest molecules inside the pores, the D_{12} tends to decrease significantly, implying that correlation effects become increasingly important for separation processes operating at high pressures. The exchange coefficients D_{12} are not accessible directly from experiments, and there is a need for developing reliable procedures for estimating D_{12} for any given guest-mixture/host-material combination.

Molecular Dynamics (MD) simulations were carried out to determine the M-S diffusivities, D_1 , D_2 , and D_{12} for a wide variety of binary mixtures (H₂/CO₂, H₂/CH₄, CO₂/N₂, CH₄/CO₂, CH₄/C₂H₆, CH₄/C₃H₈, CH₄/nC₄H₁₀, Ne/Ar, H₂/Ar, CH₄/Ar, Ne/CO₂, Ar/Kr) in several different nanoporous host materials (MFI, FAU, LTA, BEA, CHA, IRMOF-1, CuBTC, MOF-177, MgMOF-74, COF-102, COF-103, COF-108, and BTP-COF) covering a wide range of pore dimensions, pore topologies, and connectivities. For the systems that do no exhibit hydrogen bonding effects, M-S diffusivities, D_1 , D_2 are in good agreement with the corresponding unary diffusivities, when compared at the total concentration, c_t , within the pores of the structures. the Additionally, MD simulations were also performed to determine the corresponding values of M-S diffusivity in the fluid phase, $D_{12,fl}$, in the absence of the restraining influence of the pore walls. For each guest/host combination, over the entire range of pore concentrations, it was found that D_{12} is a constant fraction, F, of the fluid phase value, $D_{12,fl}$ when compared at the same value of pore concentration, c_t . The $D_{12,fl}$ can be estimated reliably from the molecular properties using established correlation methods in the literature. This fraction, *F*, is primarily dependent on the host material, and has values in the range of 0.1 - 1. For mesopores, and for porous structures such as COF-102, COF-103, and COF-108 with large voidages and pore volumes, *F* ≈ 1 . For intersecting channels structures of MFI, with channels of 5.5 Å, the value of *F* is in the narrow range of 0.1 - 0.15. For structures such as FAU, MgMOF-74, and IRMOF-1 the values of *F* fall in range of 0.4 - 0.7.

Keywords: Maxwell-Stefan diffusion; correlations; zeolites; metal-organic frameworks; fluid phase diffusivity; clustering; hydrogen bonding; mutual-slowing down;

2. Introduction

A wide variety of crystalline nanoporous materials is used in membrane separations and pressure swing adsorption (PSA) devices [1-8]. These materials include zeolites (crystalline aluminosilicates), metal-organic frameworks (MOFs), zeolitic imidazolate frameworks (ZIFs), covalent organic frameworks (COFs), periodic mesoporous organosilicas (PMOs), SBA-16, and MCM-41. The characteristic pore dimensions of these structures are either in the *micro*-porous ($d_p < 2$ nm), or *meso*-porous ranges (2 nm $< d_p < 50$ nm). Several types of channel topologies are encountered, including one-dimensional (1D) channels (e.g. AFI, MIL-47, MIL-53(Cr), MgMOF-74, and BTP-COF), intersecting channels (e.g. MFI, BEA), cavities with large windows (e.g. FAU, IRMOF-1, CuBTC), and cages separated by narrow windows (e.g. LTA, CHA).

For separation process design and development it is necessary to have a reliable *quantitative* description of the diffusion of mixtures of guest molecules inside the porous materials. For binary mixture diffusion, the fluxes N_i of species *i* are commonly related to the chemical potential gradients $\nabla \mu_i$ by use of the set of two *coupled* Maxwell-Stefan (M-S) equations, that apply equally for microand meso-porous frameworks [9-11]

$$-\phi \frac{c_1}{RT} \nabla \mu_1 = \frac{x_2 N_1 - x_1 N_2}{D_{12}} + \frac{N_1}{D_1};$$

$$-\phi \frac{c_2}{RT} \nabla \mu_2 = \frac{x_1 N_2 - x_2 N_1}{D_{12}} + \frac{N_2}{D_2}$$
 (1)

where ϕ represents the fractional pore volume, and the concentrations c_i are defined in terms of moles per m³ of accessible pore volume. The fluxes N_i are defined in terms of the cross-sectional area of the crystalline framework. The x_i in eq. (1) are the component mole fractions of the adsorbed phase within the micropores

$$x_i = c_i / c_i; \quad i = 1,2$$
 (2)

Formally speaking, the M-S equations (1) serve only to *define* the phenomenological coefficients D_1 , D_2 , and D_{12} and the estimation of the fluxes N_i in the mixture requires reliable procedures for estimation of these three diffusivities.

The coefficients D_1 , and D_2 characterize species *i* – pore wall interactions in the broadest sense; these can in most, but not all, cases be determined from unary diffusion experiments or simulations.

The exchange coefficients D_{12} quantify interaction between components *i* with component *j*. At the molecular level, the D_{12} reflect how the facility for transport of species *i correlates* with that of species *j*. The value of D_{12} , relative to that of D_1 , determines the extent to which the flux of species 1 is influenced by the chemical potential gradient of species 2. The larger the *degree of correlation*, D_1/D_{12} , the stronger is the influence of coupling. Generally speaking, the more-strongly-adsorbed-tardier partner species will have the effect of slowing down the less-strongly-adsorbed-more-mobile partner in the mixture. The proper estimation of D_{12} is of vital importance, for example, in modeling CO₂/H₂ separations across MgMOF-74 membranes; in this case the tardier CO₂ slows down the mobile partner H₂ in sufficient measure to result in CO₂-selective separations [12].

The exchange coefficients D_{12} cannot be determined directly from unary experiments and, therefore, its estimation requires more careful attention and analysis.

In this second of two Supplementary Materials to accompany our article *Investigating the Influence of Diffusional Coupling on Mixture Permeation across Porous Membranes*, we summarize, and analyse, published Molecular Dynamics (MD) simulation data for unary and binary mixture diffusion of a wide variety of guest species in several different nanoporous host materials, listed in Table 1, along with salient structural details, with the overall objective of suggesting practical estimation procedures for D_1 , D_2 , and D_{12} .

3. Estimating \mathcal{D}_1 and \mathcal{D}_2

The persuasive advantages for use of the M-S equations (1) in preference to the alternative Onsager or Fickian formulations is that in most cases the coefficients D_1 , and D_2 , that characterize species i – pore wall interactions in the broadest sense, can be identified with those determined for *unary* systems [13].

To illustrate this, Figure 1 provides data on the M-S diffusivity of CO_2 , D_i , determined MD simulation data for diffusion of a variety of equimolar ($c_1 = c_2$) binary mixtures of CO_2 and different partner species in six different host materials. For any host material, we note that the diffusivity of CO_2 in a binary mixture is practically independent of the partner species. Furthermore, when compared at the same total pore concentration of the adsorbed phase within the pores, $c_1 = c_1 + c_2$, the values of D_i are nearly the same in the mixture as those determined for *unary* diffusion, indicated by the red circles in Figure 1. Similar conclusions hold for the diffusivity of CH_4 in mixture containing different partner species; see Figure 2. These conclusions are of general validity for mixtures in which no cluster formation occurs; exceptional circumstances are discussed in Sections 9 and 10.

4. Relating \mathcal{D}_{12} in *meso*-porous materials to fluid phase $\mathcal{D}_{12,\mathrm{fl}}$

In the absence of pore walls, i.e. in *fluid phase* mixtures, the molecule-molecule interactions are quantified by the M-S diffusivity $D_{12,fl}$. As illustration, Figure 3 presents MD simulation data on $D_{12,fl}$ for H₂/CH₄, CO₂/H₂, CH₄/CO₂, CH₄/Ar, CH₄/C₂H₆, and CH₄/C₃H₈ mixtures as a function of the total molar concentration c_t ; these simulations were carried out with the methodology described in the literature [14]. MD simulations of D_{12} in BTP-COF, that consists of one-dimensional (1D) hexagonal shaped channels of 3.4 nm size are in excellent agreement with the values of $D_{12,fl}$ over the range of c_t . This conclusion also holds for cylindrical mesopores of 2 nm, 3 nm, 4 nm, and 5.8 nm. This leads us to conclude that the assumption that molecule-molecule interactions in mesoporous hosts is practically the same as that within the same *fluid phase* mixture at the same total molar concentration, c_t , i.e. $D_{12} = D_{12,fl}$.

Reliable procedures for estimation of $D_{12,fl}$ from molecular properties of the individual species are available in the literature, offering the possibility of *a priori* estimations of correlations. As illustration, the continuous solid lines in Figure 3 show the estimations of $D_{12,fl}$ using the method of Fuller, Schettler and Giddings (FSG) [15], developed for *ideal gas* mixtures. We note that for concentrations $c_t < 6$ kmol m⁻³, the MD simulated $D_{12,fl}$ values are in excellent agreement with the FSG estimations. For concentrations $c_t > 6$ kmol m⁻³, the $D_{12,fl}$ values reflect those in dense condensed fluids, for which some estimation procedures are also available in the literature [16].

5. Relating \mathcal{D}_{12} in *micro*-porous materials to fluid phase $\mathcal{D}_{12,\mathrm{fl}}$

For micro-porous materials, the exchange coefficient D_{12} cannot be directly identified with the corresponding fluid phase diffusivity $D_{12,fl}$ because the molecule-molecule interactions are also significantly influenced by molecule-wall interactions. This is underscored by MD data for D_{12} for six binary mixtures in a variety of micro-porous hosts; see Figure 4. For every guest/host combination, at any specific c_t , the D_{12} is lower than the value of $D_{12,fl}$. The extent of lowering can be quantified by defining the fraction *F*

$$F \equiv D_{12}/D_{12,fl} \tag{3}$$

Every guest/host combination can be characterized by a constant fraction F, that are determined by data fitting; the complete data sets are available in the accompanying Figures B1-B126. For "open" structures, with large pore volumes, V_p , the values of F are closer to unity. For example, for CH₄/Ar diffusion in IRMOF-1, COF-102, COF-103, and COF-108, the values are F = 0.6, 0.65, 0.65, and 0.8, respectively, increasing with increasing void fractions, ϕ . Remarkably, for IRMOF-1, the fraction F is in the narrow range of 0.6 – 0.7 for every guest mixture investigated.

At the other end of the spectrum, materials with low pore volumes, the values of the fraction F lie significantly below unity. In MFI that has a set of intersecting channels, F lies in the range of 0.1 - 0.15 for all mixtures. For BEA, also with intersecting channels, but with a slightly higher void fraction, we obtain F = 0.2. For materials such as FAU, NaX, NaY, LTA, and MgMOF-74 with intermediate void fractions, the values of F fall in range 0.3 - 0.6.

Figure 5a presents a plot of *F* as a function of the pore volume V_p of different micro-porous host materials for nine different binary mixtures. The correlation is not perfect, suggesting that other aspects such as channel dimensions, and pore connectivity are also determinants of the exchange coefficient D_{12} .

6. Relating \mathcal{D}_{ii} in *micro*-porous materials to fluid phase $\mathcal{D}_{ii,fl}$

The self-exchange diffusivity, D_{ii} , is defined by applying the M-S equations (1) to a binary mixture, that consists of identical species, tagged and un-tagged. In this special case, the M-S equations (1) can be used to derive the following relation between the self-diffusivity, $D_{i,self}$, and the M-S diffusivity, D_i , for *unary* diffusion [11]

$$\frac{1}{D_{i,self}} = \frac{1}{D_i} + \frac{1}{D_{ii}}; \quad i = 1,2$$
(4)

Equation (4) can be used to determine the self-exchange coefficients D_{ii} from MD simulations of $D_{i,self}$, and D_i . These self-exchange D_{ii} were determined for several species from unary MD simulations. In each case the D_{ii} is also a fraction, $F \equiv D_{ii}/D_{ii,fl}$, of the corresponding value of the fluid phase $D_{ii,fl}$; see data in Figure 6 for some selected guest/host combinations. The fraction F exhibits the same dependence on the pore volume; see Figure 5b.

7. Estimating \mathcal{D}_{12} from information on self-exchange coefficients \mathcal{D}_{ii}

For a fluid phase mixture, the Vignes [14, 17] interpolation formula is commonly used in practice for estimation of the $D_{12,fl}$

$$D_{12,fl} = \left(D_{11,fl}\right)^{x_1} \left(D_{22,fl}\right)^{x_2} \tag{5}$$

where the $D_{ii,fl}$ represent the self-exchange coefficients for *unary* fluid phase diffusion. The validation of this interpolation formula is demonstrated in Figure 7 for six different equimolar fluid mixtures; the complete data sets are available in the accompanying Figures B1-B126. This interpolation formula can be extended to apply to porous materials in the following manner

$$D_{12} = (D_{11})^{x_1} (D_{22})^{x_2} \tag{6}$$

Figure 8 provides a comparison of the predictions of the interpolation equation (6) with MD simulations of D_{12} for six different guest/host combinations. A more extensive set of comparisons is to be found in the Supplementary material.

The results presented in Figure 5 for unary and binary mixtures, provides an alternative, independent rationalization for the interpolation formula suggested in earlier works [11, 18, 19] for estimation of the binary exchange D_{12} using unary diffusion data on self-exchange coefficients D_{ii}

Equation (6) follows from Equation (5) since the binary and self-exchange coefficients share the same dependence on the structural parameters of relevance.

8. Degree of correlations D_1/D_{12}

The results of Figures 4 and 5 might lead us to conclude that correlation effects are less important in structures with large pore volumes because the values of *F* are larger; this conclusion is fallacious as we shall explain below. The importance of correlations is dictated by the *degree of correlations* defined by (D_1/D_{12}) . Figure 9 shows MD data on D_1/D_{12} for diffusion of six different mixtures. For any guest/host combination, D_1/D_{12} is seen to increase as the pore concentration increases; this implies that correlation effects are expected to be stronger for operations at higher pressures. Correlations are strongest in one-dimensional (1D) channel structures (e.g. BTP-COF, NiMOF-74), intersecting channels (e.g. MFI), and "open" structures (e.g. IRMOF-1, FAU, NaX) consisting of large cages separated by wide windows. The degree of correlations is weakest in cage-type structures such as CHA, DDR and LTA; the reason is that the molecules jump one-at-a-time across the narrow windows separating adjacent cages.

9. Influence of cluster formation due to hydrogen bonding

Exceptional circumstances prevail in cases of severe molecular segregation [13, 20] or cluster formation [21-24]; in such situations, the coefficients D_1 , and D_2 in the mixture are significantly different to those determined from unary experiments or simulations. For water/alcohol mixture diffusion, the diffusivity of each component is lowered due to molecular clusters being formed as a consequence of hydrogen bonding. This is illustrated in Figure 10 that present MD simulations of D_1 , and D_2 for water/alcohol mixture diffusion in FAU, MFI, LTA, DDR, and CHA zeolites. In all cases, the diffusivity of water is reduced with increasing proportion of alcohol. Hydrogen bonding between water and alcohol molecule pairs serves to act as a "flexible leash" linking the motion of the more mobile (water) and tardier (alcohol) species. The net result is that the motion of water is retarded due to cluster formation. For MFI, the diffusivity of methanol is practically independent of composition, while that for water shows a dramatic decrease with increasing methanol concentration (cf. Figure 10c); this trend is the same as determined in the NMR experiments data of Caro et al. [25]. For LTA, and DDR the $D_{i,self}$ of methanol decreases with increasing proportion of water; see Figures 10d, and 10e. For CHA, the self-diffusivities for methanol show a decreasing trend for low water concentrations, till a minimum is reached; see Figure 10f. A similar minimum in the alcohol self-diffusivity is observed for FAU zeolite; see Figures 10a, and 10b. The general conclusion to be drawn from the MD data in Figure 10 is that at either ends of the composition range, there is slowing down of either component, due to increasing proportion of its partner species.

A number of experimental data on pervaporation of water/alcohol, mixtures can be interpreted using the MD data presented in Figure 10.

The NMR spectroscopy data of Hallberg et al.[26] on self-diffusivities in water-methanol mixtures across a Nafion membrane shows that the methanol diffusivity decreases significantly with increasing water composition; see Figure 11.

For water/alcohol pervaporation across CHA zeolite membrane, the experimental data of Hasegawa et al. [27] show that the alcohol fluxes *decrease* with increasing water composition in the feed; see Figure 12. Indeed, *both* water and alcohol fluxes are reduced with increasing concentrations of partner species in the mixture. Similar experimental data for water/alcohol pervaporation across DDR membranes are reported [28]. The decrease in the alcohol fluxes with increasing water concentration in the feed mixture observed experimentally in the CHA pervaporation experimental data presented in Figures 12, and 13, must be ascribed, in part at least, to a reduction in the alcohol diffusivities observed in the MD simulation results presented in Figure 10f.

For industrial scale water/NMP pervaporation across CHA membrane, the NMP flux also shows a decreasing trend with increasing feed water composition; see Figure 13a. The component permeances,

as reported by Sato et al. [29], show that NMP permeance decreases for water concentrations < 10 wt%, and tends to increases when the water feed concentrations > 15 wt%; see Figure 13b. Since permeances are closely related to the diffusivities, the NMP diffusivities will either decrease or increase depending on the feed composition.

The experimental data on pervaporation of water/ethanol mixtures across LTA-4A membrane [30], shown in Figure 14, can also be interpreted in terms of mutual-slowing down effects.

10. Intersection blocking and traffic-junction effects

Branched and cyclic hydrocarbons locate preferentially at the intersections of the channel structures of MFI zeolite [31]. This is illustrated in the snapshots in Figure 15 showing the location of molecules in mixtures of n-butane(nC4)/iso-butane(iC4), n-hexane(nC6)/2,2dimethylbutane (22DMB), and ethene/benzene mixtures. The preferential location is because of molecular configuration effects; the intersections afford extra "leg room".

In the PFG NMR investigation of Fernandez et al.[32] the self-diffusivity in MFI of n-butane (nC4), in mixtures with iso-butane (iC4), was found to decreases to nearly zero as the loading of iC4 is increased from $\Theta_{iC4} = 0$ to 2 molecules per unit cell; see Figure 16a. The reason for this strong decline can be understood on the basis of the preferential location of iC4 at the channel intersections of MFI. For $\Theta_{iC4} = 2$, half the total number of intersections are occupied by iC4, that has a diffusivity which is about three orders of magnitude lower than that of nC4. Since the occupancy of the intersections is distributed randomly, each of the straight channels has an iC4 molecule ensconced somewhere along the channels; this is evident from the snapshot in Figure 15a. This is tantamount to blockage and leads to severe reduction in the molecular traffic of the intrinsically more mobile nC4. Uptake experiments of Chmelik et al.[33] provide further evidence of the influence iC4 has on co-diffusion of nC4 in MFI crystals.

PFG NMR studies of Förste et al.[34] found that the self-diffusivity of CH₄ in MFI is significantly reduced as the loading of the co-adsorbed benzene increases; see Figure 16b. The explanation is again to be found in the hindering of CH₄ diffusion due to blocking of the intersections by benzene [34].

For analogous reasons, the branched alkanes 2-methylpentane (2MP), causes the reduction in the selfdiffusivity of the n-hexane (nC6) in nC6/ 2MP mixtures [35]; see Figure 16c.

When intersection blocking effects occur, the pure component diffusivities of the more mobile partner, that locates anywhere along the channels of MFI, cannot be identified with those in the mixture.

The preferential location of branched alkanes at the intersections of MFI leads to other unusual adsorption and diffusion phenomena that can be exploited to achieve separation of hydrocarbon isomers. For illustration, consider for example, a mixture of nC6 and 2,2 dimethyl butane (22DMB). Configurational-bias Monte Carlo (CBMC) simulations of the adsorbed phase loadings of the components in MFI in equilibrium with bulk fluid phase partial fugacities $f_2 = 4 f_1$ are shown in Figure 17a. Up to a total hydrocarbons fugacity f of 1 kPa, the component loadings increase in an expected manner. At $f \approx 2$ kPa, the total loading in the zeolite ≈ 4 molecules per unit cell. All the intersection sites are fully occupied; see snapshot in Figure 17b. To further adsorb 22DMB, we need to provide an extra "push". Energetically, it is more efficient to obtain higher mixture loadings by "replacing" the 22DMB with nC6; this *configurational entropy* effect is the reason behind the curious maxima in the 22DMB loading in the mixture at $f \approx 2$ kPa. For f > 2 kPa, we have unusual phenomenon that increasing the fugacity of 22DMB in the bulk fluid phase has the effect of reducing the loading in the adsorbed phase. Experimental evidence of the curious maximum in the loading of the branched isomer is available from mixture adsorption data [36-39]. A further consequence is that for permeation of nC6-22DMB mixtures across an MFI membrane, the flux of 22DMB decreases when the upstream hydrocarbons pressures f > 2 kPa as observed in one set of the experiments of Gump et al.[40]; see Figure 17c.

The configuration entropy effect can be exploited to separate hydrocarbon isomers in a chromatographic column, or in a simulated moving bed adsorber [41-45].

Traffic junction effects are of vital importance in modeling reactors alkylation of benzene with ethene using MFI zeolite catalyst (in the acidic form H-ZSM-5) to produce ethylbenzene[46]. Both benzene (reactant) and ethylbenzene (product) are preferentially located at the intersections of MFI; see

Figure 18a. The blocking of intersections causes effective diffusivity of ethene inside the catalyst to reduce five-fold as the total mixture loading approaches 2 molecules per unit cell; see Figure 18.

11. Conclusions

The major conclusions of the present study are summarized below.

- (1) When no cluster formation occurs, the M-S diffusivities of constituent species in a binary mixture, D_1 , and D_2 are practically the same as that for unary diffusion, when determined at the total pore concentration in the mixture, c_t . This implies that the experimental data on unary permeation across membranes, say, can be used to predict the corresponding values for mixture permeation.
- (2) For mixtures in which cluster formation occurs, say due to hydrogen bonding, D_1 , and D_2 in the mixture cannot be identified with the unary values.
- (3) For mixture diffusion inside cylindrical silica meso-pores, $d_p > 2$ nm, the binary exchange coefficient D_{12} , is found to be equal to the corresponding value in the binary fluid mixture, $D_{12,fl}$, over the entire range of mixture concentrations, c_t .
- (4) For mixture diffusion inside zeolites, MOFs, and COFs, with channel dimensions smaller than 2 nm, D_{12} is found to be lower than $D_{12,fl}$, by a constant factor *F*.
- (5) Analogously, the self-exchange coefficient for unary diffusion D_{ii} inside micro-porous structures is related to the fluid phase self-diffusivity $D_{ii,fl}$ by a constant factor *F*.
- (6) The factor F is primarily dependent on the pore volume or void fraction; the larger the void fraction, the closer is the value of F to unity.
- (7) The degree of correlations effects, as quantified by the ratio D_1/D_{12} , are *stronger* in open structures with larger pore volumes, and in 1D channels. Correlations are relatively insignificant in cage-type structures in which adjacent cages are separated by narrow windows.

- (8) Due to cluster formation, the Maxwell-Stefan diffusivity, D_i , of either component in wateralcohol mixtures is lowered below the corresponding values of the pure components. In practice we need to take account of the influence of mixture composition on the D_i .
- (9) Within the intersecting channels of MFI zeolite, branched and cyclic hydrocarbons locate preferentially at the intersections. This causes intersection blocking of more mobile partners that locate within the channels. The M-S diffusivity of the more mobile partner cannot be identified with the pure component values.

12. Notation

Ci	pore concentration of species <i>i</i> , mol m^{-3}
Ct	total pore concentration in mixture, mol m ⁻³
$d_{ m p}$	pore diameter, m
D_{i}	M-S diffusivity of species i , m ² s ⁻¹
$D_{ m ii}$	self-exchange coefficient, m ² s ⁻¹
$D_{ m ii,fl}$	self-diffusivity of species <i>i</i> in fluid phase, $m^2 s^{-1}$
D_{12}	M-S exchange coefficient, $m^2 s^{-1}$
$D_{12,\mathrm{fl}}$	M-S diffusivity in binary fluid mixture, m ² s ⁻¹
$D_{i,self}$	self-diffusivity of species i , m ² s ⁻¹
F	factor defined by equation (3), dimensionless
$N_{ m i}$	molar flux of species <i>i</i> defined in terms of the cross-sectional area of the crystalline framework, mol $m^{-2} s^{-1}$
R	gas constant, 8.314 J mol ⁻¹ K ⁻¹
Т	absolute temperature, K
$V_{\rm p}$	accessible pore volume, m ³ kg ⁻¹
x _i	mole fraction of species <i>i</i> based on loading within pore, dimensionless

Greek letters

ϕ	fractional pore volume of microporous material, dimensionless
$\mu_{ m i}$	molar chemical potential, J mol ⁻¹
Θ_{i}	loading of <i>i</i> , molecules per unit cell

Subscripts

i	referring to component <i>i</i>
fl	referring to fluid phase
t	referring to total mixture

13. References

- [1] J. Kärger, D.M. Ruthven, D.N. Theodorou, Diffusion in Nanoporous Materials, Wiley VCH, Weinheim, 2012.
- [2] J. Caro, Are MOF membranes better in gas separation than those made of zeolites?, Curr. Opin. Chem. Eng. 1 (2011) 77-83.
- [3] J. Gascon, F. Kapteijn, Metal-Organic Framework Membranes—High Potential, Bright Future?, Angew. Chem. Int. Ed. 49 (2010) 1530-1532.
- [4] R. Krishna, J.M. van Baten, In Silico Screening of Zeolite Membranes for CO₂ Capture, J. Membr. Sci. 360 (2010) 323-333.
- [5] R. Krishna, J.M. van Baten, In silico screening of metal-organic frameworks in separation applications, Phys. Chem. Chem. Phys. 13 (2011) 10593-10616.
- [6] R. Krishna, J.R. Long, Screening metal-organic frameworks by analysis of transient breakthrough of gas mixtures in a fixed bed adsorber, J. Phys. Chem. C 115 (2011) 12941-12950.
- [7] Y. He, R. Krishna, B. Chen, Metal-Organic Frameworks with Potential for Energy-Efficient Adsorptive Separation of Light Hydrocarbons, Energy Environ. Sci. 5 (2012) 9107-9120.
- [8] D. Dubbeldam, R. Krishna, S. Calero, A.Ö. Yazaydın, Computer-Assisted Screening of Ordered Crystalline Nanoporous Adsorbents for Separation of Alkane Isomers, Angew. Chem. Int. Ed. 51 (2012) 11867-11871.
- [9] R. Krishna, Describing the diffusion of guest molecules inside porous structures, J. Phys. Chem. C 113 (2009) 19756-19781.
- [10] R. Krishna, Diffusion in Porous Crystalline Materials, Chem. Soc. Rev. 41 (2012) 3099-3118.
- [11] R. Krishna, J.M. van Baten, Unified Maxwell-Stefan description of binary mixture diffusion in micro- and meso- porous materials, Chem. Eng. Sci. 64 (2009) 3159-3178.
- [12] R. Krishna, J.M. van Baten, Investigating the potential of MgMOF-74 membranes for CO₂ capture, J. Membr. Sci. 377 (2011) 249-260.
- [13] R. Krishna, J.M. van Baten, Onsager coefficients for binary mixture diffusion in nanopores, Chem. Eng. Sci. 63 (2008) 3120-3140.
- [14] R. Krishna, J.M. van Baten, The Darken relation for multicomponent diffusion in liquid mixtures of linear alkanes. An investigation using Molecular Dynamics (MD) simulations, Ind. Eng. Chem. Res. 44 (2005) 6939-6947.
- [15] E.N. Fuller, P.D. Schettler, J.C. Giddings, A new method for prediction of binary gas-phase diffusion coefficients, Ind. Eng. Chem. 58 (1966) 19-27.
- [16] B.E. Poling, J.M. Prausnitz, J.P. O'Connell, The Properties of Gases and Liquids, McGraw-Hill, 5th Edition, New York, 2001.
- [17] A. Vignes, Diffusion in binary solutions, Ind. Eng. Chem. Fundamentals 5 (1966) 189-199.
- [18] A.I. Skoulidas, D.S. Sholl, R. Krishna, Correlation effects in diffusion of CH₄/CF₄ mixtures in MFI zeolite. A study linking MD simulations with the Maxwell-Stefan formulation, Langmuir 19 (2003) 7977-7988.
- [19] S. Chempath, R. Krishna, R.Q. Snurr, Nonequilibrium MD simulations of difusion of binary mixtures containing short n-alkanes in faujasite, J. Phys. Chem. B 108 (2004) 13481-13491.
- [20] R. Krishna, J.M. van Baten, Segregation effects in adsorption of CO₂ containing mixtures and their consequences for separation selectivities in cage-type zeolites, Sep. Purif. Technol. 61 (2008) 414-423.

- [21] R. Krishna, J.M. van Baten, Investigating cluster formation in adsorption of CO₂, CH₄, and Ar in zeolites and metal organic frameworks at sub-critical temperatures, Langmuir 26 (2010) 3981-3992.
- [22] R. Krishna, J.M. van Baten, Highlighting a variety of unusual characteristics of adsorption and diffusion in microporous materials induced by clustering of guest molecules, Langmuir 26 (2010) 8450-8463.
- [23] R. Krishna, J.M. van Baten, Hydrogen bonding effects in adsorption of water-alcohol mixtures in zeolites and the consequences for the characteristics of the Maxwell-Stefan diffusivities, Langmuir 26 (2010) 10854-10867.
- [24] R. Krishna, J.M. van Baten, Mutual slowing-down effects in mixture diffusion in zeolites, J. Phys. Chem. C 114 (2010) 13154-13156.
- [25] J. Caro, M. Bülow, J. Richter-Mendau, J. Kärger, M. Hunger, D. Freude, Nuclear Magnetic Resonance Self-diffusion Studies of Methanol-Water Mixtures in Pentasil-type Zeolites, J. Chem. Soc., Faraday Trans. 83 (1987) 1843-1849.
- [26] F. Hallberg, T. Vernersson, E.T. Pettersson, S.V. Dvinskikh, G. Lindbergh, I. Furó, Electrokinetic transport of water and methanol in Nafion membranes as observed by NMR spectroscopy, Electrochim. Acta 55 (2010) 3542-3549.
- [27] Y. Hasegawa, C. Abe, M. Nishioka, K. Sato, T. Nagase, T. Hanaoka, Formation of high flux CHA-type zeolite membranes and their application to the dehydration of alcohol solutions, J. Membr. Sci. 364 (2010) 318-324.
- [28] J. Kuhn, J.M. Castillo-Sanchez, J. Gascon, S. Calero, D. Dubbeldam, T.J.H. Vlugt, F. Kapteijn, J. Gross, Adsorption and Diffusion of Water, Methanol, and Ethanol in All-Silica DD3R: Experiments and Simulation, J. Phys. Chem. C 113 (2009) 14290-14301.
- [29] K. Sato, K. Sugimoto, N. Shimosuma, T. Kikuchi, T. Kyotani, T. Kurata, Development of practically available up-scaled high-silica CHA-type zeolite membranes for industrial purpose in dehydration of N-methyl pyrrolidone solution, J. Membr. Sci. 409-410 (2012) 82-95.
- [30] M. Pera-Titus, C. Fité, V. Sebastián, E. Lorente, J. Llorens, F. Cunill, Modeling Pervaporation of Ethanol/Water Mixtures within 'Real' Zeolite NaA Membranes, Ind. Eng. Chem. Res. 47 (2008) 3213-3224.
- [31] R. Krishna, J.M. van Baten, Diffusion of hydrocarbon mixtures in MFI zeolite: Influence of intersection blocking, Chem. Eng. J. 140 (2008) 614-620.
- [32] M. Fernandez, J. Kärger, D. Freude, A. Pampel, J.M. van Baten, R. Krishna, Mixture diffusion in zeolites studied by MAS PFG NMR and molecular simulation, Microporous Mesoporous Mater. 105 (2007) 124-131.
- [33] C. Chmelik, L. Heinke, J.M. van Baten, R. Krishna, Diffusion of *n*-butane/*iso*-butane mixtures in silicalite-1 investigated using infrared (IR) microscopy, Microporous Mesoporous Mater. 125 (2009) 11-16.
- [34] C. Förste, A. Germanus, J. Kärger, H. Pfeifer, J. Caro, W. Pilz, A. Zikánóvá, Molecular mobility of methane adsorbed in ZSM-5 containing co-adsorbed benzene, and the location of benzene molecules, J. Chem. Soc., Faraday Trans. 1. 83 (1987) 2301-2309.
- [35] A.O. Koriabkina, A.M. de Jong, D. Schuring, J. van Grondelle, R.A. van Santen, Influence of the acid sites on the intracrystalline diffusion of hexanes and their mixtures within MFI-zeolites, J. Phys. Chem. B 106 (2002) 9559-9566.
- [36] D.S. Santilli, Pore probe: A new technique for measuring the concentration of molecules inside porous materials at elevated temperatures, J. Catal. 99 (1986) 335-341.
- [37] S. Calero, B. Smit, R. Krishna, Configurational entropy effects during sorption of hexane isomers in silicalite, J. Catal. 202 (2001) 395-401.
- [38] S. Calero, B. Smit, R. Krishna, Separation of linear, mono-methyl and di-methyl alkanes in the 5-7 carbon atom range by exploiting configurational entropy effects during sorption on silicalite-1, Phys. Chem. Chem. Phys. 3 (2001) 4390-4398.
- [39] M. Yu, J.L. Falconer, R.D. Noble, Adsorption of Liquid Mixtures on Silicalite-1 Zeolite: A Density-Bottle Method, Langmuir 21 (2005) 7390-7397.

- [40] C.J. Gump, R.D. Noble, J.L. Falconer, Separation of hexane isomers through nonzeolite pores in ZSM-5 zeolite membranes, Ind. Eng. Chem. Res. 38 (1999) 2775-2781.
- [41] E. Jolimaître, K. Ragil, M. Tayakout-Fayolle, C. Jallut, Separation of Mono- and Dibranched Hydrocarbons on Silicalite, A.I.Ch.E.J. 48 (2002) 1927-1937.
- [42] R. Krishna, B. Smit, S. Calero, Entropy effects during sorption of alkanes in zeolites, Chem. Soc. Rev. 31 (2002) 185-194.
- [43] R. Krishna, R. Baur, On the Langmuir-Hinshelwood formulation for zeolite catalysed reactions, Chem. Eng. Sci. 60 (2005) 1155 1166.
- [44] R. Baur, R. Krishna, A moving bed reactor concept for alkane isomerization, Chem. Eng. J. 109 (2005) 107-113.
- [45] B. Smit, R. Krishna, Molecular simulations in zeolitic process design, Chem. Eng. Sci. 58 (2003) 557-568.
- [46] N. Hansen, R. Krishna, J.M. van Baten, A.T. Bell, F.J. Keil, Analysis of Diffusion Limitation in the Alkylation of Benzene over H-ZSM-5 by Combining Quantum Chemical Calculations, Molecular Simulations, and a Continuum Approach, J. Phys. Chem. C 113 (2009) 235-246.
- [47] R. Krishna, Adsorptive separation of CO₂/CH₄/CO gas mixtures at high pressures, Microporous Mesoporous Mater. 156 (2012) 217-223.
- [48] R. Krishna, J.M. van Baten, Diffusion of alkane mixtures in zeolites. Validating the Maxwell-Stefan formulation using MD simulations, J. Phys. Chem. B 109 (2005) 6386-6396.
- [49] R. Krishna, J.M. van Baten, Diffusion of alkane mixtures in MFI zeolite, Microporous Mesoporous Mater. 107 (2008) 296-298.
- [50] R. Krishna, J.M. van Baten, Insights into diffusion of gases in zeolites gained from molecular dynamics simulations, Microporous Mesoporous Mater. 109 (2008) 91-108.
- [51] R. Krishna, J.M. van Baten, Investigating the Relative Influences of Molecular Dimensions and Binding Energies on Diffusivities of Guest Species Inside Nanoporous Crystalline Materials J. Phys. Chem. C 116 (2012) 23556-23568.
- [52] R. Krishna, J.M. van Baten, Maxwell-Stefan modeling of slowing-down effects in mixed gas permeation across porous membranes, J. Membr. Sci. 383 (2011) 289-300.
- [53] R. Krishna, J.M. van Baten, Investigating the validity of the Knudsen prescription for diffusivities in a mesoporous covalent organic framework, Ind. Eng. Chem. Res. 50 (2011) 7083-7087.
- [54] R. Krishna, J.M. van Baten, Investigating the validity of the Bosanquet formula for estimation of diffusivities in mesopores, Chem. Eng. Sci. 69 (2012) 684-688.
- [55] R. Krishna, J.M. van Baten, Highlighting Pitfalls in the Maxwell-Stefan Modeling of Water-Alcohol Mixture Permeation across Pervaporation Membranes, J. Membr. Sci. 360 (2010) 476-482.
- [56] R. Krishna, J.M. van Baten, A rationalization of the Type IV loading dependence in the Kärger-Pfeifer classification of self-diffusivities, Microporous Mesoporous Mater. 142 (2011) 745-748.
- [57] D. Schuring, A.O. Koriabkina, A.M. de Jong, B. Smit, R.A. van Santen, Adsorption and diffusion of n-hexane/2-methylpentane mixtures in zeolite silicalite: Experiments and modeling, J. Phys. Chem. B 105 (2001) 7690-7698.
- [58] R. Krishna, J.M. van Baten, Screening of zeolite adsorbents for separation of hexane isomers: A molecular simulation study, Sep. Purif. Technol. 55 (2007) 246-255.

Structure	Topology	Fractional	Pore	Framework
		yolume d	volume/	density/
		volume, φ	cm ³ /g	kg/m ³
AFI	12-ring 1D channels of 7.3 Å size	0.274	0.159	1730
BEA	Intersecting channels of two sizes: 12-ring of 7.1 Å - 7.3 Å and 10-ring of 5.6 – 5.6 Å	0.408	0.271	1509
BOG	Intersecting channels: 12-ring 7.0 Å -7.0 Å and 10-ring of 5.5 Å - 5.8 Å	0.374	0.241	1996
СНА	316 Å ³ cages separated by 3.77 Å \times 4.23 Å size windows	0.382	0.264	1444
DDR	277.8 Å ³ cages separated by 3.65 Å \times 4.37 Å size windows	0.245	0.139	1760
FAU-Si	790 Å ³ cages separated by 7.4 Å size windows	0.439	0.328	1338
NaY	790 Å ³ cages separated by 7.4 Å size windows	0.41	0.303	1347
NaX	790 Å ³ cages separated by 7.4 Å size windows	0.40	0.280	1421
ISV	Intersecting channels of two sizes: 12-ring of 6.1 Å -6.5 Å and 12-ring of 5.9 Å - 6.6 Å	0.426	0.278	1533
LTA-Si	743 Å ³ cages separated by 4.11 Å \times 4.47 Å size windows	0.399	0.310	1285
MFI	10-ring intersecting channels of 5.1 Å – 5.5 Å and 5.3 Å – 5.6 Å size	0.297	0.165	1796
CuBTC	Large cages are inter-connected by 9 Å windows of square cross-section. The large cages are also connected to tetrahedral-shaped pockets of ca. 6 Å size through triangular- shaped windows of 4.6 Å size	0.759	0.863	879
IRMOF1	Two alternating, inter-connected, cavities of 10.9 Å and 14.3 Å with window size of 8 Å.	0.812	1.369	593
MOF-177	Six diamond-shaped channels (upper) with diameter of 10.8 Å surround a pore containing eclipsed BTB ³⁻ moieties.	0.840	1.968	427
MgMOF-74	1D hexagonal-shaped channels of 11 Å	0.708	0.782	905
MIL-47	1D diamond-shaped channels of 8.5 Å	0.608	0.606	1004
MIL-53 (Cr)-lp	1D lozenge-shaped channels of 8.5 Å	0.539	0.518	1041
BTP-COF	1D hexagonal-shaped channels of 34 Å	0.752	1.79	420
COF-102	Cavity of size 8.9 Å	0.8	1.875	426
COF-103	Cavity of size 9.6 Å	0.82	2.040	400
COF-108	Two cavities, of sizes 15.2 Å and 29.6 Å	0.93	5.467	170

Table 1. Salient structural information on zeolites, MOFs and COFs.

Figure 1. Maxwell-Stefan diffusivity of CO₂, D_i , determined MD simulation data for diffusion of a variety of equimolar ($c_1 = c_2$) binary mixtures of CO₂ and different partner species in (a) MFI, (b) FAU-Si, (c) IRMOF-1, (d) CuBTC, (e) MgMOF-74, and (f) CHA. The *x*- axis represent the total pore concentration of the adsorbed phase within the pores, $c_1 = c_1 + c_2$. Also shown in red circles are the MD simulations of D_i , for unary diffusion. For CHA, the plotted diffusivities are the self-diffusivities, $D_{i,self}$, that are more accurate to determine for CHA and provide good approximations of the M-S diffusivities, i.e. $D_{i,self} \approx D_i$. The MD data are culled from our previous publications [10-13, 47-52]. For convenience, the pure component MD data are also summarized in the accompanying Figures A1 – A92.

A92.

Figure 2. Maxwell-Stefan diffusivity of CH₄, D_i , determined MD simulation data for diffusion of a variety of equimolar ($c_1 = c_2$) binary mixtures of CH₄ and different partner species in (a) MFI, (b) FAU-Si, (c) IRMOF-1, (d) CuBTC, (e) MgMOF-74, and (f) CHA. The *x*- axis represent the total pore concentration of the adsorbed phase within the pores, $c_t = c_1 + c_2$. Also shown in green squares are the MD simulations of D_i , for unary diffusion. For CHA, the plotted diffusivities are the self-diffusivities, $D_{i,self}$, that are more accurate to determine for CHA and provide good approximations of the M-S diffusivities, i.e. $D_{i,self} \approx D_i$. The MD data are culled from our previous publications [10-13, 47-52]. For convenience, the pure component MD data are also summarized in the accompanying Figures A1 –

Figure 3. The MD simulations for fluid phase diffusivity $D_{12,fl}$ (square symbols) for equimolar ($c_1 = c_2$) (a) H₂/CH₄, (b) CO₂/H₂, (c) CH₄/CO₂, (d) CH₄/Ar, (e) CH₄/C₂H₆, and (f) CH₄/C₃H₈ mixtures as a function of the total fluid phase molar concentration c_t . The calculation of $D_{12,fl}$ using correlation of Fuller, Schettler and Giddings (FSG) [15], developed for *binary* gas mixtures, is indicated by the continuous solid line. Also indicated are MD data for the exchange coefficients D_{12} in cylindrical silica mesopores (of diameters 3 nm, 4 nm, and 5.8 nm), and BTP-COF (with 3.4 nm size 1D hexagonalshaped channels). The MD data are culled from our previous publications [10-13, 47-54]. For convenience, the MD data are also summarized in the accompanying Figures B1 – B118, arranged according to the guest mixtures.

Figure 4. The M-S binary exchange coefficients D_{12} , for diffusion of equimolar ($c_1 = c_2$) binary mixtures (a) H₂/CH₄, (b) CH₄/Ar, (c) CH₄/C₂H₆, (d) CH₄/CO₂, (e) H₂/CO₂, and (f) CO₂/N₂ at 300 K in a variety of host materials as a function of the total pore concentration, c_t . The $D_{12,fl}$ for binary *fluid phase* mixture diffusion, obtained from independent MD simulations, are also presented in square symbols, along with continuous solid lines that represent the fraction *F* times $D_{12,fl}$. The MD data are culled from our previous publications [10-13, 47-54]. For convenience, the MD data are also summarized in the accompanying Figures B1 – B118, arranged according to the guest mixtures.

Figure 5. Fraction *F* determined from (a) binary mixture, and (b) unary MD simulations, expressed as a function of the pore volume of the micro-porous host structures, V_p . The data used for constructing (a) are from the accompanying Figures B1 – B118, arranged according to the guest mixtures. The data used for constructing (b) are from the accompanying Figures A1 – A92, arranged according to the guest species.

Figure 6. The self-exchange coefficients D_{ii} , for unary diffusion of (a) CO₂, (b) CH₄, (c) H₂, (d) N₂, (e) Ar, and (f) Ne at 300 K in a variety of host materials as a function of the pore concentration, c_i . The $D_{ii,fl}$ for self-diffusivity in the *fluid phase*, obtained from independent MD simulations, are also presented in square symbols, along with continuous solid lines that represent the fraction *F* times $D_{ii,fl}$. The MD data are culled from our previous publications [10-13, 47-54]. For convenience, the MD data are also summarized in the accompanying Figures A1 – A92, arranged according to the guest species.

Figure 7. MD simulations of self-diffusivities, $D_{ii,fl}$, along with the $D_{12,fl}$ for diffusion in a variety of equimolar binary fluid mixtures as a function of the total fluids concentration, c_t . The calculations of $D_{12,fl}$ following Equation (5) are shown by the continuous solid lines. The calculation of $D_{12,fl}$ using correlation of Fuller, Schettler and Giddings (FSG) [15], developed for *binary* gas mixtures, is indicated by the dashed lines. The MD data are culled from our previous publications [10-13, 47-54]. A more complete compilation of data is presented in the accompanying Figures A1 – A92.

Figure 8. Test of the interpolation Equation (6) for diffusion in a variety of binary mixtures in different microporous hosts. The MD data are culled from our previous publications [10-13, 47-54]. A more complete compilation of the validation of the interpolation formula is presented in the accompanying Figures Figures B1 – B118.

Figure 9. MD simulation data for the degree of correlations, D_1/D_{12} , for diffusion of equimolar ($c_1 = c_2$) binary mixtures (a) H₂/CH₄, (b) CH₄/Ar, (c) CH₄/C₂H₆, (d) CH₄/CO₂, (e) H₂/CO₂, and (f) CO₂/N₂ at 300 K in a variety of host materials, as a function of the total pore concentration. The MD data are culled from our previous publications [10-13, 47-54]. For convenience, the MD data are also summarized in the accompanying Figures B1 – B118.

Figure 10. Maxwell-Stefan diffusivities, D_i , in water/methanol, and water/ethanol mixtures of varying composition in (a, b) FAU, (c) MFI, (d) LTA, (e) DDR, and (f) CHA zeolites. The data are compiled from MD simulation results published in the literature [23, 24, 55]. In all cases the MD simulations were carried out under conditions in which the total concentration within the pores, c_t , is held constant; the values c_t are specified in each case and are based on the accessible pore volume in the various zeolites. In some cases the corresponding loadings per unit, Θ_t , are also specified. For CHA, DDR, and LTA the plotted diffusivities are the self-diffusivities, $D_{i,self}$, that are more accurate to determine and provide good approximations of the M-S diffusivities, i.e. $D_{i,self} \approx D_i$. The MD data are culled from our previous publications [21-24, 55, 56].

Figure 11. The NMR spectroscopy data of Hallberg et al. [26] on self-diffusivities in water-methanol mixtures across a Nafion membrane at 298 K.

Figure 12. Experimental data of Hasegawa et al.[27] for permeation fluxes across CHA membrane as a function of the wt% water in (a) water/methanol, (b) water/ethanol, and (c) water/2-propanol mixtures.

Figure 13. (a) Fluxes, and (b) permeances of water and NMP across for water/NMP pervaporation across CHA membrane [29].

Figure 14. Fluxes of ethanol and water for water/ethanol pervaporation across LTA-4A membrane [30].

Figure 15. Snapshots showing the location of molecules of (a) nC4/iC4, (b) nC6/22DMB, and (c) ethene/benzene mixtures in MFI.

Figure 16. (a) PFG NMR experimental data [32] on self-diffusion coefficients of nC4 in nC4/iC4 mixtures in MFI as a function of the loading of iC4 in the mixture. (b) PFG NMR experimental data [34] on self-diffusion coefficients of CH_4 in CH_4 /Benzene mixtures in MFI as a function of the loading of Benzene in the mixture. (c) Experimental data [57] on self-diffusivities of nC6 and 2methylpentane (2MP) as a function of the loading of 2MP in MFI zeolite

Figure 17. (a) CBMC simulations of loadings in the adsorbed phase in equilibrium with binary fluid phase containing nC6 (1) - 22DMB (2) in MFI, with bulk fluid fugacities $f_2 = 4 f_1$. (b) Experimental data for nC6 - 22DMB binary mixture permeation across MFI membrane, with upstream partial pressures $f_2 = 4 f_1$. Graphs are re-constructed using the data from refs [40, 58].

Figure 18. (a) Snapshot showing the location of reactants and products in the alkylation of benzene with ethene to produce ethylbenzene within the intersecting channel topology of MFI catalyst. (b) Effective diffusivity of ethene within MFI catalyst as a function of the mixture loading [46].

14. Listing of additional Figures containing MD data

Figures A1 – A92: Unary MD data, arranged according to guest molecules in the following order: CO_2 CH_4 H_2 Ar Ne Kr N_2 C_2H_6 C_3H_8 nC_4H_{10} water methanol ethanol iso-butane in MFI in-pentane MFI n-hexane in MFI n-heptane in MFI 2,2 dimethylbutane in MFI 2-methylpentane in MFI 3-methylpentane in MFI Benzene in MFI

Figures B1 – B118: Binary mixture MD data, including validation of Vignes interpolation formula, arranged according to guest mixtures in the following order:

 $H_2\!/CO_2$

 $CH_4\!/CO_2$

 CO_2/N_2

 CH_4/C_2H_6

 $CH_4\!/C_3H_8$

 $CH_4\!/nC_4H_{10}$

 H_2/CH_4

 N_2/CH_4

Ne/Ar

 H_2/Ar

CH₄/Ar

Ne/CO₂

Ar/Kr

water/methanol, and water/ethanol

 CH_4/iC_4H_{10} in MFI zeolite

 C_2H_6/iC_4H_{10} in MFI zeolite

 C_3H_8/iC_4H_{10} in MFI zeolite

 nC_4H_{10}/iC_4H_{10} in MFI zeolite

CH₄/Benzene in MFI zeolite

CH₄/22MB in MFI zeolite

C₃H₈/Benzene in MFI zeolite

nC6/22MB in MFI zeolite

nC6/2MP in MFI zeolite

nC6/3MP in MFI zeolite

nC6/Benzene in MFI zeolite

C₂H₄/Benzene in MFI zeolite

nC6/3MP/22MB in MFI zeolite

C₂H₄/Benzene/Ethylbenzene in MFI zeolite

Figures A1 – A92: Unary MD data, arranged according to guest molecules in the following order: CO_2 $CH_4^ H_2$ Ar Ne Kr N_2 C_2H_6 C_3H_8 nC_4H_{10} water methanol ethanol iso-butane in MFI in-pentane MFI n-hexane in MFI n-heptane in MFI 2,2 dimethylbutane in MFI 2-methylpentane in MFI 3-methylpentane in MFI Benzene in MFI

Guest Molecule: CO₂

Pure component isotherms and Thermodynamic Factor

Bulk fluid phase fugacity, f_i / Pa

Bulk fluid phase fugacity, f_i / Pa

Isosteric heats of adsorption

Self-, and Maxwell-Stefan diffusivities

Self-exchange coefficients and Degrees of correlations

Guest Molecule: CH₄

Pure component isotherm and Thermodynamic Factor

Isosteric heats of adsorption

----- MgMOF-74 - CuBTT \rightarrow ZnMOF-74 20 - FAU-Si -0Isosteric heat of adsorption, - $\Delta H_{\rm st}$ / kJ mol^1 - MOF-177 **-X** Co(BDP) 18 -+-BeBTB -(+)-IRMOF 16 14 12 10 8 CH₄; 300 K; CBMC simulations 6 0.01 0.1 10 1 Pore concentration, c_i / kmol m⁻³

Figure A10

Self-, and Maxwell-Stefan diffusivities

pore concentration, c_i / kmol m⁻³

Exchange coefficients as fraction of fluid phase $D_{ii,fl}$

0.7

Pore concentration, c_1 / kmol m⁻³

Guest Molecule: H₂

Self-, and Maxwell-Stefan diffusivities

Self-exchange coefficients and Degrees of correlations

Figure A18

Pore concentration, c_1 / kmol m⁻³

Guest Molecule: Ar

Self-, and Maxwell-Stefan diffusivities

Self-exchange coefficients and Degrees of correlations

molar concentration, c_i / kmol m⁻³

Pore concentration, c_1 / kmol m⁻³

Guest Molecule: Ne

Self-, and Maxwell-Stefan diffusivities

Self-exchange coefficients and Degrees of correlations

Guest Molecule: Kr
Self-, and Maxwell-Stefan diffusivities

Self-exchange coefficients and Degrees of correlations

molar concentration, c_i / kmol m⁻³

Exchange coefficients as fraction of fluid phase $D_{ii,fl}$

Guest Molecule: N₂

Self-, and Maxwell-Stefan diffusivities

Self-exchange coefficients and Degrees of correlations

molar concentration, c_i / kmol m⁻³

Exchange coefficients as fraction of fluid phase $D_{ii,fl}$

Guest Molecule: C₂H₆

Self-, and Maxwell-Stefan diffusivities

Self-exchange coefficients and Degrees of correlations

- BTP-COF

Exchange coefficients as fraction of fluid phase $D_{ii,fl}$

Guest Molecule: C₃H₈

Self-, and Maxwell-Stefan diffusivities

Self-exchange coefficients and Degrees of correlations

molar concentration, c_i / kmol m⁻³

Exchange coefficients as fraction of fluid phase $D_{ii,fl}$

Guest Molecule: nC₄H₁₀

Self-, and Maxwell-Stefan diffusivities

Self-exchange coefficients and Degrees of correlations

Snapshots showing the location of nC4 molecules within MFI

Linear, chain, alkanes can locate anywhere along the channels of MFI

nC4: 4 molecules/uc

Figure A50

Snapshots showing the location of nC4 molecules within MFI

Figure A51

P

Guest Molecule: H₂O

MFI snapshot of water molecules

Figure A53

The snapshot shows some qualitative indication of clustering of water molecules caused by hydrogen bonding.

LTA water snapshot showing clustering

DDR snapshot of water molecules

The snapshot shows some qualitative indication of clustering of water molecules caused by hydrogen bonding.

Guest Molecule: CH₃OH

LTA methanol snapshot showing clustering

CHA methanol snapshot showing clustering

Guest Molecule: C_2H_5OH

MFI snapshot of ethanol molecules

The snapshot shows some qualitative indication of clustering of ethanol molecules caused by hydrogen bonding.

LTA ethanol snapshot showing clustering

CHA ethanol snapshot showing clustering

Figure A63

Guest Molecule in MFI: $iC_4H_{10} = iC4$

CBMC simulation of iC4 isotherms in MFI; Experimental validation

Pressure / Pa

The inflection in the isotherm is caused due to preferential location of iC4 at the intersections. There are 4 intersections per unit cell.

The inflection occurs at a loading of 4 molecules per unit cell, corresponding to 0.693 mol kg⁻¹

Figure A65

MFI iso-butane (iC4) diffusion in MFI: IR microscopy data

The inflection in the isotherm has a profound influence on the diffusivity of iC4.

The data are re-plotted using the information in:

C. Chmelik, L. Heinke, J. Kärger, D.B. Shah, W. Schmidt, J.M. van Baten, R. Krishna, Inflection in the loading dependence of the Maxwell-Stefan diffusivity of iso-butane in MFI zeolite, Chem. Phys. Lett. 459 (2008) 141-145.

MFI iso-butane (iC4) diffusivity in MFI from membrane permeation

The experimental data are re-plotted using the information in:

B. Millot, A. Méthivier, H. Jobic, H. Moueddeb, M. Bee, Diffusion of isobutane in ZSM-5 zeolite: A comparison of quasielastic neutron scattering and supported membrane results, J. Phys. Chem. B 103 (1999) 1096-1101.
B. Millot, A. Méthivier, H. Jobic, H. Moueddeb, J.A. Dalmon, Permeation of linear and branched alkanes in ZSM-5 supported membranes, Microporous Mesoporous Mat. 38 (2000) 85-95.

The interpretation of the non-Arrhenius temperature dependence of the M-S diffusivity is discussed in our earlier works R. Krishna, R. Baur, Modelling issues in zeolite based separation processes, Sep. Purif. Technol. 33 (2003) 213-254. R. Krishna, Describing the diffusion of guest molecules inside porous structures, J. Phys. Chem. C 113 (2009) 19756-19781.
Snapshots showing the location of molecules within MFI

Snapshots showing the location of molecules

within MFI

iC4: 4 molecules/uc

iC4: 2 molecules/uc

3 uc deep

Snapshots showing the location of molecules within MFI

Very high pressures are required to locate the iC4 within the channels.

iC4: 6 molecules/uc

Guest Molecule in MFI: $nC_5H_{12} = nC5$

MD simulations of diffusivities in MFI zeolite

Guest Molecule in MFI: $nC_6H_{14} = nC6$

CBMC simulation of nC6 isotherms in MFI; Experimental validation

Pressure / Pa

Pressure / Pa

Pressure / Pa

Snapshots showing the location of molecules within MFI

Linear, chain, alkanes can locate anywhere along the channels of MFI. The length of nC6 is commensurate with the distance between two intersections

nC6: 4 molecules/uc

MD simulations of diffusivities in MFI zeolite

The QENS experimental data are re-plotted using the information in:

H. Jobic, C. Laloué, C. Laroche, J.M. van Baten, R. Krishna, Influence of isotherm inflection on the loading dependence of the diffusivities of n-hexane and n-heptane in MFI zeolite. Quasi-Elastic Neutron Scattering experiments supplemented by molecular simulations, J. Phys. Chem. B 110 (2006) 2195-2201.

Guest Molecule in MFI: $nC_7H_{18} = nC7$

MD simulations of nC7 diffusivities in MFI zeolite

The QENS experimental data are re-plotted using the information in:

H. Jobic, C. Laloué, C. Laroche, J.M. van Baten, R. Krishna, Influence of isotherm inflection on the loading dependence of the diffusivities of n-hexane and n-heptane in MFI zeolite. Quasi-Elastic Neutron Scattering experiments supplemented by molecular simulations, J. Phys. Chem. B 110 (2006) 2195-2201.

Snapshots showing the location of molecules within MFI

Guest Molecule in MFI: 2,2dimethylbutane = 22DMB

CBMC simulation of isotherms; Experimental validation

The saturation capacity is dictated by the fact that 22DMB locates at the intersections only. There are 4 intersections per unit cell.

The saturation loading is therefore = 4 molecules per unit cell, corresponding to $0.693 \text{ mol kg}^{-1}$

Snapshots showing the location of molecules within MFI

22DMB molecules can only locate at the intersections of MFI

22DMB: 4 molecules/uc

Figure A82

Guest Molecule in MFI: 2-methylpentane = 2MP

CBMC simulation of isotherms; Experimental validation

1.4 $^{\Delta}$ 2MP, CBMC, 300 K \triangle \triangle Zhu, expt, 303 K + 1.2 \triangle \triangle Loading, *q* / mol kg⁻¹ 1.0 0.8 0.6 \wedge 0.4 \wedge 2MP in MFI (silicalite-1) 0.2 \wedge 0.0 ______ 10⁻² 10⁻¹ 10⁰ 10¹ $10^2 \ 10^3 \ 10^4 \ 10^5 \ 10^6$ Pressure / Pa

The inflection in the isotherm is caused due to preferential location of 2MP at the intersections. There are 4 intersections per unit cell.

The inflection occurs at a loading of 4 molecules per unit cell, corresponding to 0.693 mol kg⁻¹

Figure A84

Snapshots showing the location of molecules within MFI

2MP molecules locates preferentially at the intersections of MFI

2MP: 4 molecules/uc

Guest Molecule in MFI: 3-methylpentane = 3MP

CBMC simulation of isotherms; Experimental validation

The inflection in the isotherm is caused due to preferential location of 3MP at the intersections. There are 4 intersections per unit cell.

The inflection occurs at a loading of 4 molecules per unit cell, corresponding to 0.693 mol kg⁻¹

Pressure / Pa

MFI 3-methylpentane (3MP) diffusivity in MFI from membrane permeation

Figure A88

The experimental data are re-plotted using the information in:

B. Millot, A. Méthivier, H. Jobic, H. Moueddeb, M. Bee, Diffusion of isobutane in ZSM-5 zeolite: A comparison of quasielastic neutron scattering and supported membrane results, J. Phys. Chem. B 103 (1999) 1096-1101.
B. Millot, A. Méthivier, H. Jobic, H. Moueddeb, J.A. Dalmon, Permeation of linear and branched alkanes in ZSM-5 supported membranes, Microporous Mesoporous Mat. 38 (2000) 85-95.

The interpretation of the non-Arrhenius temperature dependence of the M-S diffusivity is discussed in our earlier works R. Krishna, R. Baur, Modelling issues in zeolite based separation processes, Sep. Purif. Technol. 33 (2003) 213-254. R. Krishna, Describing the diffusion of guest molecules inside porous structures, J. Phys. Chem. C 113 (2009) 19756-19781.

Snapshots showing the location of molecules within MFI

3MP molecules locates preferentially at the intersections of MFI

3MP: 4 molecules/uc

Figure A89

Guest Molecule in MFI: Benzene = Bz

Benzene: 1 molecules/uc

Snapshots showing the location of Bz molecules within

MFI

Benzene: 2 molecules/uc

Benzene: 3 molecules/uc

Snapshots showing the location of Bz molecules

within MFI

Benzene: 4 molecules/uc

Figures B1-B118: Binary mixture MD data, including validation of Vignes interpolation formula, arranged according to guest mixtures in the following order: H_2/CO_2 CH_4/CO_2 CO_2/N_2 CH_4/C_2H_6 CH_4/C_3H_8 CH_4/nC_4H_{10} H_2/CH_4 N_2/CH_4 Ne/Ar H₂/Ar CH₄/Ar Ne/CO₂ Ar/Kr water/methanol, and water/ethanol CH_4/iC_4H_{10} in MFI zeolite C_2H_6/iC_4H_{10} in MFI zeolite C_3H_8/iC_4H_{10} in MFI zeolite nC_4H_{10}/iC_4H_{10} in MFI zeolite CH₄/Benzene in MFI zeolite CH₄/22MB in MFI zeolite C₃H₈/Benzene in MFI zeolite nC6/22MB in MFI zeolite nC6/2MP in MFI zeolite nC6/3MP in MFI zeolite nC6/Benzene in MFI zeolite C₂H₄/Benzene in MFI zeolite nC6/3MP/22MB in MFI zeolite C₂H₄/Benzene/Ethylbenzene in MFI zeolite

Guest Mixture: H_2/CO_2

Exchange coefficients and Degree of correlations

Exchange coefficients as fraction of fluid phase $D_{12,fl}$

Exchange coefficients as fraction of fluid phase $D_{12,fl}$

Validation of the Vignes interpolation formula for D_{12}

Figure B6

Guest Mixture: CH_4/CO_2

Exchange coefficients and Degree of correlations

Exchange coefficients as fraction of fluid phase $D_{12,fl}$

Exchange coefficients as fraction of fluid phase $D_{12,fl}$

Validation of the Vignes interpolation formula for D_{12}

Figure B11

Guest Mixture: CO₂/N₂

- MgMOF-74

3 MFI MD; 300 K; FAU-Si N₂(1)/CO₂(2) Degree of correlations, $\mathcal{D}_1 / \mathcal{D}_{12}$ ★ MOF-177 🔻 LTA-Si 2 1 0 20 0 5 10 15 Total pore concentration, $c_{\rm t}$ / kmol m⁻³

Total loading, $c_{\rm t}$ / kmol m⁻³

Guest Mixture: CH_4/C_2H_6

Guest Mixture: CH_4/C_3H_8

Guest Mixture: CH₄/nC₄H₁₀

Exchange coefficients as fraction of fluid phase $D_{12,fl}$

100 M-S exchange coefficient, \mathcal{D}_{12} / 10⁻⁸ m² s⁻¹ _____ fluid, *Đ*_{12.fl} IRMOF-1 MFI F x Đ_{12,fl} 10 = 0.5 1 MD; 300 K; *F* = 0.15 CH₄(1)/nC₄H₁₀(2); equimolar mix 0.1 0 12 2 4 6 8 10

Total pore concentration, $c_{\rm t}$ / kmol m⁻³

Guest Mixture: H₂/CH₄

Guest Mixture: N₂/CH₄

Guest Mixture: Ne/Ar

Total concentration, c_t / kmol m⁻³

Guest Mixture: H₂/Ar

Guest Mixture: CH₄/Ar

Validation of the Vignes interpolation formula for D_{12}

Figure B51

Validation of the Vignes interpolation formula for D_{12}

Total pore concentration, $c_{\rm t}$ / kmol m⁻³

Guest Mixture: Ne/CO₂

Exchange coefficients and Degree of correlations

Total concentration, $c_{\rm t}$ / kmol m⁻³

Validation of the Vignes interpolation formula for D_{12}

Figure B56

Guest Mixture: Ar/Kr

Exchange coefficients and Degree of correlations

5

Total concentration, $c_{\rm t}$ / kmol m⁻³

Exchange coefficients as fraction of fluid phase $D_{12,fl}$

100 🥅 M-S exchange coefficient, \mathcal{D}_{12} / 10⁻⁸ m² s⁻¹ fluid mixture, *Đ*_{12.fl} LTA-Si 0.4 x *Đ*_{12,fl} 10 1 MD; 300 K; Ar(1)/Kr(2) mix 0.1 25 30 35 0 15 20 5 10 Total pore concentration, c_t / kmol m⁻³

Figure B59

Validation of the Vignes interpolation formula for D_{12}

Figure B60

Guest Mixture: water/ methanol, water/ethanol

Diffusivities of water-methanol equimolar mixtures

FAU Comparing water/alcohol equimolar mixtures

MD data on M-S diffusivities, \mathcal{D}_i , of (a) water, (b) methanol, and (c) ethanol in equimolar ($c_1 = c_2$) water-methanol, water-ethanol and methanol-ethanol mixtures in FAU at 300 K. Also shown are the pure component \mathcal{D}_i determined at the same total pore concentration. From (a) it can be observed that the \mathcal{D}_i of water in mixtures with alcohols are significantly lower than that for pure water. The reason for this is that due to hydrogen bonding, water tends to cluster around alcohol molecules. The mobility of water molecules in the mixtures is significantly lowered due to cluster formation.

Interestingly, the D_i of methanol in mixtures with water is also significantly lower than the value for pure methanol; see (b). In sharp contrast, the D_i of methanol in mixtures with ethanol is practically the same as for pure methanol. The hydrogen bonding between methanol-ethanol and methanol-methanol is significantly weaker than for water-methanol pairs.

The results for the M-S diffusivity of ethanol are analogous to those for methanol; see (c). Compared with pure ethanol, the D_i is significantly lowered in mixtures with water, but in remains practically the same in mixtures with methanol.

FAU Comparing water/alcohol mixtures of varying composition

Figure B64

Mole fraction of methanol in adsorbed phase

(a) presents data for D_i of water in binary mixtures with methanol and ethanol. For both mixtures, we note a reduction in the D_i of water with increasing alcohols concentration within the pores. Furthermore, the mobility of water in mixtures with ethanol is slightly lower than for water-methanol mixtures. (b) presents data for the M-S diffusivity D_i of methanol in water-methanol and methanolethanol mixtures. For methanol-ethanol mixtures the M-S diffusivity D_i is practically independent of composition, whereas in mixtures with water, the D decreases significantly below the pure component value with increasing water concentrations. Water-methanol clustering is much more significant than methanol-ethanol clustering.

The results presented in (a) and (b) indicate that for a certain range of compositions of water-alcohol mixtures there is mutual hindering of both components in the mixture.

MFI diffusion of water-methanol mixtures, varying composition

Hunger, M.; Freude, D. J. Chem Soc., Faraday Trans. 1987, 83, 1843-1849.

Figure B65

LTA water-methanol mixture snapshots showing clustering

LTA water-ethanol mixture snapshots showing clustering

MFI snapshot of a mixture of water and methanol

The snapshot shows some qualitative indication of clustering of water and methanol molecules caused by hydrogen bonding.

MFI snapshot of a mixture of water and ethanol

The snapshot shows some qualitative indication of clustering of water and ethanol molecules caused by hydrogen bonding.

Guest Mixture in MFI zeolite: CH₄/iC₄H₁₀

Pure components adsorption

C1 - iC4 / MFI / 300K

mixture adsorption

The failure of IAST to describe mixture adsorption accurately is because of segregation effects. The iC4 locates preferentially at the intersections. This implies that there is no homogeneous distribution of the mixture over the entire MFI framework. This non-homogeneous distribution of molecules causes departures from IAST.

The adsorption and diffusion characteristics are discussed in further details in:

R. Krishna, J.M. van Baten, Diffusion of hydrocarbon mixtures in MFI zeolite: Influence of intersection blocking, Chem. Eng. J. 140 (2008) 614-620.

x-direction

C1 = 2 molecules/uc iC4 = 2 molecules/uc

x-direction

y-direction of yields highest diffusivity; this is a straight path

x-direction of yields intermediate; this is a zig-zag path

z-direction of yields lowest diffusivity

C1 - iC4 / MFI / 300K

The adsorption and diffusion characteristics are discussed in further details in: R. Krishna, J.M. van Baten, Diffusion of hydrocarbon mixtures in MFI zeolite: Influence of intersection blocking, Chem. Eng. J. 140 (2008) 614-620.

Loading of iC4, q_{iC4} / molecules per unit cell

mixture diffusion

Loading of iC4, q_{iC4} / molecules per unit cell

2 uc deep

Guest Mixture in MFI zeolite: C₂H₆/iC₄H₁₀

Pure components adsorption

C2 - iC4 / MFI / 300K

mixture adsorption

The failure of IAST to describe mixture adsorption accurately is because of segregation effects. The iC4 locates preferentially at the intersections. This implies that there is no homogeneous distribution of the mixture over the entire MFI framework. This non-homogeneous distribution of molecules causes departures from IAST.

The adsorption and diffusion characteristics are discussed in further details in:

R. Krishna, J.M. van Baten, Diffusion of hydrocarbon mixtures in MFI zeolite: Influence of intersection blocking, Chem. Eng. J. 140 (2008) 614-620.

x-direction

C2 = 2 molecules/uc iC4 = 2 molecules/uc

x-direction

2 uc deep

C2 - iC4 / MFI / 300K

y-direction of

yields highest

a straight path

x-direction of

intermediate; this is a zig-zag

z-direction of

yields lowest

diffusivity

yields

path

diffusivity; this is

The adsorption and diffusion characteristics are discussed in further details in: R. Krishna, J.M. van Baten, Diffusion of hydrocarbon mixtures in MFI zeolite: Influence of intersection blocking, Chem. Eng. J. 140 (2008) 614-620.

Loading of iC4, q_{iC4} / molecules per unit cell

mixture diffusion

Loading of iC4, q_{iC4} / molecules per unit cell

Guest Mixture in MFI zeolite: C₃H₈/iC₄H₁₀

Pure components adsorption

C3 - iC4 / MFI / 300K

mixture adsorption

The failure of IAST to describe mixture adsorption accurately is because of segregation effects. The iC4 locates preferentially at the intersections. This implies that there is no homogeneous distribution of the mixture over the entire MFI framework. This non-homogeneous distribution of molecules causes departures from IAST.

The adsorption and diffusion characteristics are discussed in further details in:

R. Krishna, J.M. van Baten, Diffusion of hydrocarbon mixtures in MFI zeolite: Influence of intersection blocking, Chem. Eng. J. 140 (2008) 614-620.

x-direction

C3 = 2 molecules/uc iC4 = 2 molecules/uc

x-direction

2 uc deep

y-direction of yields highest diffusivity; this is a straight path

x-direction of yields intermediate; this is a zig-zag path

z-direction of yields lowest diffusivity

C3 - iC4 / MFI / 300K

The adsorption and diffusion characteristics are discussed in further details in: R. Krishna, J.M. van Baten, Diffusion of hydrocarbon mixtures in MFI zeolite: Influence of intersection blocking, Chem. Eng. J. 140 (2008) 614-620.

Loading of iC4, q_{iC4} / molecules per unit cell

mixture diffusion

Loading of iC4, q_{iC4} / molecules per unit cell

Guest Mixture in MFI zeolite: nC₄H₁₀/iC₄H₁₀

Partial gas phase fugacity, f / Pa

Pure components adsorption

nC4 - iC4 / MFI / 300K

mixture adsorption

The failure of IAST to describe mixture adsorption accurately is because of segregation effects. The iC4 locates preferentially at the intersections. This implies that there is no homogeneous distribution of the mixture over the entire MFI framework. This non-homogeneous distribution of molecules causes departures from IAST.

The adsorption and diffusion characteristics are discussed in further details in:

R. Krishna, J.M. van Baten, Diffusion of hydrocarbon mixtures in MFI zeolite: Influence of intersection blocking, Chem. Eng. J. 140 (2008) 614-620.

x-direction

nC4 = 2 molecules/uc iC4 = 2 molecules/uc

x-direction

y-direction of yields highest diffusivity; this is a straight path

x-direction of yields intermediate; this is a zig-zag path

z-direction of yields lowest diffusivity

nC4 - iC4 / MFI / 300K

The adsorption and diffusion characteristics are discussed in further details in: R. Krishna, J.M. van Baten, Diffusion of hydrocarbon mixtures in MFI zeolite: Influence of intersection blocking, Chem. Eng. J. 140 (2008) 614-620.

Loading of iC4, q_{iC4} / molecules per unit cell

mixture diffusion

Loading of iC4, q_{iC4} / molecules per unit cell

2 uc deep

MFI nC4/iC4mixture diffusion in MFI: PFG NMR experiments

10¹ $-\frac{1}{2}$ MD simulations Self diffusivitivies, D_{nC4} and D_{iC4} / 10⁻⁹ $m^2 s^{-1}$ 6 6 nC4-iC4 mixture diffusion; nC4-iC4 mixture diffusion: MAS PFG NMR experiments Self diffusivity of nC4 / 10^{-9} m² s⁻¹ MAS PFG NMR expt data; Self diffusivity of nC4 / 10^{-9} m² s⁻¹ MAS PFG NMR expt data; Total loading = $\Theta_{nC4} + \Theta_{iC4} = 4$ Total loading = $\Theta_{nC4} + \Theta_{iC4} = 4$ 5 10⁰ nC4-iC4 mixture diffusion; MFI; 363 K MFI; 363 K Total loading = $\Theta_{nC4} + \Theta_{iC4} = 4$ 4 4 MFI; 363 K **10**⁻¹ 3 2 10-2 nC4, expt 1 iC4, expt 0 0 10-3 0 1 2 3 2 3 2 3 0 1 0 1 4 Loading of iC4, Θ_{iC4} / molecules per unit cell Loading of iC4, Θ_{iC4} / molecules per unit cell Loading of iC4, Θ_{iC4} / molecules per unit cell

The data are re-plotted using the information in:

M. Fernandez, J. Kärger, D. Freude, A. Pampel, J.M. van Baten, R. Krishna, Mixture diffusion in zeolites studied by MAS PFG NMR and molecular simulation, Microporous Mesoporous Mater. 105 (2007) 124-131.

Figure B83

Snapshots showing the location of molecules within MFI

Figure B84

Snapshots showing the location of molecules within MFI

Snapshots showing the location of molecules within MFI

Figure B85

Guest Mixture in MFI zeolite: CH₄/Benzene

Partial gas phase fugacity, f_i / Pa

Pure components adsorption

C1 - Benzene/ MFI / 300K

mixture adsorption

The failure of IAST to describe mixture adsorption accurately is because of segregation effects. Benzene locates preferentially at the intersections. This implies that there is no homogeneous distribution of the mixture over the entire MFI framework. This non-homogeneous distribution of molecules causes departures from IAST.

The adsorption and diffusion characteristics are discussed in further details in:

x-direction

C1 = 2 molecules/uc Benzene = 2 molecules/uc

y-direction of yields highest diffusivity; this is a straight path

x-direction of yields intermediate; this is a zig-zag path

z-direction of yields lowest diffusivity

Loading of Bz, $q_{\rm Bz}$ / molecules per unit cell

C1 - Benzene / MFI / 300K

mixture diffusion

The adsorption and diffusion characteristics are discussed in further details in: R. Krishna, J.M. van Baten, Diffusion of hydrocarbon mixtures in MFI zeolite: Influence of intersection blocking, Chem. Eng. J. 140 (2008) 614-620.

Loading of Bz, $q_{\rm Bz}$ / molecules per unit cell

3 uc deep

MFI CH_4 /Benzene mixture diffusion in MFI: PFG NMR experiments

The experimental data are re-plotted using the information in:

C. Förste, A. Germanus, J. Kärger, H. Pfeifer, J. Caro, W. Pilz, A. Zikánóvá, Molecular mobility of methane adsorbed in ZSM-5 containing co-adsorbed benzene, and the location of benzene molecules, J. Chem. Soc., Faraday Trans. 1. 83 (1987) 2301-2309.

The MD simulation results are from:

Guest Mixture in MFI zeolite: CH₄/22DMB

10⁰ Component loading, q_i / mol kg $^{-1}$ 10⁻¹ 10-2 10-3 IAST 22DMB C1 10-4 C1-22DMB mixture; $f_1 = f_2$; 10⁻⁵ CBMC; 300 K; MFI 10-6 10⁰ 10¹ 10² 10³ 10⁻² 10-1 104 10⁵

Partial gas phase fugacity, f / Pa

Pure components adsorption

C1 - 22DMB/ MFI / 300K

mixture adsorption

The failure of IAST to describe mixture adsorption accurately is because of segregation effects. 22DMB locates preferentially at the intersections. This implies that there is no homogeneous distribution of the mixture over the entire MFI framework. This non-homogeneous distribution of molecules causes departures from IAST.

The adsorption and diffusion characteristics are discussed in further details in:

C1 = 2 molecules/uc 22DMB = 2 molecules/uc

x-direction

3 uc deep

y-direction of yields highest diffusivity; this is a straight path

x-direction of yields intermediate; this is a zig-zag path

z-direction of yields lowest diffusivity

Loading of 22DMB, $q_{\rm 22DMB}$ / molecules per unit cell

C1 - 22DMB / MFI / 300K

The adsorption and diffusion characteristics

R. Krishna, J.M. van Baten, Diffusion of

Influence of intersection blocking, Chem.

are discussed in further details in:

Eng. J. 140 (2008) 614-620.

hydrocarbon mixtures in MFI zeolite:

mixture diffusion

Loading of 22DMB, $q_{\rm 22DMB}$ / molecules per unit cell

Guest Mixture in MFI zeolite: C₃H₈/Benzene

IAST Bz C3

C3-Bz mixture; $f_1 = f_2$;

CBMC; 300 K; MFI

10⁴

10⁵

10⁶

10³

Pure components

adsorption

C3 - Benzene/ MFI / 300K

Partial gas phase fugacity, f / Pa

10⁰

10-1

10

10-3

10⁻¹

10⁰

10¹

10²

Component loading, q_i / mol kg $^{-1}$

The failure of IAST to describe mixture adsorption accurately is because of segregation effects. Benzene locates preferentially at the intersections. This implies that there is no homogeneous distribution of the mixture over the entire MFI framework. This non-homogeneous distribution of molecules causes departures from IAST.

The adsorption and diffusion characteristics are discussed in further details in:

z-direction of yields lowest diffusivity

Loading of Bz, $q_{\rm Bz}$ / molecules per unit cell

3 uc deep

C3 - Benzene / MFI / 300K

mixture diffusion

The adsorption and diffusion characteristics are discussed in further details in: R. Krishna, J.M. van Baten, Diffusion of hydrocarbon mixtures in MFI zeolite: Influence of intersection blocking, Chem. Eng. J. 140 (2008) 614-620.

Loading of Bz, $q_{\rm Bz}$ / molecules per unit cell

Guest Mixture in MFI zeolite: nC6/22DMB

Partial gas phase fugacity, f / Pa

Pure components adsorption

nC6 -22DMB/ MFI / 300K

mixture adsorption

The failure of IAST to describe mixture adsorption accurately is because of segregation effects. 22DMB locates preferentially at the intersections. This implies that there is no homogeneous distribution of the mixture over the entire MFI framework. This non-homogeneous distribution of molecules causes departures from IAST.

The adsorption and diffusion characteristics are discussed in further details in:

Loading of 22DMB, q_{22DMB} / molecules per unit cell

nC6 - 22DMB / MFI / 300K

mixture diffusion

The adsorption and diffusion characteristics are discussed in further details in: R. Krishna, J.M. van Baten, Diffusion of hydrocarbon mixtures in MFI zeolite: Influence of intersection blocking, Chem. Eng. J. 140 (2008) 614-620.

Loading of 22DMB, $q_{\rm 22DMB}$ / molecules per unit cell

3 uc deep

Loading of 22DMB, q_{22DMB} / molecules per unit cell

Loading of 22DMB, $q_{\rm 22DMB}$ / molecules per unit cell

mixture diffusion

nC6 - 22DMB / MFI / 300K

mixture diffusion

The adsorption and diffusion characteristics are discussed in further details in: R. Krishna, J.M. van Baten, Diffusion of hydrocarbon mixtures in MFI zeolite: Influence of intersection blocking, Chem. Eng. J. 140 (2008) 614-620.

Loading of 22DMB, $q_{\rm 22DMB}$ / molecules per unit cell

Loading of 22DMB, q_{22DMB} / molecules per unit cell

Loading of 22DMB, q_{22DMB} / molecules per unit cell

mixture diffusion

nC6 - 22DMB / MFI / 300K

The adsorption and diffusion characteristics are discussed in further details in: R. Krishna, J.M. van Baten, Diffusion of hydrocarbon mixtures in MFI zeolite: Influence of intersection blocking, Chem. Eng. J. 140 (2008) 614-620.

Loading of 22DMB, q_{22DMB} / molecules per unit cell

Figure B101

Snapshots showing the location of molecules within MFI

Guest Mixture in MFI zeolite: nC6/2MP

Partial gas phase fugacity, f/Pa

Pure components adsorption

nC6 -2MP/ MFI / 300K

mixture adsorption

The failure of IAST to describe mixture adsorption accurately is because of segregation effects. 2MP locates preferentially at the intersections. This implies that there is no homogeneous distribution of the mixture over the entire MFI framework. This non-homogeneous distribution of molecules causes departures from IAST.

The adsorption and diffusion characteristics are discussed in further details in:

MFI nC6/2MP mixture diffusion in MFI

Figure B104

The data are re-plotted using the information in:

D. Schuring, A.O. Koriabkina, A.M. de Jong, B. Smit, R.A. van Santen, Adsorption and diffusion of n-hexane/2methylpentane mixtures in zeolite silicalite: Experiments and modeling, J. Phys. Chem. B 105 (2001) 7690-7698.

nC6 = 2 molecules/uc 2MP = 2 molecules/uc

3 uc deep

y-direction of yields highest diffusivity; this is a straight path

x-direction of yields intermediate; this is a zig-zag path

z-direction of yields lowest diffusivity

nC6 – 2MP/ MFI

The adsorption and diffusion characteristics are discussed in further details in: R. Krishna, J.M. van Baten, Diffusion of hydrocarbon mixtures in MFI zeolite: Influence of intersection blocking, Chem. Eng. J. 140 (2008) 614-620.

Loading of 2MP, $q_{\rm 2MP}$ / molecules per unit cell

mixture diffusion

Loading of 2MP, q_{2MP} / molecules per unit cell

Guest Mixture in MFI zeolite: nC6/3MP

Partial gas phase fugacity, f / Pa

Pure components adsorption

nC6 -3MP/ MFI / 300K

mixture adsorption

The failure of IAST to describe mixture adsorption accurately is because of segregation effects. 3MP locates preferentially at the intersections. This implies that there is no homogeneous distribution of the mixture over the entire MFI framework. This non-homogeneous distribution of molecules causes departures from IAST.

The adsorption and diffusion characteristics are discussed in further details in:

nC6 = 2 molecules/uc 3MP = 2 molecules/uc

nC6 -3MP/ MFI / 300K

y-direction of

yields highest

a straight path

x-direction of

intermediate;

z-direction of yields lowest diffusivity

this is a zig-zag

yields

path

diffusivity; this is

The adsorption and diffusion characteristics are discussed in further details in: R. Krishna, J.M. van Baten, Diffusion of hydrocarbon mixtures in MFI zeolite: Influence of intersection blocking, Chem. Eng. J. 140 (2008) 614-620.

Figure B108

Loading of 3MP, $q_{\rm 3MP}$ / molecules per unit cell

mixture diffusion

Loading of 3MP, $q_{_{\rm 3MP}}$ / molecules per unit cell

3 uc deep

Guest Mixture in MFI zeolite: nC6/Benzene

2.0

pure component

CBMC; 300 K

MFI

Pure components adsorption

nC6 -Bz/ **MFI / 300K**

mixture adsorption

The failure of IAST to describe mixture adsorption accurately is because of segregation effects. Benzene locates preferentially at the intersections. This implies that there is no homogeneous distribution of the mixture over the entire MFI framework. This non-homogeneous distribution of molecules causes departures from IAST.

The adsorption and diffusion characteristics are discussed in further details in:

x-direction

nC6 = 2 molecules/uc Bz = 2 molecules/uc

3 uc deep

nC6 -Bz/ **MFI / 300K**

y-direction of

yields highest

a straight path

x-direction of

intermediate;

z-direction of yields lowest

diffusivity

yields

path

The adsorption and diffusion characteristics are discussed in further details in: R. Krishna, J.M. van Baten, Diffusion of hydrocarbon mixtures in MFI zeolite: Influence of intersection blocking, Chem. Eng. J. 140 (2008) 614-620.

Loading of Bz, q_{Bz} / molecules per unit cell

mixture diffusion

Loading of Bz, $q_{\rm Bz}$ / molecules per unit cell

Guest Mixture in MFI zeolite: C₂H₄/Benzene

The adsorption and diffusion characteristics are discussed in further details in:

N. Hansen, R. Krishna, J.M. van Baten, A.T. Bell, F.J. Keil, Analysis of Diffusion Limitation in the Alkylation of Benzene over H-ZSM-5 by Combining Quantum Chemical Calculations, Molecular Simulations, and a Continuum Approach, J. Phys. Chem. C 113 (2009) 235-246.

N. Hansen, R. Krishna, J.M. van Baten, A.T. Bell, F.J. Keil, Reactor simulation of benzene ethylation and ethane dehydrogenation catalyzed by ZSM-5: A multiscale approach, Chem. Eng. Sci. 65 (2010) 2472-2480.

Figure B113

Snapshots showing the location of molecules within MFI

Guest Mixture in MFI zeolite: nC6/3MP/22DMB

The adsorption characteristics are discussed in further details in:

Krishna, J.M. van Baten, In silico screening of metal-organic frameworks in separation applications, Phys. Chem. Chem. Phys. 13 (2011) 10593-10616.

Snapshots showing the location of molecules within MFI

Snapshots showing the location of molecules within MFI

Guest Mixture in MFI zeolite: C₂H₄/Benzene/Ethylbenzene

The adsorption and diffusion characteristics are discussed in further details in:

N. Hansen, R. Krishna, J.M. van Baten, A.T. Bell, F.J. Keil, Analysis of Diffusion Limitation in the Alkylation of Benzene over H-ZSM-5 by Combining Quantum Chemical Calculations, Molecular Simulations, and a Continuum Approach, J. Phys. Chem. C 113 (2009) 235-246. N. Hansen, R. Krishna, J.M. van Baten, A.T. Bell, F.J. Keil, Reactor simulation of benzene ethylation and ethane dehydrogenation catalyzed by ZSM-

5: A multiscale approach, Chem. Eng. Sci. 65 (2010) 2472-2480.

Snapshots showing the location of molecules within MFI

