
To the Editor:

In the article ‘‘Diffusion Under Pore
Saturaton Conditions’’, Lettat et al.1

presents a model to describe mixture diffu-
sion in MFI zeolite under conditions of
pore saturation. As a motivation for devel-
oping their model they remark ‘‘the classi-
cal adsorbed-phase diffusion models based
on the Maxwell-Stefan (M-S) equation
cannot represent correctly multicomponent
diffusion close to saturation’’, citing a va-
riety of articles published prior to 2005.2–5

In this Letter, we take issue with this
remark. We also have reservations about
the modifications that they have introduced
in reformulating M-S equations, based on
their perceived shortcomings of our pub-
lished work in this area.

An important point of contention with
the approach taken by Lettat et al.1 concerns
the exchange coefficients -Dij defined in the
M-S equations 2–9
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where f represents the fractional pore vol-
ume of the microporous crystalline material,
and the concentrations ci are defined in
terms of moles per m3 of accessible pore
volume. The fluxes Ni are defined in terms
of the cross-sectional area of the micropo-
rous crystalline framework. The -Di charac-
terize species i - wall interactions in the
broadest sense. At the molecular level, the
-Dij reflect how the facility for transport of
species i correlates with that of species j.

The M-S equations2–9 can be rewritten
to evaluate the fluxes Ni explicitly by
defining a matrix (D)
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The elements Dij can be explicitly deter-
mined from information on the -Di, and -Dij.
In several articles published since 2005,5–14

we had used molecular dynamics (MD)
simulations for a wide variety of guest mol-
ecules in zeolites, metal organic frame-
works (MOFs), covalent organic framework
(COFs), zeolite imidazolate frameworks
(ZIFs), and carbon nanotubes (CNTs) to
show that the exchange coefficients -Dij
decrease with increasing concentrations ci.

In the limit of low-pore concentrations
ci ? 0, correlation effects are negligible,
i.e., -Dij ? 1, yielding

Dii ¼ �Di; Dijði 6¼ jÞ ¼ 0;

correlations negligible ð3Þ

The degree of correlations, defined by the
ratio -Di/-Dij is found to increase with
increasing ci.

5–14 This is a physically
rational result; correlation effects become
stronger because there are progressively
fewer vacant sites available for molecules to
jump to. At pore saturation conditions, we
should expect correlation effects to be at
their strongest.
For a scenario in which correlation

effects are considered to be dominant, i.e.
-Di/-Dij � 1, we had derived explicit
expressions for Dij in our article on Ons-
ager coefficients published in 2008.7 This
scenario yields the following expressions
for Dij
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For the special case of equimolar mixture
mixtures, with c1 c2 .. cn Eq. (4) simpli-
fies further to yield

Dii ¼ Dij; i; j ¼ 1; 2; . . . n;

correlations dominant; equimolar mixture

ð5Þ
All the elements of the matrix [D] are
equal to one another, and there is just one
characteristic diffusivity. This is an intui-
tively rational result; when correlations are
dominant, the differences in the diffusivities
get washed out. Contrary to the Lettat
claim, the correlations dominant scenario
offers the correct description of the mixture
diffusion behavior under pore saturation
conditions. It appears that Lettat et al.1 have
not taken due cognizance of the correlations
dominant scenario that was derived and dis-
cussed in three articles,7–9 all of which were
available for scrutiny before their article
was submitted to the AIChE J. The validity
of the expression (Eq. 4) under conditions
of pore saturation has been established with
the aid of MD simulations for an extremely
wide variety of guest molecules in a differ-
ent host structures.7–10 The correlations
dominant scenario is particularly relevant in
describing diffusion in microporous materi-
als used in CO2 capture processes.11

The approach taken by Lettat et al.1 in
developing their diffusion model for pore
saturation conditions is fundamentally dif-
ferent to the one we have adopted.7–10 A
key assumption they make is -Dij ? 1.
This assumption is not supported by the
extensive MD simulation data for binary
mixture diffusion of a variety of mixtures
in MFI zeolite, the main focus of their
attention.10 Coupling effects in the Lettat
model are entirely thermodynamic in
character. Their approach is fraught with
danger and will lead to erroneous results
and conclusions in a variety of situations.
Consider diffusion of a binary mixture of
tagged and untagged species, correspond-
ing to experiments on self-diffusivity in a
unary system. For self-diffusion, thermo-
dynamic nonideality effects are absent

and there is no thermodynamic coupling.
The M-S equations (1) can be used to
derive the following expression for the
self-diffusivity9
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As the loading increases correlation effects
become increasingly important because the
tagged species will have to return to
recently vacated sites and most molecular
jumps will be unsuccessful. The net result
is that the self-diffusivity Di,self will fall
progressively below -Di with increasing ci.
This is shown both experimentally15,16 and
by MD simulations.5–14 Because of their
assertion that, the application of the Lettat
model for this situation, will yield the con-
clusion Di,self

-Di not just for unary diffu-
sion, but also for the general case of n-
component diffusion. For diffusion of a
mixture of alkane isomers in MFI zeolite,
for example, their model will not be able
to explain why the self-diffusivity of the
linear isomer falls dramatically as the con-
centration of the branched isomer reaches
a value of 4 molecules per unit cell.16–18

It is worth pointing out that we have
applied the M-S equations with success to
describe the performance of fixed-bed cat-
alytic reactors for alkylation and ethylation
of benzene under conditions that approach
pore saturation.19,20

Notation

ci pore concentration of species i, mol m3

-Di M-S diffusivity of species i, m2 s1

-Dij M-S exchange coefficient, m2 s1

n number of components in mixture,
dimensionless

Ni molar flux of species i defined in terms
of the cross-sectional area of the crystal-
line framework, mol m2 s1

R gas constant, 8.314 J mol1 K1

T absolute temperature, K

Greek letters

Dij diffusivities defined by Eq. (2), m2 s1

f fractional pore volume of microporous
material, dimensionless

mi molar chemical potential, J mol1
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