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1. Abstract

Mixture diffusion within nanoporous crystalline materials such as zeolites, and metal-organic
frameworks (MOFs), is often strongly influenced by the extent to which the diffusivity of one species is
correlated to that of its partner. Most commonly, the less-mobile species slows down its more mobile
partner by not vacating an adsorption site quick enough for its more mobile partner to occupy that
position. Such slowing-down effects, also termed correlation effects, are quantified by the exchange
coefficient D, in the Maxwell-Stefan (M-S) diffusion formulation. With increasing concentrations of
guest molecules inside the pores, the Pj, tends to decrease significantly, implying that correlation
effects become increasingly important for separation processes operating at high pressures. The
exchange coefficients P, are not accessible directly from experiments, and there is a need for
developing reliable procedures for estimating P;, for any given guest-mixture/host-material
combination.

Molecular Dynamics (MD) simulations were carried out to determine the M-S diffusivities, i, D2,
and P, for a wide variety of binary mixtures (H,/CO,, H/CH4, CO,/N,;, CH4/CO,, CH4/C,Hg,
CH4/CsHg, CH4/nC4Ho, Ne/Ar, Hy/Ar, CH4/Ar, Ne/CO,, Ar/Kr) in several different nanoporous host
materials (MFI, FAU, LTA, BEA, CHA, IRMOF-1, CuBTC, MOF-177, MgMOF-74, COF-102, COF-
103, COF-108, and BTP-COF) covering a wide range of pore dimensions, pore topologies, and
connectivities. For the systems that do no exhibit hydrogen bonding effects, M-S diffusivities, P, D,
are in good agreement with the corresponding unary diffusivities, when compared at the total
concentration, ¢;, within the pores of the structures. the Additionally, MD simulations were also
performed to determine the corresponding values of M-S diffusivity in the fluid phase, D, in the
absence of the restraining influence of the pore walls. For each guest/host combination, over the entire
range of pore concentrations, it was found that D, is a constant fraction, F, of the fluid phase value,

D121 when compared at the same value of pore concentration, c¢;. The P2 can be estimated reliably



from the molecular properties using established correlation methods in the literature. This fraction, F, is
primarily dependent on the host material, and has values in the range of 0.1 — 1. For mesopores, and for
porous structures such as COF-102, COF-103, and COF-108 with large voidages and pore volumes, F
=1. For intersecting channels structures of MFI, with channels of 5.5 A, the value of F is in the narrow
range of 0.1 — 0.15. For structures such as FAU, MgMOF-74, and IRMOF-1 the values of F fall in

range of 0.4 —0.7.

Keywords: Maxwell-Stefan diffusion; correlations; zeolites; metal-organic frameworks; fluid phase

diffusivity; clustering; hydrogen bonding; mutual-slowing down;



2. Introduction

A wide variety of crystalline nanoporous materials is used in membrane separations and pressure
swing adsorption (PSA) devices [1-8]. These materials include zeolites (crystalline aluminosilicates),
metal-organic frameworks (MOFs), zeolitic imidazolate frameworks (ZIFs), covalent organic
frameworks (COFs), periodic mesoporous organosilicas (PMOs), SBA-16, and MCM-41. The
characteristic pore dimensions of these structures are either in the micro-porous (d, <2 nm), or meso-
porous ranges (2 nm < d,, < 50 nm). Several types of channel topologies are encountered, including one-
dimensional (1D) channels (e.g. AFI, MIL-47, MIL-53(Cr), MgMOF-74, and BTP-COF), intersecting
channels (e.g. MFI, BEA), cavities with large windows (e.g. FAU, IRMOF-1, CuBTC), and cages
separated by narrow windows (e.g. LTA, CHA).

For separation process design and development it is necessary to have a reliable quantitative
description of the diffusion of mixtures of guest molecules inside the porous materials. For binary
mixture diffusion, the fluxes N; of species i are commonly related to the chemical potential gradients

Vu, by use of the set of two coupled Maxwell-Stefan (M-S) equations, that apply equally for micro-

and meso-porous frameworks [9-11]
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where ¢ represents the fractional pore volume, and the concentrations ¢; are defined in terms of moles
per m’ of accessible pore volume. The fluxes N; are defined in terms of the cross-sectional area of the
crystalline framework. The x; in eq. (1) are the component mole fractions of the adsorbed phase within

the micropores
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Formally speaking, the M-S equations (1) serve only to define the phenomenological coefficients D,
D,, and P, and the estimation of the fluxes N; in the mixture requires reliable procedures for estimation
of these three diffusivities.

The coefficients P;, and P, characterize species i — pore wall interactions in the broadest sense; these
can in most, but not all, cases be determined from unary diffusion experiments or simulations.

The exchange coefficients P, quantify interaction between components i with component j. At the
molecular level, the P, reflect how the facility for transport of species i correlates with that of species
j. The value of Bj,, relative to that of D), determines the extent to which the flux of species 1 is
influenced by the chemical potential gradient of species 2. The larger the degree of correlation, D,/P,,
the stronger is the influence of coupling. Generally speaking, the more-strongly-adsorbed-tardier partner
species will have the effect of slowing down the less-strongly-adsorbed-more-mobile partner in the
mixture. The proper estimation of Dj, is of vital importance, for example, in modeling CO,/H;
separations across MgMOF-74 membranes; in this case the tardier CO, slows down the mobile partner
H; in sufficient measure to result in CO,-selective separations [12].

The exchange coefficients D, cannot be determined directly from unary experiments and, therefore,
its estimation requires more careful attention and analysis.

In this second of two Supplementary Materials to accompany our article Investigating the Influence of
Diffusional Coupling on Mixture Permeation across Porous Membranes, we summarize, and analyse,
published Molecular Dynamics (MD) simulation data for unary and binary mixture diffusion of a wide
variety of guest species in several different nanoporous host materials, listed in Table 1, along with

salient structural details, with the overall objective of suggesting practical estimation procedures for D;,

Bz, and Blz.

3. Estimating D; and D,
The persuasive advantages for use of the M-S equations (1) in preference to the alternative Onsager or
Fickian formulations is that in most cases the coefficients P, and P, that characterize species i — pore

wall interactions in the broadest sense, can be identified with those determined for unary systems [13].
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To illustrate this, Figure 1 provides data on the M-S diffusivity of CO,, b;, determined MD simulation
data for diffusion of a variety of equimolar (c; = ¢;) binary mixtures of CO; and different partner
species in six different host materials. For any host material, we note that the diffusivity of CO; in a
binary mixture is practically independent of the partner species. Furthermore, when compared at the
same total pore concentration of the adsorbed phase within the pores, ¢ = ¢ + ¢3, the values of P; are
nearly the same in the mixture as those determined for unary diffusion, indicated by the red circles in
Figure 1. Similar conclusions hold for the diffusivity of CH4 in mixture containing different partner
species; see Figure 2. These conclusions are of general validity for mixtures in which no cluster

formation occurs; exceptional circumstances are discussed in Sections 9 and 10.

4. Relating D;, in meso-porous materials to fluid phase Dy,

In the absence of pore walls, i.e. in fluid phase mixtures, the molecule-molecule interactions are
quantified by the M-S diffusivity D> a. As illustration, Figure 3 presents MD simulation data on D1, g
for H,/CH4, CO,/H,, CH4/CO,, CH4/Ar, CH4/C,Hg, and CH4/C3Hg mixtures as a function of the total
molar concentration c¢; these simulations were carried out with the methodology described in the
literature [14]. MD simulations of P, in BTP-COF, that consists of one-dimensional (1D) hexagonal
shaped channels of 3.4 nm size are in excellent agreement with the values of D, over the range of ¢..
This conclusion also holds for cylindrical mesopores of 2 nm, 3 nm, 4 nm, and 5.8 nm. This leads us to
conclude that the assumption that molecule-molecule interactions in mesoporous hosts is practically the
same as that within the same fluid phase mixture at the same total molar concentration, ¢, i.e. Pj; =
Do

Reliable procedures for estimation of Py, 5 from molecular properties of the individual species are
available in the literature, offering the possibility of a priori estimations of correlations. As illustration,
the continuous solid lines in Figure 3 show the estimations of D1, 5 using the method of Fuller, Schettler
and Giddings (FSG) [15], developed for ideal gas mixtures. We note that for concentrations ¢; < 6 kmol

m'3, the MD simulated D, values are in excellent agreement with the FSG estimations. For



concentrations ¢, > 6 kmol m>, the D, 2.1 values reflect those in dense condensed fluids, for which some

estimation procedures are also available in the literature [16].

5. Relating Dy, in micro-porous materials to fluid phase D, 4

For micro-porous materials, the exchange coefficient P, cannot be directly identified with the
corresponding fluid phase diffusivity Do because the molecule-molecule interactions are also
significantly influenced by molecule-wall interactions. This is underscored by MD data for D, for six
binary mixtures in a variety of micro-porous hosts; see Figure 4. For every guest/host combination, at
any specific ¢, the D, is lower than the value of D, . The extent of lowering can be quantified by

defining the fraction F’

F= Dlz/Dlz,ﬂ (3)

Every guest/host combination can be characterized by a constant fraction F, that are determined by
data fitting; the complete data sets are available in the accompanying Figures B1-B126. For “open”
structures, with large pore volumes, V), the values of F' are closer to unity. For example, for CH4/Ar
diffusion in IRMOF-1, COF-102, COF-103, and COF-108, the values are ' = 0.6, 0.65, 0.65, and 0.8,
respectively, increasing with increasing void fractions, ¢. Remarkably, for IRMOF-1, the fraction F is in
the narrow range of 0.6 — 0.7 for every guest mixture investigated.

At the other end of the spectrum, materials with low pore volumes, the values of the fraction F' lie
significantly below unity. In MFI that has a set of intersecting channels, F lies in the range of 0.1 — 0.15
for all mixtures. For BEA, also with intersecting channels, but with a slightly higher void fraction, we
obtain ' = (.2. For materials such as FAU, NaX, NaY, LTA, and MgMOF-74 with intermediate void
fractions, the values of F fall in range 0.3 — 0.6.

Figure 5a presents a plot of /" as a function of the pore volume ¥}, of different micro-porous host
materials for nine different binary mixtures. The correlation is not perfect, suggesting that other aspects
such as channel dimensions, and pore connectivity are also determinants of the exchange coefficient

Dis.



6. Relating D;; in micro-porous materials to fluid phase D;; g

The self-exchange diffusivity, D;;, is defined by applying the M-S equations (1) to a binary mixture,
that consists of identical species, tagged and un-tagged. In this special case, the M-S equations (1) can
be used to derive the following relation between the self-diffusivity, D; s, and the M-S diffusivity, B;,

for unary diffusion [11]

LN S ()
D[,se_]f B

Equation (4) can be used to determine the self-exchange coefficients P; from MD simulations of
Di; s, and D;. These self-exchange D;; were determined for several species from unary MD simulations.

In each case the Dj; is also a fraction, F =D, / D, of the corresponding value of the fluid phase D s;

ifl o
see data in Figure 6 for some selected guest/host combinations. The fraction F' exhibits the same

dependence on the pore volume; see Figure 5b.

7. Estimating D, from information on self-exchange coefficients D;;
For a fluid phase mixture, the Vignes [14, 17] interpolation formula is commonly used in practice for

estimation of the D2

BlZ,ﬂ = (Bl L/l )Xl (Bzz,ﬂ )Xz (5)

where the D s represent the self-exchange coefficients for unary fluid phase diffusion. The validation of
this interpolation formula is demonstrated in Figure 7 for six different equimolar fluid mixtures; the
complete data sets are available in the accompanying Figures B1-B126. This interpolation formula can

be extended to apply to porous materials in the following manner
b, = (Dll )XI (Dzz )xz (6)

Figure 8 provides a comparison of the predictions of the interpolation equation (6) with MD
simulations of P, for six different guest/host combinations. A more extensive set of comparisons is to

be found in the Supplementary material.



The results presented in Figure 5 for unary and binary mixtures, provides an alternative, independent
rationalization for the interpolation formula suggested in earlier works [11, 18, 19] for estimation of the
binary exchange P, using unary diffusion data on self-exchange coefficients Dj;

Equation (6) follows from Equation (5) since the binary and self-exchange coefficients share the same

dependence on the structural parameters of relevance.

8. Degree of correlations D,/D,,

The results of Figures 4 and 5 might lead us to conclude that correlation effects are less important in
structures with large pore volumes because the values of F are larger; this conclusion is fallacious as we
shall explain below. The importance of correlations is dictated by the degree of correlations defined by

(P1/D1,). Figure 9 shows MD data on B, /P,, for diffusion of six different mixtures. For any guest/host
combination, B,/D,, is seen to increase as the pore concentration increases; this implies that

correlation effects are expected to be stronger for operations at higher pressures. Correlations are
strongest in one-dimensional (1D) channel structures (e.g. BTP-COF, NiIMOF-74), intersecting channels
(e.g. MFI), and “open” structures (e.g. IRMOF-1, FAU, NaX) consisting of large cages separated by
wide windows. The degree of correlations is weakest in cage-type structures such as CHA, DDR and
LTA; the reason is that the molecules jump one-at-a-time across the narrow windows separating

adjacent cages.

9. Influence of cluster formation due to hydrogen bonding

Exceptional circumstances prevail in cases of severe molecular segregation [13, 20] or cluster
formation [21-24]; in such situations, the coefficients D), and P, in the mixture are significantly
different to those determined from unary experiments or simulations. For water/alcohol mixture
diffusion, the diffusivity of each component is lowered due to molecular clusters being formed as a
consequence of hydrogen bonding. This is illustrated in Figure 10 that present MD simulations of P,
and P, for water/alcohol mixture diffusion in FAU, MFI, LTA, DDR, and CHA zeolites. In all cases,

the diffusivity of water is reduced with increasing proportion of alcohol. Hydrogen bonding between
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water and alcohol molecule pairs serves to act as a “flexible leash” linking the motion of the more
mobile (water) and tardier (alcohol) species. The net result is that the motion of water is retarded due to
cluster formation. For MFI, the diffusivity of methanol is practically independent of composition, while
that for water shows a dramatic decrease with increasing methanol concentration (cf. Figure 10c); this
trend is the same as determined in the NMR experiments data of Caro et al. [25]. For LTA, and DDR
the Digr of methanol decreases with increasing proportion of water; see Figures 10d, and 10e. For
CHA, the self-diffusivities for methanol show a decreasing trend for low water concentrations, till a
minimum is reached; see Figure 10f. A similar minimum in the alcohol self-diffusivity is observed for
FAU zeolite; see Figures 10a, and 10b. The general conclusion to be drawn from the MD data in Figure
10 is that at either ends of the composition range, there is slowing down of either component, due to
increasing proportion of its partner species.

A number of experimental data on pervaporation of water/alcohol, mixtures can be interpreted using
the MD data presented in Figure 10.

The NMR spectroscopy data of Hallberg et al.[26] on self-diffusivities in water-methanol mixtures
across a Nafion membrane shows that the methanol diffusivity decreases significantly with increasing
water composition; see Figure 11.

For water/alcohol pervaporation across CHA zeolite membrane, the experimental data of Hasegawa et
al. [27] show that the alcohol fluxes decrease with increasing water composition in the feed; see Figure
12. Indeed, both water and alcohol fluxes are reduced with increasing concentrations of partner species
in the mixture. Similar experimental data for water/alcohol pervaporation across DDR membranes are
reported [28]. The decrease in the alcohol fluxes with increasing water concentration in the feed mixture
observed experimentally in the CHA pervaporation experimental data presented in Figures 12, and 13,
must be ascribed, in part at least, to a reduction in the alcohol diffusivities observed in the MD
simulation results presented in Figure 10f.

For industrial scale water/NMP pervaporation across CHA membrane, the NMP flux also shows a

decreasing trend with increasing feed water composition; see Figure 13a. The component permeances,
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as reported by Sato et al. [29], show that NMP permeance decreases for water concentrations < 10 wt%,
and tends to increases when the water feed concentrations > 15 wt%; see Figure 13b. Since permeances
are closely related to the diffusivities, the NMP diffusivities will either decrease or increase depending
on the feed composition.

The experimental data on pervaporation of water/ethanol mixtures across LTA-4A membrane [30],

shown in Figure 14, can also be interpreted in terms of mutual-slowing down effects.

10. Intersection blocking and traffic-junction effects

Branched and cyclic hydrocarbons locate preferentially at the intersections of the channel structures
of MFI zeolite [31]. This is illustrated in the snapshots in Figure 15 showing the location of molecules
in mixtures of n-butane(nC4)/iso-butane(iC4), n-hexane(nC6)/2,2dimethylbutane (22DMB), and
ethene/benzene mixtures. The preferential location is because of molecular configuration effects; the
intersections afford extra “leg room”.

In the PFG NMR investigation of Fernandez et al.[32] the self-diffusivity in MFI of n-butane (nC4),
in mixtures with iso-butane (iC4), was found to decreases to nearly zero as the loading of iC4 is
increased from Ojcs = 0 to 2 molecules per unit cell; see Figure 16a. The reason for this strong decline
can be understood on the basis of the preferential location of iC4 at the channel intersections of MFI.
For Ojcs = 2, half the total number of intersections are occupied by iC4, that has a diffusivity which is
about three orders of magnitude lower than that of nC4. Since the occupancy of the intersections is
distributed randomly, each of the straight channels has an iC4 molecule ensconced somewhere along the
channels; this is evident from the snapshot in Figure 15a. This is tantamount to blockage and leads to
severe reduction in the molecular traffic of the intrinsically more mobile nC4. Uptake experiments of
Chmelik et al.[33] provide further evidence of the influence iC4 has on co-diffusion of nC4 in MFI
crystals.

PFG NMR studies of Forste et al.[34] found that the self-diffusivity of CH4 in MFI is significantly
reduced as the loading of the co-adsorbed benzene increases; see Figure 16b. The explanation is again

to be found in the hindering of CH4 diffusion due to blocking of the intersections by benzene [34].
12



For analogous reasons, the branched alkanes 2-methylpentane (2MP), causes the reduction in the self-
diffusivity of the n-hexane (nC6) in nC6/ 2MP mixtures [35]; see Figure 16c.

When intersection blocking effects occur, the pure component diffusivities of the more mobile
partner, that locates anywhere along the channels of MFI, cannot be identified with those in the mixture.

The preferential location of branched alkanes at the intersections of MFI leads to other unusual
adsorption and diffusion phenomena that can be exploited to achieve separation of hydrocarbon
isomers. For illustration, consider for example, a mixture of nC6 and 2,2 dimethyl butane (22DMB).
Configurational-bias Monte Carlo (CBMC) simulations of the adsorbed phase loadings of the
components in MFI in equilibrium with bulk fluid phase partial fugacities f, = 4 f are shown in Figure
17a. Up to a total hydrocarbons fugacity f of 1 kPa, the component loadings increase in an expected
manner. At f'= 2 kPa, the total loading in the zeolite = 4 molecules per unit cell. All the intersection
sites are fully occupied; see snapshot in Figure 17b. To further adsorb 22DMB, we need to provide an
extra “push”. Energetically, it is more efficient to obtain higher mixture loadings by "replacing" the
22DMB with nC6; this configurational entropy effect is the reason behind the curious maxima in the
22DMB loading in the mixture at f'= 2 kPa. For /> 2 kPa, we have unusual phenomenon that increasing
the fugacity of 22DMB in the bulk fluid phase has the effect of reducing the loading in the adsorbed
phase. Experimental evidence of the curious maximum in the loading of the branched isomer is
available from mixture adsorption data [36-39]. A further consequence is that for permeation of nC6-
22DMB mixtures across an MFI membrane, the flux of 22DMB decreases when the upstream
hydrocarbons pressures /> 2 kPa as observed in one set of the experiments of Gump et al.[40]; see
Figure 17c.

The configuration entropy effect can be exploited to separate hydrocarbon isomers in a
chromatographic column, or in a simulated moving bed adsorber [41-45].

Traffic junction effects are of vital importance in modeling reactors alkylation of benzene with
ethene using MFI zeolite catalyst (in the acidic form H-ZSM-5) to produce ethylbenzene[46]. Both

benzene (reactant) and ethylbenzene (product) are preferentially located at the intersections of MFI; see
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Figure 18a. The blocking of intersections causes effective diffusivity of ethene inside the catalyst to

reduce five-fold as the total mixture loading approaches 2 molecules per unit cell; see Figure 18.

11.

Conclusions

The major conclusions of the present study are summarized below.

(D

2)

)

4

)

(6)

(7

When no cluster formation occurs, the M-S diffusivities of constituent species in a binary
mixture, D;, and P, are practically the same as that for unary diffusion, when determined at the
total pore concentration in the mixture, ¢;. This implies that the experimental data on unary
permeation across membranes, say, can be used to predict the corresponding values for mixture
permeation.

For mixtures in which cluster formation occurs, say due to hydrogen bonding, D), and D, in the
mixture cannot be identified with the unary values.

For mixture diffusion inside cylindrical silica meso-pores, d, > 2 nm, the binary exchange
coefficient Dy, is found to be equal to the corresponding value in the binary fluid mixture,
D120, over the entire range of mixture concentrations, ¢:.

For mixture diffusion inside zeolites, MOFs, and COFs, with channel dimensions smaller than 2
nm, D, is found to be lower than D, g, by a constant factor F.

Analogously, the self-exchange coefficient for unary diffusion Bj; inside micro-porous
structures is related to the fluid phase self-diffusivity D; a by a constant factor F.

The factor F is primarily dependent on the pore volume or void fraction; the larger the void
fraction, the closer is the value of F' to unity.

The degree of correlations effects, as quantified by the ratio D,/D;,, are stronger in open
structures with larger pore volumes, and in 1D channels. Correlations are relatively insignificant

in cage-type structures in which adjacent cages are separated by narrow windows.
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Due to cluster formation, the Maxwell-Stefan diffusivity, D;, of either component in water-
alcohol mixtures is lowered below the corresponding values of the pure components. In practice
we need to take account of the influence of mixture composition on the D;.

Within the intersecting channels of MFI zeolite, branched and cyclic hydrocarbons locate
preferentially at the intersections. This causes intersection blocking of more mobile partners that
locate within the channels. The M-S diffusivity of the more mobile partner cannot be identified

with the pure component values.
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12. Notation

G pore concentration of species i, mol m™

Ci total pore concentration in mixture, mol m>

dp pore diameter, m

D M-S diffusivity of species i, m* s

bj self-exchange coefficient, m’s!

Diin self-diffusivity of species i in fluid phase, m?s!

Pis M-S exchange coefficient, m’ s’

Puiag M-S diffusivity in binary fluid mixture, m” s

D sei self-diffusivity of species i, m?s!

F factor defined by equation (3), dimensionless

N molar flux of species i defined in terms of the cross-sectional area of the crystalline
framework, mol m?2s’!

R gas constant, 8.314 J mol™ K™!

T absolute temperature, K

Vo accessible pore volume, m® kg™

Xi mole fraction of species i based on loading within pore, dimensionless

Greek letters

) fractional pore volume of microporous material, dimensionless

L molar chemical potential, J mol”

O; loading of i, molecules per unit cell

Subscripts

i referring to component i

fl referring to fluid phase

t referring to total mixture

16
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Table 1. Salient structural information on zeolites, MOFs and COFs.

Structure Topology Fractional Pore Framework
pore volume/ density/
volume, ¢

cm’/g kg/m’
AFI 12-ring 1D channels of 7.3 A size 0.274 0.159 1730
BEA Intersecting channels of two sizes: 12-ring of 7.1 A- 7.3 A 0.408 0.271 1509
and 10-ring of 5.6 — 5.6 A

BOG Intersecting channels: 12-ring 7.0 A -7.0 A and 10-ring of 0.374 0.241 1996

55A-58A
CHA 316 A® cages separated by 3.77 A x 4.23 A size windows 0.382 0.264 1444
DDR 277.8 A’ cages separated by 3.65 A x 4.37 A size windows | 0.245 0.139 1760
FAU-Si 790 A’ cages separated by 7.4 A size windows 0.439 0.328 1338
NaY 790 A’ cages separated by 7.4 A size windows 0.41 0.303 1347
NaX 790 A cages separated by 7.4 A size windows 0.40 0.280 1421
ISV Intersecting channels of two sizes: 12-ring of 6.1 A -6.5 A 0.426 0.278 1533
and 12-ring of 5.9 A - 6.6 A

LTA-Si 743 A® cages separated by 4.11 A x 4.47 A size windows 0.399 0.310 1285

MFI 10-ring intersecting channels of 5.1 A —5.5Aand 5.3 A - 0.297 0.165 1796
5.6 A size

CuBTC Large cages are inter-connected by 9 A windows of square 0.759 0.863 879
cross-section. The large cages are also connected to
tetrahedral-shaped pockets of ca. 6 A size through triangular-
shaped windows of 4.6 A size

IRMOF1 Two alternating, inter-connected, cavities of 10.9 A and 14.3 | 0.812 1.369 593
A with window size of 8 A.

MOF-177 Six diamond-shaped channels (upper) with diameter of 10.8 0.840 1.968 427
A surround a pore containing eclipsed BTB®” moieties.

MgMOF-74 1D hexagonal-shaped channels of 11 A 0.708 0.782 905

MIL-47 1D diamond-shaped channels of 8.5 A 0.608 0.606 1004

MIL-53 (Cr)-Ip | 1D lozenge-shaped channels of 8.5 A 0.539 0.518 1041

BTP-COF 1D hexagonal-shaped channels of 34 A 0.752 1.79 420

COF-102 Cavity of size 8.9 A 0.8 1.875 426

COF-103 Cavity of size 9.6 A 0.82 2.040 400

COF-108 Two cavities, of sizes 15.2 A and 29.6 A 0.93 5.467 170
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Figure 1. Maxwell-Stefan diffusivity of CO,, B;, determined MD simulation data for diffusion of a
variety of equimolar (c; = ¢;) binary mixtures of CO; and different partner species in (a) MFI, (b) FAU-
Si, (¢c) IRMOF-1, (d) CuBTC, (e¢) MgMOF-74, and (f) CHA. The x- axis represent the total pore
concentration of the adsorbed phase within the pores, ¢i = ¢ + ¢;. Also shown in red circles are the
MD simulations of B, for unary diffusion. For CHA, the plotted diffusivities are the self-diffusivities,
D; sr, that are more accurate to determine for CHA and provide good approximations of the M-S
diffusivities, i.e. Digir = Pi. The MD data are culled from our previous publications [10-13, 47-52]. For

convenience, the pure component MD data are also summarized in the accompanying Figures Al —

A92.
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Figure 2. Maxwell-Stefan diffusivity of CH4, B;, determined MD simulation data for diffusion of a
variety of equimolar (c; = ¢;) binary mixtures of CH4 and different partner species in (a) MFI, (b) FAU-
Si, (¢c) IRMOF-1, (d) CuBTC, (¢) MgMOF-74, and (f) CHA. The x- axis represent the total pore
concentration of the adsorbed phase within the pores, ¢; = ¢; + ¢;. Also shown in green squares are the
MD simulations of B, for unary diffusion. For CHA, the plotted diffusivities are the self-diffusivities,
D; sr, that are more accurate to determine for CHA and provide good approximations of the M-S
diffusivities, i.e. Digir = Pi. The MD data are culled from our previous publications [10-13, 47-52]. For

convenience, the pure component MD data are also summarized in the accompanying Figures Al —
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Figure 3. The MD simulations for fluid phase diffusivity D1, g (square symbols) for equimolar (c; = ¢3)
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continuous solid line. Also indicated are MD data for the exchange coefficients P, in cylindrical silica
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shaped channels). The MD data are culled from our previous publications [10-13, 47-54]. For
convenience, the MD data are also summarized in the accompanying Figures Bl — B118, arranged

according to the guest mixtures.
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Figure 4. The M-S binary exchange coefficients P),, for diffusion of equimolar (c¢; = ¢;) binary mixtures
(a) Ho/CHa, (b) CH4/Ar, (¢) CH4/C,Hg, (d) CH4/CO,, (e) Ho/CO,, and (f) CO2/N;, at 300 K in a variety
of host materials as a function of the total pore concentration, ¢;. The Pjrq for binary fluid phase
mixture diffusion, obtained from independent MD simulations, are also presented in square symbols,
along with continuous solid lines that represent the fraction F' times P12n. The MD data are culled from
our previous publications [10-13, 47-54]. For convenience, the MD data are also summarized in the

accompanying Figures B1 — B118, arranged according to the guest mixtures.

24



(a) MD; 300 K;

1.0 ¢ equimolar
N mixtures
i &
0.8 - X x CH,/Ar
i D@ <& NelAr
w 06 OO WD ® COyH,
- r X X
5 I w & e m CO,/CH,
§ ol o A CO,N,
4r & # CH,/CH,
: SO % v CH,/C,Hy
020X wa @ CH,/H,
. % CO,Ne
00 B <> | | [ |
0.1 1 10
pore volume, V_/ cm® g™
®) o,
i = MD; 300 K;
0.8 - unary data
i LI
i £ O &8 = CH,
w 06+ DAGEER A | <& Ne
o L % 4 L] ¥ Ar
o [ B O®yReE i
3 [ - b4 # C,Hg
L 04 % WO = © X K
FOC = '
A s
LO X
02, < ¥ ® CO,
A N
% = 2
0.0 B * | T |
0.1 1 10

pore volume, Vp/ cm® g'1

Figure 5. Fraction F determined from (a) binary mixture, and (b) unary MD simulations, expressed as a
function of the pore volume of the micro-porous host structures, V. The data used for constructing (a)
are from the accompanying Figures B1 — B118, arranged according to the guest mixtures. The data used
for constructing (b) are from the accompanying Figures A1 — A92, arranged according to the guest

species.

25



—_—
Q
-
_
(=2
-

—0— fluid B, 100 —C— fluid Dul‘ﬂ
O FAU-SI O  FAU-Si
% IRMOE-1 ¥  IRMOF-1
o toor Lo
o 2
® MFI
& NaX
& BEA

self-exchange coefficient, £,/ 10° m*s™

self-exchange coefficient, D, / 10° m?s™

10
<@ =0.6 [
SCF=04 r
=03 [
=01 rMD; N E=07
ure CO. 0 F=0.6
0.1 \F\)\\\\\\\\2\\\\\\uwuumuwuumuw 1 pureCl-E .-l ™ ~ rfeF =0.4
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 18 20
pore concentration, ¢, / kmol m pore concentration, ¢, / kmol m™
(c) _ @ BTP-COF (d) —0— fluid B,
- 1000 " O  FAU-Si _ 100 O FAU-Si
& ¥ IRMOF-1 {;‘h % IRMOF-1
i @ MgMOF-74 E ® MgMOF-74
e X MOF-177 g_)
~ A LTASSI z
S, = @ 10f
;" ® I
= ] §
g 5 L = F=07
o 8 F=05
Q o 1k ©F=0.35
< 2 E
] = r =
g 10 A% 2 § F=0.15
¢ F=05 s r 300 K; MD;
o L < r pureN
E F=0.2 3 pure T
3 O bt il b i)
0 5 10 15 20 25 30 0O 2 4 6 8 10 12 14 16
pore concentration, ¢, / kmol m™® pore concentration, ¢,/ kmol m
(e) | (f)
100 —0 fluid B, 100 id b
"o \ @ BTP-COF "o —— Tl By,
e O FAU-Si e O FAU-S
% % IRMOF-1 % % IRMOF-1
2 - 2 A LTAS
& 5] o) =
- 10 N
= = -
Q0 o
o o
£ g 10
193 [5)
8 8
o IF-F=07 g
§ 1¢ ™ Q0 F=05  §
S E ol *¥F=03 3 F=07
¢ [ 300 K; MD simulations;® & 5 F-015 & Ay
bl b pure Ar o -V S =04
7] p By 7] |
0.2mmumm\wmmummmmmmmmD S TS Y B Ml
0 2 4 6 8 10 12 14 16 18 20 0 10 20 30 40
pore concentration, ¢, / kmol m? pore concentration, ¢, / kmol m?

Figure 6. The self-exchange coefficients Dj;, for unary diffusion of (a) CO,, (b) CHy, (c) Ha, (d) Na, (e)
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summarized in the accompanying Figures A1 — A92, arranged according to the guest species.
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Figure 10. Maxwell-Stefan diffusivities, D;, in water/methanol, and water/ethanol mixtures of varying
composition in (a, b) FAU, (c) MFI, (d) LTA, (e) DDR, and (f) CHA zeolites. The data are compiled
from MD simulation results published in the literature [23, 24, 55]. In all cases the MD simulations
were carried out under conditions in which the total concentration within the pores, ¢, is held constant;
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Figure 15. Snapshots showing the location of molecules of (a) nC4/iC4, (b) nC6/22DMB, and (c)

ethene/benzene mixtures in MFI.
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14. Listing of additional Figures containing MD data

Figures A1 — A92: Unary MD data, arranged according to guest molecules in the following order:
CO»

CH4

N>

C,Hg

C;Hg

nC4Hjo

water

methanol

ethanol

iso-butane in MFI
in-pentane MFI
n-hexane in MFI
n-heptane in MFI

2,2 dimethylbutane in MFI
2-methylpentane in MFI
3-methylpentane in MFI

Benzene in MFI



Figures Bl — B118: Binary mixture MD data, including validation of Vignes interpolation formula,
arranged according to guest mixtures in the following order:

H,/CO,

CH4/CO,

CO/N;

CH4/C;Hg

CH4/CsHg

CH4/nC4Hj

H,/CH4

N»/CH4

Ne/Ar

H,/Ar

CH4/Ar

Ne/CO,

Ar/Kr

water/methanol, and water/ethanol

CH4/1C4H;o in MFI zeolite

C,He/iC4H o in MFI zeolite

C;3Hg/1C4H o in MFI zeolite

nC4H;0/1C4H;o in MFI zeolite

CHy4/Benzene in MFI zeolite

CH4/22MB in MFI zeolite

C;Hg/Benzene in MFI zeolite

nC6/22MB in MFI zeolite

nC6/2MP in MFI zeolite

nC6/3MP in MFI zeolite
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nC6/Benzene in MFI zeolite
C,H4/Benzene in MFI zeolite
nC6/3MP/22MB in MFI zeolite

C,H4/Benzene/Ethylbenzene in MFI zeolite
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Figure A1

Figures A1 — A92:
Unary MD data, arranged according to guest molecules in the following order:
CO,

CH,

H,

Ar
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Exchange coefficients as fraction of fluid phase D ;
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Guest Molecule:
Kr



Self-, and Maxwell-Stefan diffusivities
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Self-exchange coefficients and Degrees of correlations
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Exchange coefficients as fraction of fluid phase D ;
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Guest Molecule:
N2



Self-, and Maxwell-Stefan diffusivities
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Self-exchange coefficients and Degrees of correlations
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Exchange coefficients as fraction of fluid phase D ;
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Figure A39

Guest Molecule:
C,Hg



Self-, and Maxwell-Stefan diffusivities
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Self-exchange coefficients and Degrees of correlations
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Exchange coefficients as fraction of fluid phase D ;
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Guest Molecule:
C3H8
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Self-exchange coefficients and Degrees of correlations

self-exchange coefficient, B, / 10° m?s™

self-exchange coefficient, B, / 10° m?s™

RN
o

©
-_—

fluid B, ,

——

—@— BTP-COF
—O— FAU-S

—#— IRMOF-1
o
——
——

MgMOF-74
BEA

300 K; MD;
" pure C;H,
T T Y

0 2 4 6 8 10 12

pore concentration, ¢, / kmol m*

100 ¢ m
10
- 0 fluid B,
- — FSG
1= B 2nmsilica pore
- @ 3nmsilica pore
0.1k
- 300 K; MD simulations;
| pure C;H,
001 [ | Lol |
0.1 1 10 20

molar concentration, ¢, / kmol m

Degree of correlations, D, /D,

self-exchange coefficient, B,/ 10° m?s™

Figure A45

—@— BTP-COF

[#— BEA

L= MFI
- @ MgMOF-74
Fe— IRMOF-1
- O— FAU-SI

0 2 4 6 8 10

10

e
-_—

0.01

pore concentration, ¢, / kmol m?

N —— fluid B,
— FSG

E 2 nm silica pore
@® 3 nm silica pore

- 300 K; MD simulations;
| pure C;H,

T e T T |
0 5 10 15 20

molar concentration, ¢, / kmol m?



Exchange coefficients as fraction of fluid phase D ;

—— fluid ;4
100 ¢ O FAU-Si
c\"m . ¥ IRMOF-1
€ i O ® MgMOF-74
5 i # BEA
Z 5]
Q 10
< r
2 L
O L
L=
(5] L
Q
o
> 1E
2 F
S F
S5 L
% -300 K; MD; By F=015
S " pure C;H,
@ 01 L1 Ll T T L
0 2 4 6 8
pore concentration, ¢, / kmol m?
‘TU)
e 100 ¢ — Fx By
% C = Dy
Z i -1 fluid phase D, ;
Q. 10 £
> I
= F
= r
=} L
E
S L
(0]
o 1k
= C
g - BEA; 300 K;
3.3 I pure C;H; m
5 r F=0.25
()
0.1\\\\\\\\\\\\\\\\\\\\\\\\\
0 2 4 6 8 10

Pore concentration, ¢, / kmol m*

Figure A46



Figure A47

Guest Molecule:
nC,H,,
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Self-exchange coefficients and Degrees of correlations
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i : . Figure A50
Snapshots showing the location of nC4 molecules within MFI

Linear, chain, alkanes can locate
anywhere along the channels of MFI

nC4: 4 molecules/uc
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Figure A52

Guest Molecule:
H,O



Figure A53

M FI snapshot of water molecules
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The snapshot shows some qualitative
indication of clustering of water molecules
caused by hydrogen bonding.



Figure A54

LTA water snapshot showing clustering
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D D R snapshot of water molecules

The snapshot shows some qualitative
indication of clustering of water molecules
caused by hydrogen bonding.




Figure A56

Guest Molecule:
CH,OH
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M FI snapshot of methanol mole

The snapshot shows some qualitative
indication of clustering of methanol
molecules caused by hydrogen bonding.



Figure A58

LTA methanol snapshot showing clustering




C HA ] ] Figure A59
methanol snapshot showing clustering




Figure A60

Guest Molecule:
C,H:OH



M FI Figure A61
snapshot of ethanol molec

The snapshot shows some qualitative
indication of clustering of ethanol
molecules caused by hydrogen bonding.



Figure A62

LTA ethanol snapshot showing clustering




C HA ] ] Figure A63
ethanol snapshot showing clustering
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Figure A64

Guest Molecule in MFI:
iC,H,,=1C4



CBMC simulation of iC4 isotherms in MFI; Experimental validation
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M FI iso-butane (iC4) diffusion in MFI: IR microscopy data
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The inflection in the isotherm has a

profound influence on the diffusivity of iC4.
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dependence of the Maxwell-Stefan diffusivity of iso-butane in MFI zeolite, Chem. Phys. Lett. 459 (2008) 141-145.
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M FI iso-butane (iC4) diffusivity in MFI from membrane permeation

Maxwell-Stefan diffusivity, £,/ 10" m*s™

Figure AG7

isobutane at 150 kPa;
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The experimental data are re-plotted using the information in:

B. Millot, A. Méthivier, H. Jobic, H. Moueddeb, M. Bee, Diffusion of isobutane in ZSM-5 zeolite: A comparison of quasi-
elastic neutron scattering and supported membrane results, J. Phys. Chem. B 103 (1999) 1096-1101.

B. Millot, A. Méthivier, H. Jobic, H. Moueddeb, J.A. Dalmon, Permeation of linear and branched alkanes in ZSM-5
supported membranes, Microporous Mesoporous Mat. 38 (2000) 85-95.

The interpretation of the non-Arrhenius temperature dependence of the M-S diffusivity is discussed in our earlier works
R. Krishna, R. Baur, Modelling issues in zeolite based separation processes, Sep. Purif. Technol. 33 (2003) 213-254.
R. Krishna, Describing the diffusion of guest molecules inside porous structures, J. Phys. Chem. C 113 (2009) 19756-
19781.



Figure AG8

Snapshots showing the location of molecules within MFI
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] ] o Figure A70
Snapshots showing the location of molecules within MFI

Very high pressures are required to locate
the iC4 within the channels.
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Figure A71

Guest Molecule in MFI:
nC:H,, = nC>5



. . e e ere . Figure A72
MD simulations of diffusivities in MFI zeolite
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Figure A73

Guest Molecule in MFI:
nC¢H,, = nC6



CBMC simulation of nC6 isotherms in MFI; Experimental validation
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] ] o Figure A75
Snapshots showing the location of molecules within MFI
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MD simulations of diffusivities in MFI zeolite

Self, M-S, and Fick diffusivities / 10° m?s™
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Figure A77

Guest Molecule in MFI:
nC.H,; = nC7



MD simulations of nC7 diffusivities in MFI zeolite
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Figure A79

Snapshots showing the location of molecules within MFI




Figure A80

Guest Molecule in MFI:
2,2dimethylbutane =
22DMB



CBMC simulation of isotherms; Experimental validation
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The saturation capacity is dictated by the
fact that 22DMB locates at the
intersections only. There are 4
intersections per unit cell.

The saturation loading is therefore = 4
molecules per unit cell, corresponding to
0.693 mol kg

Figure A81



i : . Figure A82
Snapshots showing the location of molecules within MFI

22DMB molecules can only locate at the
intersections of MFI

22DMB: 4 molecules/uc
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Figure A83

Guest Molecule in MFI:
2-methylpentane = 2MP



CBMC simulation of isotherms; Experimental validation
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The inflection in the isotherm is caused
due to preferential location of 2MP at the
intersections. There are 4 intersections
per unit cell.

The inflection occurs at a loading of 4
molecules per unit cell, corresponding to
0.693 mol kg

Figure A84



i : . Figure A85
Snapshots showing the location of molecules within MFI

2MP molecules locates preferentially at
the intersections of MFI
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Figure A86

Guest Molecule in MFI:
3-methylpentane = 3MP
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CBMC simulation of isotherms; Experimental validation
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MFI L _ Figure A88
3-methylpentane (3MP) diffusivity in MFI from membrane permeation
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The experimental data are re-plotted using the information in:

B. Millot, A. Méthivier, H. Jobic, H. Moueddeb, M. Bee, Diffusion of isobutane in ZSM-5 zeolite: A comparison of quasi-
elastic neutron scattering and supported membrane results, J. Phys. Chem. B 103 (1999) 1096-1101.

B. Millot, A. Méthivier, H. Jobic, H. Moueddeb, J.A. Dalmon, Permeation of linear and branched alkanes in ZSM-5
supported membranes, Microporous Mesoporous Mat. 38 (2000) 85-95.

The interpretation of the non-Arrhenius temperature dependence of the M-S diffusivity is discussed in our earlier works
R. Krishna, R. Baur, Modelling issues in zeolite based separation processes, Sep. Purif. Technol. 33 (2003) 213-254.
R. Krishna, Describing the diffusion of guest molecules inside porous structures, J. Phys. Chem. C 113 (2009) 19756-
19781.



] ] o Figure A89
Snapshots showing the location of molecules within MFI

3MP molecules locates preferentially at
the intersections of MFI

3MP: 4 molecules/uc
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Figure A90

Guest Molecule in MFI:
Benzene = Bz
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Figure B1

Figures B1-B118:

Binary mixture MD data, including validation of Vignes interpolation formula, arranged according to guest mixtures in the following
order:

H,/CO,

CH,/CO,

CO,/N,

CH,/C,Hq

CH,/C3Hg

CH,/nC4H,,

H,/CH,

N,/CH,

Ne/Ar

H,/Ar

CH,/Ar

Ne/CO,

Ar/Kr

water/methanol, and water/ethanol
CH,/iC4H,, in MFI zeolite
C,Hg/iC4H ;o in MFI zeolite
C3Hg/iC4H, o in MFI zeolite
nC,H,y/iC4H,, in MFI zeolite
CH,/Benzene in MFI zeolite
CH,/22MB in MFI zeolite
C;Hg/Benzene in MFI zeolite
nC6/22MB in MFI zeolite
nC6/2MP in MFI zeolite
nC6/3MP in MFI zeolite
nC6/Benzene in MFI zeolite
C,H,/Benzene in MFI zeolite
nC6/3MP/22MB in MFI| zeolite
C,H,/Benzene/Ethylbenzene in MFI zeolite



Figure B2

Guest Mixture:
H,/CO,



Exchange coefficients and Degree of correlations
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Exchange coefficients as fraction of fluid phase D,, ;

M-S exchange coefficient, D,, / 108 m?s™
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Exchange coefficients as fraction of fluid phase D,, ;

M-S exchange coefficient, D,, / 108 m?s™

Figure B5
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Validation of the Vignes interpolation formula for D,, Figure B6
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Figure B7

Guest Mixture:
CH,/CO,



Exchange coefficients and Degree of correlations
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Exchange coefficients as fraction of fluid phase D,, ;

M-S exchange coefficient, D,, / 108 m?s™
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M-S exchange coefficient, D,, / 108 m?s™

M-S exchange coefficient, D,, / 108 m?s™
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Validation of the Vignes interpolation formula for D,,

Exchange coefficients, D,,, D, B,/ 10° m*s™

8 2
Dy Pogr Dyp/ 107 m"s

400 ¢ MD simulations;
~ fluid phase; 300 K
100 £ CH,(1)-CO,(2) mixture
10 g
| —@— pure CO, ~
1 F O equimolar mix, B, ,
- Vignes
| =—=—=— FSG
01 Ll Ll
0.3 1 10 40
Total concentration, ¢, / kmol m?
100 ¢
(I
My 12
10
TE
f IRMOF-1; 300 K;
- CO,(1)-CH,(2);
[ C1=C2
0-1\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
0 5 10 15 20 25 30

Total pore concentration, ¢, / kmol m

Exchange coefficients, D,,, D, B,,/ 10° m*s™

100

10

0.1

0.01

CuBTC; 300 K;
CH,(1)-CO, (2)
equimolar mix

|
o
N

- by
—0— Dy,
— Vignes

0

5 10 15 20 25

Total pore concentration, ¢, / kmol m?

Exchange coefficients, B, ,, B,,, D,/ 10° m’s

Exchange coefficients, D,,, D,,, D, / 10° m?s™

N
o

e
-

0.01

100 ¢

10

0.1

Figure B11

MFI; 300 K; MD simulations;
CO,(1)-CH,(2);

E —@— D11 O
- = Vignes
1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 |
0 5 10 15 20
Total pore concentration, ¢, / kmol m?
B D,
o by,
® '911

rFAU-Si; 300 K;
~CO,(1)-CH,(2);
| c,=c,

0 5 10 15 20 25 30

Total pore concentration, ¢, / kmol m*



Figure B12

Guest Mixture:
CO,/N,



o ] Figure B13
Exchange coefficients and Degree of correlations
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Exchange coefficients as fraction of fluid phase D,, ;

M-S exchange coefficient, D,, / 108 m?s™

(o))
o
1

-
o

N

o

- fluid B,
MgMOF-74
FAU-Si
IRMOF-1
MOF-177
LTA-Si

MFI

BAX OO

F=0.6

MD; 300 K; » FF="0045
FCO,(1)/N,(2) mi -0
77\\\\2\(\\)\\\2\(\\)\\\\\\\\\H\H\\ \\H\\’&F_O's

0 2 4 6 8 10 12 14 16

Total pore concentration, ¢, / kmol m

M-S exchange coefficient, D,, / 10® m*s™

100 ¢

-
o

Figure B14

—{— fluid mixture, B,,
—%— IRMOF-1

——— 06x8,,

| MD; 300K;
CO,(1)/N,(2) mix

0 2 4 6 8 10 12 14 16

Total pore concentration, ¢, / kmol m*



o _ _ Figure B15
Exchange coefficients as fraction of fluid phase D,, ;

M-S exchange coefficient, D,, / 108 m?s™
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Ne/CO,



Exchange coefficients and Degree of correlations
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Guest Mixture:
Ar/Kr



Exchange coefficients and Degree of correlations
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Diffusivities of water-methanol equimolar mixtures
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MD data on M-S diffusivities, D,, of (a) water, (b) methanol, and (c) ethanol in equimolar (¢,= ¢,) water-methanol, water-ethanol and
methanol-ethanol mixtures in FAU at 300 K. Also shown are the pure component D, determined at the same total pore concentration.
From (a) it can be observed that the D, of water in mixtures with alcohols are significantly lower than that for pure water. The reason
for this is that due to hydrogen bonding, water tends to cluster around alcohol molecules. The mobility of water molecules in the
mixtures is significantly lowered due to cluster formation.

Interestingly, the D, of methanol in mixtures with water is also significantly lower than the value for pure methanol; see (b). In sharp
contrast, the D, of methanol in mixtures with ethanol is practically the same as for pure methanol. The hydrogen bonding between
methanol-ethanol and methanol-methanol is significantly weaker than for water-methanol pairs.

The results for the M-S diffusivity of ethanol are analogous to those for methanol; see (c). Compared with pure ethanol, the B, is
significantly lowered in mixtures with water, but in remains practically the same in mixtures with methanol.
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Comparing water/alcohol mixtures of varying composition
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(a) presents data for B, of water in binary mixtures with methanol and ethanol. For both mixtures, we note a reduction in the B, of
water with increasing alcohols concentration within the pores. Furthermore, the mobility of water in mixtures with ethanol is slightly
lower than for water-methanol mixtures. (b) presents data for the M-S diffusivity B, of methanol in water-methanol and methanol-
ethanol mixtures. For methanol-ethanol mixtures the M-S diffusivity D, is practically independent of composition, whereas in mixtures
with water, the D, decreases significantly below the pure component value with increasing water concentrations. Water-methanol
clustering is much more significant than methanol-ethanol clustering.

The results presented in (a) and (b) indicate that for a certain range of compositions of water-alcohol mixtures there is mutual
hindering of both components in the mixture.
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diffusion of water-methanol mixtures, varying composition
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This reduction is due to hydrogen
bonding NMR data of Caro, J.; Bllow, M.;

Richter-Mendau, J.; Karger, J.;
Hunger, M.; Freude, D. J. Chem.
Soc., Faraday Trans. 1987, 83,
1843-1849.



Figure B66

LTA water-methanol mixture snapshots showing clustering




Figure B67

LTA water-ethanol mixture snapshots showing clustering




Figure B68

M FI snapshot of a mixture of wategand methanol

-

The snapshot shows some qualitative
indication of clustering of water and
methanol molecules caused by hydrogen
bonding.



Figure B69

M FI snapshot of a mixture of water and ethanol

The snapshot shows some qualitative
indication of clustering of water and
ethanol molecules caused by hydrogen
bonding.



Figure B70

Guest Mixture in MFI
zeolite:
CH,/IC4H,,



Component loading, g,/ mol kg'1

Figure B71
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The failure of IAST to describe mixture
adsorption accurately is because of
segregation effects. The iC4 locates
preferentially at the intersections. This
implies that there is no homogeneous
distribution of the mixture over the entire
MFI framework. This nhon-homogeneous
distribution of molecules causes
departures from IAST.

The adsorption and diffusion characteristics are discussed in further details in:
R. Krishna, J.M. van Baten, Diffusion of hydrocarbon mixtures in MFI zeolite: Influence of intersection blocking, Chem. Eng. J. 140 (2008) 614-620.
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Figure B73

Guest Mixture in MFI
zeolite:
C,H¢/IC,H,,



Component loading, g,/ mol kg'1
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The failure of IAST to describe mixture
adsorption accurately is because of
segregation effects. The iC4 locates
preferentially at the intersections. This
implies that there is no homogeneous
distribution of the mixture over the entire
MFI framework. This nhon-homogeneous
distribution of molecules causes
departures from IAST.

The adsorption and diffusion characteristics are discussed in further details in:
R. Krishna, J.M. van Baten, Diffusion of hydrocarbon mixtures in MFI zeolite: Influence of intersection blocking, Chem. Eng. J. 140 (2008) 614-620.
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The adsorption and diffusion characteristics
are discussed in further details in:

R. Krishna, J.M. van Baten, Diffusion of
hydrocarbon mixtures in MFI zeolite:
Influence of intersection blocking, Chem.
Eng. J. 140 (2008) 614-620.
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Figure B76

Guest Mixture in MFI
zeolite:
C,Hy/iC,H,,



Component loading, g,/ mol kg'1
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The adsorption and diffusion characteristics are discussed in further details in:

R. Krishna, J.M. van Baten, Diffusion of hydrocarbon mixtures in MFI zeolite: Influence of intersection blocking, Chem. Eng. J. 140 (2008) 614-620.
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The failure of IAST to describe mixture
adsorption accurately is because of
segregation effects. The iC4 locates
preferentially at the intersections. This
implies that there is no homogeneous
distribution of the mixture over the entire
MFI framework. This nhon-homogeneous
distribution of molecules causes
departures from IAST.
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The adsorption and diffusion characteristics
are discussed in further details in:

R. Krishna, J.M. van Baten, Diffusion of
hydrocarbon mixtures in MFI zeolite:
Influence of intersection blocking, Chem.
Eng. J. 140 (2008) 614-620.
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Guest Mixture in MFI
zeolite:
nC,H,,/iC,H,,
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The adsorption and diffusion characteristics are discussed in further details in:
R. Krishna, J.M. van Baten, Diffusion of hydrocarbon mixtures in MFI zeolite: Influence of intersection blocking, Chem. Eng. J. 140 (2008) 614-620.
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The failure of IAST to describe mixture
adsorption accurately is because of
segregation effects. The iC4 locates
preferentially at the intersections. This
implies that there is no homogeneous
distribution of the mixture over the entire
MFI framework. This nhon-homogeneous
distribution of molecules causes
departures from IAST.
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The adsorption and diffusion characteristics
are discussed in further details in:

R. Krishna, J.M. van Baten, Diffusion of
hydrocarbon mixtures in MFI zeolite:
Influence of intersection blocking, Chem.
Eng. J. 140 (2008) 614-620.
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Figure B83

Snapshots showing the location of molecules within MFI
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Figure B84

Snapshots showing the location of molecules within MFI
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Snapshots showing the location of molecules within MFI
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Figure B86

Guest Mixture in MFI
zeolite:
CH,/Benzene



Component loading, g,/ mol kg'1
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The failure of IAST to describe mixture
adsorption accurately is because of
segregation effects. Benzene locates
preferentially at the intersections. This
implies that there is no homogeneous
distribution of the mixture over the entire
MFI framework. This nhon-homogeneous
distribution of molecules causes
departures from IAST.

The adsorption and diffusion characteristics are discussed in further details in:
R. Krishna, J.M. van Baten, Diffusion of hydrocarbon mixtures in MFI zeolite: Influence of intersection blocking, Chem. Eng. J. 140 (2008) 614-620.
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M FI CH,/Benzene mixture diffusion in MFl: PFG NMR experiments
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The experimental data are re-plotted using the information in:
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C. Forste, A. Germanus, J. Karger, H. Pfeifer, J. Caro, W. Pilz, A. Zikdndva, Molecular mobility of methane adsorbed in
ZSM-5 containing co-adsorbed benzene, and the location of benzene molecules, J. Chem. Soc., Faraday Trans. 1. 83

(1987) 2301-2309.

The MD simulation results are from:

R. Krishna, J.M. van Baten, Diffusion of hydrocarbon mixtures in MFI zeolite: Influence of intersection blocking, Chem.

Eng. J. 140 (2008) 614-620.
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Guest Mixture in MFI
zeolite:
CH,/22DMB
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The failure of IAST to describe mixture
adsorption accurately is because of
segregation effects. 22DMB locates
preferentially at the intersections. This
implies that there is no homogeneous
distribution of the mixture over the entire
MFI framework. This nhon-homogeneous
distribution of molecules causes
departures from IAST.

The adsorption and diffusion characteristics are discussed in further details in:
R. Krishna, J.M. van Baten, Diffusion of hydrocarbon mixtures in MFI zeolite: Influence of intersection blocking, Chem. Eng. J. 140 (2008) 614-620.
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The adsorption and diffusion characteristics
are discussed in further details in:

R. Krishna, J.M. van Baten, Diffusion of
hydrocarbon mixtures in MFI zeolite:
Influence of intersection blocking, Chem.
Eng. J. 140 (2008) 614-620.
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Figure B93

Guest Mixture in MFI
zeolite:
C;Hg/Benzene
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The failure of IAST to describe mixture
adsorption accurately is because of
segregation effects. Benzene locates
preferentially at the intersections. This
implies that there is no homogeneous
distribution of the mixture over the entire
MFI framework. This nhon-homogeneous
distribution of molecules causes
departures from IAST.

The adsorption and diffusion characteristics are discussed in further details in:
R. Krishna, J.M. van Baten, Diffusion of hydrocarbon mixtures in MFI zeolite: Influence of intersection blocking, Chem. Eng. J. 140 (2008) 614-620.
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The adsorption and diffusion characteristics
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Figure B96

Guest Mixture in MFI
zeolite:
nC6/22DMB



Component loading, g,/ mol kg'1

1.5

pure component
- CBMC; 300 K
L MFI

N
o
I

o
(@]
\

® 22DMB
E nCé6

00 | | | | | |

—— 3-site Langmuir

102 10" 10° 10' 102 10% 10* 10°

Bulk gas phase fugacity, f/ Pa

Pure components
adsorption

108

nC6 -22DMB/
MFI / 300K

The adsorption and diffusion characteristics are discussed in further details in:
R. Krishna, J.M. van Baten, Diffusion of hydrocarbon mixtures in MFI zeolite: Influence of intersection blocking, Chem. Eng. J. 140 (2008) 614-620.
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The failure of IAST to describe mixture
adsorption accurately is because of
segregation effects. 22DMB locates
preferentially at the intersections. This
implies that there is no homogeneous
distribution of the mixture over the entire
MFI framework. This nhon-homogeneous
distribution of molecules causes
departures from IAST.
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The adsorption and diffusion characteristics
are discussed in further details in:

R. Krishna, J.M. van Baten, Diffusion of
hydrocarbon mixtures in MFI zeolite:
Influence of intersection blocking, Chem.
Eng. J. 140 (2008) 614-620.
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The adsorption and diffusion characteristics
are discussed in further details in:

R. Krishna, J.M. van Baten, Diffusion of
hydrocarbon mixtures in MFI zeolite:
Influence of intersection blocking, Chem.
Eng. J. 140 (2008) 614-620.
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Snapshots showing the location of molecules within MFI




Figure B102

Guest Mixture in MFI
zeolite:
nC6/2MP
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The adsorption and diffusion characteristics are discussed in further details in:
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The failure of IAST to describe mixture
adsorption accurately is because of
segregation effects. 2MP locates
preferentially at the intersections. This
implies that there is no homogeneous
distribution of the mixture over the entire
MFI framework. This nhon-homogeneous
distribution of molecules causes
departures from IAST.

R. Krishna, J.M. van Baten, Diffusion of hydrocarbon mixtures in MFI zeolite: Influence of intersection blocking, Chem. Eng. J. 140 (2008) 614-620.
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The data are re-plotted using the information in:
D. Schuring, A.O. Koriabkina, A.M. de Jong, B. Smit, R.A. van Santen, Adsorption and diffusion of n-hexane/2-
methylpentane mixtures in zeolite silicalite: Experiments and modeling, J. Phys. Chem. B 105 (2001) 7690-7698.
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Figure B106

Guest Mixture in MFI
zeolite:
nC6/3MP
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The failure of IAST to describe mixture
adsorption accurately is because of
segregation effects. 3MP locates
preferentially at the intersections. This
implies that there is no homogeneous
distribution of the mixture over the entire
MFI framework. This nhon-homogeneous
distribution of molecules causes
departures from IAST.

R. Krishna, J.M. van Baten, Diffusion of hydrocarbon mixtures in MFI zeolite: Influence of intersection blocking, Chem. Eng. J. 140 (2008) 614-620.
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The adsorption and diffusion characteristics
are discussed in further details in:

R. Krishna, J.M. van Baten, Diffusion of
hydrocarbon mixtures in MFI zeolite:
Influence of intersection blocking, Chem.
Eng. J. 140 (2008) 614-620.
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Figure B109

Guest Mixture in MFI
zeolite:
nC6/Benzene
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The failure of IAST to describe mixture
adsorption accurately is because of
segregation effects. Benzene locates
preferentially at the intersections. This
implies that there is no homogeneous
distribution of the mixture over the entire
MFI framework. This nhon-homogeneous
distribution of molecules causes
departures from IAST.

The adsorption and diffusion characteristics are discussed in further details in:
R. Krishna, J.M. van Baten, Diffusion of hydrocarbon mixtures in MFI zeolite: Influence of intersection blocking, Chem. Eng. J. 140 (2008) 614-620.
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The adsorption and diffusion characteristics
are discussed in further details in:

R. Krishna, J.M. van Baten, Diffusion of
hydrocarbon mixtures in MFI zeolite:
Influence of intersection blocking, Chem.
Eng. J. 140 (2008) 614-620.
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Figure B112

Guest Mixture in MFI
zeolite:
C.H,/Benzene

The adsorption and diffusion characteristics are discussed in further details in:
N. Hansen, R. Krishna, J.M. van Baten, A.T. Bell, F.J. Keil, Analysis of Diffusion Limitation in the Alkylation of Benzene over H-ZSM-5 by Combining
Quantum Chemical Calculations, Molecular Simulations, and a Continuum Approach, J. Phys. Chem. C 113 (2009) 235-246.

N. Hansen, R. Krishna, J.M. van Baten, A.T. Bell, F.J. Keil, Reactor simulation of benzene ethylation and ethane dehydrogenation catalyzed by ZSM-
5: A multiscale approach, Chem. Eng. Sci. 65 (2010) 2472-2480.
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Snapshots showing the location of molecules within MFI
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Figure B114

Guest Mixture in MFI
zeolite:
nC6/3MP/22DMB

The adsorption characteristics are discussed in further details in:
Krishna, J.M. van Baten, In silico screening of metal-organic frameworks in separation applications, Phys. Chem. Chem. Phys. 13 (2011) 10593-
10616.



i : . Figure B115
Snapshots showing the location of molecules within MFI
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i . . Figure B116
Snapshots showing the location of molecules within MFI
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Figure B117

Guest Mixture in MFI zeolite:
C.H,/Benzene/Ethylbenzene

The adsorption and diffusion characteristics are discussed in further details in:
N. Hansen, R. Krishna, J.M. van Baten, A.T. Bell, F.J. Keil, Analysis of Diffusion Limitation in the Alkylation of Benzene over H-ZSM-5 by Combining
Quantum Chemical Calculations, Molecular Simulations, and a Continuum Approach, J. Phys. Chem. C 113 (2009) 235-246.

N. Hansen, R. Krishna, J.M. van Baten, A.T. Bell, F.J. Keil, Reactor simulation of benzene ethylation and ethane dehydrogenation catalyzed by ZSM-
5: A multiscale approach, Chem. Eng. Sci. 65 (2010) 2472-2480.
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Snapshots showing the location of molecules within MFI
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