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Increased system pressure or gas density changes the hy-
drodynamics in gas-liquid bubble columns. This has impor-
tant consequences for the design of bubble column reactors,
since the hydrodynamics at commercial operating conditions
can differ considerably from the situation in cold flow experi-
ments. Since empirical correlations have limited applicability,
it is of importance to understand the physics of the effect of
increased gas density, at least up to a point where still rea-
sonable predictions about the gas fraction can be made.

In this article we explain the effect of gas density on large-
bubble holdup by considering the effect of gas density on the
rise velocity of large bubbles. We apply the Kelvin-Helmholtz
theory to predict this influence on the large-bubble rise ve-
locity. The theoretical dependence derived from this theory
is checked by analyzing experimental gas-fraction data, ac-
quired in a 0.15-m-ID column at system pressures up to 1.3
MPa.

Kelvin-Helmholtz Instability
Ž .The Kelvin-Helmholtz theory, as described by Lamb 1959 ,

considers the propagation and growth of surface waves on
the interface between two fluid phases, considered here with-
out loss of generality to be gas and liquid phases. We con-
sider the case where the upper fluid is the liquid phase with
density r , and the lower fluid is the gas phase with densityl
r . The gas and liquid phases have velocities n and n , rela-g g l
tive to the interface. This configuration is representative for
the situation near the roof of a bubble, as Figure 1 shows:
close to the roof we have a near horizontal gas-liquid inter-
face with liquid as the upper fluid, and, due to the velocity of
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the bubble, there will be a relative velocity between the gas
Ž .and liquid phases. A complex disturbance h m with ampli-

Ž . Ž y1. Ž y1.tude a m , wave number k m and velocity c m ? s is
superimposed on the gas-liquid interface

hs aeiŽk ctyk x . 1Ž .

From conditions for continuity of pressure and velocity at
Ž .the interface, Lamb 1959 derived that

r y r r rg ksg l g l 22c s q y n yn 2Ž . Ž .g l2k r q r r q r r q rŽ .g l g l g l

Equation 2 relates the square of the velocity of the distur-
bance c to the density of the two phases and to their velocity
difference. If the square of the velocity c is negative, the so-

Figure 1. Interface between two fluids with different
density and velocity.
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lutions for c are complex and equal to " iA, where A is a
positive real number and A2 syc2. Substituting the solution

Ž .y iA in the original equation for the disturbance Eq. 1 , one
obtains

hs aeiŽyk i Atyk x .s aek Aty i k x 3Ž .

A real number appears in the exponent of the disturbance,
causing it to grow exponentially. In other words, when c2 in
Eq. 2 is negative, the interface is unstable for the disturbance
given by Eq. 1.

The square of the growth factor of the disturbance is k2A2

sy k2c2, where

r y r 3 r rk sg l g l 22 2 2k c s gk q y k n yn fŽ .g l2r q r r q r r q rŽ .g l g l g l

3 rk s g2 2gkq y k n 4Ž .rr rl l

Ž y1.and n m ? s is the relative velocity of the phases with re-r
spect to each other. The approximation is valid for r < r .g l

2 2 ŽFigure 2 shows k c as a function of the wavelength l s
.2prk of the disturbance for a water-nitrogen system at pres-

sures of 0.1 MPa, 1.0 MPa, and 2.0 MPa, respectively. The
wavelengths where k2c2 -0 are unstable. At these wave-
lengths, the square root of N k2c2 N is the growth factor of the
disturbance. In case of gas bubbles rising through a stagnant
liquid, the relative velocity between the interfaces n is obvi-r
ously close to the bubble rise velocity. As a first approxima-
tion, we therefore assume that the relative velocity in Eq. 4

Ž y1.is equal to the bubble rise velocity V m ? s . In Figure 2b
we took n s1 m ? sy1, which is a typical value for the large-r

Ž .bubble rise velocity Krishna and Ellenberger, 1996 .
One can observe that an increase in gas density increases

the range of unstable wavelengths as well as the magnitude
2 2 2 2'of k c and thus the growth factor y k c . The change of

the growth factors with changing gas density was also ob-
Ž .served by Wilkinson 1991 . It is interesting to note that the

effect of gas density is especially large in the range 0.01 m ? sy1

to 0.05 m ? sy1, which is the order of the size of the large
Ž .bubbles de Swart et al., 1996 .

Figure 2. Equation 4 for the nitrogen-water system.

One can also observe from Eq. 4 that the relative velocity
between the phases n influences the growth factors. We willr
now illustrate what happens with a gas bubble with velocity

y1 y3 ŽV s1 m ? s and gas density r s1.15 kg ?m correspond-b g
.ing to 0.1-MPa system pressure in a nitrogen-water system ,

y3 Žwhen the gas density changes to say 11.5 kg ?m corre-
.sponding to 1.0-MPa system pressure . From Figure 2, one

can observe that disturbances with wavelengths larger than
0.02 m are unstable. Therefore, we can expect that on the
surface of bubbles, larger than 0.02 m in diameter, distur-
bances with unstable wavelengths can occur. Large bubbles
are therefore not stable. They still exist, however, because
besides continuous breakup, there is also a continuous coa-

Ž .lescence of bubbles de Swart et al., 1996 . The net result of
these two opposing mechanisms is a dynamic equilibrium with
a corresponding equilibrium bubble size.

When the gas density increases to 11.5 kg ?my3, one can
observe from Figure 2 that the range of unstable wave-
lengths, as well as the magnitude of the growth factors, in-
creases. Therefore, the rate of breakup will increase. Since
increased system pressure has a negligible influence on bub-

Ž .ble coalescence Sagert and Quinn, 1976 , this will make the
dynamic equilibrium between breakup and coalescence shift
to smaller equilibrium bubble sizes. Together with the bubble
size, the bubble velocity will decrease. From Eq. 4, one ob-
serves that the decrease in bubble velocity will increase the
stability. We may expect that a new dynamic equilibrium is
reached when the bubble surface is marginally stable for the
same set of wavelengths and when the disturbance has the
same growth factors for the unstable wavelengths as in the
case with lower gas density.

Inversely, when the gas density is decreased, the range of
unstable wavelengths will decrease slightly, and the growth
factors of unstable wavelengths will be smaller. Therefore,
coalescence will be temporarily favored over breakup. This
will result in a larger bubble size and, therefore, a larger bub-
ble velocity, until a new equilibrium is reached.

In summary we can say that, although we do not know the
details of the breakup process of bubbles, we can deduce the
following from Eq. 4: two bubbles at densities r and rg1 g 2
will have the same spectrum of growth factors, if their rise
velocities, V and V , relate asb1 b2

r V 2 s r V 2 5Ž .g1 b1 g 2 b2

Therefore, using the Kelvin-Helmholtz theory we can predict
that

1
V A 6Ž .b

r' g

We shall test this conclusion by comparison with experi-
ments.

Experimental Studies
Figure 3 shows the experimental setup. A glass bubble col-

umn, 0.15 m in diameter and 1.2 m high, is located in a steel
vessel. The liquid phase is demineralized water, and nitrogen
is sparged into the reactor through a 0.1-m-diameter perfo-
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Figure 3. Experimental setup.

rated plate with 200 evenly distributed orifices, 0.5 mm in
diameter. This ensures an equal distribution of the gas over
the distributor area. The pressure in the vessel can be con-
trolled with a back-pressure reducer. Gas fractions are mea-
sured by means of an overflow vessel, or by means of a Vali-
dyne DP15 pressure sensor. Both methods agree well.

Results
Figure 4 shows gas fractions measured at different superfi-

cial gas velocities at system pressures ranging from 0.1 to 1.3
MPa. The effect of elevated system pressure is clearly observ-
able: the initial part of the gas holdup vs. gas velocity curve is
linear. This linear relation breaks down in the heterogeneous
regime. The departure from linearity is taken as the regime
transition. As illustrated in Figure 4, this transition shifts to
higher gas fractions and slightly higher gas velocities as the

Ž .system pressure increases Letzel et al., 1997 .
From Figure 4, one can furthermore observe that the slope

of the gas fraction curve in the heterogeneous regime in-
creases with increasing gas density. At these higher gas veloc-

Figure 4. Gas fraction as a function of superficial gas
velocity.

Figure 5. Bubble velocity at elevated vs. atmospheric
pressure as a function of gas density, com-

( )pared with the theoretical dependence Eq. 8 .

ities, the increase in gas fraction is caused only by the
‘‘large-bubble’’ phase, as was shown by Ellenberger and

Ž .Krishna 1994 .
It is assumed here that in the heterogeneous flow regime

the dense-phase gas fraction e and the superficial gas ve-d f
Ž y1.locity through the dense phase U m ? s are constant. Thed f

increase in gas velocity beyond U then results exclusively ind f
an increase in the large-bubble fraction, e se ye . Withb d f
this assumption, we can estimate the average large-bubble ve-
locity from the slope of the gas fraction curve, without the
need of estimating e . Since the slope is fairly constant atd f
gas velocities above 0.1 m ? sy1, we estimate one average
large-bubble velocity at each system pressure. If a is the slope
of the curve in the heterogeneous regime, one can write for
the average large-bubble velocity V .b

DU 1g
V f s 7Ž .b De a

The average large-bubble velocity is thus inversely propor-
tional to the slope of the gas fraction curve.

Figure 5 shows the relative change of the large-bubble ve-
locity with increasing system pressure. V is the averageb, atm

Žlarge-bubble velocity at atmospheric pressure r s1.15 kg ?g
y3. Ž .m . Also drawn in Figure 5 is the relation cf. Eq. 6

r'V atmb
s 8Ž .

V r'b , atm g

Since for r s r , we have V rV s1. A good agreementg atm b b, atm
between the experimentally determined bubble velocities and
Eq. 8 is found.

Conclusions
From the Kelvin-Helmholtz theory, it can be concluded that

the effect of increased gas density is that the surface of large
bubbles becomes unstable for a wider range of wavelengths,
and that the growth factors of the unstable surface waves in-
crease. In a dynamic equilibrium between bubble coalescence
and bubble breakup, the effect will be a shift of this equilib-
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rium towards smaller bubbles. If we assume that for a new
equilibrium the bubbles must be unstable for the same set of
wavelengths and have the same growth factors at unstable
wavelengths, we find that the velocity of the large bubbles
should be inversely proportional with the square root of the
gas density.

Large-bubble velocities were determined experimentally
from gas fraction measurements. The observed change of
bubble velocity with gas density agrees very well with the pre-

Ž .diction from Kelvin-Helmholtz theory Eqs. 6 and 8 .
This result provides strong evidence that the physical ex-

planation of the effect of pressure is correct; it will, there-
fore, prove helpful in predicting gas fractions in bubble col-
umn reactors operated at elevated pressures.

Notation
Assquare root of yc2, m ? sy1

g sgravity acceleration constant, m ? sy2

tstime, s
xshorizontal position on interface, m
lswavelength of disturbance, m

s ssurface tension, N ?my1
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