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ABSTRACT: The separation performance of microporous crystalline materials in membrane
constructs is dictated by a combination of mixture adsorption and intracrystalline diffusion
characteristics; the permeation selectivity Sperm is a product of the adsorption selectivity Sads
and the diffusion selectivity, Sdiff. The primary objective of this article is to gain fundamental
insights into Sads and Sdiff by use of molecular simulations. We performed configurational-bias
Monte Carlo (CBMC) simulations of mixture adsorption equilibrium and molecular dynamics
(MD) simulations of guest self-diffusivities of a number of binary mixtures of light gaseous
molecules (CO2, CH4, N2, H2, and C2H6) in a variety of microporous hosts of different pore
dimensions and topologies. Irrespective of the bulk gas compositions and bulk gas fugacities,
the adsorption selectivity, Sads, is found to be uniquely determined by the adsorption potential,
Φ, a convenient and practical proxy for the spreading pressure π that is calculable using the
ideal adsorbed solution theory for mixture adsorption equilibrium. The adsorption potential Φ
is also a proxy for the pore occupancy and is the thermodynamically appropriate yardstick to
determine the loading and composition dependences of intracrystalline diffusivities and
diffusion selectivities, Sdiff. When compared at the same Φ, the component permeabilities, Πi for CO2, CH4, and N2, determinable
from CBMC/MD data, are found to be independent of the partners in the various mixtures investigated and have practically the
same values as the values for the corresponding unary permeabilities. In all investigated systems, the H2 permeability in a mixture is
significantly lower than the corresponding unary value. These reported results have important practical consequences in process
development and are also useful for screening of materials for use as membrane devices.

1. INTRODUCTION

Membrane technologies find applications in a variety of
separation applications such as gas separations and water/
alcohol pervaporation.1−5 The perm-selective membrane
layers often consist of crystalline microporous materials such
as zeolites (alumino-silicates),6−12 metal−organic frameworks
(MOFs),13 or zeolitic imidazolate frameworks (ZIFs).14−16

For any given application, the separation performance of a
microporous membrane is characterized by two metrics:
permeability and permeation selectivity. The permeability of
component i is defined as follows

δ
Π =

Δ
N
f /i

i

i (1)

where Ni is the permeation flux and Δf i = f i − f iδ is the
difference in the partial fugacities between the upstream ( f i)
and downstream ( f iδ) faces of the membrane layer of
thickness δ. Often, the component permeances, defined by
Ni/Δf i ≡ Πi/δ, are more easily accessible from experiments
because of uncertainties in the precise values of the membrane
thickness, δ. For binary mixtures, the membrane permeation

selectivity, Sperm, is defined as the ratio of the component
permeabilities

=
Π
Π

Sperm
1

2 (2)

Following Robeson,17 it is a common practice to plot the
experimental data on Sperm as a function of Πi for evaluation of
membrane materials; the best material would occupy the top
right corner of such Robeson plots.18−21

If the partial fugacities of the components at the
downstream face are negligibly small in comparison with
those at the upstream face, Δf i ≈ f i, the component
permeabilities may be estimated from
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ρ
Π =

D q

fi
i i

i

,self

(3)

where ρ is the crystal framework density, qi are the
component loadings at the upstream face, and Di,self are the
component self-diffusivities that are readily accessible from
either molecular dynamics (MD) simulations or experi-
ments.19,20,22 Combining eqs 2 and 3, we can express the
permeation selectivity Sperm as a product of the adsorption
selectivity

=S
q q

f f

/

/ads
1 2

1 2 (4)

and diffusion selectivity

=S
D

Ddiff
1,self

2,self (5)

The detailed derivation of eq 5, starting with the Maxwell−
Stefan diffusion formulation,23,24 is available in earlier
works.19,25 For any guest/host combination, published data
from MD simulations and experiments show that the
diffusivities Di,self are strongly dependent on the component
loadings qi.

22,24,26,27 The component loadings, in turn, are

strongly dependent on the total fugacity, fluid phase fugacity f t
= f1 + f 2, and gas mixture composition, y1 = f1/f t.
As an illustration, Figure 1a,b presents data on Sads obtained

from configurational-bias Monte Carlo (CBMC) simulations
of CO2(1)/CH4(2) mixture adsorption in CHA zeolite at 300
K. CHA zeolite consists of cages of volume 316 Å3, separated
by 8-ring windows of 3.8 Å × 4.2 Å size. Figure 1a shows
CBMC data in which the bulk gas-phase mole fractions are
maintained at either y1 = 0.5 or y1 = 0.15, and Sads is plotted as
a function of the bulk gas mixture fugacity, f t = f1 + f 2; the
value of Sads increases significantly, by about an order of
magnitude, with increasing f t for both sets. Figure 1b shows
CBMC data on Sads, for conditions in which the total bulk gas
mixture fugacity is held constant, f t = f1 + f 2 = 106 Pa; the Sads
is seen to increase with increasing fractions of CO2 in the bulk
gas mixture, y1.
Figure 1c,d shows MD simulation data for Sdiff obtained

from four different campaigns. When the adsorbed phase
composition

= = + =x q q q q q i/ ; ; 1, 2i i t t 1 2 (6)

is held constant at 0.5, the value of Sdiff decreases significantly
with increased total loading qt; see Figure 1c. For conditions
in which the total loading is held constant, Sdiff increases with

Figure 1. (a,b) CBMC simulations of the adsorption selectivity, Sads, for CO2(1)/CH4(2) mixtures in CHA zeolite at 300 K. In the (a) bulk gas-
phase, mole fractions are maintained at y1 = 0.5 or y1 = 0.15 and Sads is plotted as a function of the bulk gas mixture fugacity, f t = f1 + f 2. In the
(b) total bulk gas mixture, fugacity is held constant, f t = f1 + f 2 = 106 Pa, and Sads is plotted as a function of the bulk gas mole fraction of CO2, y1.
(c,d) MD simulations of the diffusion selectivities, Sdiff, obtained from four different campaigns, plotted as a function of the (c) total load, qt = q1
+ q2 and (d) mole fraction of CO2 in the adsorbed phase, x1 = q1/qt. All simulation details and input data are provided in the Supporting
Information accompanying this publication.
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increasing proportion of CO2 in the adsorbed phase; see
Figure 1d.
On the basis of eqs 3−5 and 7 along with the set of CBMC

and MD data on Sads and Sdiff in Figure 1, we would conclude
that the permeation selectivity Sperm

= ×S S Sperm ads perm (7)

exhibits a complex dependence of both f t = f1 + f 2 and y1 at
the upstream face. As a corollary to the composition
dependences, we would be prompted to conclude that Sperm
cannot be estimated on the basis of the data on the
permeabilities of the unary guest species. As illustration,
Figure 2 presents experimental data6−8 for permeances of
CO2, CH4, H2, and N2 determined for unary and mixture
permeation across the SAPO-34 membrane; SAPO-34 has the
same structural topology as CHA zeolite. Compared at the
same partial pressures at the upstream face, the CO2
permeance is hardly influenced by the presence or choice of
the partner species in the mixtures. Indeed, the values of CO2
permeance in any mixture are practically the same as the
unary values. The situation is markedly different for the
permeances of CH4, H2, and N2. For these less-strongly-
adsorbed guest molecules, the component permeances in a
mixture depends on choice of the partner species and are

usually significantly lower than the corresponding unary
permeances. On the basis of the data in Figure 2, we would
conclude that the mixture permeation characteristics cannot
be estimated on the basis of experimental data on unary
permeances.
The primary objective of this article is to gain more

fundamental insights into the characteristics of Πi and Sperm in
ordered crystalline microporous materials so as to enable their
estimations using more easily accessible data inputs on unary
adsorption isotherms and unary diffusivities. In particular, we
aim to demonstrate the benefits of using the spreading
pressure, π, as the thermodynamically correct parameter to
quantify the extent of pore occupancy; the π is calculable
using the ideal adsorbed solution theory (IAST) of Myers and
Prausnitz.28 We shall establish that data on permeabilities of
unary guests may indeed be gainfully employed for prediction
of mixture permeation, provided the comparisons are made at
the same values of the spreading pressure π.
The desired objectives are met by detailed analysis of

CBMC and MD data on adsorption and diffusion of light
gaseous molecules (CO2, CH4, N2, H2, and C2H6) and their
binary mixtures (CO2/CH4, CO2/N2, CO2/H2, CH4/H2, and
CH4/C2H6) in a variety of porous crystalline hosts. The host
materials are carefully chosen to represent four different pore

Figure 2. Experimental data6−8 for permeances of (a) CO2, (b) CH4, (c) H2, and (d) N2 determined for unary and equimolar binary mixture
permeation across the SAPO-34 membrane at 295 K. The permeances are plotted as function of the partial pressures pi

0 at the upstream face of
the membrane. All calculation details and input data are provided in the Supporting Information accompanying this publication.
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topologies: (i) intersecting channels [MFI (≈5.5 Å)], (ii)
cages separated by narrow (≈3.3−3.8 Å) windows29 (CHA,
DDR, ZIF-8), and (iii) cavities separated by large (≈7.4 Å)
windows (FAU, NaY, NaX), (iv) one-dimensional channels
[MgMOF-74 (≈11 Å), and mesoporous BTP-COF30 (≈34
Å)]. The Supporting Information accompanying this
publication provides (a) detailed structural information on
all host materials, (b) CBMC and MD simulation method-
ologies, (c) CBMC data on unary isotherms and isotherm fits,
and (d) CBMC and MD data on adsorption, diffusion, and
permeation of variety of mixtures. The entire CBMC and MD
data sets are summarized in Figures S9−S55 of the Supporting
Information.

2. RESULTS AND DISCUSSION

2.1. Spreading Pressure and Its Proxy. Within
microporous crystalline host materials, the guest constituent
molecules exist entirely in the adsorbed phase. The Gibbs
adsorption equation in differential form is as follows31−33

∑π μ=
=

A qd d
i

n

i i
1 (8)

In eq 8, A represents the surface area per kg of framework,
qi is the molar loading, μi is the molar chemical potential, and
π is the spreading pressure. At phase equilibrium, equating the
component chemical potentials, μi, in the adsorbed phase and
in the bulk gas-phase mixture in the upstream membrane
compartment, we write

μ = RT fd dlni i (9)

The basic equation of IAST of Myers and Prausnitz28 is the
analogue of Raoult’s law for vapor−liquid equilibrium that is

= =f P x i; 1, 2i i i
0

(10)

where Pi
0 is the pressure for sorption of every component i,

which yields the same spreading pressure, π for each of the
pure components, as that for the binary mixture

∫ ∫π = =A
RT

q f

f
f

q f

f
f

( )
d

( )
d

P P

0

1
0

0

2
0

1
0

2
0

(11)

In eq 11, qi
0( f) is the pure component adsorption isotherm.

For general background to the various forms of analytic
expressions to model the unary isotherms in different host
materials, the reader is referred to the published litera-
ture.34−38 For all of the guest/host combinations considered

Figure 3. (a) CBMC data on Sads for three different campaigns for CO2(1)/CH4(2) mixture adsorption in CHA zeolite at 300 K, plotted as
function of the adsorption potential Φ. (b) MD simulations of the self-diffusivities, Di,self, of components in equimolar (q1 = q2) binary CO2/CH4
mixtures in CHA, plotted as a function of the adsorption potential, Φ. Also plotted (open symbols) are the corresponding unary self-diffusivities.
(c) MD simulations of the diffusion selectivities, Sdiff, obtained from four different campaigns (see Figure 1c,d), plotted as a function of Φ. (d)
Permeation selectivities, Sperm, obtained from four different campaigns, plotted as a function of Φ. All simulation details and input data are
provided in the Supporting Information accompanying this publication.
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in this article, the unary isotherms, determined from CBMC,
are accurately described by the dual-Langmuir−Freundlich
model

=
+

+
+

ν

ν

ν

νq f q
b f

b f
q

b f
b f

( )
1 1

0
A,sat

A

A
B,sat

B

B

A

A

B

B (12)

Each of the integrals in eq 11 can be evaluated analytically

∫π

ν ν

=

= + + +ν ν

=

A
RT

q f

f
f

q
b P

q
b P

( )
d

ln(1 ( ) ) ln(1 ( ) )

f

P
i

i i

0

0

A,sat

A
A

0 B,sat

B
B

0

i
0

A B

(13)

Because the surface area A is not directly accessible from
experimental data, the adsorption potential πA/RT ≡ Φ,39−43

with the units mol kg−1, serves as a convenient and practical
proxy for the spreading pressure π. For binary mixture
adsorption, each of the equalities on the right hand side of eq
11 must be satisfied. These constraints may be solved using a
suitable equation solver, to yield the set of values of P1

0 and P2
0,

both of which satisfy eq 11.
In view of eq 10, we rewrite 4 as the ratio of the sorption

pressures

= =S
x f

x f
P
P

/

/ads
1 1

2 2

2
0

1
0

(14)

Applying the restriction specified by eq 11, it follows that
Sads is uniquely determined by the adsorption potential Φ; this
represents a significant simplification.
A further physical interpretation of Φ becomes transparent

if we consider the simple scenario in which each isotherm is
described by the single-site Langmuir model with equal
saturation capacities for each constituent

=
+

=q f q
b f

b f
i( )

1
; 1, 2i

i

i

0
sat (15)

The following explicit expression can be derived (see
Supporting Information for details)

Φ = + +q b f b fln(1 )sat 1 1 2 2 (16)

The fractional occupancy, θ, is related to the adsorption
potential

θ ≡ = − − Φq

q q
1 expt

sat sat

i

k
jjjjjj

y

{
zzzzzz (17)

Figure 4. CBMC/MD simulations of the permeabilities, Πi, of (a) CO2, (b) CH4, (c) H2, and (d) N2 in different equimolar (q1 = q2) binary
mixtures in CHA zeolite at 300 K, plotted as a function of the adsorption potential, Φ. Also plotted (using open symbols) are the corresponding
values of the unary permeabilities. All simulation details and input data are provided in the Supporting Information accompanying this
publication.
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Typically for separation of gaseous mixtures considered in
this article, values of Φ ≈ 30−40 mol kg−1 correspond to pore
saturation conditions, θ ≈ 1. Equation 17 implies that Φ may
also be interpreted as a proxy for the pore occupancy.
Consequently, Φ is also the thermodynamically appropriate
parameter to describe the loading dependence of diffusivities
in microporous materials, as has been established in earlier
publications.27,44 Further background on the wide variety of
loading dependences of guest molecules in nanoporous
materials is available in the published literature.45−49 The
presence of surface barriers has also been demonstrated to
have a significant influence of the guest diffusivities.50−54

Armed with these physical insights, let us revisit the set of
CBMC and MD data presented in Figure 1.
2.2. Binary Mixture Permeation in Microporous

Materials. In Figure 3a, we plot the data for three different
CBMC campaigns for mixture adsorption (as presented in
Figure 1a,b), in terms of Sads versus Φ. All data sets fall on a
unique curve, confirming that Sads is indeed uniquely
determined by Φ.
In Figure 3b, MD simulations of the self-diffusivities, Di,self,

in equimolar (q1 = q2) binary CO2/CH4 mixtures in CHA are
plotted as a function of Φ. These self-diffusivities are nearly
equal to the corresponding values for the unary guests, when

compared at the same Φ value. This result suggests that Φ
also uniquely determines the diffusion selectivities. As
verification, Figure 3c demonstrates that the four different
MD campaigns (cf. Figure 1c,d) for Sdiff coincide to yield a
unique dependence on Φ. For the same four MD campaigns,
the product of Sdiff with the corresponding values of Sads are
plotted in Figure 3d to conclude that Sperm is also uniquely
related to Φ.
Analogous sets of CBMC and MD data for adsorption and

diffusion of CO2/H2, CO2/N2, CH4/H2, CH4/N2, and H2/N2
mixtures in CHA were gathered (see Figures S23 and S24)
and used to examine the permeabilities of CO2, CH4, H2, and
N2 in the presence of different partners with the values of
unary permeabilities; see Figure 4. When inspected at the
same Φ, the component permeabilities for CO2, CH4, and N2
are found to be independent of the partners in the mixtures
and have practically the same values as the values for the
corresponding unary permeabilities. This represents an
important result of practical consequences in membrane
process development. For H2, that has a very high mobility
but extremely poor adsorption strength; the unary perme-
ability is significantly higher than that in the different
mixtures. The lowering in the permeabilities of H2 in the
different mixtures is attributable to mixture adsorption that

Figure 5. CBMC/MD simulations of the permeabilities, Πi, of (a) CO2, (b) CH4, (c) H2, and (d) N2 in different equimolar (q1 = q2) binary
mixtures in MFI zeolite at 300 K, plotted as a function of the adsorption potential, Φ. Also plotted (using open symbols) are the corresponding
values of the unary permeabilities. All calculation details and input data are provided in the Supporting Information accompanying this
publication.
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favors the different partners CO2, CH4, and N2 to a significant
extent. The more strongly adsorbed partner species also have
the effect of retarding the intercage hopping of H2
molecules.55

Results entirely analogous to those presented in Figure 4
are obtained for all other microporous materials investigated
with different pore sizes and topologies. As illustration,
Figures 5 and 6 present the CBMC/MD data for
permeabilities of the four different guests within the
intersecting channel structures of MFI and 1D channels of
MgMOF-74. The data for other host materials are presented
in Figures S26−S55. In all cases, the unary permeabilities for
CO2, CH4, and N2 are practically the same as the values in
different binary mixtures, when compared at the same Φ. For
H2, the permeabilities in the mixtures are significantly lower
than the unary values.
Experimental verification that the data such as these

illustrated in Figures 4, 5, and 6 are available for a wide
variety of guest/host combinations; see earlier work.44 For
CO2/H2 permeation in MFI, for example, a fundamental re-
analysis44 of the experimental data of Sandström et al.10

provides confirmation that the permeability of H2 in mixtures
with CO2 is significantly lowered by about an order of
magnitude below the value for unary H2 permeation. For

permeation of various mixtures across the SAPO-34
membrane, the same set of experimental data in Figure 2, is
plotted in Figure 7 as functions of Φ, determined at the
upstream membrane face. With use of Φ as the yardstick, the
component permeances of each of the four guests are found
to be practically independent of partner species, in
consonance with the data in Figure 4. The comparisons
between the plots in Figures 2 and 7 accentuate the
advantages of the use of Φ as yardsticks for comparison of
unary permeances with those in various mixtures.
Published MD data for mixture diffusion have shown that

the occurrence of molecular clustering, because of say
hydrogen bonding, causes the component diffusivities in
mixtures to deviate significantly from the values for the
corresponding unaries.25,26,43,56−62

2.3. Screening of Microporous Materials in Mem-
brane Applications. Having established the benefits of using
Φ, a practical proxy for spreading pressure, as a convenient
tool for relating component permeabilities in binary mixtures
to unary permeabilities, we turn to the process of screening
membrane materials for any specific separation applications.
Consider CO2/CH4 mixture separations that is of relevance in
purification of natural gas, which can contain up to 92% CO2
impurity at its source.63,64 Removal of CO2, which is most

Figure 6. CBMC/MD simulations of the permeabilities, Πi, of (a) CO2, (b) CH4, (c) H2, and (d) N2 in different equimolar (q1 = q2) binary
mixtures in MgMOF-74 zeolite at 300 K, plotted as a function of the adsorption potential, Φ. Also plotted (using open symbols) are the
corresponding values of the unary permeabilities. All calculation details and input data are provided in the Supporting Information accompanying
this publication.
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commonly accomplished using amines, is conducted at
pressures ranging to about 2 MPa.64,65 CBMC simulations
were carried out for equimolar f1 = f 2 CO2/CH4 mixtures in
different host materials. The values of the adsorption
selectivities, Sads, are plotted in Figure 8a as function of Φ.
The highest values of Sads are realized with cation-exchanged
zeolites (NaX and NaY) and MgMOF-74 with exposed Mg2+

cation sites, resulting in strong binding of CO2 molecules to
cations.66,67 Significantly lower Sads values are realized with all-
silica zeolites. Remarkably, the hierarchy of diffusion
selectivities is essentially the reverse of the hierarchy of Sads;
see MD simulation data for Sdiff versus Φ in Figure 8b. The
highest diffusion selectivities are obtained with DDR, CHA,
and ZIF-8 that consist of cages separated by narrow (≈3.3−
3.8 Å) windows. In such structures, CO2 jumps length-wise
across the windows as evidenced in video animations.29,68 The
smaller cross-sectional dimension (cf. Figure 8c) of CO2 (3.1
Å) compared to CH4 (3.7 Å) accounts for the significantly
higher Sdiff in favor of CO2.
Figure 8b also shows that the diffusion selectivities in host

materials with larger characteristic pore dimensions (FAU,
NaY, NaX, MFI, MgMOF-74, and BTP-COF) in which the
guest molecules are less strongly constrained, the Sdiff favors
CH4 that has the larger kinetic diameter. This apparent
paradox is accentuated by the comparison of the data for

FAU, NaY, and NaX; these three materials have the same pore
size and topology consisting of cavities (≈11 Å) separated by
12-ring windows (≈7.4 Å) but display the Sdiff hierarchy FAU
> NaY > NaX. Clearly, the Sdiff is determined by factors other
than pore size and degree of guest confinement.26,69,70 The
observed hierarchy of Sdiff values can be rationalized on the
basis of the stronger binding strength of CO2. Figure 8d plots
the CBMC simulation data on isosteric heats of adsorption,
Qst, a measure of the binding energy of CO2, as function of Φ.
The hierarchy of Qst is NaX > NaY ≈ MgMOF-74 > MFI >
FAU ≈ BTP-COF is precisely the reverse of the hierarchy of
Sdiff found in Figure 8b. Stronger binding of CO2 implies
higher degree of “stickiness” and, consequently, lower
mobility.69,70

Figure 9a,b compares the values of the permeation
selectivity Sperm = Sads × Sperm and CO2 permeabilities Π1 in
different materials. The hierarchies of these two important
metrics governing membrane separations are not precisely the
reverse of each other, suggesting that there is room for
optimizing the choice of material. For specific choice of
upstream operating conditions, f t = f1 + f 2 = 106 Pa, Figure 9c
shows the Robeson plot of Sperm versus Π1. The highest Sperm
values in excess of 100 are obtained with zeolites with 8-ring
windows DDR and CHA, for which Sads, and Sdiff complement
each other. For DDR and CHA, there is experimental

Figure 7. Experimental data6−8 for permeances of (a) CO2, (b) CH4, (c) H2, and (d) N2 determined for unary and equimolar binary mixture
permeation across the SAPO-34 membrane at 295 K. The permeances are plotted as a function of the adsorption potential Φ, calculated at the
upstream face of the membrane. All calculation details and input data are provided in the Supporting Information accompanying this publication.
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evidence that such high permeation selectivities can be
realized in practice.6−8,11,55,71−73 For MFI, the Sperm value of
2.3 is in agreement with the experiment.6 The stronger CO2
binding achievable using NaY, NaX, and MgMOF-74 does not
guarantee high permeation selectivities. There is considerable
scope for development of novel materials that would lead to a
performance at the top right corner of the Robeson plot, using
mixed-matrix membranes that attempt to profit from both
adsorption and diffusion characteristics of the constituent
materials.4,18

Analogous Robeson plots constructed by CBMC/MD data
for CO2/N2 and CO2/H2 separations are shown in Figures
S57−S58.

3. CONCLUSIONS

The adsorption and diffusion characteristics of a variety of
mixtures (CO2/CH4, CO2/N2, CO2/H2, CH4/H2, and CH4/
C2H6) in a variety of microporous hosts (CHA, DDR, ZIF-8,
BTP-COF, MgMOF-74, FAU, NaY, NaX, and MFI) were
investigated using CBMC and MD simulations. The following
major conclusions emerge from a detailed analysis of the
obtained results.

(1) The adsorption potential, Φ, a proxy for the spreading
pressure and calculable from the IAST, is a proper

yardstick to compare data on adsorption, diffusion, and
permeation in microporous materials.

(2) For adsorption of binary mixtures of light gaseous
constituents (CO2, CH4, N2, H2, and C2H6), the
adsorption selectivity Sads is uniquely determined by the
adsorption potential, Φ, irrespective of mixture
composition and total fugacity, f t.

(3) The adsorption potential Φ also serves as the
thermodynamically appropriate proxy to represent the
pore occupancy. As a consequence, the diffusion
selectivity Sdiff is also uniquely dependent on Φ.

(4) When compared at the same Φ, the component
permeabilities, Πi, for CO2, CH4, and N2, determinable
from CBMC/MD data using eq 3, are found to be
largely independent of the partners in the various
mixtures investigated and have practically the same
values as the values for the corresponding unary
permeabilities. This simple result, verified in a number
of experimental investigations,44 has important con-
sequences for membrane process development.

(5) In all investigated mixtures, the permeability of H2 falls
significantly below the values of the unary permeabili-
ties.

(6) As exemplified in Figure 8 for CO2/CH4 separation, the
hierarchy of Sads versus Φ data are found to be precisely

Figure 8. Comparison of (a) adsorption selectivity, Sads, and (b) diffusion selectivity, Sdiff, for CO2(1)/CH4(2) mixtures in microporous materials;
the x-axis represents the adsorption potential, Φ. (c) Molecular dimensions of CO2 and CH4. (d) Isosteric heats of adsorption of CO2 determined
from CBMC simulations. All calculation details and input data are provided in the Supporting Information accompanying this publication.
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opposite to the hierarchy of Sdiff versus Φ data. This
underscores the fact that adsorption and diffusion do
not go hand-in-hand. In host materials wherein the
guests are not too strongly confined (FAU, NaY, NaX,

MFI, MgMOF-74, BTP-COF), stronger binding of CO2
results in lower mobility.

(7) The insights gained in this investigation assist in the
choice of the appropriate membrane material for a
specified separation, appropriately balancing adsorption
selectivity with diffusion selectivity.
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■ NOMENCLATURE

Latin alphabet
A = surface area per kg of framework, m2 kg−1

b = dual-Langmuir−Freundlich constant, Pa−ν

Di,self = self-diffusivity of species i, m2 s−1

f i = partial fugacity of species i, Pa
f t = total fugacity of bulk fluid mixture, Pa
Ni = molar flux of species i with respect to framework, mol
m−2 s−1

Pi
0 = sorption pressure, Pa

qi = component molar loading of species i, mol kg−1

qi,sat = molar loading of species i at saturation, mol kg−1

qt = total molar loading in mixture, mol kg−1

Qst = isosteric heat of adsorption, J mol−1

R = gas constant, 8.314 J mol−1 K−1

Sads = adsorption selectivity, dimensionless
Sdiff = diffusion selectivity, dimensionless
Sperm = permeation selectivity, dimensionless
T = absolute temperature, K
xi = mole fraction of species i in adsorbed phase,
dimensionless
yi = mole fraction of species i in bulk gas phase,
dimensionless

Figure 9. Comparison of (a) permeation selectivity, Sperm, and (b)
CO2 permeability, Π1, for CO2(1)/CH4(2) mixtures in different
microporous materials; the x-axis represents the adsorption potential,
Φ. (c) Robeson plot of Sperm versus Π1 data at f t = f1 + f 2 = 106 Pa
and 300 K. All calculation details and input data are provided in the
Supporting Information accompanying this publication.
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Greek alphabet
δ = thickness of membrane, m
μi = molar chemical potential of component i, J mol−1

π = spreading pressure, N m−1

θ = fractional occupancy, dimensionless
ν = exponent in dual-Langmuir−Freundlich isotherm,
dimensionless
Πi = membrane permeability of species i, mol m m−2 s−1

Pa−1

ρ = framework density, kg m−3

Φ = adsorption potential, mol kg−1

Subscripts
1 = referring to component 1
2 = referring to component 2
i = referring to component i
t = referring to total mixture
sat = referring to saturation conditions
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1 Preamble 

The Supporting Information accompanying our article Using Molecular Simulations to Unravel the 

Benefits of Characterizing Mixture Permeation in Microporous Membranes in terms of the Spreading 

Pressure provides (a) detailed structural information on all host materials, (b) CBMC and MD 

simulation methodologies, (c) CBMC data on unary isotherms and isotherm fits, (d) CBMC and MD 

data on adsorption, diffusion, and permeation of variety of mixtures. 

For ease of reading, the Supporting Information is written as a stand-alone document; as a 

consequence, there is some overlap of material with the main manuscript.  
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2 Structural details of microporous crystalline materials 

The investigated host materials fall into four broad classes;  

1. One-dimensional (1D) channels (MgMOF-74, BTP-COF); see Figure S1. 

2. Intersecting channels (MFI); see  Figure S2 

3. Cages separated by narrow windows (CHA, DDR, ZIF-8); see Figure S3. 

4. Cavities with large windows (FAU (all-silica), NaY, NaX); see Figure S4. 

The crystallographic data are available on the zeolite atlas website of the International Zeolite 

Association (IZA).1, 2 Further details on the structure, landscape, pore dimensions of a very wide variety 

of micro-porous materials are available in the published literature.3-10 Table S1, and Table S2 provide 

some salient structural information on various zeolites and MOFs of interest. 
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2.1 List of Tables for Structural details of microporous crystalline materials 

Table S1. Salient structural information. 

Structure Topology Fractional 

pore 

volume,  

Pore 

volume/ 

cm3/g 

Framework 

density/  

kg/m3 

CHA 316 Å3 cages separated by 3.77 Å  4.23 Å size windows 0.382 0.264 1444 

DDR 277.8 Å3 cages separated by 3.65 Å  4.37 Å  size windows 0.245 0.139 1760 

MFI 10-ring intersecting channels of 5.4 Å – 5.5 Å and 5.4 Å – 5.6 

Å size 

0.297 0.165 1796 

FAU (all silica) 790 Å3 cages separated by 7.4 Å size windows 0.439 0.328 1338 

NaY 790 Å3 cages separated by 7.4 Å size windows 0.41 0.303 1347 

NaX 790 Å3 cages separated by 7.4 Å size windows 0.40 0.280 1421 

MgMOF-74 1D hexagonal-shaped channels  of 11 Å 0.708 0.782 905 

BTP-COF 1D hexagonal-shaped channels  of 34 Å 0.752 1.79 420 

ZIF-8 1168 Å3 cages separated by 3.26 Å size windows 0.476 0.515 924 
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Table S2. Pore volumes, surface areas, and characteristic (Delaunay) dimensions 

Structure Pore volume / cm3 g-1 Surface area / m2 g-1 Delaunay diameter/ Å 

MFI 0.165 487.2 5.16 

FAU (all silica) 0.328 1086 7.4 

NaY 0.303 950 7.4 

NaX 0.280 950 7.4 

CHA 0.264 757.5 3.98 

DDR 0.139 350 4.02 

ZIF-8 0.515 1164.7 3.26 

MgMOF-74 0.782 1640.0 10.66 

BTP-COF 1.791  34.26 
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3 Configurational-Bias Monte Carlo Simulation Methodology 

The simulation methodologies and the force field information used are the same as detailed in the 

Supplementary Materials accompanying our earlier publications.3, 5, 9, 11-14 A short summary is provided 

hereunder. 

3.1 Zeolites (all silica) 

CH4 molecules are described with a united atom model, in which each molecule is treated as a single 

interaction center.15 The interaction between adsorbed molecules is described with Lennard-Jones terms; 

see Figure S5. The Lennard-Jones parameters for CH4-zeolite interactions are taken from Dubbeldam et 

al.16. The force field for H2 corresponds to that given by Kumar et al.17 In implementing this force field, 

quantum effects for H2 have been ignored because the work of Kumar et al.17 has shown that quantum 

effects are of negligible importance for temperatures above 200 K; all our simulations were performed 

at 300 K. The Lennard-Jones parameters for CO2-zeolite and N2-zeolite are essentially those of 

Makrodimitris et al.18; see also García-Pérez et al.19.  For simulations with linear alkanes with two or 

more C atoms, the beads in the chain are connected by harmonic bonding potentials. A harmonic cosine 

bending potential models the bond bending between three neighboring beads, a Ryckaert-Bellemans 

potential controls the torsion angle. The beads in a chain separated by more than three bonds interact 

with each other through a Lennard-Jones potential; see schematic in Figure S5. The force fields of 

Dubbeldam et al.16 was used for the variety of potentials. The Lennard-Jones potentials are shifted and 

cut at 12 Å.  

The zeolite frameworks were considered to be rigid in all the simulation results reported in the article. 

3.2 Cation-exchanged zeolites 

The following two cation-exchanged structures were investigated 

NaX (106 Si, 86 Al, 86 Na+, Si/Al=1.23)  
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NaY (144 Si, 48 Al, 48 Na+, Si/Al=3) 

 The presence of cations reduces the accessible pore volume. The location of the cations are pictured 

in Figure S6, and Figure S7. 

The force field information for the simulations with cations are taken from García-Sanchez et al.20 In 

the MC simulations, the cations were allowed to move within the framework and both Lennard-Jones 

and Coulombic interactions are taken into consideration. 

In the CBMC simulations both Lennard-Jones and Coulombic interactions are taken into 

consideration; see schematic sketch in Figure S8. 

3.3 MOFs and ZIFs 

The ZIF-8 = Zn(methylimidazole)2 structure was constructed on the basis of the structural data from 

Banerjee et al.21 The original structural data files (cif file) contain solvent molecules; these were 

removed and the solvent-free structures were considered.  

The structural information on MgMOF-74 ( = Mg2(dobdc) = Mg\(dobdc) with dobdc = (dobdc4– = 

1,4-dioxido-2,5-benzenedicarboxylate)) was obtained from a variety of references.22-27 

The metal organic framework structures were considered to be rigid in the simulations. For the atoms 

in the host metal organic framework, the generic UFF28 and  DREIDING29 force fields were used. The 

Lorentz-Berthelot mixing rules were applied for calculating  and kB for guest-host interactions.  

For CO2 and N2 adsorption in MOFs, the charges of the host framework need to be accounted for.  

For ZIF-8, the Lennard-Jones potentials for the framework atoms of ZIF-8 were taken from the 

combined works of Mayo et al.,29 Yang and Zhong,30 and Jorgensen et al.31 as was reported in the 

computational study of Zhou et al.32 The framework charges of ZIF-8 were estimated using the group-

contribution procedure based on quantum mechanical calculations described in the paper by Xu and 

Zhong. 33 

The simulations for MgMOF-74 were carried out with the force field information provided by 

Yazaydin et al.27  
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3.4 Pore volume 

The pore volume is determined using a simulation of a single helium molecule at the reference 

temperature T 34-36 

 
r

r
d

Tk

U

m
V

poreV

B
pore  










0

exp
1

 (S1)

where U is the interaction energy between a single helium atom and the framework, and m is the mass 

of the framework. The pore volume can be readily computed from Monte Carlo sampling using Widom 

particle insertion.37 Basically, the average Boltzmann factor associated with the random insertion of a 

probe molecule is computed. This value is averaged over all generated trial positions. In equation (S1) 

the integration is over the entire mass of the sample and yields the value of the accessible pore volume 

per unit mass of the framework; the units of Vpore are m3/kg, or in more commonly used units mL/(g 

framework). The volume fraction, , is then given by Vpore/Vtotal where Vtotal is the total volume of the 

unit cell. Usually, a reference temperature of 298.15 K is chosen in experiment for determination of the 

helium void volume; this value is also used in the simulations.  

The force field for He-He interactions are taken from Table 1 of Talu and Myers.38  For zeolites the 

He-O interaction parameters were also taken from this Table 1. We should mention here that the force 

field for He of Talu and Myers 38 is not the same as that in Skoulidas and Sholl;39  in particular there are 

significant differences in the energy parameter /kB. We had earlier used the Skoulidas force field to 

simulate diffusion of He in a variety of zeolites.9 For determination of the pore volume fraction we have 

switched to the Talu and Myers force field parameters that has been tuned to represent experimental 

data on pore volumes in MFI. 

For MOFs, the interaction between He and the atoms of the MOF structures were then determined 

using the Lorentz-Berthelot mixing rules. For determination of the pore volumes the Lennard-Jones 

parameters for interactions of the He probe atoms with cations are also considered 
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For determination of the accessible pore volumes of FAU, NaX, and NaY, the sodalite cages were 

blocked and no He probe atoms could enter these cages. Only the supercage volumes are determined for 

these structures. 

3.5 Surface areas 

The surface area of various structures were determined using the method described by Düren et al.40.   

3.6 Isosteric heats of adsorption 

We determined the isosteric heats of adsorption, Qst, from CBMC simulations using the fluctuation 

formula 

22
ii

iiii
st

nn

nUnU
RTQ




  (S2)

where ni represents the number of molecules in the simulation box and   denotes ensemble 

averaging.  

3.7 Characteristic dimensions (Delaunay diameters) 

In many cases, the characteristic size of the channels or windows of microporous structures are 

referred to in the article. These data are obtained following the method of Delaunay triangulation, 

described in the work by Foster et al.41 These values represent the maximum hard-sphere diameter that 

can pass through the structure. The values quoted are obtained by substracting the Lennard-Jones sigma 

parameter of the framework atom.  

3.8 CBMC code 

All simulations reported in this work were carried out using an in-house BIGMAC code, originally 

developed by T.J.H. Vlugt. This code was modified to handle rigid molecular structures and charges. 

The calculation of the accessible pore volume using the Widom insertion of He probe atoms is 

implemented within the BIGMAC code.All CBMC simulations reported in this work were conducted at 

a temperature T = 300 K. 
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4 Molecular Dynamics (MD) Simulation Methodology 

Diffusion is simulated using Newton’s equations of motion until the system properties, on average, no 

longer change in time. The Verlet algorithm is used for time integration. A time step of 1 fs was used in 

all simulations. For each simulation, initializing CBMC moves are used to place the molecules in the 

domain, minimizing the energy. Next, follows an equilibration stage. These are essentially the same as 

the production cycles, only the statistics are not yet taken into account. This removes any initial large 

disturbances in the system that do not affect statistics on molecular displacements.  After a fixed number 

of initialization and equilibrium steps, the MD simulation production cycles start. For every cycle, the 

statistics for determining the mean square displacements (MSDs) are updated. The MSDs are 

determined for time intervals ranging from 2 fs to 1 ns. In order to do this, an order-N algorithm, as 

detailed in Chapter 4 of Frenkel and Smit37 is implemented. The Nosé-Hoover thermostat is applied to 

all the diffusing particles. In the MD simulations the cations were allowed to move within the 

framework and both Lennard-Jones and Coulombic interactions are taken into consideration; see 

schematic sketch in Figure S8. 

For all the MD simulation results presented in this article, the DLPOLY code42 was used along with 

the force field implementation as described in the previous section. DL_POLY is a molecular dynamics 

simulation package written by W. Smith, T.R. Forester and I.T. Todorov and has been obtained from 

CCLRCs Daresbury Laboratory via the website.42 

The MD simulations were carried out for a variety of loadings within the various structures. All 

simulations were carried out on the LISA clusters of PCs equipped with Intel Xeon processors running 

at 3.4 GHz on the Linux operating system.43 Each MD simulation, for a specified loading, was run for a 

time duration that is sufficiently long to obtain reliable statistics for determination of the diffusivities. In 

several cases the campaigns were replicated and the results averaged. 
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The self-diffusivities Di,self are computed from MD simulations by analyzing the mean square 

displacement of each species i for each coordinate direction  
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In this expression ni represents the number of molecules of species i, and rl,i(t) is the position of 

molecule l of species i at any time t.   

For three-dimensional pore networks (e.g. MFI, FAU, NaX, NaY, CHA, ZIF-8) the arithmetic 

average of the diffusivities in the three coordinate directions were used in further analysis and reported. 

For one-dimensional pore structures (MgMOF-74, BTP-COF) the diffusivities along the direction of 

diffusion are reported and analyzed. For DDR the reported diffusivities are the averages in x- and y- 

directions. 

All MD simulations reported in this work were conducted at a temperature T = 300 K. 
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5 Thermodynamics of Mixture Adsorption in Micro-porous Materials 

Within microporous crystalline materials, the guest molecules exist in the adsorbed phase, and the 

thermodynamics of mixture adsorption has an important bearing on the diffusion characteristics of guest 

molecules. For that reason, we provide below a brief summary of the Ideal Adsorbed Solution Theory 

(IAST) theory of Myers and Prausnitz.44  

5.1 Brief outline of theory 

The Gibbs adsorption equation45 in differential form is 





n

i
iidqAd

1

  (S4)

The quantity A is the surface area per kg of framework, with units of m2 per kg of the framework of 

the crystalline material; qi is the molar loading of component i in the adsorbed phase with units moles 

per kg of framework; i is the molar chemical potential of component i. The spreading pressure   has 

the same units as surface tension, i.e. N m-1. 

The chemical potential of any component in the adsorbed phase, i, equals that in the bulk fluid phase.  

If the partial fugacities in the bulk fluid phase are fi, we have 

ii fRTdd ln  (S5)

where R is the gas constant (= 8.314 J mol-1 K-1). 

 Briefly, the basic equation of Ideal Adsorbed Solution Theory (IAST) theory of Myers and 

Prausnitz44 is the analogue of Raoult’s law for vapor-liquid equilibrium, i.e. 

nixPf iii ,...2,1;  0   (S6)

where xi is the mole fraction in the adsorbed phase 

n

i
i qqq

q
x

...21 
  (S7)
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and 0
iP  is the pressure for sorption of every component i, which yields the same spreading pressure,   

for each of the pure components, as that for the mixture:  

...
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 (S8)

where )(0 fqi  is the pure component adsorption isotherm. The units of 
A

RT


  , also called the 

adsorption potential, 46-50  are mol kg-1.  

The unary isotherm may be described by say the 1-site Langmuir isotherm   

 
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0   (S9)

where we define the fractional occupancy of the adsorbate molecules,   satqfq0 . The superscript 0 

is used to emphasize that  fq0  relates the pure component loading to the bulk fluid fugacity. For all of 

the guest/host combinations considered in this article, the unary isotherms need to be described by the 

dual-Langmuir-Freundlich model 

B
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Each of the integrals in Equation (S8) can be evaluated analytically. For the dual-site Langmuir-

Freundlich isotherm, for example, the integration yields for component i,  
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The right hand side of equation (S11) is a function of 0
iP . For multicomponent mixture adsorption, 

each of the equalities on the right hand side of Equation (S8) must be satisfied. These constraints may 

be solved using a suitable equation solver, to yield the set of values of 0
1P , 0

2P , 0
3P ,.. 0

nP , all of which 

satisfy Equation (S8). The corresponding values of the integrals using these as upper limits of 
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integration must yield the same value of 
RT

A
 for each component; this ensures that the obtained 

solution is the correct one. 

The adsorbed phase mole fractions xi are then determined from  

ni
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f
x

i

i
i ,...2,1;

 
0

  (S12)

The applicability of eqs (S6) and (S12) mandates that all of the adsorption sites within the 

microporous material are equally accessible to each of the guest molecules, implying a homogeneous 

distribution of guest adsorbates within the pore landscape, with no preferential locations of any guest 

species. The circumstances in which this mandate is not fulfilled are highlighted in recent works.48, 49, 51 

A key assumption of the IAST is that the enthalpies and surface areas of the adsorbed molecules do 

not change upon mixing. If the total mixture loading is tq , the area covered by the adsorbed mixture is 

tq

A
 with units of m2 (mol mixture)-1. Therefore, the assumption of no surface area change due to 

mixture adsorption translates as      000
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A  ; the total mixture loading is tq  is 

calculated from  
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(S13)

in which )( 0
1

0
1 Pq , )( 0

2
0
2 Pq ,… )( 00

nn Pq  are determined from the unary isotherm fits, using the sorption 

pressures for each component 0
1P , 0

2P , 0
3P ,.. 0

nP  that are available from the solutions to equations 

Equations (S8), and (S11).  

The occurrence of molecular clustering and hydrogen bonding should be expected to applicability of 

eq (S13) because the surface area occupied by a molecular cluster is different from that of each of the 

un-clustered guest molecules in the adsorbed phase. 
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The entire set of eqs (S6) to (S13) need to be solved numerically to obtain the loadings, qi of the 

individual components in the mixture.  

For the interpretation and analysis of the MD simulations for binary mixture diffusion in microporous 

host materials, the IAST calculation procedure has to be performed differently because in the MD 

simulations, the molar loadings q1, and q2 in the mixture are specified, and the partial fugacities in the 

bulk fluid mixture are not known a priori. Also in this case, the equalities in equation (S11) must be 

satisfied in conjunction with equation (S13). The entire set of equations (S6) to (S13) need to be solved 

numerically to obtain the partial fugacities, fi of the individual components in the mixture, that yield the 

same loadings as chosen in the MD simulations.  In all of the calculations presented in this article, the 

set of equations were solved using an Excel macro that was developed for this specific purpose. 

5.2 Selectivity for binary mixture adsorption 

For binary mixtures consisting of components 1, and 2, the adsorption selectivity, Sads, is defined by  

1 2 1 2

1 2 1 2
ads

q q q q
S

f f y y
   (S14)

where q1 and q2 are the molar loadings of the components 1, and 2 in the adsorbed phase in equilibrium 

with a bulk gas phase mixture with mole fractions 1 2
1 2

1 2 1 2

;
f f

y y
f f f f

 
 

. In view of eqs (S12), and 

(S13), we may re-write eq (S14) as the ratio of the sorption pressures  

0
1 2 1 1 2
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1 2 2 2 1
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q q x f P
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f f x f P
    (S15)

Applying the restriction specified by eq (S8), it follows that adsS  is uniquely determined by the 

adsorption potential 
A

RT


  . 
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5.3 IAST model: 1-site Langmuir isotherms 

The IAST procedure will be applied for binary mixture adsorption in which the unary isotherms are 

described by the 1-site Langmuir model in which the saturation capacities of components 1 and 2 are 

identical to each other, i.e. 1, 2,sat sat satq q q  : 

 0

1
i

i sat
i

b f
q f q

b f



 (S16)

where   

For unary adsorption, the adsorption potential for a 1-site Langmuir isotherm can be calculated 

analytically  
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 The objective is to determine the molar loadings, q1, and q2, in the adsorbed phase.  

Performing the integration of eq (S8) results in an expression relating the sorption pressures 0
iP  of the 

two species 
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The adsorbed phase mole fractions of component 1, and component 2 are given by equation (S12)  
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Combining equations (S18), and (S19): 
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The adsorbed phase mole fractions can be determined 
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Once 1x , and 12 1 xx   are determined, the sorption pressures can be calculated: 
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From equations (S18), and (S22) we get  

2211
0

22
0

1

2211
2

220
22

1

110
1

111

  

fbfbPbPb

fbfb
x

fb
Pb

x

fb
Pb

i

i




 (S23)

Combining eqs (S18), and (S23) we obtain the following explicit expression for the adsorption 

potential 

 

 1 1 2 2ln 1satq b f b f     (S24)

 

The total amount adsorbed, 21 qqqt   can be calculated from Equation (S13) 
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Combining equations (S21), and (S25) we obtain the following explicit expressions for the component 

loadings, and fractional occupancies  
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Equation (S26) is commonly referred to as the mixed-gas Langmuir model.  

From equations (S18), (S25), and (S26) we derive the following expression for the total occupancy of 

the mixture 
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 (S27)

For unary adsorption of component i, say, 0 i if P , the occupancy of component 1 is   
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1 exp ; unary adsorption of species i
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From equations (S27), and (S28) we may also conclude the occupancy may be considered to be the 

appropriate proxy for the spreading pressure. The conclusion that we draw from the foregoing analysis 

is that the equalities of spreading pressures for unary adsorption of component 1, unary adsorption of 

component 2, and binary 1-2 mixture adsorption also implies the corresponding equalities of the 

corresponding occupancies for unary adsorption of component 1, unary adsorption of component 2, and 

binary 1-2 mixture adsorption. 

5.4 Generalized expression for fractional occupancy 

From knowledge of the adsorption potential, 
A

RT


  , the fractional occupancy for binary mixture 

adsorption is then calculated using  
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For a binary mixture, the saturation capacity ,sat mixq  is calculated from the saturation capacities of the 

constituent guests 
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where 
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are the mole fractions in the adsorbed mixture. For equimolar mixtures, 1 2 0.5x x  , equation  (S31) 

simplifies to yield ,

1, 2,

2
1 1sat mix

sat sat
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q q


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The fundamental justification of Equation (S30) is provided by applying equation (S13) to pore 

saturation conditions. 

Equations (S29) is the appropriate generalization of Equation (S27), derived in the following section 

for the mixed-gas Langmuir model. It is also to be noted that equation (15) of our earlier publication52  

has a typographical error in the calculation of ,sat mixq ; the correct form is given by equation (S30).  
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6 The Real Adsorbed Solution Theory (RAST) 

To account for non-ideality effects in mixture adsorption, we introduce activity coefficients i  into 

Equation (S6) 44   

iiii xPf 0    (S32)

With the introduction of activity coefficients, the expression for the adsorption selectivity for binary 

mixtures is 
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The implementation of the activity coefficients is termed as the Real Adsorbed Solution Theory 

(RAST). Following the approaches of Myers, Talu, and Sieperstein46, 47, 53  we model the excess Gibbs 

free energy for binary mixture adsorption as follows 

   2211 lnln  xx
RT
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  (S34)

6.1 Margules model for activity coefficients 

The Margules model for activity coefficients is 
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In eq (S35) C is a constant with the units kg mol-1. The introduction of 

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the correct limiting behaviors 0;1 
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A
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  for the activity coefficients in the Henry regime, 
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RT

A
ft


. As pore saturation conditions are approached, this correction factor tends to unity 
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1exp1 















RT

A
C


.  The choice of A12 = A21 = 0 in eq (S35), yields unity values for the activity 

coefficients.   

The excess reciprocal loading for the mixture can be defined as 
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The excess reciprocal loading for the mixture can be related to the partial derivative of the Gibbs free 

energy with respect to the adsorption potential at constant composition 
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 For calculation of the total mixture loading 1 2tq q q   we need to replace eq (S13) by 
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The parameters 12 21, ,A A C  can be fitted to match the CBMC data on mixture adsorption.  

 

6.2 Wilson model for activity coefficients 

The Wilson model for activity coefficients are given for binary mixtures by 
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In Equation (S39), 1;1 2211  , and C is a constant with the units kg mol-1. The introduction of 
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coefficients in the Henry regime, 0;0 
RT

A
ft


. As pore saturation conditions are approached, this 

correction factor tends to unity 1exp1 

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
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.  The choice of 12 = 21 = 1 in Equation (S39),  

yields unity values for the activity coefficients.   

The excess reciprocal loading for the mixture can be defined as 
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The excess reciprocal loading for the mixture can be related to the partial derivative of the Gibbs free 

energy with respect to the adsorption potential at constant composition 
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 For calculation of the total mixture loading we need to replace Equation (S13) by 

   









RT

A
CCxxxxxx

Pq

x

Pq

x
qqqt 

expln)ln(
)()(

1

21122122110
2

0
2

2
0

1
0
1

1
21  

(S42)

The parameters 12, 21, and C can be fitted to match the CBMC data on mixture adsorption.  
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7 Unary Adsorption and Diffusion in Microporous Materials 

The self-diffusivities Di,self are computed from MD simulations by analyzing the mean square 

displacement of each species i for each coordinate direction  
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In this expression ni represents the number of molecules of species i, and rl,i(t) is the position of 

molecule l of species i at any time t.   

MD simulations of the unary self-diffusivities, Di,self, in a variety of guest molecules in a variety of 

host structures at 300 K were performed; these are reported in our earlier publications.3, 5, 6, 9, 10, 13, 14, 54-60 

The data are presented in the following set of Figures: 

Figure S9: MFI zeolite 

Figure S10: all-silica FAU zeolite 

Figure S11: NaY zeolite 

Figure S12: NaX zeolite 

Figure S13: all-silica CHA zeolite 

Figure S14: DDR 

Figure S15: ZIF-8 

Figure S16: MgMOF-74 

Figure S17: BTP-COF 

Broadly speaking, for all guest/host combinations, the self-diffusivities, Di,self, are strongly dependent 

on the molar loadings. The diffusivities tend to decrease as the saturation loadings are approached. The 

loading dependence is often strongly influenced by the adsorption isotherms, and the spreading 
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pressures. Configurational-Bias Monte Carlo (CBMC) simulations of the unary adsorption isotherms 

were also determined, and are plotted in the afore-listed Figures. These CBMC simulated isotherms 

were fitted with the dual-site Langmuir-Freundlich model, equation (S10); the fit parameters for each 

guest molecule (with sites A, and B) are tabulated for each host material as follows: 

Table S3: MFI zeolite 

Table S4: FAU all-silica zeolite  

Table S5: NaY zeolite 

Table S6: NaX zeolite 

Table S7: CHA all-silica zeolite 

Table S8: DDR all-silica zeolite  

Table S9: DDR all-silica zeolite 

Table S10: MgMOF-74 

Table S11: BTP-COF 

The adsorption potential, and fractional occupancy, can be determined from 
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7.1 List of Tables for Unary Adsorption and Diffusion in Microporous Materials 

 

Table S3. Dual-site Langmuir-Freundlich parameters for guest molecules in MFI at 300 K. To convert 

from molecules uc-1 to mol kg-1, multiply by 0.173367.  

 Site A Site B 

A,sat 

molecules uc-1 

bA 

Pa A  

A 

dimensionless 

B,sat 

molecules uc-1 

bB 

Pa B  

B 

dimensionless 

Ar 19 2.61E-07 1 15 6.75E-08 0.8 

H2 30 3.57E-08 1 42 1.39E-09 1 

N2 16 6.37E-07 1 16 3.82E-07 0.7 

CO2 19 6.12E-06 1 11 1.73E-08 1 

CH4 7 5.00E-09 1 16 3.10E-06 1 

C2H6 3.3 4.08E-07 1 13 7.74E-05 1 

C3H8 1.4 3.35E-04 0.67 10.7 6.34E-04 1.06 
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Table S4. Dual-site Langmuir-Freundlich parameters for guest molecules in FAU (all-silica) at 300 K. 

To convert from molecules uc-1 to mol kg-1, multiply by 0.086683044.  

 

 Site A Site B 

A,sat 

molecules uc-1 

bA 

Pa A  

A 

dimensionless 

B,sat 

molecules uc-1 

bB 

Pa B  

B 

dimensionless 

H2 85 2.75E-08 1 67 1.03E-08 1 

N2 60 1.53E-09 1 75 1.32E-07 1 

CO2 32 2.55E-13 2.2 70 6.86E-07 1 

CH4 56 2.78E-08 0.8 60 2.90E-07 1 
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Table S5. Dual-site Langmuir-Freundlich parameters for guest molecules in NaY zeolite at 300 K. Per 

unit cell of NaY zeolite we have 144 Si, 48 Al, 48 Na+, with Si/Al=3.  

 Site A Site B 

qA,sat 

mol kg-1 
bA 

Pa A  

A 

dimensionless 

qB,sat 

mol kg-1 
bB 

Pa B  

B 

dimensionless 

CO2 1.8 2.002E-05 0.7 5.9 4.158E-05 1 

CH4 3.4 6.529E-09 1 5.9 1.134E-06 1 

H2 10.5 8.382E-09 1 2.2 3.149E-08 1 
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Table S6. Dual-site Langmuir-Freundlich parameters for guest molecules in NaX zeolite at 300 K. Per 

unit cell of NaX zeolite we have 106 Si, 86 Al, 86 Na+ with Si/Al=1.23.  

 Site A Site B 

qA,sat 

mol kg-1 
bA 

Pa A  

A 

dimensionless 

qB,sat 

mol kg-1 
bB 

Pa B  

B 

dimensionless 

CO2 1.7 1.390E-05 1 4.2 4.782E-04 1 

CH4 2.3 1.240E-08 1 5.5 2.170E-06 1 

H2 10.5 8.382E-09 1 2.2 3.149E-08 1 

N2 18.4 3.644E-10 1 4.5 1.080E-07 1 

 

Fitted Margules non-ideality parameters for binary mixture adsorption in NaX at 300 K.  

 C / kg mol-1 A12 A21 

CO2/CH4 in NaX 1.021 -0.632 -0.693 
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Table S7. Dual-site Langmuir-Freundlich parameters for guest molecules in CHA (all-silica) at 300 K. 

To convert from molecules uc-1 to mol kg-1, multiply by 0.231154783.  

 Site A Site B 

A,sat 

molecules uc-1 

bA 

Pa A  

A 

dimensionless 

B,sat 

molecules uc-1 

bB 

Pa B  

B 

dimensionless 

Ar 26 1.22E-07 1 14 4.62E-09 1 

H2 63 2.58E-08 0.73 68 1.57E-08 1 

N2 28 8.71E-08 0.6 32 4.87E-07 0.88 

CO2 28 1.71E-06 1.1 12 8.74E-06 0.7 

CH4 12 1.36E-06 1 24 4.59E-07 0.8 
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Table S8. Dual-site Langmuir-Freundlich parameters for guest molecules in DDR (all-silica) at 300 K.  

 Site A Site B 

qA,sat 

mol kg-1 
bA 

Pa A  

A 

dimensionless 

qB,sat 

mol kg-1 
bB 

Pa B  

B 

dimensionless 

CO2 1.5 2.318E-06 0.74 3 5.890E-06 1 

CH4 1.6 3.461E-06 1 2.4 3.405E-06 0.65 

N2 1.2 1.024E-06 1 1.6 5.887E-08 1 

H2 5 5.028E-08 1 12 2.442E-09 1 

 

Fitted Margules non-ideality parameters for binary CO2/CH4 mixture adsorption in DDR at 300 K.  

 C / kg mol-1 A12 A21 

CO2/CH4 in DDR 0.01 -12.62 -4.71 
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Table S9. Dual-site Langmuir-Freundlich parameters for guest molecules in ZIF-8 at 300 K.  

 Site A Site B 

qA,sat 

mol kg-1 
bA 

Pa A  

A 

dimensionless 

qB,sat 

mol kg-1 
bB 

Pa B  

B 

dimensionless 

CO2 1.4 2.852E-15 2.7 9.8 1.433E-06 1 

CH4 9.5 4.377E-07 1 3.7 6.702E-09 1 

H2 19 2.372E-09 0.87 20 1.608E-08 1 
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Table S10. Dual-site Langmuir-Freundlich parameters for guest molecules in MgMOF-74 at 300 K. 

To convert from molecules uc-1 to mol kg-1, multiply by 0.457959224.  

 Site A Site B 

A,sat 

molecules uc-1 

bA 

Pa A  

A 

dimensionless 

B,sat 

molecules uc-1 

bB 

Pa B  

B 

dimensionless 

H2 31 7.73E-09 1 31 3.05E-08 1 

CO2 28 2.05E-05 1 12 3.03E-07 1 

N2 25 2.93E-07 1 20 6.06E-09 1 

CH4 32 6.24E-07 1 8 2.71E-17 2 
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Table S11. Dual-site Langmuir-Freundlich parameters for guest molecules in BTP-COF at 300 K. To 

convert from molecules uc-1 to mol kg-1, multiply by 0.34029.  

 Site A Site B 

A,sat 

molecules uc-1 

bA 

Pa A  

A 

dimensionless 

B,sat 

molecules uc-1 

bB 

Pa B  

B 

dimensionless 

CO2 73 2.965E-07 1 73 2.965E-07 1 

CH4 63 7.361E-08 1 63 7.361E-08 1 

H2 100 1.234E-08 1 100 1.234E-08 1 

Ar 79 3.469E-08 1 79 3.469E-08 1 

C2H6 23 2.943E-21 3.3 69 5.497E-07 1 
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7.2 List of Figures for Unary Adsorption and Diffusion in Microporous Materials 

 

 

Figure S9. (a) CBMC simulations of unary adsorption isotherms, (b) CBMC simulations of isosteric 

heats of adsorption, and (c) MD simulations of unary self-diffusivities, Di,self, for a variety of guest 

molecules in MFI zeolite at 300 K.  
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Figure S10. (a) CBMC simulations of unary adsorption isotherms, (b) CBMC simulations of isosteric 

heats of adsorption, and (c) MD simulations of unary self-diffusivities, Di,self, for a variety of guest 

molecules in FAU all-silica zeolite at 300 K.  
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Figure S11. (a) CBMC simulations of unary adsorption isotherms, (b) CBMC simulations of isosteric 

heats of adsorption, and (c) MD simulations of unary self-diffusivities, Di,self, for a variety of guest 

molecules in NaY zeolite. 
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Figure S12. (a) CBMC simulations of unary adsorption isotherms, (b) CBMC simulations of isosteric 

heats of adsorption, and (c) MD simulations of unary self-diffusivities, Di,self, for a variety of guest 

molecules in NaX zeolite. 
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Figure S13. (a) CBMC simulations of unary adsorption isotherms, (b) CBMC simulations of isosteric 

heats of adsorption, and (c) MD simulations of unary self-diffusivities, Di,self, for a variety of guest 

molecules in CHA all-silica zeolite at 300 K.  
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Figure S14. (a) CBMC simulations of unary adsorption isotherms, (b) CBMC simulations of isosteric 

heats of adsorption, and (c) MD simulations of unary self-diffusivities, Di,self, for a variety of guest 

molecules in DDR all-silica zeolite at 300 K.  
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Figure S15. (a) CBMC simulations of unary adsorption isotherms, and (b) MD simulations of unary 

self-diffusivities, Di,self, for a variety of guest molecules in ZIF-8 at 300 K.  
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Figure S16. (a) CBMC simulations of unary adsorption isotherms, (b) CBMC simulations of isosteric 

heats of adsorption, and (c) MD simulations of unary self-diffusivities, Di,self, for a variety of guest 

molecules in MgMOF-74 at 300 K.  
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Figure S17. (a) CBMC simulations of unary adsorption isotherms, (b) CBMC simulations of isosteric 

heats of adsorption, and (c) MD simulations of unary self-diffusivities, Di,self, for a variety of guest 

molecules in BTP-COF at 300 K.  
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8 Thermodynamic Non-Idealities in Investigated Systems 

In our previous works48-51, 61 we had investigated the influence of thermodynamic non-idealities on 

mixture adsorption. In this Chapter 8 we examine the accuracy of IAST calculations for the guest/host 

combinations investigated in this article. 

8.1 CO2/CH4 mixture adsorption in all-silica CHA and DDR zeolites 

A key assumption of the IAST is that the composition of the adsorbed phase is homogeneously and 

uniformly distributed within zeolite or metal-organic frameworks. Preferential location of molecules at 

certain locations within the crystalline, causes segregated adsorption and deviations from the 

assumption of homogeneous distribution. For separation of CO2 from gaseous mixtures with CH4, cage-

type zeolites such as CHA, and DDR, CBMC simulations62 show that the window regions of cage-type 

zeolites has a significantly higher proportion of CO2 than within the cages. Due to preferential location 

of CO2 in the window regions the CH4 molecules experience a less severe competition from CO2.  

Figure S18a shows CBMC simulation data62 of the adsorption selectivity, adsS , for CO2(1)/CH4(2) 

mixtures in CHA zeolite at 300 K;  the bulk gas phase mole fractions are maintained at 1 2  0.5y y  , 

or 1 2   0.15y y   and adsS  is plotted as a function of the bulk gas mixture fugacity, 1 2  tf f f  . The 

dashed lines in Figure S18a are the IAST calculations using the unary isotherm fits as specified in Table 

S7. For 1 2  tf f f   > 1 MPa, the IAST slightly overestimates the selectivity values because the 

competition faced by CH4 is less severe because of the preferential location of CO2 in the window 

regions, as evidenced by the snapshot in Figure S18. 

 Figure S18b shows CBMC simulation data62 of  adsorption selectivity, adsS , for CO2(1)/CH4(2) 

mixtures in CHA zeolite at 300 K; the total bulk gas mixture fugacity is held constant, 

6
1 2  10tf f f    Pa, and adsS  is plotted as a function of the bulk gas mixture of CO2(1), 1y .  The 

IAST calculations slightly overestimate the values of adsS   because the competitive adsorption is less 
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severe due to the segregated nature of adsorption. In Figure S18c, the three different sets of data are 

plotted as function of the adsorption potential A RT  . It is noteworthy, that the CBMC simulated 

data for adsS  is uniquely determined by A RT  ; this is because the deviations from IAST are not 

severe.  

For all of the calculations for CHA as host we do not include the influence of thermodynamic non-

idealities. 

Segregation effects are stronger in DDR zeolite, and the IAST estimations are poorer at high values of 

the adsorption potential A RT . Figure S19a shows CBMC simulation data of the adsorption 

selectivity, adsS , for CO2(1)/CH4(2) mixtures in DDR zeolite at 300 K;  the bulk gas phase mole 

fractions are maintained at 1 2   0.5y y  , and adsS  is plotted as a function of the bulk gas mixture 

fugacity, 1 2  tf f f  . The dashed lines in Figure S19a are the IAST calculations using the unary 

isotherm fits as specified in Table S8. For 1 2  tf f f   > 1 MPa, the IAST overestimates the selectivity 

values because the competition faced by CH4 is less severe because of the preferential location of CO2 

in the window regions, as evidenced by the snapshot in Figure S19.  

Figure S19b shows CBMC simulation data of  adsorption selectivity, adsS , for CO2(1)/CH4(2) 

mixtures in DDR zeolite at 300 K; the total bulk gas mixture fugacity is held constant, 

6
1 2  10tf f f    Pa, and adsS  is plotted as a function of the bulk gas mixture of CO2(1), 1y .  The 

IAST calculations are not in perfect agreement with CBMC data.  In Figure S19c, both sets of data 

plotted as function of the adsorption potential A RT  . It is noteworthy, that the CBMC simulated 

data are not uniquely determined by the adsorption potential, A RT , because the thermodynamic non-

ideality effects are present to some degree.  

For CO2(1)/CH4(2) mixtures in DDR zeolite at 300 K, we use the set of fitted Margules parameters  

-1
12 2112.6; 4.7; 0.01 mol kgA A C     . For the adsorption of CO2/H2, and CO2/N2 mixtures in 

DDR zeolites, the IAST is used to describe mixture adsorption equilibrium. 
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8.2 CO2/CH4 and CO2/N2 mixture adsorption in NaX zeolite 

Due to congregation of CO2 around the Na+ cations of NaX zeolite, there is an inhomogeneous 

distribution of adsorbates within the pore landscape; this causes departures from the IAST as has been 

elucidated in our previous works. 48-51, 61 

Figure S20a shows CBMC simulation data of the adsorption selectivity, adsS , for CO2(1)/CH4(2) 

mixtures in NaX zeolite at 300 K;  the bulk gas phase mole fractions are maintained at 1 2  0.5y y  , 

and adsS  is plotted as a function of the bulk gas mixture fugacity, 1 2  tf f f  . The dashed lines in 

Figure S20a are the IAST calculations using the unary isotherm fits. For 1 2  tf f f   > 1 MPa, the 

IAST overestimates the selectivity values because the competition faced by CH4 is less severe because 

of the preferential congregation of CO2 around cations.49 

Figure S20b shows CBMC simulation data of  adsorption selectivity, adsS , for CO2(1)/CH4(2) 

mixtures in NaX zeolite at 300 K; the total bulk gas mixture fugacity is held constant, 

5
1 2  10tf f f    Pa, and adsS  is plotted as a function of the bulk gas mixture of CO2(1), 1y .  The 

IAST calculations overestimate the selectivties.  In Figure S20c, both sets of data plotted as function of 

the adsorption potential A RT  . It is noteworthy, that despite the non-idealities, the two sets of 

CBMC data are uniquely determined by A RT  . For CO2(1)/CH4(2) mixtures in NaX zeolite at 

300 K, we use the set of fitted Margules parameters  -1
12 210.632 0.69; ;  mo3 1. l k021 gA A C    .  

The corresponding CBMC data for CO2(1)/N2(2) mixtures in NaX zeolite at 300 K are shown in 

Figure S21. Also for this mixture, we note that despite the non-idealities, the two sets of CBMC data are 

uniquely determined by A RT  . 

For the adsorption of CO2/H2, and CO2/N2 mixtures in NaX, the IAST is used to describe mixture 

adsorption equilibrium. 
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the adsorption potential A RT  . The dashed lines are the IAST calculations; the unary isotherm fit 

parameters are provided in Table S7.   
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Figure S20. (a, b, c) CBMC simulations of the adsorption selectivity, adsS , for CO2(1)/CH4(2) 

mixtures in NaX zeolite at 300 K. In (a) the bulk gas phase mole fractions are maintained at 

1 2   0.5y y  , and adsS  is plotted as a function of the bulk gas mixture fugacity, 1 2  tf f f  . In (b) 

the total bulk gas mixture fugacity is held constant, 5
1 2 10tf f f    Pa, and adsS  is plotted as a 

function of the bulk gas mole fraction of CO2(1), 1y .  In (c) both sets of data are plotted as function of 

the adsorption potential A RT  . The dashed lines are the IAST calculations. The unary isotherm fit 

parameters are provided in Table S6.  
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Figure S21. (a, b, c) CBMC simulations of the adsorption selectivity, adsS , for CO2(1)/N2(2) mixtures 

in NaX zeolite at 300 K. In (a) the bulk gas phase mole fractions are maintained at 1 2   0.15y y  , and 

adsS  is plotted as a function of the bulk gas mixture fugacity, 1 2  tf f f  . In (b) the total bulk gas 

mixture fugacity is held constant, 5
1 2  10tf f f    Pa, and adsS  is plotted as a function of the bulk gas 

mole fraction of CO2(1), 1y .  In (c) both sets of data are plotted as function of the adsorption potential 

A RT  . The dashed lines are the IAST calculations. The unary isotherm fit parameters are 

provided in Table S6.  
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9 Permeation of Binary Mixtures in Microporous Materials 

MD simulations were performed to determine the self-diffusivities ,i selfD  in a variety of equimolar (

1 2q q ) binary mixtures. In a few cases, the MD simulations were performed for mixtures in which the 

total loading 1 2tq q q   was held constant and the mole fraction of the adsorbed phase mixture, 

1
1

1 2

q
x

q q



 was varied from 0 to 1. All MD simulations reported in this work were conducted at a 

temperature T = 300 K. 

For the interpretation and analysis of the MD simulations for binary mixture diffusion in microporous 

host materials, the IAST calculation procedure has to be performed differently because in the MD 

simulations, the molar loadings q1, and q2 in the mixture are specified, and the partial fugacities in the 

bulk fluid mixture are not known a priori. Also in this case, the equalities in equation (S11) must be 

satisfied in conjunction with equation (S13). The entire set of equations (S6) to (S13) need to be solved 

numerically to obtain the partial fugacities, fi of the individual components in the mixture, that yield the 

same loadings as chosen in the MD simulations. The IAST calculations (note that RAST is used in the 

case of CO2/CH4/NaX, CO2/CH4/DDR) also determine the adsorption potential, 
A

RT


  . In all of the 

calculations presented in this article, the set of equations were solved using an Excel macro that was 

developed for this specific purpose.  

For use of the materials in membrane constructs, the permeability of the membrane, i ,  is defined 

by 

i

i
i f

N


  (S45)
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where iN  is the permeation flux,   is the thickness of the crystalline layer on the membrane, and 

iii fff  0  is the difference in the partial fugacities in the bulk fluid mixtures in the upstream (z = 0) 

and downstream (z = )  compartments. If the downstream conditions are such that the loadings are 

negligibly small, the permeability can be determined from MD simulations by using the following 

expression12 

i

iselfi
i f

qD ,
  (S46)

where   is the crystal framework density. In SI units, the permeability has the units mol m m-2 s-1 Pa-1. 

The more commonly used engineering unit for permeability is the Barrer expressed in cm3 (STP) cm 

cm-2 s-1 (cm Hg)-1. To convert to the commonly used engineering units of Barrers we divide the value in 

mol m m-2 s-1 Pa-1 by 3.348×10-16.  

Often in experimental investigations of membrane permeation, the precise thickness of the membrane 

is not easily determinable and, therefore, the experimental data are presented in terms of the permeances 

calculated from  

i i

i

N

f 





 (S47)

In SI units, the permeance has the units mol m-2 s-1 Pa-1.  

The obtained data for the self-diffusivities ,i selfD  and permeabilities i  for each guest/host 

combination are plotted as function of the adsorption potential, 
A

RT


   in the set of Figures as 

specified hereunder. Also plotted in the same set of Figures are the values of ,i selfD  and permeabilities 

i  for the corresponding guest/host combination for each unary guest, plotted as function of the 

adsorption potential, 
A

RT


   for the corresponding unary guests.  

 

Figure S22, Figure S23, Figure S24, Figure S25: various mixtures in CHA zeolite 
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Figure S26, Figure S27,Figure S28: various mixtures in DDR zeolite 

Figure S29, Figure S30: various mixtures in ZIF-8 

Figure S32, Figure S33, Figure S34: various mixtures in BTP-COF mesoporous host 

Figure S35, Figure S36, Figure S37, Figure S38, Figure S39: various mixtures in MgMOF-74 

Figure S40, Figure S41, Figure S42: various mixtures in all-silica FAU zeolite 

Figure S43, Figure S44,Figure S45: various mixtures in NaY zeolite 

Figure S46, Figure S47, Figure S48: various mixtures in NaX zeolite 

Figure S49, Figure S50, Figure S51, Figure S52, Figure S53, Figure S53: various mixtures in all-silica 

MFI zeolite. 

 

In order to underscore the advantages of using adsorption potential, 
A

RT


   as x-axes for plotting the 

data on self-diffusivities and permeabilities, let us consider MD simulation data on self-diffusivities for 

binary CO2/CH4 mixtures in CHA zeolite at 300 K. For this mixture, four different MD simulation 

campaigns were conducted as follows: 

(i) equimolar ( 1 2 1 2; 1 0.5q q x x    ) mixtures with varying total load, 1 2tq q q  ; indicated 

by green squares 

(ii) mixtures at constant load 5.78tq   mol kg-1 (= 25 molecules uc-1) and varying mole fraction 

of CO2 in the adsorbed phase, 1 1 tx q q ; indicate by red circles, 

(iii) mixtures at constant load 2.89tq   mol kg-1 (= 12.5 molecules uc-1) and varying mole fraction 

of CO2 in the adsorbed phase, 1 1 tx q q ; indicated by inverted pink triangles, and 

(iv) mixtures in which the CH4 load 2 0.693q   mol kg-1 (= 3 molecules uc-1) and loadings of CO2, 

1q  are varied; indicated by blue triangles. 
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In Figure S22a the 1,

2,

self
diff

self

D
S

D
  data for campaign (i) are plotted as function of 1 2tq q q  . The 

diffusion selectivities decrease strongly with increasing total loading. In Figure S22b the 1,

2,

self
diff

self

D
S

D
  

data for campaigns (ii), (iii), and (iv) are plotted as function of the mole fraction of CO2 in the adsorbed 

phase, 1 1 tx q q . The diffusion selectivities are also influenced by the mixture composition. The four 

sets of data on diffusion selectivities are plotted in Figure S22c as function of the adsorption potential, 

A

RT


  , indicating that the adsorption potential uniquely determines the diffusion selectivity.   

In view of the fact that IAST also shows that the adsorption selectivity adsS  is also uniquely dependent 

on 
A

RT


  , we should expect the permeation selectivity 1, 1 1

2, 2 2

self
perm ads diff

self

D q f
S S S

D q f
    to be also 

uniquely dependent on 
A

RT


  . The plot of permS  vs   for the four data sets also lie on a unique 

curve; see Figure S22d.  
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9.1 List of Figures for Permeation of Binary Mixtures in Microporous Materials 

 

 

Figure S22. (a, b, c) MD simulations of the diffusion selectivities, diffS  for CO2/CH4 mixtures in CHA 

zeolite at 300 K, obtained from four different campaigns, plotted as a function of the (a) total load, tq , 

(b) the mole fraction of CO2 in the adsorbed phase, 1x , (c) the adsorption potential  . (d) The four sets 

of data for permeation selectivities permS  are plotted as function of  .  
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Figure S23. MD simulations of the self-diffusivities, ,i selfD , of components in equimolar (q1=q2) 

binary (a) CO2/CH4, (b) CO2/H2, (c) CO2/N2, (d) CH4/H2, (e) CH4/N2, and (f) H2/N2 mixtures in CHA 

zeolite at 300 K, plotted as a function of the adsorption potential, /A RT  . Also plotted (using 

open symbols) are the corresponding values of the unary self-diffusivities. 
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Figure S24. CBMC/MD simulations of the permeabilities, i , of components in equimolar (q1=q2) 

binary (a) CO2/CH4, (b) CO2/H2, (c) CO2/N2, (d) CH4/H2, (e) CH4/N2, and (f) H2/N2 mixtures in CHA 

zeolite at 300 K, plotted as a function of the adsorption potential, /A RT  . Also plotted (using 

open symbols) are the corresponding values of the unary permeabilities. 
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Figure S25. CBMC/MD simulations of the permeabilities, i , of (a) CO2, (b) CH4,  (c) H2,  and (d) 

N2 in different equimolar (q1=q2) binary mixtures in CHA zeolite at 300 K, plotted as a function of the 

adsorption potential, /A RT  . Also plotted (using open symbols) are the corresponding values of 

the unary permeabilities.  
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Figure S26. MD simulations of the self-diffusivities, ,i selfD , of components in equimolar (q1=q2) 

binary (a) CO2/CH4, (b) CO2/H2, and (c) CO2/N2 mixtures in DDR zeolite at 300 K, plotted as a function 

of the adsorption potential, /A RT  . Also plotted (using open symbols) are the corresponding 

values of the unary self-diffusivities. 
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Figure S27. CBMC/MD simulations of the permeabilities, i , of components in equimolar (q1=q2) 

binary (a) CO2/CH4, (b) CO2/H2, and (c) CO2/N2 mixtures in DDR zeolite at 300 K, plotted as a function 

of the adsorption potential, /A RT  . Also plotted (using open symbols) are the corresponding 

values of the unary permeabilities. 

  

Adsorption potential, /  mol kg-1

0.1 1 10

P
er

m
ea

bi
lit

y,
 

i /
 1

0-1
2
 m

ol
 m

 m
-2

 s
-1

 P
a-1

10-5

10-4

10-3

10-2

10-1

100

101

102

Unary CO2

CO2 in CO2/CH4 mixture

CH4 in CO2/CH4  mixture

unary CH4

DDR; 300 K;
MD; CO2/CH4

Adsorption potential, /  mol kg-1

0.1 1 10
P

er
m

ea
bi

lit
y,

 
i /

 1
0-1

2
 m

ol
 m

 m
-2

 s
-1

 P
a-1

10-1

100

101

102

unary H2

CO2 in CO2/H2  mixture

H2 in CO2/H2  mixture

unary CO2

DDR; 300 K;
MD; CO2/H2

Adsorption potential, /  mol kg-1

0.1 1 10

P
er

m
ea

bi
lit

y,
 

i /
 1

0-1
2
 m

ol
 m

 m
-2

 s
-1

 P
a-1

10-2

10-1

100

101

102

unary N2

CO2 in CO2/N2  mixture

N2 in CO2/N2  mixture

unary CO2

DDR; 300 K;
MD; CO2/N2

a b c



Permeation of Binary Mixtures in Microporous Materials 
   

S72 
 

 

 

Figure S28. CBMC/MD simulations of the permeabilities, i , of (a) CO2, (b) CH4,  (c) H2,  and (d) 

N2 in different equimolar (q1=q2) binary mixtures in DDR zeolite at 300 K, plotted as a function of the 

adsorption potential, /A RT  . Also plotted (using open symbols) are the corresponding values of 

the unary permeabilities. 
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Figure S29. MD simulations of the self-diffusivities, ,i selfD , of components in equimolar (q1=q2) 

binary (a) CO2/CH4, and (b) CH4/H2 mixtures in ZIF-8 at 300 K, plotted as a function of the adsorption 

potential, /A RT  . Also plotted (using open symbols) are the corresponding values of the unary 

self-diffusivities. 
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Figure S30. CBMC/MD simulations of the permeabilities, i , of components in equimolar (q1=q2) 

binary (a) CO2/CH4, and (b) CH4/H2 mixtures in ZIF-8 at 300 K, plotted as a function of the adsorption 

potential, /A RT  . Also plotted (using open symbols) are the corresponding values of the unary 

permeabilities. 
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Figure S31. CBMC/MD simulations of the permeabilities, i , of (a) CO2, (b) CH4, and (c) H2 in 

different equimolar (q1=q2) binary mixtures in ZIF-8 at 300 K, plotted as a function of the adsorption 

potential, /A RT  . Also plotted (using open symbols) are the corresponding values of the unary 

permeabilities. 
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Figure S32. MD simulations of the self-diffusivities, ,i selfD , of components in equimolar (q1=q2) 

binary (a) CO2/CH4,  (b) CO2/H2,  (c) Ar/H2,  (d) CH4/H2,  and (e) CH4/C2H6  mixtures in BTP-COF at 

300 K, plotted as a function of the adsorption potential, /A RT  . Also plotted (using open 

symbols) are the corresponding values of the unary self-diffusivities. 
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Figure S33. CBMC/MD simulations of the permeabilities, i , of components in equimolar (q1=q2) 

binary (a) CO2/CH4,  (b) CO2/H2,  (c) Ar/H2,  (d) CH4/H2,  and (e) CH4/C2H6  mixtures in BTP-COF at 

300 K, plotted as a function of the adsorption potential, /A RT  . Also plotted (using open 

symbols) are the corresponding values of the unary permeabilities. 
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Figure S34. CBMC/MD simulations of the permeabilities, i , of (a) CO2, (b) CH4,  (c) H2,  and (d) 

Ar in different equimolar (q1=q2) binary mixtures in BTP-COF at 300 K, plotted as a function of the 

adsorption potential, /A RT  . Also plotted (using open symbols) are the corresponding values of 

the unary permeabilities.  
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Figure S35. MD simulations of the self-diffusivities, ,i selfD , of components in equimolar (q1=q2) 

binary (a) CO2/CH4,  (b) CO2/H2,  (c) CO2/N2,  and (d) CH4/H2  mixtures in MgMOF-74 at 300 K, 

plotted as a function of the adsorption potential, /A RT  . Also plotted (using open symbols) are 

the corresponding values of the unary self-diffusivities. 
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Figure S36. MD simulations of the self-diffusivities, ,i selfD , of components in binary (a) CO2/CH4,  

(b) CO2/H2,  (c) CO2/N2,  and (d) CH4/H2  mixtures in MgMOF-74 at 300 K, plotted as a function of the 

adsorbed phase composition, x1. The total loading 1 2tq q q   in these mixtures is held constant and the 

mole fraction of the adsorbed phase is varied.  
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Figure S37. CBMC/MD simulations of the permeabilities, i , of components in equimolar (q1=q2) 

binary (a) CO2/CH4,  (b) CO2/H2,  (c) CO2/N2,  and (d) CH4/H2  mixtures in MgMOF-74 at 300 K, 

plotted as a function of the adsorption potential, /A RT  . Also plotted (using open symbols) are 

the corresponding values of the unary permeabilities. 
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Figure S38. CBMC/MD simulations of the permeabilities, i , of (a) CO2, (b) CH4,  (c) H2,  and (d) 

N2 in different equimolar (q1=q2) binary mixtures in MgMOF-74 at 300 K, plotted as a function of the 

adsorption potential, /A RT  . Also plotted (using open symbols) are the corresponding values of 

the unary permeabilities. 
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Figure S39. CBMC/MD simulations of the permeabilities, i , of components in binary (a) CO2/CH4,  

(b) CO2/H2,  (c) CO2/N2,  and (d) CH4/H2  mixtures in MgMOF-74 at 300 K, plotted as a function of the  

adsorbed phase composition, x1. The total loading 1 2tq q q   in these mixtures is held constant and the 

mole fraction of the adsorbed phase is varied.  
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Figure S40. MD simulations of the self-diffusivities, ,i selfD , of components in equimolar (q1=q2) 

binary (a) CO2/CH4, (b) CO2/H2, and(c) CH4/H2 mixtures in all-silica FAU zeolite at 300 K, plotted as a 

function of the adsorption potential, /A RT  . Also plotted (using open symbols) are the 

corresponding values of the unary self-diffusivities. 
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Figure S41. CBMC/MD simulations of the permeabilities, i , of components in equimolar (q1=q2) 

binary (a) CO2/CH4, (b) CO2/H2, and(c) CH4/H2 mixtures in all-silica FAU zeolite at 300 K, plotted as a 

function of the adsorption potential, /A RT  . Also plotted (using open symbols) are the 

corresponding values of the unary permeabilities. 
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Figure S42. CBMC/MD simulations of the permeabilities, i , of (a) CO2, (b) CH4, and (c) H2 in 

different equimolar (q1=q2) binary mixtures all-silica FAU zeolite at 300 K, plotted as a function of the 

adsorption potential, /A RT  . Also plotted (using open symbols) are the corresponding values of 

the unary permeabilities. 
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Figure S43. MD simulations of the self-diffusivities, ,i selfD , of components in equimolar (q1=q2) 

binary (a) CO2/CH4, (b) CO2/H2, and(c) CH4/H2 mixtures in NaY zeolite at 300 K, plotted as a function 

of the adsorption potential, /A RT  . Also plotted (using open symbols) are the corresponding 

values of the unary self-diffusivities. 
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Figure S44. CBMC/MD simulations of the permeabilities, i , of components in equimolar (q1=q2) 

binary (a) CO2/CH4, (b) CO2/H2, and(c) CH4/H2 mixtures mixtures in NaY zeolite at 300 K, plotted as a 

function of the adsorption potential, /A RT  . Also plotted (using open symbols) are the 

corresponding values of the unary permeabilities. 
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Figure S45. CBMC/MD simulations of the permeabilities, i , of (a) CO2, (b) CH4, and (c) H2 in 

different equimolar (q1=q2) binary mixtures NaY zeolite at 300 K, plotted as a function of the adsorption 

potential, /A RT  . Also plotted (using open symbols) are the corresponding values of the unary 

permeabilities. 
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Figure S46. MD simulations of the self-diffusivities, ,i selfD , of components in equimolar (q1=q2) 

binary (a) CO2/CH4, (b) CO2/H2, (c) CO2/N2 , and (d) CH4/H2 mixtures  in NaX zeolite at 300 K, plotted 

as a function of the adsorption potential, /A RT  . Also plotted (using open symbols) are the 

corresponding values of the unary self-diffusivities. 
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Figure S47. CBMC/MD simulations of the permeabilities, i , of components in equimolar (q1=q2) 

binary (a) CO2/CH4, (b) CO2/H2, (c) CO2/N2 , and (d) CH4/H2 mixtures  in NaX zeolite at 300 K, plotted 

as a function of the adsorption potential, /A RT  . Also plotted (using open symbols) are the 

corresponding values of the unary permeabilities. 
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Figure S48. CBMC/MD simulations of the permeabilities, i , of (a) CO2, (b) CH4,  (c) H2,  and (d) 

N2 in different equimolar (q1=q2) binary mixtures NaX zeolite at 300 K, plotted as a function of the 

adsorption potential, /A RT  . Also plotted (using open symbols) are the corresponding values of 

the unary permeabilities. 
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Figure S49. MD simulations of the self-diffusivities, ,i selfD , of components in equimolar (q1=q2) 

binary (a) CO2/CH4,  (b) CO2/H2,  (c) CO2/N2, (d) CH4/H2  (e) CH4/C2H6, and (f)  CH4/C3H8 mixtures in 

MFI zeolite at 300 K, plotted as a function of the adsorption potential, /A RT  . Also plotted (using 

open symbols) are the corresponding values of the unary self-diffusivities. 
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Figure S50. MD simulations of the self-diffusivities, ,i selfD , of components in binary CO2/CH4 

mixtures in MFI at 300 K, plotted as a function of the adsorbed phase composition, x1. The total loading 

1 2tq q q   in this mixture is held constant and the mole fraction of the adsorbed phase is varied.  
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Figure S51. CBMC/MD simulations of the permeabilities, i , of components in equimolar (q1=q2) 

binary (a) CO2/CH4,  (b) CO2/H2,  (c) CO2/N2, (d) CH4/H2  (e) CH4/C2H6, and (f)  CH4/C3H8 mixtures in 

MFI zeolite at 300 K, plotted as a function of the adsorption potential, /A RT  . Also plotted (using 

open symbols) are the corresponding values of the unary permeabilities. 

  

Adsorption potential, /  mol kg-1

0.1 1 10

P
er

m
ea

bi
lit

y,
 

i /
 1

0-1
2
 m

ol
 m

 m
-2

 s
-1

 P
a-1

0.01

0.1

1

10

100

Unary CO2

CO2 in CO2/CH4 mixture

CH4 in CO2/CH4  mixture

unary CH4

MFI; 300 K;
MD; CO2/CH4

Adsorption potential, /  mol kg-1

0.1 1 10
P

er
m

ea
bi

lit
y,

 
i /

 1
0-1

2
 m

ol
 m

 m
-2

 s
-1

 P
a-1

0.1

1

10

100

unary H2

CO2 in CO2/H2  mixture

H2 in CO2/H2  mixture

unary CO2

MFI; 300 K;
MD; CO2/H2

Adsorption potential, /  mol kg-1

0.1 1 10

P
er

m
ea

bi
lit

y,
 

i /
 1

0-1
2
 m

ol
 m

 m
-2

 s
-1

 P
a-1

0.01

0.1

1

10

100

unary N2

CO2 in CO2/N2  mixture

N2 in CO2/N2  mixture

unary CO2

Adsorption potential, /  mol kg-1

0.1 1 10

P
er

m
ea

bi
lit

y,
 

i /
 1

0-1
2
 m

ol
 m

 m
-2

 s
-1

 P
a-1

0.1

1

10

100

Unary H2

H2 in CH4/H2 mixture

CH4 in CH4/H2 mixture

Unary CH4 

a b

d

c

MFI; 300 K;
MD; CO2/N2

MFI; 300 K;
MD; CH4/H2

Adsorption potential, /  mol kg-1

0.1 1 10

P
er

m
ea

bi
lit

y,
 

i /
 1

0-1
2
 m

ol
 m

 m
-2

 s
-1

 P
a-1

10-2

10-1

100

101

102

103

Unary C2H6

C2H6 in CH4/C2H6 mixture

CH4 in CH4/C2H6 mixture

Unary CH4 

e

MFI; 300 K;
MD; CH4/C2H6

Adsorption potential, /  mol kg-1

0.1 1 10

P
er

m
ea

bi
lit

y,
 

i /
 1

0-1
2
 m

ol
 m

 m
-2

 s
-1

 P
a-1

10-2

10-1

100

101

102

103

104

Unary C3H8

C3H8 in CH4/C3H8 mixture

CH4 in CH4/C3H8 mixture

Unary CH4 

f

MFI; 300 K;
MD; CH4/C3H8



Permeation of Binary Mixtures in Microporous Materials 
   

S96 
 

 

 

Figure S52. CBMC/MD simulations of the permeabilities, i , of (a) CO2, (b) CH4,  (c) H2,  and (d) 

N2 in different equimolar (q1=q2) binary mixtures in MFI zeolite at 300 K, plotted as a function of the 

adsorption potential, /A RT  . Also plotted (using open symbols) are the corresponding values of 

the unary permeabilities. 
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Figure S53. CBMC/MD simulations of the permeabilities, i , of components in binary CO2/CH4 

mixtures in MFI at 300 K, plotted as a function of the adsorbed phase composition, x1. The total loading 

1 2tq q q   in these mixtures is held constant and the mole fraction of the adsorbed phase is varied. 
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10 Comparison of Membrane Permeation Selectivities   

10.1 CBMC simulation campaigns  

CBMC simulation campaigns for adsorption of three different binary mixtures (CO2/CH4, CO2/N2, 

CO2/H2) was undertaken in all-silica zeolites (CHA, DDR, FAU, MFI), cation-exchanged zeolites 

(NaY, NaX), MgMOF-74, BTP-COF and ZIF-8 at a temperature T = 300 K. In the campaigns, the bulk 

fluid phase composition held constant at 1
1

1 2

f
y

f f



, and the bulk fluid phase fugacity 1 2tf f f   was 

varied over a wide range from the Henry regime of adsorption, 0; 0t

A
f

RT


    , to pore 

saturation conditions, typically 50
A

RT


   .   

10.2 Adsorption selectivity, Sads 

For binary mixtures consisting of components 1, and 2, the adsorption selectivity, Sads, is defined by  

1 2 1 2

1 2 1 2
ads

q q q q
S

f f y y
   (S48)

where q1 and q2 are the molar loadings of the components 1, and 2 in the adsorbed phase in equilibrium 

with a bulk gas phase mixture with mole fractions 1 2
1 2

1 2 1 2

;
f f

y y
f f f f

 
 

. In view of eqs (S12), and 

(S13), we may re-write eq (S14) as the ratio of the sorption pressures  

0
1 2 1 1 2

0
1 2 2 2 1

 
ads

q q x f P
S

f f x f P
    (S49)

Applying the restriction specified by eq (S8), it follows that adsS  is uniquely determined by the 

adsorption potential 
A

RT


  . 
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To demonstrate the Figure S54a shows CBMC simulation data of the adsorption selectivity, adsS , for 

CO2(1)/CH4(2) mixtures in CHA zeolite at 300 K;  the bulk gas phase mole fractions are maintained at 

1   0.5y  , or 1   0.15y   and adsS  is plotted as a function of the bulk gas mixture fugacity, 1 2  tf f f  . 

Figure S54b shows CBMC simulation data of  adsorption selectivity, adsS , for CO2(1)/CH4(2) mixtures 

in CHA zeolite at 300 K; the total bulk gas mixture fugacity is held constant, 6
1 2  10tf f f    Pa, and 

adsS  is plotted as a function of the bulk gas mixture of CO2(1), 1y .  In Figure S54c, all three data sets are 

plotted as function of the adsorption potential 
A

RT


  . It is noteworthy, that the CBMC simulated data 

for adsS  is uniquely determined by 
A

RT


  , as anticipated by the IAST. 

Also determined from the CBMC simulations is the separation potential, q , 

2
1 2

1

y
q q q

y
    (S50)

The separation potential represents that maximum amount of component 2 (less strongly adsorbed), 

that can be recovered during the adsorption cycle of fixed bed separations.63-65 

 

10.3 Permeation selectivity, Sperm 

The membrane permeation selectivity, Sperm, is defined as the ratio of the permeabilities 

1

2
permS





 (S51)

In view of eq (S46), we write 

1, 1 1

2, 2 2

self
perm ads diff

self

D q f
S S S

D q f
    (S52)
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In eq (S52), the diffusion selectivity 1,

2,

self
diff

self

D
S

D
  for each binary mixture is determined from the 

MD simulations reported in Chapter 9, Permeation of Binary Mixtures in Microporous Materials for the 

same binary mixture, determined at the same adsorption potential 
A

RT


  . 
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total bulk gas mixture fugacity is held constant, 6
1 2 10tf f f    Pa, and adsS  is plotted as a function 

of the bulk gas mole fraction of CO2(1), 1y . In (c) all three sets of data are plotted as function of the 

adsorption potential 
A

RT


  .  
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Figure S55. Comparison of (a) adsS , adsorption selectivity, (b) diffusion selectivity, 

1, 2,diff self selfS D D , (c) permeation selectivity, 1 2permS    , and (d) CO2 permeability, 1 , for 

CO2(1)/CH4(2) mixtures with 1
1

1 2

0.5
f

y
f f

 


 in all-silica zeolites (CHA, DDR, FAU, MFI), cation-

exchanged zeolites (NaY, NaX), MgMOF-74, BTP-COF and ZIF-8. 
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Figure S56. (a) Plot of adsS  vs 1, 2,diff self selfS D D , (b) Plot of q  vs CO2 uptake capacity, and (c) 

Plot of 1 2permS     vs CO2 permeability, 1 , for CO2(1)/CH4(2) mixtures with 1
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 in 

all-silica zeolites (CHA, DDR, FAU, MFI), cation-exchanged zeolites (NaY, NaX), MgMOF-74, and 

ZIF-8 at 1 2tf f f   = 1 MPa and temperature T = 300 K. 
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Figure S57. (a) Plot of adsS  vs 1, 2,diff self selfS D D , (b) Plot of q  vs CO2 uptake capacity, and (c) 

Plot of 1 2permS     vs CO2 permeability, 1 , for CO2(1)/N2(2) mixtures with 
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(NaY, NaX), MgMOF-74, and ZIF-8 at 1 2tf f f   = 1 MPa and temperature T = 300 K. 
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Figure S58. (a) Plot of adsS  vs 1, 2,diff self selfS D D , (b) Plot of q  vs CO2 uptake capacity, and (c) 

Plot of 1 2permS     vs CO2 permeability, 1 , for CO2(1)/H2(2) mixtures with 
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(NaY, NaX), MgMOF-74, and ZIF-8 at 1 2tf f f   = 1 MPa and temperature T = 300 K. 
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11 SAPO-34 membrane permeation 

SAPO-34 has the same structural topology as CHA zeolite, consisting of cages of volume 316 Å3, 

separated by 3.8 Å × 4.2 Å 8-ring windows.66-69  

For adsorption in SAPO-34, the model based on statistical thermodynamics described in Chapter 3 of 

Ruthven45 is particularly relevant and useful 
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 (S53)

In Equation (S53) qi represents the loading in mol kg-1, qi,sat is the saturation loading in mol kg-1, and 

i is maximum capacity expressed in molecules per cage. Based on the atomic composition of SAPO-

34 used in our experiments of Li et al.,70 (Si0.061Al0.483P0.455)O2, we calculate isatiq  369.1, . 

The unary isotherms fit parameters are provided in Table S12.  

The mixture adsorption equilibrium was determined using the IAST. 

Experimental data of Li et al.70-72 for component permeances for CO2/CH4, CO2/H2, CO2/N2,  CH4/H2, 

CH4/N2, CH4/Ar, and N2/H2 mixtures in SAPO-34 membrane at 295 K are compared to unary  

permeation data in Figure S59, Figure S60, Figure S61, Figure S62, Figure S63, Figure S64, Figure S65. 

The permeance data are plotted as function of upstream partial pressures, pi0.  

Experimental data of Li et al.70-72 for permeances of CO2, CH4, N2, and H2 determined for unary and 

equimolar binary mixture permeation across SAPO-34 membrane at 295 K are presented in Figure S66 

as function of the adsorption potential A RT , calculated at the upstream face of membrane.  
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11.1 List of Tables for SAPO-34 membrane permeation 

Table S12. Pure component isotherm fit data for guest species in SAPO-34, as tabulated in Li et al.70 

  

Molecule bi i qi,sat 

CO2 7.67×10-5 6 8.2 

CH4 5.87×10-6 6 8.2 

N2 1.26×10-6 6 8.2 

H2 2.84×10-7 9 12.3 

O2 1.2×10-6 6 8.2 

CO 2.31×10-6 6 8.2 

Ar 1.26×10-6 6 8.2 

 

 bi is expressed in Pa-1,i in molecules per cage, qi,sat in mol kg-1. 
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Figure S66. Re-analysis of the experimental data for permeances of (a) CO2, (b) CH4, (c) H2, and (d) 

N2 determined for unary and equimolar binary mixture permeation across SAPO-34 membrane at 295 

K. The data are plotted as function of the adsorption potential A RT   at the upstream face of the 

membrane. 
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12 Nomenclature 

Latin alphabet 

A  surface area per kg of framework, m2 kg-1 

A12, A21 Margules parameters, dimensionless 

bA  dual-Langmuir-Freundlich constant for species i at adsorption site A, Pa A   

bB  dual-Langmuir-Freundlich constant for species i at adsorption site B, Pa B   

C  constant used in eq (S35) and eq (S39), kg mol-1  

Di,self  self-diffusivity of species i, m2 s-1  

fi  partial fugacity of species i, Pa 

ft  total fugacity of bulk fluid mixture, Pa 

n number of species in the mixture, dimensionless 

Ni molar flux of species i with respect to framework, mol m-2 s-1 

pi  partial pressure of species i in mixture, Pa 

pt  total system pressure, Pa 

0
iP    sorption pressure, Pa 

qi  component molar loading of species i, mol kg-1 

qi,sat  molar loading of species i at saturation, mol kg-1 

qt  total molar loading in mixture, mol kg-1 

R  gas constant, 8.314 J mol-1 K-1  

Sads  adsorption selectivity, dimensionless 

Sdiff  diffusion selectivity, dimensionless 

Sperm  permeation selectivity, dimensionless 
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T  absolute temperature, K  

Vp  accessible pore volume, m3 kg-1  

xi   mole fraction of species i in adsorbed phase, dimensionless 

yi   mole fraction of species i in bulk gas phase, dimensionless 

 

Greek alphabet 

  thickness of membrane, m 

i  activity coefficient of component i in adsorbed phase, dimensionless 

ij  Wilson parameters, dimensionless 

i  molar chemical potential of component i, J mol-1 

    spreading pressure, N m-1 

  fractional occupancy, dimensionless 

i  loading of species i, molecules per unit cell 

i,sat  saturation loading of species i, molecules per unit cell 

t  total mixture loading, molecules per unit cage, or per unit cell 

  exponent in dual-Langmuir-Freundlich isotherm, dimensionless 

i   membrane permeability of species i, mol m m-2 s-1 Pa-1 

  framework density, kg m-3 

  adsorption potential, mol kg-1 

 

 

Subscripts 

1  referring to component 1 

2  referring to component 2 

i  referring to component i 
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t  referring to total mixture 

sat  referring to saturation conditions 

  referring to conditions at downstream face of membrane 
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