Microporous Metal−Organic Framework with a Completely Reversed Adsorption Relationship for C_2 Hydrocarbons at Room **Temperature**

[Fang-Zhou Sun,](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Fang-Zhou+Sun"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) [Shan-Qing Yang,](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Shan-Qing+Yang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) [Rajamani Krishna,](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Rajamani+Krishna"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) [Ying-Hui Zhang,](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ying-Hui+Zhang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) [Yu-Pei Xia,](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yu-Pei+Xia"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) [and Tong-Liang Hu](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Tong-Liang+Hu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf)[*](#page-4-0)

ABSTRACT: As a new type of porous material, metal−organic frameworks (MOFs) have been widely studied in gas adsorption and separation, especially in C_2 hydrocarbons. Considering the stronger interaction between the unsaturated molecules and the metal sites, and the smaller molecular size of unsaturated molecules, the usual relationship of affinities and adsorption capacities among C_2 hydrocarbons in most common MOFs is $C_2H_2 > C_2H_4 > C_2H_6$. Herein, a unique microporous metal–organic framework, NUM-7a (activated NUM-7), with a completely reversed adsorption relationship for C₂ hydrocarbons $(C_2H_6 > C_2H_4 > C_2H_2)$ has been successfully synthesized, which breaks the traditional concept of the adsorption relationship of MOFs for C_2 hydrocarbons. Based on this unique adsorption relationship, a green and simple one-step separation purification for a large amount of C_2H_4 can be expected to be achieved through the selective adsorption of C_2H_6 . In addition, NUM-7a also shows good selectivities in C_2H_2/CO_2 and CO_2/CH_4 .

KEYWORDS: metal–organic framework, microporous, C_2 hydrocarbons, reversed adsorption relationships, green and efficient one-step separation of C_2H_4 and C_2H_6

ENTRODUCTION

Separation and purification of C_2 hydrocarbons are very valuable, the products of which are the most important cornerstone of industrial production. C_2 hydrocarbon separation products that are regarded as the blood of the industry, with an annual output of hundreds of millions of tons, $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ are widely used in the further synthesis of various industrial products, which are ubiquitous in human life, such as fibers, plastics, rubber, and the likes. $²$ $²$ $²$ Therefore, such high annual</sup> output is followed by an extremely high energy consumption problem, which is usually required to achieve high-temperature and high-pressure conditions for the separations of light hydrocarbons with exceptionally similar physical and chemical characteristics.^{[1](#page-4-0)} Nowadays, with the increasingly serious energy and environmental issues, energy conservation and emission reduction in all fields urgently need more attention. More efficient and energy-efficient separation methods need to be found to replace the traditional high-energy cryogenic rectification methods.

Metal−organic frameworks (MOFs), as a new type of remarkable porous material with extremely high surface area, structural tenability, linkers tailorability, and controllable properties, 3 have been widely used in pressure swing adsorption (PSA), which is an efficient separation method with simple operation, high product purity, and low energy consumption[.4](#page-5-0) Especially in the separation of light hydrocarbons, MOFs are considered to be a kind of green separation

material with great potential and bright prospects, which are widely studied by many researchers. $5-17$ $5-17$ Up to now, many types of MOFs have been reported to have good performance in $C_2H_4/C_2H_6^{5,6,9,18-20}$ $C_2H_4/C_2H_6^{5,6,9,18-20}$ $C_2H_4/C_2H_6^{5,6,9,18-20}$ $C_2H_4/C_2H_6^{5,6,9,18-20}$ $C_2H_4/C_2H_6^{5,6,9,18-20}$ and $C_2H_2/C_2H_4^{5,7-9,13-15,21}$ separations. Typically, due to the stronger interaction between the unsaturated molecules and the metal sites, and the smaller molecule size of unsaturated molecules resulting in more molecules being captured by the framework, the usual relationship of affinities and adsorption capacities among C_2 hydrocarbons in most common MOFs is $C_2H_2 > C_2H_4 >$ $C_2H_6^{5,6}$ $C_2H_6^{5,6}$ $C_2H_6^{5,6}$ In the separation of C_2H_4/C_2H_6 mixture, which accounts for the majority of C_2 hydrocarbons separation with a great energy consumption, because of the interaction relationship of C_2 hydrocarbons with frameworks, most MOFs selectively adsorb C_2H_4 and then obtain a purified C_2H_4 product by further desorption and subsequent series of steps.¹ As a result, the process of C_2H_4 purification and energy consumption still needs to be optimized. Fortunately, some MOFs with partially reversed adsorption characteristics $(C_2H_6 > C_2H_4)$ have been reported in recent years, which can directly obtain purified C_2H_4 by the selective adsorption of

Received: December 11, 2019 Accepted: January 10, 2020

Published: January 10, 2020

Figure 1. X-ray single-crystal structure of NUM-7, indicating (a) the coordination model of each organic ligand TCPE^{4−} and (b) the coordination environments of $Mn(\Pi)$ ions in a binuclear manganese SBU; and (c) the three-dimensional framework with one-dimensional channels along b -axis. Mn, O, and C are represented by blue, red and gray, respectively.

 C_2H_6 through the reversed affinity and adsorption capacity of the frameworks to the C_2H_6/C_2H_4 mixture.^{22–[26](#page-5-0)} As a simple, efficient, and green adsorbent, this type of MOFs with reversed adsorption characteristics is in line with the current global energy saving and emission reduction trend, so it is worth exploring further.

Herein, inspired by the fascinating characteristics of selective adsorption of alkane, we construct a microporous MOF, NUM-7, with one-dimensional (1D) channels having completely reversed selectivity for C_2 hydrocarbons through selecting a tetra-carboxylate ligand. Unlike the traditional impression of the interaction between MOFs and C_2 hydrocarbons, NUM-7a (the activated NUM-7) exhibits a unique and strong affinity for C_2H_6 with a completely reversed relationship of affinities and adsorption capacities among C_2 hydrocarbons $(C_2H_6 > C_2H_4 > C_2H_2)$. Since the content of C_2H_4 in the product obtained by C_2H_6 cracking can reach several to several tens of times that of C_2H_6 , the requirement for adsorption capacity to obtain equal amount of purified ethylene can be largely reduced for C_2H_6 -selectivity MOFs, which means that it is expected that two relatively contradictory properties of high selectivity and high adsorption capacity in C_2H_4 -selectivity MOFs will be realized simultaneously by C_2H_6 -selectivity MOFs. Based on the unique reversed relationship of the adsorption capacities of the framework for C_2 hydrocarbons, a one-step greener purification of C_2H_4 can be achieved through the selective adsorption of C_2H_6 with the energy consumption decreasing by 40% in industrial separation, which omitted the desorption process compared to the MOFs with C_2H_4 -selectivity.^{[22](#page-5-0)}

EXPERIMENTAL SECTION

Materials and Methods. All of the reagents and solvents were purchased from commercial suppliers and used without further purification. Powder X-ray diffraction (PXRD) and variable temperature powder X-ray diffraction (VT-PXRD) data were collected on a Rigaku Miniflex 600 at 40 kV and 15 mA with a scan rate of 6.0° min⁻¹ using Cu K α radiation in an air atmosphere (3° ≤ 2 θ ≤ 60°). Thermogravimetric analysis (TGA) studies were carried out on a Rigaku standard thermogravimetry−differential thermal analysis (TG−DTA) analyzer from room temperature to 800 °C under air atmosphere with a heating rate of 10 °C min[−]¹ , using an empty and clean Al_2O_3 crucible as a reference.

Synthesis of NUM-7. A mixture of $MnCl₂·4H₂O$ (0.1 mmol, 0.020 g) and H₄TCPE (0.01 mmol, 10 mg, H₄TCPE = $4,4',4'',4'''$ -(ethene-1,1,2,2-tetrayl) tetrabenzoic acid) was dissolved by dimethylformamide (DMF) (1.5 mL), $CH₃CN$ (1 mL), and deionized water (0.25 mL) in a 10 mL screw-capped glass vial, and then the sealed vial was heated to 85 °C for 72 h, which was then cooled to room temperature. The light yellow stick crystals obtained were washed several times with DMF for single-crystal X-ray diffraction analysis. Yield: about 93% based on H_4TCPE .

Activation of NUM-7. The as-synthesized NUM-7 was washed several times with DMF. Whereafter, fast and frequent guest solvents are exchanged for 6 h using absolute methanol to replace the DMF and CH₃CN solvent molecules in the channels. After filtering, the guest-exchanged NUM-7 was activated at 150 °C for 10 h under vacuum conditions (less than 10[−]⁵ Torr), giving NUM-7a.

Gas Sorption Measurements. N₂ adsorption–desorption isotherms from 0 to 1 bar at 77 K with liquid nitrogen were measured by a Micrometrics ASAP 2460 volumetric gas adsorption analyzer. The measurements of gas adsorption of hydrocarbons from 273 to 313 K precisely controlled through a LAUDR RP890 recirculating control system with absolute ethyl alcohol were carried out by a Micrometrics ASAP 2020M volumetric gas adsorption analyzer.

Crystallography. The single-crystal X-ray diffraction data of NUM-7 were collected on a Rigaku XtaLAB Pro MM007HF DW diffractometer at 100 K with Cu K α radiation ($\lambda = 1.54184$ Å) by scan mode. The structure was solved and refined by the full-matrix least-squares method through Olex2 software^{[27](#page-5-0)} with the SHELXT^{[28](#page-5-0)} and SHELXL^{[29](#page-5-0)} program, respectively. The details have been listed in [Table S1](http://pubs.acs.org/doi/suppl/10.1021/acsami.9b22410/suppl_file/am9b22410_si_001.pdf), and the crystallographic data have been deposited in the Cambridge Crystallographic Data Center (CCDC number 1951489). The CIF file can be obtained conveniently from the website: [https://](https://www.ccdc.cam.ac.uk/structures) [www.ccdc.cam.ac.uk/structures.](https://www.ccdc.cam.ac.uk/structures)

RESULTS AND DISCUSSION

Single-Crystal X-ray Structure. The single crystals of NUM-7 $([Mn_2(TCPE)(DMF)(H_2O)](DMF)(CH_3CN))$ were obtained using a simple and convenient one-pot solvothermal reaction of manganese chloride tetrahydrate $(MnCl₂·4H₂O)$ and H₄TCPE in a DMF/CH₃CN mixture solvent. Single-crystal X-ray diffraction revealed that NUM-7 is in the clinorhombic crystal group with the $P2₁/c$ space group (more details of the crystal structure are shown in [Table S1](http://pubs.acs.org/doi/suppl/10.1021/acsami.9b22410/suppl_file/am9b22410_si_001.pdf)). The asymmetric unit of NUM-7 contains one complete 4 connected ligand (TCPE^{4−}) (Figure 1a), two independent but different hexacoordinated Mn(II) ions and two more solvent molecules (a DMF molecule and an $H₂O$ molecule), which coordinated with two $Mn(II)$ ions, respectively [\(Figure S1](http://pubs.acs.org/doi/suppl/10.1021/acsami.9b22410/suppl_file/am9b22410_si_001.pdf)). Also, each pair of different hexacoordinated Mn(II) ions construct a dual-core secondary building unit (SBU) connected by three carboxyl groups (Figure 1b), with two carboxyl groups adopting a bidentate bridging mode and one adopting a bidentate 1,3-chelating mode. The repeated 6 connected dual-core SBUs form the infinitely extendable Mn− O chain SBU by sharing oxygen atoms from DMF molecules and carboxyl groups, respectively. The overall three-dimensional (3D) structure in a shape of a fence is constructed by ligands and SBU chains, which has narrow approximated

Figure 2. Single-component adsorption isotherms for C_2H_6 (red), C_2H_4 (blue), and C_2H_2 (green) for NUM-7a at (a) 273 K, (b) 298 K, and (c) 313 K. (d) Trends of adsorption capacities of C_2H_6 , C_2H_4 , and C_2H_2 with the change of temperature.

rectangular 1D channels with a scale of about 4.7 \times 7.8 Å² along b-axis built by multiple rotatable phenyl rings.

Stabilities of NUM-7. The stabilities of NUM-7 were demonstrated by PXRD and TGA. The PXRD patterns indicate that NUM-7 can remain stable in most common solvents [\(Figure S2\)](http://pubs.acs.org/doi/suppl/10.1021/acsami.9b22410/suppl_file/am9b22410_si_001.pdf). As shown in [Figures S3 and S4,](http://pubs.acs.org/doi/suppl/10.1021/acsami.9b22410/suppl_file/am9b22410_si_001.pdf) TGA and VT-PXRD show that the structure of NUM-7 can be maintained to at least 160 °C, and with the increase of temperature, the framework changed and eventually collapsed at about 400 °C. In addition, the crystalline feature of NUM-7 can also be maintained after removing the solvents in the pore ([Figure S5](http://pubs.acs.org/doi/suppl/10.1021/acsami.9b22410/suppl_file/am9b22410_si_001.pdf)). It can be seen that NUM-7 has excellent stability, which is vital for its subsequent applications in adsorption and separation.

Reversed Gas Sorption Properties of NUM-7a. N_2 -gas adsorption and desorption curves of NUM-7a at 77 K were measured to assess the permanent porosity. As shown in [Figure](http://pubs.acs.org/doi/suppl/10.1021/acsami.9b22410/suppl_file/am9b22410_si_001.pdf) [S6](http://pubs.acs.org/doi/suppl/10.1021/acsami.9b22410/suppl_file/am9b22410_si_001.pdf), the fully reversible type I isotherm with a sharp uptake at P/P_0 < 0.05 reveals the microporous nature of **NUM-7a**. The N₂-gas physisorption reached a balanced plateau at P/P_0 > 0.05, with a saturation uptake of 125.9 $\mathrm{cm}^3\ \mathrm{g}^{-1}$. According to the measured N_2 adsorption results, the Brunauer–Emmett– Teller (Langmuir) surface area of NUM-7a is 345 m² g⁻¹ (526 $\text{m}^2 \text{ g}^{-1}$), and pore volume is 0.194 cm³ g⁻¹, obtained by calculation. The aperture of 1D channels in NUM-7a is about 3.42 Å, obtained by the Horvath−Kawazoe method [\(Figure](http://pubs.acs.org/doi/suppl/10.1021/acsami.9b22410/suppl_file/am9b22410_si_001.pdf) [S7](http://pubs.acs.org/doi/suppl/10.1021/acsami.9b22410/suppl_file/am9b22410_si_001.pdf)).

Exactly as the pre-expectation of the designed structure, NUM-7a has 1D narrow channels with a faceted hole wall made up of many phenyl rings, which portends that the framework is expected to have a stronger host−guest interaction with $C_2H_6^{30-32}$ $C_2H_6^{30-32}$ $C_2H_6^{30-32}$ $C_2H_6^{30-32}$ $C_2H_6^{30-32}$ So, the C_2 hydrocarbons singlecomponent adsorption isotherms of NUM-7a were measured at 273, 298, and 313 K, respectively. The adsorption isotherms of C_2 hydrocarbons from 273 to 313 K with pressure up to 1 bar were investigated as shown in Figure 2. A peculiar whole reversed adsorption phenomenon of C_2 hydrocarbons was observed, which broke our normal cognition about the relationship among C_2 hydrocarbons. At 273 K, although the adsorption capacities at 1 bar of C_2H_6 (69.5 cm³ g⁻¹), C_2H_4 (69.3 cm³ g⁻¹), and C₂H₂ (67.0 cm³ g⁻¹) are abnormally close, a steeper rising trend in the type I curve of C_2H_6 compared to C_2H_4 and C_2H_2 can be observed from 0 to 0.2 bar in Figure 2a−c, which indicates that C_2H_6 has a stronger host−guest interaction with NUM-7a. As the temperature increases, this unique reversed adsorption phenomenon is amplified. At 298 K, the adsorption capacity of C_2H_6 (63.9 cm³ g⁻¹) is significantly higher than that of C_2H_4 (58.6 cm³ g⁻¹) and C_2H_2 (55.5 cm³ g⁻¹) while maintaining a steeper curve rising trend of C_2H_6 than C_2H_4 and C_2H_2 in the low-pressure region. As the temperature rises further to 313 K, the relationship between the adsorption curves remains consistent with that at 298 K despite a slight decrease in adsorption capacities of C_2H_6 (58.1 cm³ g⁻¹), C_2H_4 (52.1 cm³ g⁻¹), and C_2H_2 (49.4 cm^3 g⁻¹). In general, as the temperature increases, the saturated adsorption capacity of each component decreases, but the difference between the three components is gradually amplified, as shown in Figure 2d. Comparison of some other gases adsorption curves, as shown in [Figures S8](http://pubs.acs.org/doi/suppl/10.1021/acsami.9b22410/suppl_file/am9b22410_si_001.pdf)-S11, NUM-7a exhibits significant differences in its adsorption capacities for C_2H_2 , CO_2 , and CH_4 . For C_2H_2 and CO_2 , the difference in adsorption curves is very obvious in the low-pressure region. The curve of C_2H_2 is significantly steeper than that of CO_2 , and about 75% of the adsorption capacity is filled in 0−0.1 bar, which indicates that C_2H_2 has a stronger interaction with the framework than CO_2 . Also, for CO_2 and CH_4 , the CO_2 adsorption capacity is more than double that of CH_4 , and the curve of $CH₄$ rises very gently with increasing pressure, which shows a weak affinity between $CH₄$ and framework. Considering the above factors, NUM-7a has potential in the separation of C_2H_2/CO_2 and CO_2/CH_4 .

Considering the above uncommon phenomena, the coverage-dependent adsorption enthalpies (Q_{st}) of NUM-7a for C_2H_6 , C_2H_4 , and C_2H_2 were evaluated experimentally from single-component isotherms by the implementation of a virial equation (Figures 3 and S12–[S14\)](http://pubs.acs.org/doi/suppl/10.1021/acsami.9b22410/suppl_file/am9b22410_si_001.pdf). The resultant Q_{st}

Figure 3. Q_{st} relationship of C_2H_6 (red), C_2H_4 (blue), and C_2H_2 (green) adsorption for NUM-7a estimated from virial expression fits at 298 and 313 K.

relationship at zero coverage among C_2H_6 (35.8 kJ mol⁻¹), C_2H_4 (30.0 kJ mol⁻¹), and C_2H_2 (29.3 kJ mol⁻¹) is indeed in good agreement with the unique reversed adsorption phenomenon previously seen. Moreover, with the increase of coverage, the interaction between C_2H_4 and the framework gradually decreases, and the adsorption enthalpy shows a slight downward trend. However, due to the interaction between guest molecules, the adsorption enthalpy of C_2H_6 shows an upward trend with the increase in adsorption amount. The difference in affinity between $C_2H_6/C_2\overline{H}_4$ and NUM-7a is amplified due to the above changes in adsorption enthalpies, which is advantageous for the challenging and rewarding C_2H_6/C_2H_4 separation.

To structurally understand this kind of reversed strength of host–guest interactions, the distribution of C_2 hydrocarbons molecules in NUM-7a at 298 K and 1 bar had been confirmed by grand canonical Monte Carlo (GCMC) simulation.^{[33,34](#page-5-0)} The calculation results indicated that the host−guest interaction strength relationship between C_2 hydrocarbons and the framework is indeed $C_2H_6 > C_2H_4 > C_2H_2$ (Figures 4 and S15−[S18\)](http://pubs.acs.org/doi/suppl/10.1021/acsami.9b22410/suppl_file/am9b22410_si_001.pdf). Also, the reason why the C_2 hydrocarbons can have such a strong force with the framework is that the

existence of C−H···O and C−H···π interactions between guests and hosts. As shown in Figure 4a, C_2H_6 molecule has the largest size and the most complex 3D configuration in C_2 hydrocarbons, and it can interact more strongly with the microporous channel walls through C−H···O (H···O2, 2.50 Å $<$ 2.72 Å, the sum of van der Waals radii of oxygen (1.52 Å) and hydrogen (1.20 Å) atoms) and C−H \cdots π (H \cdots π, 2.84−3.68 Å) interactions. Due to the planar configuration of C_2H_4 and the smaller molecular size, fewer hydrogen atoms can only form weaker interactions with the surrounding oxygen and benzene rings (C−H···O2, 2.56 Å < 2.72 Å, C−H···π, 3.07− 4.05 Å), as shown in Figure 4b. In view of the above results, the linear C_2H_2 molecule and the framework obviously have the weakest interaction, even the smallest C−H···O (H···O4, 2.77 Å) distance exceeded the sum of the van der Waals radii of hydrogen and oxygen atoms, and the weak C−H···π (H···π, 3.59−4.60 Å) interaction becomes weaker than that of C_2H_6 and C_2H_4 . According to the above calculation results, it is precisely because of the difference in molecular size and spatial configuration that the molecule, which has more hydrogen atoms and large size, can form stronger interactions with the channel walls, resulting in the formation of a complete reversed affinity for the C_2 hydrocarbons.

Evaluation of Separation Performance. Based on this unique affinity reversed relationship of NUM-7a, the adsorption selectivity of binary mixtures $\rm C_2H_6/C_2H_4$ in ratios of 50/50 (v/v) and 10/90 (v/v) at 298 K (Figure 5) and some

Figure 5. IAST selectivities of C_2H_6/C_2H_4 mixtures (50/50 and 10/ 90, v/v) for NUM-7a at 298 K.

other binary mixture gases ([Figures S19](http://pubs.acs.org/doi/suppl/10.1021/acsami.9b22410/suppl_file/am9b22410_si_001.pdf)−S27) were evaluated by ideal adsorbed solution theory (IAST). The estimated

Figure 4. Results of the GCMC simulations, showing the adsorption sites for (a) C_2H_6 (b) C_2H_4 , and (c) C_2H_2 in NUM-7a. The serial numbers of the benzene rings are determined according to the distance from benzene rings to the hydrogen atom on the guest molecules, and the distance of gray benzene rings to the nearest guest molecules is over 4.00 Å.

Figure 6. Transient breakthrough curves of (a) $50/50$ and (b) $10/90$ C₂H₆/C₂H₄ mixture in an adsorber bed packed with NUM-7a at total pressures of 100 kPa and 298 K. For the breakthrough simulations, the following parameter values were used, $L = 0.3$ m; $\varepsilon = 0.4$; $u = 0.04$ m s^{−1}.

selectivities of NUM-7a for C_2H_6/C_2H_4 at 298 K and 1 bar are 1.764 and 1.757 in 50/50 and 10/90, respectively. Among the reported MOFs, the selectivity of NUM-7a at 298 K and 1 bar in 50/50 is higher than that of most C_2H_6 -selectivity MOFs, which is higher than that of ZJU-30 $(1.7)_{1.6}^{36}$ $(1.7)_{1.6}^{36}$ $(1.7)_{1.6}^{36}$ ZIF-7 $(1.5)_{1.6}^{37}$ $(1.5)_{1.6}^{37}$ $(1.5)_{1.6}^{37}$ UTSA-33 (1.4) ,^{[38](#page-6-0)} and so forth (Table S₃),^{[24](#page-5-0),[30](#page-5-0),[32,35](#page-5-0),[39](#page-6-0),[40](#page-6-0)} but lower than that of Fe(O₂)dobdc $(4.25)^{22}$ Cu(Qc)₂ $(3.4)^{41}$ $(3.4)^{41}$ $(3.4)^{41}$ and MUF-15 (1.95).^{[25](#page-5-0)} The selectivities of C_2H_2/CO_2 and $CO₂/CH₄$ are as shown in [Figures S26 and S27](http://pubs.acs.org/doi/suppl/10.1021/acsami.9b22410/suppl_file/am9b22410_si_001.pdf).

Building on above results, the separation performance of **NUM-7a** for C_2H_6/C_2H_4 (50/50 and 10/90) has been evaluated through breakthrough simulation experiment at 298 K. The transient breakthrough simulations show the concentrations of C_2H_6/C_2H_4 exiting the adsorber packed with NUM-7a as a function of the dimensionless time, τ (Figure 6). The breakthrough simulations demonstrate the potential of producing nearly pure product gas C_2H_4 during the time interval $\Delta \tau$ for both 50/50 and 10/90 C_2H_6/C_2H_4 mixtures, which indicates that NUM-7a has potential application in the challenging separation of C_2H_6/C_2H_4 in practice.

■ CONCLUSIONS

We have developed a new microporous MOF (NUM-7a) showing a stronger affinity for C_2H_6 among C_2 hydrocarbons by selecting a small multibenzene ring ligand. NUM-7a exhibits an infrequent completely reversed adsorption relationship for C₂ hydrocarbons $(C_2H_6 > C_2H_4 > C_2H_2)$ at the same condition, which breaks the traditional concept of adsorption relationship of MOFs for C_2 hydrocarbons. Based on this reversed adsorption phenomenon, the potential of NUM-7a in the separation of C_2H_6/C_2H_4 had been studied. The results demonstrated that C_2H_4 is expected to be directly and efficiently purified by a one-step green process through C_2H_6 -selectivity **NUM-7a.**

■ ASSOCIATED CONTENT

4 Supporting Information

The Supporting Information is available free of charge at [https://pubs.acs.org/doi/10.1021/acsami.9b22410](https://pubs.acs.org/doi/10.1021/acsami.9b22410?goto=supporting-info).

Full experimental details, including crystal data, crystal structure, PXRD patterns, TGA curves, adsorption data, and grand canonical Monte Carlo (GCMC) simulations [\(PDF](http://pubs.acs.org/doi/suppl/10.1021/acsami.9b22410/suppl_file/am9b22410_si_001.pdf))

Data_NUM-7; symmetry employed for this SHELXL refinement; empirical absorption correction using spherical harmonics, implemented in SCALE3 AB-SPACK scaling algorithm [\(CIF\)](http://pubs.acs.org/doi/suppl/10.1021/acsami.9b22410/suppl_file/am9b22410_si_002.cif)

Structure factors for datablock(s) NUM-7 [\(PDF](http://pubs.acs.org/doi/suppl/10.1021/acsami.9b22410/suppl_file/am9b22410_si_003.pdf))

E AUTHOR INFORMATION

Corresponding Author

Tong-Liang Hu [−] School of Materials Science and Engineering and Tianjin Key Lab for Rare Earth Materials and Applications, and Key Laboratory of Advanced Energy Material Chemistry (Ministry of Education), Nankai University, Tianjin 300350, China; [orcid.org/0000-0001-9619-9867;](http://orcid.org/0000-0001-9619-9867) Email: tlhu@nankai.edu.cn

Authors

- Fang-Zhou Sun [−] School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
- Shan-Qing Yang [−] School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
- Rajamani Krishna [−] Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands; corcid.org/0000-0002-4784-8530
- Ying-Hui Zhang [−] School of Materials Science and Engineering and Tianjin Key Lab for Rare Earth Materials and Applications, and Key Laboratory of Advanced Energy Material Chemistry (Ministry of Education), Nankai University, Tianjin 300350, China
- Yu-Pei Xia [−] School of Materials Science and Engineering, Nankai University, Tianjin 300350, China

Complete contact information is available at: [https://pubs.acs.org/10.1021/acsami.9b22410](https://pubs.acs.org/doi/10.1021/acsami.9b22410?ref=pdf)

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

This work was financially supported by the NSFC (21673120) and the Fundamental Research Funds for the Central Universities, Nankai University (63196005).

■ REFERENCES

(1) Sholl, D. S.; Lively, R. P. [Seven Chemical Separations to Change](https://dx.doi.org/10.1038/532435a) [the World.](https://dx.doi.org/10.1038/532435a) Nature 2016, 532, 435−437.

(2) Ren, T.; Patel, M.; Blok, K[. Olefins from Conventional and](https://dx.doi.org/10.1016/j.energy.2005.04.001) [Heavy Feedstocks: Energy Use in Steam Cracking and Alternative](https://dx.doi.org/10.1016/j.energy.2005.04.001) [Processes.](https://dx.doi.org/10.1016/j.energy.2005.04.001) Energy 2006, 31, 425−451.

(3) Cui, W.-G.; Hu, T.-L.; Bu, X.-H. [Metal-Organic Framework](https://dx.doi.org/10.1002/adma.201806445) [Materials for the Separation and Purification of Light Hydrocarbons.](https://dx.doi.org/10.1002/adma.201806445) Adv. Mater. 2019, No. 1806445.

ACS Applied Materials & Interfaces and a substitution of the [www.acsami.org](www.acsami.org?ref=pdf) and a substitution of the Research Article

(4) Mersmann, A.; Fill, B.; Hartmann, R.; Maurer, S. [The Potential](https://dx.doi.org/10.1002/1521-4125(200011)23:11<937::AID-CEAT937>3.0.CO;2-P) [of Energy Saving by Gas-Phase Adsorption Processes.](https://dx.doi.org/10.1002/1521-4125(200011)23:11<937::AID-CEAT937>3.0.CO;2-P) Chem. Eng. Technol. 2000, 23, 937−944.

(5) Bloch, E. D.; Queen, W. L.; Krishna, R.; Zadrozny, J. M.; Brown, C. M.; Long, J. R. [Hydrocarbon Separations in a Metal-Organic](https://dx.doi.org/10.1126/science.1217544) [Framework with Open Iron\(II\) Coordination Sites.](https://dx.doi.org/10.1126/science.1217544) Science 2012, 335, 1606−1610.

(6) Yang, S.; Ramirez-Cuesta, A. J.; Newby, R.; Garcia-Sakai, V.; Manuel, P.; Callear, S. K.; Campbell, S. I.; Tang, C. C.; Schröder, M. [Supramolecular Binding and Separation of Hydrocarbons within a](https://dx.doi.org/10.1038/nchem.2114) [Functionalized Porous Metal-Organic Framework.](https://dx.doi.org/10.1038/nchem.2114) Nat. Chem. 2015, 7, 121−129.

(7) Hu, T.-L.; Wang, H.; Li, B.; Krishna, R.; Wu, H.; Zhou, W.; Zhao, Y.; Han, Y.; Wang, X.; Zhu, W.; Yao, Z.; Xiang, S.; Chen, B. [Microporous Metal-Organic Framework with Dual Functionalities for](https://dx.doi.org/10.1038/ncomms8328) [Highly Efficient Removal of Acetylene from Ethylene/Acetylene](https://dx.doi.org/10.1038/ncomms8328) [Mixtures.](https://dx.doi.org/10.1038/ncomms8328) Nat. Commun. 2015, 6, No. 7328.

(8) Peng, Y.-L.; Pham, T.; Li, P.; Wang, T.; Chen, Y.; Chen, K.-J.; Forrest, K. A.; Space, B.; Cheng, P.; Zaworotko, M. J.; Zhang, Z. [Robust Ultramicroporous Metal-Organic Frameworks with Bench](https://dx.doi.org/10.1002/anie.201806732)[mark Affinity for Acetylene.](https://dx.doi.org/10.1002/anie.201806732) Angew. Chem., Int. Ed. 2018, 57, 10971− 10975.

(9) Li, L. Y.; Guo, L. D.; Pu, S. Y.; Wang, J. W.; Yang, Q. W.; Zhang, Z. G.; Yang, Y. W.; Ren, Q. L.; Alnemrat, S.; Bao, Z. B. [A Calcium-](https://dx.doi.org/10.1016/j.cej.2018.10.034)[Based Microporous Metal-Organic Framework for Efficient Adsorp](https://dx.doi.org/10.1016/j.cej.2018.10.034)[tion Separation of Light Hydrocarbons.](https://dx.doi.org/10.1016/j.cej.2018.10.034) Chem. Eng. J. 2019, 358, 446−455.

(10) Moreau, F.; da Silva, I.; Al Smail, N. H.; Easun, T. L.; Savage, M.; Godfrey, H. G. W.; Parker, S. F.; Manuel, P.; Yang, S.; Schröder, M. [Unravelling Exceptional Acetylene and Carbon Dioxide](https://dx.doi.org/10.1038/ncomms14085) [Adsorption within a Tetra-Amide Functionalized Metal-Organic](https://dx.doi.org/10.1038/ncomms14085) [Framework.](https://dx.doi.org/10.1038/ncomms14085) Nat. Commun. 2017, 8, No. 14085.

(11) Sapchenko, S. A.; Dybtsev, D. N.; Samsonenko, D. G.; Belosludov, R. V.; Belosludov, V. R.; Kawazoe, Y.; Schröder, M.; Fedin, V. P. [Selective Gas Adsorption in Microporous Metal-Organic](https://dx.doi.org/10.1039/C5CC05779E) [Frameworks Incorporating Urotropine Basic Sites: An Experimental](https://dx.doi.org/10.1039/C5CC05779E) [and Theoretical Study.](https://dx.doi.org/10.1039/C5CC05779E) Chem. Commun. 2015, 51, 13918−13921.

(12) Yan, Y.; Jurícek, M.; Coudert, F. X.; Vermeulen, N. A.; ̌ Grunder, S.; Dailly, A.; Lewis, W.; Blake, A. J.; Stoddart, J. F.; Schröder, M. [Non-Interpenetrated Metal-Organic Frameworks Based](https://dx.doi.org/10.1021/jacs.5b12312) [on Copper\(II\) Paddlewheel and Oligoparaxylene-Isophthalate Link](https://dx.doi.org/10.1021/jacs.5b12312)[ers: Synthesis, Structure, and Gas Adsorption.](https://dx.doi.org/10.1021/jacs.5b12312) J. Am. Chem. Soc. 2016, 138, 3371−3381.

(13) Bajpai, A.; O'Nolan, D.; Madden, D. G.; Chen, K.-J.; Pham, T.; Kumar, A.; Lusi, M.; Perry, J. J.; Space, B.; Zaworotko, M. J. [The](https://dx.doi.org/10.1039/C7CC05882A) Effect of Centred Versus Offset Interpenetration on C_2H_2 Sorption in [Hybrid Ultramicroporous Materials.](https://dx.doi.org/10.1039/C7CC05882A) Chem. Commun. 2017, 53, 11592−11595.

(14) O'Nolan, D.; Madden, D. G.; Kumar, A.; Chen, K.-J.; Pham, T.; Forrest, K. A.; Patyk-Kazmierczak, E.; Yang, Q.-Y.; Murray, C. A.; Tang, C. C.; Space, B.; Zaworotko, M. J[. Impact of Partial](https://dx.doi.org/10.1039/C8CC01627E) Interpenetration in a Hybrid Ultramicroporous Material on C_2H_2 / C2H4 [Separation Performance.](https://dx.doi.org/10.1039/C8CC01627E) Chem. Commun. 2018, 54, 3488− 3491.

(15) Zhao, Y. C.; Wang, J. W.; Bao, Z. B.; Xing, H. B.; Zhang, Z. G.; Su, B. G.; Yang, Q. W.; Yang, Y. W.; Ren, Q. L[. Adsorption Separation](https://dx.doi.org/10.1016/j.seppur.2017.11.044) [of Acetylene and Ethylene in a Highly Thermostable Microporous](https://dx.doi.org/10.1016/j.seppur.2017.11.044) [Metal-Organic Framework.](https://dx.doi.org/10.1016/j.seppur.2017.11.044) Sep. Purif. Technol. 2018, 195, 238−243.

(16) Fan, W.; Wang, X.; Zhang, X.; Liu, X.; Wang, Y.; Kang, Z.; Dai, F.; Xu, B.; Wang, R.; Sun, D. [Fine-Tuning the Pore Environment of](https://dx.doi.org/10.1021/acscentsci.9b00423) [the Microporous Cu-MOF for High Propylene Storage and Efficient](https://dx.doi.org/10.1021/acscentsci.9b00423) [Separation of Light Hydrocarbons.](https://dx.doi.org/10.1021/acscentsci.9b00423) ACS Cent. Sci. 2019, 5, 1261-1268.

(17) Wang, X.; Zhang, X. R.; Zhang, K.; Wang, X. K.; Wang, Y. T.; Fan, W. D.; Dai, F. N. [Amino-Functionalized Cu-MOF for Efficient](https://dx.doi.org/10.1039/C8QI01404C) [Purification of Methane from Light Hydrocarbons and Excellent](https://dx.doi.org/10.1039/C8QI01404C) [Catalytic Performance.](https://dx.doi.org/10.1039/C8QI01404C) Inorg. Chem. Front. 2019, 6, 1152−1157.

(18) Bao, Z. B.; Chang, G. G.; Xing, H. B.; Krishna, R.; Ren, Q. L.; Chen, B[. Potential of Microporous Metal-Organic Frameworks for](https://dx.doi.org/10.1039/C6EE01886F) [Separation of Hydrocarbon Mixtures.](https://dx.doi.org/10.1039/C6EE01886F) Energy Environ. Sci. 2016, 9, 3612−3641.

(19) Herm, Z. R.; Bloch, E. D.; Long, J. R[. Hydrocarbon Separations](https://dx.doi.org/10.1021/cm402897c) [in Metal-Organic Frameworks.](https://dx.doi.org/10.1021/cm402897c) Chem. Mater. 2014, 26, 323−338.

(20) Geier, S. J.; Mason, J. A.; Bloch, E. D.; Queen, W. L.; Hudson, M. R.; Brown, C. M.; Long, J. R. [Selective Adsorption of Ethylene](https://dx.doi.org/10.1039/c3sc00032j) [over Ethane and Propylene over Propane in the Metal](https://dx.doi.org/10.1039/c3sc00032j)−Organic Frameworks $M_2(dobdc)$ (M = Mg, Mn, Fe, Co, Ni, Zn). Chem. Sci. 2013, 4, 2054−2061.

(21) Cui, X.; Chen, K.; Xing, H. B.; Yang, Q.; Krishna, R.; Bao, Z. B.; Wu, H.; Zhou, W.; Dong, X.; Han, Y.; Li, B.; Ren, Q.; Zaworotko, M. J.; Chen, B[. Pore Chemistry and Size Control in Hybrid Porous](https://dx.doi.org/10.1126/science.aaf2458) [Materials for Acetylene Capture from Ethylene.](https://dx.doi.org/10.1126/science.aaf2458) Science 2016, 353, 141−144.

(22) Li, L.; Lin, R.-B.; Krishna, R.; Li, H.; Xiang, S.; Wu, H.; Li, J.; Zhou, W.; Chen, B. [Ethane/Ethylene Separation in a Metal-Organic](https://dx.doi.org/10.1126/science.aat0586) [Framework with Iron-Peroxo Sites.](https://dx.doi.org/10.1126/science.aat0586) Science 2018, 362, 443−446.

(23) Liao, P.-Q.; Zhang, W.-X.; Zhang, J.-P.; Chen, X.-M. [Efficient](https://dx.doi.org/10.1038/ncomms9697) [Purification of Ethene by an Ethane-Trapping Metal-Organic](https://dx.doi.org/10.1038/ncomms9697) [Framework.](https://dx.doi.org/10.1038/ncomms9697) Nat. Commun. 2015, 6, No. 8697.

(24) Liang, W. W.; Xu, F.; Zhou, X.; Xiao, J.; Xia, Q. B.; Li, Y. W.; Li, Z. Ethane Selective Adsorbent $Ni(bdc)(ted)_{0.5}$ with High Uptake [and its Significance in Adsorption Separation of Ethane and Ethylene.](https://dx.doi.org/10.1016/j.ces.2016.04.016) Chem. Eng. Sci. 2016, 148, 275−281.

(25) Qazvini, O. T.; Babarao, R.; Shi, Z.-L.; Zhang, Y.-B.; Telfer, S. G. [A Robust Ethane-Trapping Metal-Organic Framework with a High](https://dx.doi.org/10.1021/jacs.9b00913) [Capacity for Ethylene Purification.](https://dx.doi.org/10.1021/jacs.9b00913) J. Am. Chem. Soc. 2019, 141, 5014−5020.

(26) Zeng, H.; Xie, X.-J.; Xie, M.; Huang, Y.-L.; Luo, D.; Wang, T.; Zhao, Y.; Lu, W.; Li, D. [Cage-Interconnected Metal-Organic](https://dx.doi.org/10.1021/jacs.9b10923) Framework with Tailored Apertures for Efficient $\mathrm{C_2H_6/C_2H_4}$ [Separation under Humid Conditions.](https://dx.doi.org/10.1021/jacs.9b10923) J. Am. Chem. Soc. 2019, 141, 20390−20396.

(27) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. [OLEX2: A Complete Structure Solution,](https://dx.doi.org/10.1107/S0021889808042726) [Refinement and Analysis Program.](https://dx.doi.org/10.1107/S0021889808042726) J. Appl. Crystallogr. 2009, 42, 339−341.

(28) Michaels, H. [High Pressure Synchrotron Radiation Crystallog](https://dx.doi.org/10.1107/S2053273315099945)[raphy, from Organic Conductors to Chemistry in the Lower Mantle.](https://dx.doi.org/10.1107/S2053273315099945) Acta Crystallogr., Sect. A: Found. Adv. 2015, 71, 3−8.

(29) Sazanov, L. A[. Structure and Mechanism of Respiratory](https://dx.doi.org/10.1107/S2053273315099933) [Complex I, A Giant Molecular Proton Pump.](https://dx.doi.org/10.1107/S2053273315099933) Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71, s3.

(30) Chen, Y. W.; Qiao, Z. W.; Wu, H. X.; Lv, D. F.; Shi, R. F.; Xia, Q. B.; Zhou, J.; Li, Z[. An Ethane-Trapping MOF PCN-250 for Highly](https://dx.doi.org/10.1016/j.ces.2017.09.032) [Selective Adsorption of Ethane over Ethylene.](https://dx.doi.org/10.1016/j.ces.2017.09.032) Chem. Eng. Sci. 2018, 175, 110−117.

(31) Pires, J.; Pinto, M. L.; Saini, V. K[. Ethane Selective IRMOF-8](https://dx.doi.org/10.1021/am502686g) [and its Significance in Ethane-Ethylene Separation by Adsorption.](https://dx.doi.org/10.1021/am502686g) ACS Appl. Mater. Interfaces 2014, 6, 12093−12099.

(32) Lv, D.; Shi, R.; Chen, Y.; Wu, Y.; Wu, H.; Xi, H.; Xia, Q.; Li, Z. [Selective Adsorption of Ethane over Ethylene in PCN-245: Impacts of](https://dx.doi.org/10.1021/acsami.7b19414) [Interpenetrated Adsorbent.](https://dx.doi.org/10.1021/acsami.7b19414) ACS Appl. Mater. Interfaces 2018, 10, 8366−8373.

(33) Zhou, D.-D.; He, C.-T.; Liao, P.-Q.; Xue, W.; Zhang, W.-X.; Zhou, H.-L.; Zhang, J.-P.; Chen, X.-M. [A Flexible Porous Cu\(II\) Bis-](https://dx.doi.org/10.1039/c3cc46597g)[Imidazolate Framework with Ultrahigh Concentration of Active Sites](https://dx.doi.org/10.1039/c3cc46597g) for Efficient and Recyclable $CO₂$ Capture. Chem. Commun. 2013, 49, 11728−11730.

(34) Wu, Y.; Chen, H. Y.; Liu, D. F.; Qian, Y.; Xi, H. X[. Adsorption](https://dx.doi.org/10.1016/j.ces.2014.07.019) [and Separation of Ethane/Ethylene on ZIFs with Various Topologies:](https://dx.doi.org/10.1016/j.ces.2014.07.019) [Combining GCMC Simulation with the Ideal Adsorbed Solution](https://dx.doi.org/10.1016/j.ces.2014.07.019) [Theory \(IAST\).](https://dx.doi.org/10.1016/j.ces.2014.07.019) Chem. Eng. Sci. 2015, 124, 144−153.

(35) Yuan, W. H.; Zhang, X. T.; Li, L. [Synthesis of Zeolitic](https://dx.doi.org/10.1016/j.jssc.2017.04.018) [Imidazolate Framework-69 for Adsorption Separation of Ethane and](https://dx.doi.org/10.1016/j.jssc.2017.04.018) [Ethylene.](https://dx.doi.org/10.1016/j.jssc.2017.04.018) J. Solid State Chem. 2017, 251, 198−203.

(36) Cai, J. F.; Yu, J. C.; Xu, H.; He, Y. B.; Duan, X.; Cui, Y. J.; Wu, C. D.; Chen, B.; Qian, G. D[. A Doubly Interpenetrated Metal-Organic](https://dx.doi.org/10.1021/cg400164m) [Framework with Open Metal Sites and Suitable Pore Sizes for Highly](https://dx.doi.org/10.1021/cg400164m)

ACS Applied Materials & Interfaces entitled and the state [www.acsami.org](www.acsami.org?ref=pdf) and the search Article

[Selective Separation of Small Hydrocarbons at Room Temperature.](https://dx.doi.org/10.1021/cg400164m) Cryst. Growth Des. 2013, 13, 2094−2097.

(37) Gücüyener, C.; van den Bergh, J.; Gascon, J.; Kapteijn, F. [Ethane/Ethene Separation Turned on Its Head: Selective Ethane](https://dx.doi.org/10.1021/ja1089765) [Adsorption on the Metal-Organic Framework ZIF-7 Through a Gate-](https://dx.doi.org/10.1021/ja1089765)[Opening Mechanism.](https://dx.doi.org/10.1021/ja1089765) J. Am. Chem. Soc. 2010, 132, 17704−17706.

(38) He, Y.; Zhang, Z.; Xiang, S.; Fronczek, F. R.; Krishna, R.; Chen, B[. A Microporous Metal-Organic Framework for Highly Selective](https://dx.doi.org/10.1002/chem.201102734) [Separation of Acetylene, Ethylene, and Ethane from Methane at](https://dx.doi.org/10.1002/chem.201102734) [Room Temperature.](https://dx.doi.org/10.1002/chem.201102734) Chem. - Eur. J. 2012, 18, 613−619.

(39) Chen, Y. W.; Wu, H. X.; Lv, D. F.; Shi, R. F.; Chen, Y.; Xia, Q. B.; Li, Z[. Highly Adsorptive Separation of Ethane/Ethylene by an](https://dx.doi.org/10.1021/acs.iecr.7b05260) [Ethane-Selective MOF MIL-142A.](https://dx.doi.org/10.1021/acs.iecr.7b05260) Ind. Eng. Chem. Res. 2018, 57, 4063−4069.

(40) He, Y.; Zhang, Z.; Xiang, S.; Fronczek, F. R.; Krishna, R.; Chen, B[. A Robust Doubly Interpenetrated Metal-Organic Framework](https://dx.doi.org/10.1039/c2cc31792c) [Constructed from a Novel Aromatic Tricarboxylate for Highly](https://dx.doi.org/10.1039/c2cc31792c) [Selective Separation of Small Hydrocarbons.](https://dx.doi.org/10.1039/c2cc31792c) Chem. Commun. 2012, 48, 6493−6495.

(41) Lin, R.-B.; Wu, H.; Li, L.; Tang, X.-L.; Li, Z.; Gao, J.; Cui, H.; Zhou, W.; Chen, B. [Boosting Ethane/Ethylene Separation within](https://dx.doi.org/10.1021/jacs.8b07563) [Isoreticular Ultramicroporous Metal-Organic Frameworks.](https://dx.doi.org/10.1021/jacs.8b07563) J. Am. Chem. Soc. 2018, 140, 12940−12946.

Supporting Information

A microporous metal-organic framework with a completely reversed adsorption relationship for C2 hydrocarbons at room temperature

*Fang-Zhou Sun,^a Shan-Qing Yang,^a Rajamani Krishna,^c Ying-Hui Zhang,a,b Yu-Pei Xia^a and Tong-Liang Hu*a,b*

*^a*School of Materials Science and Engineering, Nankai University, Tianjin 300350, China. E-mail: tlhu@nankai.edu.cn.

*^b*Tianjin Key Lab for Rare Earth Materials and Applications, and Key Laboratory of Advanced Energy Material Chemistry (Ministry of Education), Nankai University, Tianjin 300350, China.

*^c*Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands

Grand Canonical Monte Carlo (GCMC) Simulations

The Grand Canonical Monte Carlo (GCMC) simulations were performed for C_2H_6 , C2H4 and C2H2 adsorption on **NUM-7a**. The framework of **NUM-7a** and gas molecules were both treated as rigid bodies. The beneficial adsorption sites were simulated by the fixed loading task and Metropolis method at 298 K and 1 bar. The loading steps, equilibration steps and the production steps were all set to 2.0×10^7 . The saturation/maximum uptakes were modeled at 298 K using the fixed pressure task with 1.0×10^5 equilibration steps, followed by 2.0×10^7 production steps for calculating the ensemble averages. The gas–framework interaction and the gas–gas interaction were described by the standard universal force field (UFF). The atomic partial charges of the framework were used for Qeq method, the guest gas molecules were optimized using the DMol3 method and adopted the B3LYP fitted charge. The cut-off radius used for the Lennard–Jones interactions is $18.5 \text{ Å}^{1,2}$

Fitting of pure component isotherms

The isotherm data for C_2H_6 , C_2H_4 , CO_2 and CH_4 in **NUM-7a**, measured at 298 K, were fitted with the Dual-site Langmuir model.

$$
q = q_{A,sat} \frac{b_A p}{1 + b_A p} + q_{B,sat} \frac{b_B p}{1 + b_B p}
$$

IAST calculations of adsorption selectivities, and uptake capacities

In order to determine the C_2H_6/C_2H_4 , C_2H_2/CO_2 and CO_2/CH_4 separation potential of **NUM-7a**, IAST calculations of 50/50 and 10/90 mixture adsorption at 298 K were performed by

$$
S_{ads}=\frac{q_1/q_2}{p_1/p_2}
$$

Breakthrough simulations

The performance of industrial fixed bed adsorber is dictated by a combination of adsorption selectivity and uptake capacity. Transient breakthrough simulations were carried out for 50/50 and 10/90 C_2H_6/C_2H_4 mixtures in **NUM-7a** operating at a total pressure of 100 kPa and 298 K, using the methodology described in earlier publications.3-6 For the breakthrough simulations, the following parameter values were used: length of packed bed, $L = 0.3$ m; voidage of packed bed, $\varepsilon = 0.4$; superficial gas velocity at inlet, $u = 0.04$ m s⁻¹.

Notation

Greek letters

- *ν* Freundlich exponent, dimensionless
- τ time, dimensionless

	NUM-7		
Formula	$C_{38}H_{35}Mn_2N_3O_{11}$		
Mr (g mol ⁻¹)	819.57		
Space group	$P2_1/c$		
Crystal system	Monoclinic		
a(A)	11.6212(1)		
b(A)	13.0997(2)		
c(A)	25.0298(3)		
β ^{(\circ})	97.156(1)		
$V(\AA^3)$	3780.71(8)		
Z	$\overline{4}$		
F(000)	1688.0		
Dc (gcm ⁻³)	1.440		
μ (mm ⁻¹)	5.978		
GOF on F^2	1.055		
$R_{1,} \, wR_{2} \, [I > 2\sigma(I)]^{a}$	0.0461, 0.1305		
R_1 , w R_2 [all data] ^b	0.0503, 0.1305		
$R_1 = \sum F_0 - F_c /\sum F_0 $. b w $R_2 = \{\sum [w(F_0^2 - F_c^2)^2]/\sum w(F_0^2)^2\}^{1/2}$			

Table S1. Crystal data and structure refinement parameters for **NUM-7**.

Table S2. Langmuir-Freundlich parameter fits for C_2H_4 and C_2H_6 in **NUM-7a** at 298 K.

	$q_{\rm sat}$ mol kg ⁻¹	b $Pa^{-\nu}$	dimensionless
C_2H_4	3.1	8.07425E-05	0.96
C_2H_6	3.1	6.25788E-05	1.05

	298 K C ₂ H ₆ adsorbed amount $(cm3 g-1) (1 bar)$	$298 K C_2H_4$ adsorbed amount $(cm3 g-1) (1 bar)$	Selectivity $(50:50)$ (1 bar)	Ref.
$Fe(O2)$ dobdc	76	57	4.25	$\overline{7}$
Cu(Qc) ₂	41	17	3.4	8
MUF-15 (293 K)	105	93	1.95	9
PCN-250	116	94	1.9	10
PCN-245	73	54	1.8	11
NUM-7a	68	60	1.76	This work
$ZJU-30$	47	44	< 1.7	12
ZIF-69	49	39	1.66	13
$Ni(bdc)(ted)_{0.5}$	112	76	1.6	14
MIL-142-A	85	65	1.5	15
$ZIF-7$	41	40	1.5	16
UTSA-33	83	76	1.4	17
UTSA-35	54	48	1.4	18
Cu(ina) ₂	44	42	1.34	8

Table S3. IAST selectivity comparison of C_2H_6 -selectivity MOFs.

Figure S1. The asymmetric unit for **NUM-7** (Hydrogen atoms were omitted.).

Figure S2. PXRD patterns for **NUM-7** in some solvents for 1 day, showing the structural integrity.

Figure S3. TGA curves for **NUM-7** and **NUM-7a** under air atmosphere.

Figure S4. VT-PXRD patterns of **NUM-7** under air atmosphere.

Figure S5. PXRD patterns of **NUM-7** showing that the structure still remains unchanged after activation at 150 °C under vacuum.

Figure S6. Volumetric N2 adsorption isotherm for **NUM-7a** at 77 K.

Figure S7. The pore size distribution for **NUM-7a**.

Figure S8. CO₂, CH₄ adsorption isotherms for NUM-7a at 273 K.

Figure S9. CO₂, CH₄ adsorption isotherms for NUM-7a at 298 K.

Figure S10. C₂H₂, CO₂ adsorption isotherms for NUM-7a at 273 K.

Figure S11. C_2H_2 , CO_2 adsorption isotherms for **NUM-7a** at 298 K.

Figure S12. The details of virial equation (solid lines) fitting to the experimental C_2H_6 adsorption data (symbols) for **NUM-7a**.

Figure S13. The details of virial equation (solid lines) fitting to the experimental C_2H_4 adsorption data (symbols) for **NUM-7a**.

Figure S14. The details of virial equation (solid lines) fitting to the experimental C_2H_2 adsorption data (symbols) for **NUM-7a**.

Figure S15. Isosteric heats of $C_2H_6C_2H_4$ and C_2H_2 .

Figure S16. Density distribution of C_2H_6 in **NUM-7a**.

Figure S17. Density distribution of C2H4 in **NUM-7a**.

Figure S18. Density distribution of C_2H_2 in **NUM-7a**.

Figure S19. C_2H_6 adsorption isotherm for **NUM-7a** (symbols) at 298 K and the virial equation fit (line) by Langmuir-Freundlich (L-F) model.

Figure S20. C_2H_4 adsorption isotherm for **NUM-7a** (symbols) at 298 K and the virial equation fit (line) by Langmuir-Freundlich (L-F) model.

Figure S21. C_2H_2 adsorption isotherm for **NUM-7a** (symbols) at 273 K and the virial equation fit (line) by Langmuir-Freundlich (L-F) model.

Figure S22. C_2H_2 adsorption isotherm for **NUM-7a** (symbols) at 298 K and the virial equation fit (line) by Langmuir-Freundlich (L-F) model.

Figure S23. CO₂ adsorption isotherm for **NUM-7a** (symbols) at 273 K and the virial equation fit (line) by Langmuir-Freundlich (L-F) model.

Figure S24. CO₂ adsorption isotherm for **NUM-7a** (symbols) at 298 K and the virial equation fit (line) by Langmuir-Freundlich (L-F) model.

Figure S25. CH4 adsorption isotherm for **NUM-7a** (symbols) at 298 K and the virial equation fit (line) by Langmuir-Freundlich (L-F) model.

Figure S26. IAST selectivity of C_2H_2/CO_2 (50/50) for **NUM-7a**.

Figure S27. IAST selectivity of CO_2/CH_4 (50/50 and 10/90) for **NUM-7a** at 298 K.

References

- 1. Zhou, D. D.; He, C. T.; Liao, P. Q.; Xue, W.; Zhang, W. X.; Zhou, H. L.; Zhang, J. P.; Chen, X. M. A Flexible Porous Cu(II) Bis-Imidazolate Framework with Ultrahigh Concentration of Active Sites for Efficient and Recyclable CO₂ Capture. *Chem. Commun.* 2013, 49, 11728-11730.
- 2. Wu, Y.; Chen, H. Y.; Liu, D. F.; Qian, Y.; Xi, H. X. Adsorption and Separation of Ethane/Ethylene on ZIFs with Various Topologies: Combining GCMC Simulation with the Ideal Adsorbed Solution Theory (IAST). *Chem. Eng. Sci.* **2015**, *124*, 144-153.
- 3. Krishna, R. The Maxwell-Stefan Description of Mixture Diffusion in Nanoporous Crystalline Materials. *Micropor. Mesopor. Mater.* **2014**, *185*, 30-50.
- 4. Krishna, R. Methodologies for Evaluation of Metal-Organic Frameworks in Separation Applications. *RSC Adv.* **2015**, *5*, 52269-52295.
- 5. Krishna, R. Screening Metal-Organic Frameworks for Mixture Separations in Fixed-Bed

Adsorbers using a Combined Selectivity/Capacity Metric. *RSC Adv.* **2017**, *7*, 35724-35737.

- 6. Krishna, R. Methodologies for Screening and Selection of Crystalline Microporous Materials in Mixture Separations. *Sep. Purif. Technol.* **2018**, *194*, 281-300.
- 7. Li, L.; Lin, R. B.; Krishna, R.; Li, H.; Xiang, S.; Wu, H.; Li, J.; Zhou, W.; Chen, B. Ethane/Ethylene Separation in a Metal-Organic Framework with Iron-Peroxo Sites. *Science*, **2018**, *362*, 443-446.
- 8. Lin, R. B.; Wu, H.; Li, L.; Tang, X. L.; Li, Z.; Gao, J.; Cui, H.; Zhou, W.; Chen, B. Boosting Ethane/Ethylene Separation within Isoreticular Ultramicroporous Metal-Organic Frameworks. *J. Am. Chem. Soc.* **2018**, *140*, 12940-12946.
- 9. Qazvini, O. T.; Babarao, R.; Shi, Z.-L.; Zhang, Y.-B.; Telfer, S. G. A Robust Ethane-Trapping Metal-Organic Framework with a High Capacity for Ethylene Purification. *J. Am. Chem. Soc.* **2019**, *141*, 5014-5020.
- 10. Chen, Y. W.; Qiao, Z. W.; Wu, H. X.; Lv, D. F.; Shi, R. F.; Xia, Q. B.; Zhou, J.; Li, Z. An Ethane-Trapping MOF PCN-250 for Highly Selective Adsorption of Ethane over Ethylene. *Chem. Eng. Sci.* **2018**, *175*, 110-117.
- 11. Lv, D.; Shi, R.; Chen, Y.; Wu, Y.; Wu, H.; Xi, H.; Xia, Q.; Li, Z. Selective Adsorption of Ethane over Ethylene in PCN-245: Impacts of Interpenetrated Adsorbent. *ACS Appl. Mater. Interfaces*, **2018**, *10*, 8366-8373.
- 12. Cai, J. F.; Yu, J. C.; Xu, H.; He, Y. B.; Duan, X.; Cui, Y. J.; Wu, C. D.; Chen, B. L.; Qian, G. D. A Doubly Interpenetrated Metal-Organic Framework with Open Metal Sites and Suitable Pore Sizes for Highly Selective Separation of Small Hydrocarbons at Room Temperature. *Cryst. Growth Des.* **2013**, *13*, 2094-2097.
- 13. Yuan, W. H.; Zhang, X. T.; Li, L. Synthesis of Zeolitic Imidazolate Framework-69 for Adsorption Separation of Ethane and Ethylene. *J. Solid State Chem.* **2017**, *251*, 198-203.
- 14. Liang, W. W.; Xu, F.; Zhou, X.; Xiao, J.; Xia, Q. B.; Li, Y. W.; Li, Z. Ethane Selective Adsorbent Ni $(bdc)(ted)_{0.5}$ with High Uptake and its Significance in Adsorption Separation of Ethane and Ethylene. *Chem. Eng. Sci.* **2016**, *148*, 275-281.
- 15. Chen, Y. W.; Wu, H. X.; Lv, D. F.; Shi, R. F.; Chen, Y.; Xia, Q. B.; Li, Z. Highly Adsorptive Separation of Ethane/Ethylene by an Ethane-Selective MOF MIL-142A. *Ind. Eng. Chem. Res.* **2018**, *57*, 4063-4069.
- 16. Liao, P. Q.; Zhang, W. X.; Zhang, J. P.; Chen, X. M. Efficient Purification of Ethene by an Ethane-Trapping Metal-Organic Framework. *Nat. Commun.* **2015**, *6*, 8697.
- 17. He, Y.; Zhang, Z.; Xiang, S.; Fronczek, F. R.; Krishna, R.; Chen, B. A Microporous Metal-Organic Framework for Highly Selective Separation of Acetylene, Ethylene, and Ethane from Methane at Room Temperature. *Chem.-Eur. J.* **2012**, *18*, 613-619.
- 18. He, Y.; Zhang, Z.; Xiang, S.; Fronczek, F. R.; Krishna, R.; Chen, B. A Robust Doubly Interpenetrated Metal-Organic Framework Constructed from a Novel Aromatic Tricarboxylate for Highly Selective Separation of Small Hydrocarbons. *Chem. Commun.* **2012**, *48*, 6493-6495.