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ABSTRACT: As a new type of porous material, metal−organic frameworks (MOFs)
have been widely studied in gas adsorption and separation, especially in C2
hydrocarbons. Considering the stronger interaction between the unsaturated molecules
and the metal sites, and the smaller molecular size of unsaturated molecules, the usual
relationship of affinities and adsorption capacities among C2 hydrocarbons in most
common MOFs is C2H2 > C2H4 > C2H6. Herein, a unique microporous metal−organic
framework, NUM-7a (activated NUM-7), with a completely reversed adsorption
relationship for C2 hydrocarbons (C2H6 > C2H4 > C2H2) has been successfully
synthesized, which breaks the traditional concept of the adsorption relationship of
MOFs for C2 hydrocarbons. Based on this unique adsorption relationship, a green and
simple one-step separation purification for a large amount of C2H4 can be expected to
be achieved through the selective adsorption of C2H6. In addition, NUM-7a also shows
good selectivities in C2H2/CO2 and CO2/CH4.

KEYWORDS: metal−organic framework, microporous, C2 hydrocarbons, reversed adsorption relationships,
green and efficient one-step separation of C2H4 and C2H6

■ INTRODUCTION

Separation and purification of C2 hydrocarbons are very
valuable, the products of which are the most important
cornerstone of industrial production. C2 hydrocarbon separa-
tion products that are regarded as the blood of the industry,
with an annual output of hundreds of millions of tons,1 are
widely used in the further synthesis of various industrial
products, which are ubiquitous in human life, such as fibers,
plastics, rubber, and the likes.2 Therefore, such high annual
output is followed by an extremely high energy consumption
problem, which is usually required to achieve high-temperature
and high-pressure conditions for the separations of light
hydrocarbons with exceptionally similar physical and chemical
characteristics.1 Nowadays, with the increasingly serious
energy and environmental issues, energy conservation and
emission reduction in all fields urgently need more attention.
More efficient and energy-efficient separation methods need to
be found to replace the traditional high-energy cryogenic
rectification methods.
Metal−organic frameworks (MOFs), as a new type of

remarkable porous material with extremely high surface area,
structural tenability, linkers tailorability, and controllable
properties,3 have been widely used in pressure swing
adsorption (PSA), which is an efficient separation method
with simple operation, high product purity, and low energy
consumption.4 Especially in the separation of light hydro-
carbons, MOFs are considered to be a kind of green separation

material with great potential and bright prospects, which are
widely studied by many researchers.5−17 Up to now, many
types of MOFs have been reported to have good performance
in C2H4/C2H6

5,6,9,18−20 and C2H2/C2H4
5,7−9,13−15,21 separa-

tions. Typically, due to the stronger interaction between the
unsaturated molecules and the metal sites, and the smaller
molecule size of unsaturated molecules resulting in more
molecules being captured by the framework, the usual
relationship of affinities and adsorption capacities among C2
hydrocarbons in most common MOFs is C2H2 > C2H4 >
C2H6.

5,6 In the separation of C2H4/C2H6 mixture, which
accounts for the majority of C2 hydrocarbons separation with a
great energy consumption, because of the interaction relation-
ship of C2 hydrocarbons with frameworks, most MOFs
selectively adsorb C2H4 and then obtain a purified C2H4
product by further desorption and subsequent series of
steps.1 As a result, the process of C2H4 purification and
energy consumption still needs to be optimized. Fortunately,
some MOFs with partially reversed adsorption characteristics
(C2H6 > C2H4) have been reported in recent years, which can
directly obtain purified C2H4 by the selective adsorption of
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C2H6 through the reversed affinity and adsorption capacity of
the frameworks to the C2H6/C2H4 mixture.22−26 As a simple,
efficient, and green adsorbent, this type of MOFs with reversed
adsorption characteristics is in line with the current global
energy saving and emission reduction trend, so it is worth
exploring further.
Herein, inspired by the fascinating characteristics of selective

adsorption of alkane, we construct a microporous MOF,
NUM-7, with one-dimensional (1D) channels having com-
pletely reversed selectivity for C2 hydrocarbons through
selecting a tetra-carboxylate ligand. Unlike the traditional
impression of the interaction between MOFs and C2
hydrocarbons, NUM-7a (the activated NUM-7) exhibits a
unique and strong affinity for C2H6 with a completely reversed
relationship of affinities and adsorption capacities among C2
hydrocarbons (C2H6 > C2H4 > C2H2). Since the content of
C2H4 in the product obtained by C2H6 cracking can reach
several to several tens of times that of C2H6, the requirement
for adsorption capacity to obtain equal amount of purified
ethylene can be largely reduced for C2H6-selectivity MOFs,
which means that it is expected that two relatively contra-
dictory properties of high selectivity and high adsorption
capacity in C2H4-selectivity MOFs will be realized simulta-
neously by C2H6-selectivity MOFs. Based on the unique
reversed relationship of the adsorption capacities of the
framework for C2 hydrocarbons, a one-step greener purifica-
tion of C2H4 can be achieved through the selective adsorption
of C2H6 with the energy consumption decreasing by 40% in
industrial separation, which omitted the desorption process
compared to the MOFs with C2H4-selectivity.

22

■ EXPERIMENTAL SECTION
Materials and Methods. All of the reagents and solvents were

purchased from commercial suppliers and used without further
purification. Powder X-ray diffraction (PXRD) and variable temper-
ature powder X-ray diffraction (VT-PXRD) data were collected on a
Rigaku Miniflex 600 at 40 kV and 15 mA with a scan rate of 6.0°
min−1 using Cu Kα radiation in an air atmosphere (3° ≤ 2θ ≤ 60°).
Thermogravimetric analysis (TGA) studies were carried out on a
Rigaku standard thermogravimetry−differential thermal analysis
(TG−DTA) analyzer from room temperature to 800 °C under air
atmosphere with a heating rate of 10 °C min−1, using an empty and
clean Al2O3 crucible as a reference.
Synthesis of NUM-7. A mixture of MnCl2·4H2O (0.1 mmol,

0.020 g) and H4TCPE (0.01 mmol, 10 mg, H4TCPE = 4,4′,4″,4‴-
(ethene-1,1,2,2-tetrayl) tetrabenzoic acid) was dissolved by dime-
thylformamide (DMF) (1.5 mL), CH3CN (1 mL), and deionized
water (0.25 mL) in a 10 mL screw-capped glass vial, and then the
sealed vial was heated to 85 °C for 72 h, which was then cooled to
room temperature. The light yellow stick crystals obtained were

washed several times with DMF for single-crystal X-ray diffraction
analysis. Yield: about 93% based on H4TCPE.

Activation of NUM-7. The as-synthesized NUM-7 was washed
several times with DMF. Whereafter, fast and frequent guest solvents
are exchanged for 6 h using absolute methanol to replace the DMF
and CH3CN solvent molecules in the channels. After filtering, the
guest-exchanged NUM-7 was activated at 150 °C for 10 h under
vacuum conditions (less than 10−5 Torr), giving NUM-7a.

Gas Sorption Measurements. N2 adsorption−desorption
isotherms from 0 to 1 bar at 77 K with liquid nitrogen were
measured by a Micrometrics ASAP 2460 volumetric gas adsorption
analyzer. The measurements of gas adsorption of hydrocarbons from
273 to 313 K precisely controlled through a LAUDR RP890
recirculating control system with absolute ethyl alcohol were carried
out by a Micrometrics ASAP 2020M volumetric gas adsorption
analyzer.

Crystallography. The single-crystal X-ray diffraction data of
NUM-7 were collected on a Rigaku XtaLAB Pro MM007HF DW
diffractometer at 100 K with Cu Kα radiation (λ = 1.54184 Å) by scan
mode. The structure was solved and refined by the full-matrix least-
squares method through Olex2 software27 with the SHELXT28 and
SHELXL29 program, respectively. The details have been listed in
Table S1, and the crystallographic data have been deposited in the
Cambridge Crystallographic Data Center (CCDC number 1951489).
The CIF file can be obtained conveniently from the website: https://
www.ccdc.cam.ac.uk/structures.

■ RESULTS AND DISCUSSION
Single-Crystal X-ray Structure. The single crystals of

NUM-7 ([Mn2(TCPE)(DMF)(H2O)]·(DMF)(CH3CN))
were obtained using a simple and convenient one-pot
solvothermal reaction of manganese chloride tetrahydrate
(MnCl2·4H2O) and H4TCPE in a DMF/CH3CN mixture
solvent. Single-crystal X-ray diffraction revealed that NUM-7 is
in the clinorhombic crystal group with the P21/c space group
(more details of the crystal structure are shown in Table S1).
The asymmetric unit of NUM-7 contains one complete 4-
connected ligand (TCPE4−) (Figure 1a), two independent but
different hexacoordinated Mn(II) ions and two more solvent
molecules (a DMF molecule and an H2O molecule), which
coordinated with two Mn(II) ions, respectively (Figure S1).
Also, each pair of different hexacoordinated Mn(II) ions
construct a dual-core secondary building unit (SBU)
connected by three carboxyl groups (Figure 1b), with two
carboxyl groups adopting a bidentate bridging mode and one
adopting a bidentate 1,3-chelating mode. The repeated 6-
connected dual-core SBUs form the infinitely extendable Mn−
O chain SBU by sharing oxygen atoms from DMF molecules
and carboxyl groups, respectively. The overall three-dimen-
sional (3D) structure in a shape of a fence is constructed by
ligands and SBU chains, which has narrow approximated

Figure 1. X-ray single-crystal structure of NUM-7, indicating (a) the coordination model of each organic ligand TCPE4− and (b) the coordination
environments of Mn(II) ions in a binuclear manganese SBU; and (c) the three-dimensional framework with one-dimensional channels along b-axis.
Mn, O, and C are represented by blue, red and gray, respectively.
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rectangular 1D channels with a scale of about 4.7 × 7.8 Å2

along b-axis built by multiple rotatable phenyl rings.
Stabilities of NUM-7. The stabilities of NUM-7 were

demonstrated by PXRD and TGA. The PXRD patterns
indicate that NUM-7 can remain stable in most common
solvents (Figure S2). As shown in Figures S3 and S4, TGA and
VT-PXRD show that the structure of NUM-7 can be
maintained to at least 160 °C, and with the increase of
temperature, the framework changed and eventually collapsed
at about 400 °C. In addition, the crystalline feature of NUM-7
can also be maintained after removing the solvents in the pore
(Figure S5). It can be seen that NUM-7 has excellent stability,
which is vital for its subsequent applications in adsorption and
separation.
Reversed Gas Sorption Properties of NUM-7a. N2-gas

adsorption and desorption curves of NUM-7a at 77 K were
measured to assess the permanent porosity. As shown in Figure
S6, the fully reversible type I isotherm with a sharp uptake at
P/P0 < 0.05 reveals the microporous nature of NUM-7a. The
N2-gas physisorption reached a balanced plateau at P/P0 >
0.05, with a saturation uptake of 125.9 cm3 g−1. According to
the measured N2 adsorption results, the Brunauer−Emmett−
Teller (Langmuir) surface area of NUM-7a is 345 m2 g−1 (526
m2 g−1), and pore volume is 0.194 cm3 g−1, obtained by
calculation. The aperture of 1D channels in NUM-7a is about
3.42 Å, obtained by the Horvath−Kawazoe method (Figure
S7).
Exactly as the pre-expectation of the designed structure,

NUM-7a has 1D narrow channels with a faceted hole wall
made up of many phenyl rings, which portends that the
framework is expected to have a stronger host−guest
interaction with C2H6.

30−32 So, the C2 hydrocarbons single-
component adsorption isotherms of NUM-7a were measured
at 273, 298, and 313 K, respectively. The adsorption isotherms
of C2 hydrocarbons from 273 to 313 K with pressure up to 1

bar were investigated as shown in Figure 2. A peculiar whole
reversed adsorption phenomenon of C2 hydrocarbons was
observed, which broke our normal cognition about the
relationship among C2 hydrocarbons. At 273 K, although the
adsorption capacities at 1 bar of C2H6 (69.5 cm3 g−1), C2H4

(69.3 cm3 g−1), and C2H2 (67.0 cm
3 g−1) are abnormally close,

a steeper rising trend in the type I curve of C2H6 compared to
C2H4 and C2H2 can be observed from 0 to 0.2 bar in Figure
2a−c, which indicates that C2H6 has a stronger host−guest
interaction with NUM-7a. As the temperature increases, this
unique reversed adsorption phenomenon is amplified. At 298
K, the adsorption capacity of C2H6 (63.9 cm3 g−1) is
significantly higher than that of C2H4 (58.6 cm3 g−1) and
C2H2 (55.5 cm3 g−1) while maintaining a steeper curve rising
trend of C2H6 than C2H4 and C2H2 in the low-pressure region.
As the temperature rises further to 313 K, the relationship
between the adsorption curves remains consistent with that at
298 K despite a slight decrease in adsorption capacities of
C2H6 (58.1 cm3 g−1), C2H4 (52.1 cm3 g−1), and C2H2 (49.4
cm3 g−1). In general, as the temperature increases, the
saturated adsorption capacity of each component decreases,
but the difference between the three components is gradually
amplified, as shown in Figure 2d. Comparison of some other
gases adsorption curves, as shown in Figures S8−S11, NUM-
7a exhibits significant differences in its adsorption capacities
for C2H2, CO2, and CH4. For C2H2 and CO2, the difference in
adsorption curves is very obvious in the low-pressure region.
The curve of C2H2 is significantly steeper than that of CO2,
and about 75% of the adsorption capacity is filled in 0−0.1 bar,
which indicates that C2H2 has a stronger interaction with the
framework than CO2. Also, for CO2 and CH4, the CO2

adsorption capacity is more than double that of CH4, and
the curve of CH4 rises very gently with increasing pressure,
which shows a weak affinity between CH4 and framework.

Figure 2. Single-component adsorption isotherms for C2H6 (red), C2H4 (blue), and C2H2 (green) for NUM-7a at (a) 273 K, (b) 298 K, and (c)
313 K. (d) Trends of adsorption capacities of C2H6, C2H4, and C2H2 with the change of temperature.
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Considering the above factors, NUM-7a has potential in the
separation of C2H2/CO2 and CO2/CH4.
Considering the above uncommon phenomena, the cover-

age-dependent adsorption enthalpies (Qst) of NUM-7a for
C2H6, C2H4, and C2H2 were evaluated experimentally from
single-component isotherms by the implementation of a virial
equation (Figures 3 and S12−S14). The resultant Qst

relationship at zero coverage among C2H6 (35.8 kJ mol−1),
C2H4 (30.0 kJ mol−1), and C2H2 (29.3 kJ mol−1) is indeed in
good agreement with the unique reversed adsorption
phenomenon previously seen. Moreover, with the increase of
coverage, the interaction between C2H4 and the framework
gradually decreases, and the adsorption enthalpy shows a slight
downward trend. However, due to the interaction between
guest molecules, the adsorption enthalpy of C2H6 shows an
upward trend with the increase in adsorption amount. The
difference in affinity between C2H6/C2H4 and NUM-7a is
amplified due to the above changes in adsorption enthalpies,
which is advantageous for the challenging and rewarding
C2H6/C2H4 separation.
To structurally understand this kind of reversed strength of

host−guest interactions, the distribution of C2 hydrocarbons
molecules in NUM-7a at 298 K and 1 bar had been confirmed
by grand canonical Monte Carlo (GCMC) simulation.33,34

The calculation results indicated that the host−guest
interaction strength relationship between C2 hydrocarbons
and the framework is indeed C2H6 > C2H4 > C2H2 (Figures 4
and S15−S18). Also, the reason why the C2 hydrocarbons can
have such a strong force with the framework is that the

existence of C−H···O and C−H···π interactions between
guests and hosts. As shown in Figure 4a, C2H6 molecule has
the largest size and the most complex 3D configuration in C2
hydrocarbons, and it can interact more strongly with the
microporous channel walls through C−H···O (H···O2, 2.50 Å
< 2.72 Å, the sum of van der Waals radii of oxygen (1.52 Å)
and hydrogen (1.20 Å) atoms) and C−H···π (H···π, 2.84−3.68
Å) interactions. Due to the planar configuration of C2H4 and
the smaller molecular size, fewer hydrogen atoms can only
form weaker interactions with the surrounding oxygen and
benzene rings (C−H···O2, 2.56 Å < 2.72 Å, C−H···π, 3.07−
4.05 Å), as shown in Figure 4b. In view of the above results,
the linear C2H2 molecule and the framework obviously have
the weakest interaction, even the smallest C−H···O (H···O4,
2.77 Å) distance exceeded the sum of the van der Waals radii
of hydrogen and oxygen atoms, and the weak C−H···π (H···π,
3.59−4.60 Å) interaction becomes weaker than that of C2H6
and C2H4. According to the above calculation results, it is
precisely because of the difference in molecular size and spatial
configuration that the molecule, which has more hydrogen
atoms and large size, can form stronger interactions with the
channel walls, resulting in the formation of a complete reversed
affinity for the C2 hydrocarbons.

Evaluation of Separation Performance. Based on this
unique affinity reversed relationship of NUM-7a, the
adsorption selectivity of binary mixtures C2H6/C2H4 in ratios
of 50/50 (v/v) and 10/90 (v/v) at 298 K (Figure 5) and some

other binary mixture gases (Figures S19−S27) were evaluated
by ideal adsorbed solution theory (IAST). The estimated

Figure 3. Qst relationship of C2H6 (red), C2H4 (blue), and C2H2
(green) adsorption for NUM-7a estimated from virial expression fits
at 298 and 313 K.

Figure 4. Results of the GCMC simulations, showing the adsorption sites for (a) C2H6, (b) C2H4, and (c) C2H2 in NUM-7a. The serial numbers of
the benzene rings are determined according to the distance from benzene rings to the hydrogen atom on the guest molecules, and the distance of
gray benzene rings to the nearest guest molecules is over 4.00 Å.

Figure 5. IAST selectivities of C2H6/C2H4 mixtures (50/50 and 10/
90, v/v) for NUM-7a at 298 K.
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selectivities of NUM-7a for C2H6/C2H4 at 298 K and 1 bar are
1.764 and 1.757 in 50/50 and 10/90, respectively. Among the
reported MOFs, the selectivity of NUM-7a at 298 K and 1 bar
in 50/50 is higher than that of most C2H6-selectivity MOFs,
which is higher than that of ZJU-30 (1.7),36 ZIF-7 (1.5),37

UTSA-33 (1.4),38 and so forth (Table S3),24,30,32,35,39,40 but
lower than that of Fe(O2)dobdc (4.25),22 Cu(Qc)2 (3.4),41

and MUF-15 (1.95).25 The selectivities of C2H2/CO2 and
CO2/CH4 are as shown in Figures S26 and S27.
Building on above results, the separation performance of

NUM-7a for C2H6/C2H4 (50/50 and 10/90) has been
evaluated through breakthrough simulation experiment at
298 K. The transient breakthrough simulations show the
concentrations of C2H6/C2H4 exiting the adsorber packed with
NUM-7a as a function of the dimensionless time, τ (Figure 6).
The breakthrough simulations demonstrate the potential of
producing nearly pure product gas C2H4 during the time
interval Δτ for both 50/50 and 10/90 C2H6/C2H4 mixtures,
which indicates that NUM-7a has potential application in the
challenging separation of C2H6/C2H4 in practice.

■ CONCLUSIONS
We have developed a new microporous MOF (NUM-7a)
showing a stronger affinity for C2H6 among C2 hydrocarbons
by selecting a small multibenzene ring ligand. NUM-7a
exhibits an infrequent completely reversed adsorption relation-
ship for C2 hydrocarbons (C2H6 > C2H4 > C2H2) at the same
condition, which breaks the traditional concept of adsorption
relationship of MOFs for C2 hydrocarbons. Based on this
reversed adsorption phenomenon, the potential of NUM-7a in
the separation of C2H6/C2H4 had been studied. The results
demonstrated that C2H4 is expected to be directly and
efficiently purified by a one-step green process through
C2H6-selectivity NUM-7a.
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Supramolecular Binding and Separation of Hydrocarbons within a
Functionalized Porous Metal-Organic Framework. Nat. Chem. 2015,
7, 121−129.
(7) Hu, T.-L.; Wang, H.; Li, B.; Krishna, R.; Wu, H.; Zhou, W.;
Zhao, Y.; Han, Y.; Wang, X.; Zhu, W.; Yao, Z.; Xiang, S.; Chen, B.
Microporous Metal-Organic Framework with Dual Functionalities for
Highly Efficient Removal of Acetylene from Ethylene/Acetylene
Mixtures. Nat. Commun. 2015, 6, No. 7328.
(8) Peng, Y.-L.; Pham, T.; Li, P.; Wang, T.; Chen, Y.; Chen, K.-J.;
Forrest, K. A.; Space, B.; Cheng, P.; Zaworotko, M. J.; Zhang, Z.
Robust Ultramicroporous Metal-Organic Frameworks with Bench-
mark Affinity for Acetylene. Angew. Chem., Int. Ed. 2018, 57, 10971−
10975.
(9) Li, L. Y.; Guo, L. D.; Pu, S. Y.; Wang, J. W.; Yang, Q. W.; Zhang,
Z. G.; Yang, Y. W.; Ren, Q. L.; Alnemrat, S.; Bao, Z. B. A Calcium-
Based Microporous Metal-Organic Framework for Efficient Adsorp-
tion Separation of Light Hydrocarbons. Chem. Eng. J. 2019, 358,
446−455.
(10) Moreau, F.; da Silva, I.; Al Smail, N. H.; Easun, T. L.; Savage,
M.; Godfrey, H. G. W.; Parker, S. F.; Manuel, P.; Yang, S.; Schröder,
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Grand Canonical Monte Carlo (GCMC) Simulations

The Grand Canonical Monte Carlo (GCMC) simulations were performed for C2H6, 

C2H4 and C2H2 adsorption on NUM-7a. The framework of NUM-7a and gas molecules 

were both treated as rigid bodies. The beneficial adsorption sites were simulated by the 

fixed loading task and Metropolis method at 298 K and 1 bar. The loading steps, 

equilibration steps and the production steps were all set to 2.0 × 107. The 

saturation/maximum uptakes were modeled at 298 K using the fixed pressure task with 

1.0 × 105 equilibration steps, followed by 2.0 × 107 production steps for calculating the 

ensemble averages. The gas–framework interaction and the gas–gas interaction were 

described by the standard universal force field (UFF). The atomic partial charges of the 

framework were used for Qeq method, the guest gas molecules were optimized using 

the DMol3 method and adopted the B3LYP fitted charge. The cut-off radius used for 

the Lennard–Jones interactions is 18.5 Å.1,2

Fitting of pure component isotherms

The isotherm data for C2H6, C2H4, CO2 and CH4 in NUM-7a, measured at 298 K, 

were fitted with the Dual-site Langmuir model.
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IAST calculations of adsorption selectivities, and uptake capacities

In order to determine the C2H6/C2H4, C2H2/CO2 and CO2/CH4 separation potential of 

NUM-7a, IAST calculations of 50/50 and 10/90 mixture adsorption at 298 K were 

performed by 
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Breakthrough simulations

The performance of industrial fixed bed adsorber is dictated by a combination of 

adsorption selectivity and uptake capacity. Transient breakthrough simulations were 

carried out for 50/50 and 10/90 C2H6/C2H4 mixtures in NUM-7a operating at a total 

pressure of 100 kPa and 298 K, using the methodology described in earlier 

publications.3-6 For the breakthrough simulations, the following parameter values were 

used: length of packed bed, L = 0.3 m; voidage of packed bed,  = 0.4; superficial gas 

velocity at inlet, u = 0.04 m s-1. 

Notation

b Langmuir-Freundlich constant, Pa-

q component molar loading of species i, mol kg-1

qsat saturation loading, mol kg-1

L length of packed bed adsorber, m

t time, s 

T absolute temperature, K 

u superficial gas velocity in packed bed, m s-1

Greek letters

 voidage of packed bed, dimensionless

ν Freundlich exponent, dimensionless

 time, dimensionless



Table S1. Crystal data and structure refinement parameters for NUM-7.

  NUM-7
Formula C38H35Mn2N3O11

Mr (g mol-1) 819.57
Space group P21/c
Crystal system Monoclinic
a (Å) 11.6212(1)

b (Å) 13.0997(2)

c (Å) 25.0298(3)

β(°) 97.156(1)

V (Å3) 3780.71(8)

Z 4

F(000) 1688.0

Dc (gcm-3) 1.440

μ (mm-1) 5.978
GOF on F2 1.055

R1, wR2 [I>2σ(I)]a 0.0461, 0.1305

R1, wR2 [all data]b 0.0503, 0.1305
a R1 =∑ ||Fo| - |Fc||/∑|Fo|. b wR2={∑[w(Fo

2 - Fc
2)2]/∑w(Fo

2)2}1/2

Table S2. Langmuir-Freundlich parameter fits for C2H4 and C2H6 in NUM-7a at 298 K.

qsat

mol kg-1

b

Pa-v
dimensionless

C2H4 3.1 8.07425E-05 0.96

C2H6 3.1 6.25788E-05 1.05



Table S3. IAST selectivity comparison of C2H6-selectivity MOFs.

298 K C2H6

adsorbed 
amount

298 K C2H4

adsorbed 
amount

(cm3 g-1) (1 bar) (cm3 g-1) (1 bar)

Selectivity
(50:50) (1 bar) Ref.

Fe(O2)dobdc 76 57 4.25 7

Cu(Qc)2 41 17 3.4 8

MUF-15 
(293 K)

105 93 1.95 9

PCN-250 116 94 1.9 10

PCN-245 73 54 1.8 11

NUM-7a 68 60 1.76 This work

ZJU-30 47 44 ＜1.7 12

ZIF-69 49 39 1.66 13

Ni(bdc)(ted)0.5 112 76 1.6 14

MIL-142-A 85 65 1.5 15

ZIF-7 41 40 1.5 16

UTSA-33 83 76 1.4 17

UTSA-35 54 48 1.4 18

Cu(ina)2 44 42 1.34 8



Figure S1. The asymmetric unit for NUM-7 (Hydrogen atoms were omitted.).

Figure S2. PXRD patterns for NUM-7 in some solvents for 1 day, showing the 

structural integrity.



Figure S3. TGA curves for NUM-7 and NUM-7a under air atmosphere.

Figure S4. VT-PXRD patterns of NUM-7 under air atmosphere.



Figure S5. PXRD patterns of NUM-7 showing that the structure still remains 

unchanged after activation at 150 °C under vacuum.

Figure S6. Volumetric N2 adsorption isotherm for NUM-7a at 77 K.



Figure S7. The pore size distribution for NUM-7a.

Figure S8. CO2, CH4 adsorption isotherms for NUM-7a at 273 K.



Figure S9. CO2, CH4 adsorption isotherms for NUM-7a at 298 K.

Figure S10. C2H2, CO2 adsorption isotherms for NUM-7a at 273 K.



Figure S11. C2H2, CO2 adsorption isotherms for NUM-7a at 298 K.

Figure S12. The details of virial equation (solid lines) fitting to the experimental C2H6 
adsorption data (symbols) for NUM-7a.



Figure S13. The details of virial equation (solid lines) fitting to the experimental C2H4 
adsorption data (symbols) for NUM-7a.

Figure S14. The details of virial equation (solid lines) fitting to the experimental C2H2 
adsorption data (symbols) for NUM-7a.



Figure S15. Isosteric heats of C2H6 C2H4 and C2H2.

Figure S16. Density distribution of C2H6 in NUM-7a.



Figure S17. Density distribution of C2H4 in NUM-7a.

Figure S18. Density distribution of C2H2 in NUM-7a.



Figure S19. C2H6 adsorption isotherm for NUM-7a (symbols) at 298 K and the virial 
equation fit (line) by Langmuir-Freundlich (L-F) model.

Figure S20. C2H4 adsorption isotherm for NUM-7a (symbols) at 298 K and the virial 
equation fit (line) by Langmuir-Freundlich (L-F) model.



Figure S21. C2H2 adsorption isotherm for NUM-7a (symbols) at 273 K and the virial 
equation fit (line) by Langmuir-Freundlich (L-F) model.

Figure S22. C2H2 adsorption isotherm for NUM-7a (symbols) at 298 K and the virial 
equation fit (line) by Langmuir-Freundlich (L-F) model. 



Figure S23. CO2 adsorption isotherm for NUM-7a (symbols) at 273 K and the virial 
equation fit (line) by Langmuir-Freundlich (L-F) model.

Figure S24. CO2 adsorption isotherm for NUM-7a (symbols) at 298 K and the virial 
equation fit (line) by Langmuir-Freundlich (L-F) model.



Figure S25. CH4 adsorption isotherm for NUM-7a (symbols) at 298 K and the virial 
equation fit (line) by Langmuir-Freundlich (L-F) model.

 

Figure S26. IAST selectivity of C2H2/CO2 (50/50) for NUM-7a.



Figure S27. IAST selectivity of CO2/CH4 (50/50 and 10/90) for NUM-7a at 298 K.
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