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ABSTRACT: Obtaining highly valuable Xe from air or other sources is highly
important but still seriously restricted by its inherent inert nature and the great
difficulty in separation from other inert gases, especially for Xe and Kr that
show comparable size. In this work, we show both experimental and theoretical
research of how to boost the selective adsorption of Xe over Kr by double-
accessible open-metal site in metal−organic framework (MOF). The MOF,
namely, UTSA-74, shows a high Xe uptake up to 2.7 mmol/g and a lower Kr
uptake of 0.58 mmol/g at 298 K and 1 bar, leading to a high selectivity of 8.4.
The effective Xe/Kr separation was further confirmed by both transient
breakthrough simulation and experimental breakthrough. The separation
mechanism, as unveiled by the grand canonical Monte Carlo simulation and
dispersion-corrected density functional theory calculation, is due to the unique
double-accessible open-metal site in UTSA-74 that affords stronger interaction
toward Xe than Kr.

■ INTRODUCTION

Since the first discovery of Kr and Xe in the late 19th century,
these species have received extensive attention, due to their
great and broad applications in medical imaging, commercial
lighting, insulation, lasers, illumination, and spacecraft
propellants.1−4 They can be generally obtained as a byproduct
from air separations with a 20:80 (v/v) Xe/Kr mixture.
Alternatively, Xe and Kr can be obtained from the off-gas of
nuclear fuel (UNF).5−7 Currently, the mature technique to
generate such products is based on their different boiling
points via cryogenic distillation, however, which presents an
energy- and cost-intensive avenue.
Adsorption-based separation upon porous solid materials

presents a low-cost and low-energy alternative.8 Accordingly,
the traditional solid porous materials such as porous carbon
and zeolites have been extensively investigated for Xe/Kr
separation, however, just showing low adsorption capacity and
selectivity, seriously restricting their practical applications.9−11

This is mainly because Xe and Kr show inert physical and
chemical properties and the same shape and close diameters
(Xe, 4.1 Å vs Kr, 3.7 Å).
In the past decades metal−organic frameworks (MOFs)

have been witnessed to show big potential in gas separation,
including in alkyne/alkene, alkene/alkane, isomer, and isotope
counterpart.12−19 However, only limited MOFs have been
researched for such task, mainly because of their inherent inert
nature that consequently leads to weak interaction with the

skeleton of MOFs and the serious requirement for the size
effect.20−34 In this regard, some benchmark work and
theoretical research discloses that MOFs with the pore size
of ∼4.0 Å benefit the enhancement of the Xe adsorption
selectivity. For example, Li et al. reported an MOF with pore
size of (4.1 Å × 4.3 Å), showing ultrahigh Xe selectivity up to
60.6 at the low pressure of 0.2 bar.33 Xing et al. designed a
narrow pore with size of ∼3.3 Å but local flexibility, leading to
the recorded Xe/Kr uptake ratio up to 43 at 0.2 bar and 273
K.34 SBMOF-1 created by Thallapally et al. enables a 4.2 Å
pore size, well matching with a Xe atom, resulting in a
thermodynamic Xe/Kr selectivity of 16 at 298 K.29 All these
results indicate that the narrow pore of ∼4.0 Å benefit the
restriction of the Xe molecule through weak van der Waals
intermolecular interaction, consequently leading to Xe
adsorption selectivity, though Xe shows an inherent inert
nature. To enhance the intermolecular affinity, an open-metal
site in MOFs was approved to be effective toward Xe, lying on
the unique metal-Xe contact. For example, Cu-BTC, a typical
MOF holding an open Cu site, affords Xe adsorption
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selectivity of 2.6,20 while increasing the density of open-metal
site such as Ni-MOF-74 with open Ni site leads to higher Xe
adsorption selectivity up to 5,7 though the pore size in both of
them is more than 11 Å, far larger than the Xe atom. In this
regard, our recently reported UTSA-7435 that shows higher
density of open-metal site than Ni-MOF-74 is expected to
render higher Xe adsorption selectivity.
As expected, Xe adsorption selectivity up to 8.4 at room

temperature and 1 bar was observed in UTSA-74. And
excellent Xe/Kr separation was also reflected on the
experimental breakthrough. Grand canonical Monte Carlo
(GCMC) simulation discloses that the major adsorption
locates on the double open-metal site, while the dispersion-
corrected density functional theory (DFT-D) calculation
reveals a strong contact between the open Zn site and Xe,
showing a shorter distance of 3.5 Å for Zn−Xe than Zn−Kr
(3.8 Å).

■ MATERIALS AND METHODS
Materials and Physical Measurements. The reagents and

solvents were commercially available and were used as received
without further purification. X-ray powder diffraction (PXRD)
patterns were collected by a Bruker AXS D8 Discover powder
diffractometer at 40 kV, 40 mA for Cu Kα (λ = 1.5406 Å) at room
temperature in the range of 5−50° (2θ) with a scan speed of 0.1 deg
per step. The gas sorption isotherms were collected on a Belsorp-max.
Ultrahigh-purity-grade (>99.999%) Xe and Kr gases were used in this
adsorption measurement. To maintain the experimental temperatures,
a temperature-programmed water bath (273 and 298 K, respectively)
was used.
Synthesis of UTSA-74. The synthesis of it followed our previous

reported method.35 A dimethyl formamide (DMF) (10 mL)/H2O
(0.5 mL) solution of Zn(NO3)2·6H2O (1 mmol) and H4dobdc (0.5
mmol) was sealed in a Teflon reactor, heated at 150 °C for 3 d, and
then cooled to room temperature at 3 °C/h. Subsequently, block
crystals were obtained in 82% yield based on Zn. Elemental analysis:
Calcd for Zn2(H2O)(dobdc)·0.5(H2O)(C8H5O7.5Zn2): C, 27.30; H,
1.43; Found: C, 27.13; H, 1.40. The active method for UTSA-74
refers to our previous report. The as-synthesized samples were
immerged in CH3OH for 3 d with the replacement of fresh CH3OH
three times per 1 d. Then the samples were first degassed under
vacuum to get dry samples. Later, the samples were further degassed
under vacuum at 200 °C for 24 h on Belsorp-max. The samples were
confirmed by powder X-ray diffraction (Figure 1).
Breakthrough Experiment. The experimental setup used for

dynamic measurements is homemade. Before performing the

breakthrough experiment, 1.5 g of the activated adsorbent (in the
column Ø 6 mm × 300 mm) was activated at 200 °C overnight under
vacuum. Before starting each experiment, helium reference gas is
flushed through the column, and then the gas flow is switched to the
desired gas mixture at the same flow rate of 2 mL/min. The gas
mixture downstream the column was monitored using a Hiden mass
spectrometer. The recycle breakthrough experiment was performed in
such way when the samples finished the breakthrough experiment;
then, the samples were activated at 100 °C under vacuum for 2 h, and
later the next breakthrough experiment was performed.

Fitting of Experimental Data on Pure Component Iso-
therms. The isotherm data for Xe and Kr in UTSA-74 at 273 and
298 K were fitted with the one-site Langmuir model
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The Langmuir parameters are provided in Table 1.

Isosteric Heat of Adsorption. The binding energy is reflected in
the isosteric heat of adsorption Qst, which is calculated based on the
pure component equilibrium adsorption isotherms of Xe and Kr at
298 and 273 K through the equation as follows.
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Ideal Adsorbed Solution Theory (IAST) Calculations. The
adsorption selectivity for the Xe/Kr separation (20:80, v/v) is
calculated based on the pure component equilibrium adsorption
isotherms of Xe and Kr at 298 and 273 K through the equation as
follows.
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q q
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/
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Breakthrough Simulations. Transient breakthrough simulations
were performed for 20/80 Xe/Kr mixtures in UTSA-74 operating at a
total pressure of 100 kPa and 298 K, using the methodology described
in earlier publications.35 For the breakthrough simulations, the
following parameter values were used: length of packed bed, L = 0.3
m; voidage of packed bed, τ = 0.4; superficial gas velocity at inlet, u =
0.04 m/s.

Grand Canonical Monte Carlo (GCMC) Simulations. The
GCMC simulations, which were performed by Sorption code36 in
Material Studio (MS) software, were performed to investigate the
adsorbed capacity of an MOF for Xe/Kr at 298 K from 0.001 to 100
kPa. A simulation box of 1 × 1 × 1 crystallographic unit cell was used.
During the simulations, 4 × 106 steps were performed to guarantee
the equilibration and to sample the desired properties, respectively. A
rigid framework assumption was used in all the simulations. The
universal force field (UFF)37 was used to describe the interactions,
and the van der Waals interaction with a cutoff of 12.5 Å was depicted
by a Lennard-Jones 12−6 potential.

Density Functional Theory (DFT) Calculations. DFT calcu-
lations were performed to provide the optimized structures and
energies for monomers, including USTA-74, Xe, and Kr. The
Perdew−Burke−Ernzerhof (PBE) function under the generalized
gradient approximation (GGA) functional with the double-ξ

Figure 1. Experimental PXRD pattern of as-synthesized UTSA-74
samples and simulated from the single-crystal data.

Table 1. One-Site Langmuir Parameter Fits for Xe and Kr in
UTSA-74

qsat, mol kg−1 b0, Pa
−1 E, kJ mol−1

Xe 5.3 5.554 × 10−10 24.4
Kr 7 1.266 × 10−09 16.3

Inorganic Chemistry pubs.acs.org/IC Article

https://dx.doi.org/10.1021/acs.inorgchem.0c01766
Inorg. Chem. 2020, 59, 11793−11800

11794

https://pubs.acs.org/doi/10.1021/acs.inorgchem.0c01766?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.0c01766?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.0c01766?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.inorgchem.0c01766?fig=fig1&ref=pdf
pubs.acs.org/IC?ref=pdf
https://dx.doi.org/10.1021/acs.inorgchem.0c01766?ref=pdf


numerical polarization (DPN) basis set was used by the CASTEP
program package38 in the Materiel Studio of Accelrys. Because of the
whole unit cell was too large to use, the smaller primitive cell was
used. The tolerances of energy, gradient, and displacement
convergence for optimizations were 1.0 × 10−5 eV/atom, 0.03 eV/
Å, and 0.001 Å, respectively. The dispersion correction (DFT-D)39

was considered in calculations of the single-point energy. The binding
energy ΔEbind for the adsorbed structures in the primitive cell with
Xe/Kr was calculated based on the equation as follows

Δ = − −E E E E
1

12
( 12 )bind adsorbed Xe/Kr MOF

where Eadsorbed, EXe/Kr, and EMOF are the total energies of adsorbed
structure, Xe/Kr gas, and a primitive cell of MOF, while the number
12 denotes that 12 Xe/Kr molecules can be adsorbed in one primitive
cell.

■ RESULTS AND DISCUSSION
Structure of UTSA-74. The structure of UTSA-74 was

reported by us recently.35 It is an MOF-74 isomer, but it shows
some distinct structural features (Figure 2). In UTSA-74, there
are two crystallography-independent metal centers, showing
two distinct coordination surroundings, one being the
tetrahedral geometry finished by four oxygen atoms from
organic ligands (thus without the potential as open-metal site)
and one being the octahedral geometry finished by four oxygen
atoms from organic ligands plus two terminal coordinated
water molecules (accordingly with a potential double-
accessible open-metal site). As estimated, UTSA-74 shows a
higher density of open-metal site up to 8.25 mmol/cm3 relative
to MOF-74 with 7.5 mmol/cm3. Also, on the basis of previous
results, the activated samples indeed enable the unique
structure of double-accessible open-metal site, suggesting its
big potential for binding the Xe molecule.
Xe and Kr Adsorption in UTSA-74. Pure component

equilibrium adsorption isotherms of Xe and Kr were measured
at 298 and 273 K up to 1 bar, respectively (Figure 3). The total
Xe uptake at 298 K and 1 bar was 2.71 mmol/g, whereas the
Kr capacity under the same condition is just 0.58 mmol/g,
giving a Xe/Kr ratio of 4.67. At 0.2 bar, the Xe/Kr uptake ratio
is 6.5, while the Xe/Kr uptake ratio at 0.2 bar/0.8 bar is 1.89,
which is comparable with the benchmark MOFs with an open-

metal site such as Ni-MOF-74 (7.73, 2.18).40 All these results
imply selective adsorption of Xe in UTSA-74. A similar trend
was observed at low temperature. At 273 K, the Xe capacity
increases to 3.8 mmol/g, and the corresponding Kr uptake is
1.0 mmol/g. Accordingly, the Xe/Kr uptake ratio is 8.4 and
2.25 for 0.2 bar/0.2 and 0.2 bar/0.8 bar.

Xe/Kr Selectivity. The Xe/Kr selectivity was initially
estimated by the generally used Henry’s selectivity in light of
the Xe and Kr adsorption data at low pressure.33 At 298 K, the
Henry’s selectivity is 7.85, while it increases to 10.4 at 273 K.
This Henry’s selectivity is notably higher than that of previous
MOFs with open-metal site such as Ni-MOF-74 (5.8),7 MIL-
101(Cr) (5.3),21 MIL-101(Fe) (5.3),21 and FMOF-Cu (1.4)31

and comparable with the best-performing materials like those
of [Co3(HCOO)6] (8.7),

27 SB-MOF-2 (8.6),28 and MOF-505
(6.8).8 Then, we further performed the IAST calculation for a
20:80 (v/v) Xe/Kr mixture of gases at 298 K, giving the
selectivity of 8.7−8.4 among the pressure arranged at 1−100
kPa (Figure 4), which is comparable with the Henry’s
selectivity and significantly higher than that of previous
MOFs with an open-metal site such as Ni-MOF-74 (5−6),7
Zn-MOF-74 (4−5),7 Cu-BTC (2.6),20 and FMOF-Cu (2.0)31

and also comparable with the best-performing materials like
those of [Co3(HCOO)6] (12),27 SB-MOF-2 (10),28 and

Figure 2. View of the structure of UTSA-74. This MOF shows a one-dimensional channel along the c-axis with pore size of 0.62 nm. The highlight
is the coordination surrounding the metal ions. The circled atoms are terminal coordinated water molecules. The arrow presents the potential
double-accessible open-metal site.

Figure 3. Xe and Kr adsorption isotherms at 298 and 273 K.
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MOF-505 (9−10).8 Regarding the pore size of UTSA-74 being
∼1.0 nm, which is too large to match the Xe atom, all the
above results suggest the open-metal site that is responsible for
the selective Xe adsorption and stronger Xe-metal interactions
in UTSA-74 over most reported MOFs with an open-metal
site.
Isosteric Heats of Adsorption. To reflect the intensity of

the interaction between the guest molecules and the MOF
skeleton, the calculation of the isosteric heats of adsorption
(Qst) was performed (Figure 5). The Xe Qst value at nearly

zero loading is ∼24.4 kJ/mol, bigger than the corresponding
value of 16.3 kJ/mol for Kr, implying a higher affinity for Xe
over Kr and, consequently, selective adsorption of Xe. The
isosteric heat of adsorption for Xe is bigger than that of the
benchmark MOFs with open-metal site such as Ni-MOF-74
(22 kJ/mol),40 also confirming stronger Xe-metal interactions
in UTSA-74.

GCMC Simulation. To gain a better insight into the Xe
and Kr adsorption in UTSA-74, a GCMC simulation was
performed to explore the interactions between Xe/Kr and the
MOF. According to the GCMC simulations for the Xe/Kr
adsorption isotherm from 0.01−100 kPa and 298 K, the
adsorption capacity of Xe (∼2.82 mmol/g) was found to be
larger than that of Kr (0.59 mmol/g), which was well-
consistent with the experimental results. At the same time, the
density distribution of Xe/Kr can be obtained. The cases for
Xe and Kr at 100 kPa were presented in Figure 6. Clearly, both
Xe and Kr are mostly adsorbed around the open-metal site in
UTSA-74.
To further disclose the binding ability and adsorption

mechanism, DFT-D calculations were performed. The
experimental crystal structure was slightly disordered on the
open Zn site, so that the ordered geometry for UTSA-74 was
built. The optimized structures of adsorption were acquired
based on the density distribution of GCMC simulations. The
binding energy of UTSA-74 with Xe was −31.35 kJ/mol, lower
than the corresponding value of −17.96 kJ/mol for Kr, giving a
13.39 kJ/mol difference. This strongly suggests a preferred
adsorption of Xe over Kr by UTSA-74. The calculated binding
energy of Xe is comparable with the calculated value of −33.87
kJ/mol in Ni-MOF-74, which shows the highest calculated
binding energy among all these MOF-74 series (Table 2).41 In

Figure 4. Xe/Kr selectivity of UTSA-74 for a 20:80 mixture of gases
at 298 K.

Figure 5. Qst value of Xe and Kr for UTSA-74.

Figure 6. Simulated density distribution of Xe (a) and Kr (b) in UTSA-74 at 298 K and 100 kPa, where red = O, purple = Zn, while = H, gray = C,
and the “color dots” denoted the size of density distribution.

Table 2. A Comparison of the Calculated Binding Energy of
Xe and Kr with USTA-74 and MOF-74 Series

compounds
binding energy of Xe with

metal (kJ/mol)
binding energy of Kr with

metal (kJ/mol)

Zn-MOF-
74

−22.87 −11.95

Co-MOF-
74

−23.05 −13.34

Mg-MOF-
74

−14.07 −4.53

Mn-MOF-
74

−6.47 +3.44

Ni-MOF-
74

−33.87 −23.61

UTSA-74 −31.35 −17.96
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contrast to the single-open Zn site in Zn-MOF-74 with the
calculated binding energy of −22.87 kJ/mol for Xe, the
ultrahigh calculated binding energy up to −33.87 kJ/mol in
our MOF should be derived from the unique double-open Zn
site in this MOF. Furthermore, the shorter Xe−Zn distance of
3.5 Å than the Kr−Zn distance of 3.8 Å and the unique contact
mode of two Xe or Kr atoms binding to one Zn via two open
pathways was observed (Figure 7a−d). This clearly suggests
stronger interactions between Xe and an open-metal site,
which is well-consistent with the experimental results. On the
basis of the above experimental and theoretical results, we
made a conclusion that the selective adsorption mechanism in
UTSA-74 is due to the unique double-open Zn site that
preferentially provides two accessible pathways to binding with
Xe atoms.
Transient Breakthrough Simulations. Transient break-

through simulations42−43 were performed for 20/80 Xe/Kr
mixtures in UTSA-74 operating at a total pressure of 100 kPa
and 298 K, using the methodology described in earlier
publications. As shown in Figure 8, efficient separation was
observed, where Kr breakthrough occurred first and after a
certain time (Δτ) Xe breakthrough was observed, mainly
because of more efficient capture of Xe by the UTSA-74 bed.
Experimental Breakthrough. The experimental break-

through test was implemented in a packed column of UTSA-74
to render the actual separation performance based on a 20:80
(v/v) Xe/Kr mixture of gases at 298 K under a total flow of 2
mL min−1. As shown in Figure 9, it is clear that UTSA-74 can
effectively separate the Xe/Kr mixture of gases, wherein Kr first
eluted through the adsorption bed after 23 min, whereas Xe

breakthrough did not occur until 51 min. This suggests highly
effective Xe/Kr separation by UTSA-74 materials. The Kr
(>99.9%) production is 36 mL/g, and the Xe adsorption ability
is 32 mL/g, slightly less than the value estimated from the Xe
adsorption isotherm at 298 K. Most importantly, after a recycle
test four times, no obvious decrease in the Xe/Kr separation
performance was observed, confirming its good recyclability for
the Xe/Kr separation.

Figure 7. (a, b) View of the one-dimensional pore of USTA-74 with the occupation of Xe and Kr atoms. (c, d) View of the contact between Xe/Kr
and other adjacent atoms, especially the open Zn site.

Figure 8. Plot of transient breakthrough simulations for UTSA-74.
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■ CONCLUSION

As discussed above, the MOF UTSA-74, due to the unique
double-accessible open Zn site, even affords comparable
binding ability with the single-open Ni site in Ni-MOF-74,
as evidenced by the experimental Qst value (24.4 kJ/mol for
UTSA-74 vs 22 kJ/mol for Ni-MOF-74) and calculated Xe-
metal binding energy (−31.35 kJ/mol for UTSA-74 vs −33.87
kJ/mol for Ni-MOF-74). For the MOF-74 series, Ni-MOF-74
(−33.87 kJ/mol) shows higher Xe-metal binding energy over
all other MOF-74 derivatives such as Zn-MOF-74 (−22.87 kJ/
mol), Mg-MOF-74 (−14.07 kJ/mol), and Co-MOF-74
(−23.05 kJ/mol).41 In this regard, the category of metal ions
will significantly affect the binding energy. Accordingly, the
synthesis of Ni-based UTSA-74 derivatives with a unique
double-accessible open Ni site is expected to show a higher Xe-
metal binding ability and consequently a higher selective
adsorption of Xe over Kr. And now we are working on this
task.
Moreover, in contrast to the MOFs using a narrow pore to

seriously restrict the Xe atoms, finally leading to a high
selective adsorption of Xe over Kr, the available MOFs with
open-metal site, whatever the single or double-accessible open-
metal site, shows a bigger pore than the criterion for the Xe
atom. This can be reflected on the experimental Qst value. For
example, our MOF shows the experimental Qst value of 24.4
kJ/mol, far smaller than a rigid squarate-base MOF with
perfect pore size (4.1 Å × 4.3 Å). Regarding the unique Xe-
metal interactions observed in the MOFs with open-metal site,
accordingly, it is proposed that constructing MOFs with both
open-metal site and narrow pore size would be a good
candidate to solve the Xe/Kr separation problem.
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