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Abstract: Adsorption technology based on ethane-
selective materials is a promising alternative to energy-
intensive cryogenic distillation for separating ethane
(C2H6) and ethylene (C2H4). We employed a pore
engineering strategy to tune the pore environment of a
metal–organic framework (MOF) through organic func-
tional groups and boosted the C2H6/C2H4 separation of
the MOF. Introduction of amino (� NH2) groups into
Tb-MOF-76 not only decreased pore sizes but also
facilitated multiple guest-host interactions in confined
pores. The NH2-functionalized Tb-MOF-76(NH2) has
increased C2H6 and C2H4 uptakes and C2H6/C2H4

selectivity. The results of experimental and simulated
transient breakthroughs reveal that Tb-MOF-76(NH2)
has significantly improved one-step separation perform-
ance for C2H6/C2H4 mixtures with a high C2H4

(>99.95%) productivity of 17.66 Lkg� 1 compared to
7.53 Lkg� 1 by Tb-MOF-76, resulting from the suitable
pore confinement and accessible � NH2 groups on pore
surfaces.

Introduction

Ethylene (C2H4) is the most demanded raw material in the
petrochemical industry, with a global production exceeding
210 million tons in 2021. C2H4 is mainly produced by the
thermal decomposition of ethane (C2H6) and steam cracking
of fossil fuels, and inevitably contains a certain amount of
C2H6 residue (5%–9%) that must be cut down to guarantee
the polymerization utilization of C2H4.

[1] However, the
separation of C2H6 and C2H4 is extremely challenging

because of similar kinetic diameters and boiling points
between them (C2H6: 4.44 Å, 184.55 K; C2H4: 4.16 Å,
169.42 K).[2] Thus far, the well-developed separation of
C2H4/C2H6 has been realized by energy-intensive distillation
operated in a large distillation tower at low temperatures
and high pressures.[3] Exploiting efficient separation techni-
ques aiming to produce polymer-grade C2H4 is highly
imperative.[4]

Adsorbent-based separation using porous materials has
attracted particular attention for low energy consumption
and high efficiency.[5] C2H6/C2H4 separation can be imple-
mented by C2H4-selective or C2H6-selective adsorbents.
C2H4-selective adsorbents preferentially adsorb C2H4 over
C2H6, however, the subsequent desorption process is needed
to obtain C2H4 product, meanwhile the product is generally
of low purity due to C2H6 co-adsorption in adsorbents.[6] By
comparison, C2H6-selective adsorbents that preferentially
capture C2H6 impurity over C2H4 attain one-step harvest of
C2H4 in single breakthrough operation process.[7] At present,
the C2H6-selective adsorbents have remained relatively
underexplored as installing C2H4-binding sites in adsorbents
is easier to operate than C2H6-binding sites. So the
exploitation of excellent C2H6-selective adsorbents is the
desired pursuit for C2H4 purity goal.

Metal-organic frameworks (MOFs) are a new type of
porous materials with wide variety of application prospects
in many fields, especially the unique of tunable pore
environment and easy modification enable them to be ideal
platforms for designing C2H6-selective adsorbents.[8] These
adsorbents require specific recognition for C2H6 over C2H4

and high uptake for C2H6. Hitherto, although some C2H6-
selective MOFs have been reported,[9] however, the deficien-
cies, such as low selectivity, unsatisfied capacity, and inferior
structural stability are also usually encountered. For in-
stance, creating inert/non-polar pore environment is effec-
tive to construct C2H6-selective MOFs, however, the materi-
als exhibit relatively low loading for C2H6 due to lacking
strong C2H6-interacting sites.[10] The functionalization of
open metal sites (OMSs) through O2 reported by Chen et al.
greatly enhances the C2H6 uptakes, yielding a recorded
C2H6/C2H4 selectivity of 4.4, which shows a pioneering work
in creating C2H6-selective MOFs.[7b] This strategy needs
removing the coordinated solvents followed by introducing
O2 molecules to bind the OMSs, and the material is sensitive
to air/moisture and must to be handled in a glove box.
However, shielding the OMSs by coordinated solvent
molecules avoids the metal···π interactions between OMSs
and C2H4, providing an alternative to creating C2H6-selective
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MOFs. In addition, there are also other C2H6-selective
MOFs that mainly rely on synergy in pore-matching effects
and multiple interactions between the framework and C2H6

with more C� H bonds.[11]

Targeting the development of outstanding separation
materials for C2H6/C2H4 mixtures, isoreticular chemistry
allows us through pore engineering strategy to precisely
design and regulate the pores of MOFs. The pore environ-
ment of C2H6-selective MOFs can be tuned by modifying
linkers with organic groups, thus it would improve the C2H6/
C2H4 separation potential of MOFs. However, only very
rare examples were reported on the study of C2H6/C2H4

separation by pore engineering strategy in MOFs.[3b,8c,9c, 10,11]

Amino (� NH2) group effects on the gas adsorption and
separation were well demonstrated by other research
groups.[12] For example, using � NH2 groups or diamine
compounds to modify the organic linkers or metal centers in
MOFs, the CO2 adsorption amounts were greatly
increased.[12a, e, f] In addition, � NH2 groups can also serve as
accessible sites to form multiple C� H···N hydrogen bonds
with light hydrocarbon molecules to enhance the interac-
tions between MOFs and hydrocarbons.[13] However, there
are very few comparison studies on the C2H6/C2H4 mixtures
separation between amino-functionalized MOFs and parent
MOFs.[8b] So the comparative in-depth study on C2H6/C2H4

separation properties in the pair of isoreticular MOFs are
urgently needed.

With this in mind, we noticed Tb-MOF-76 based on
1,3,5-benzenetricarboxylate (BTC) as a platform due to its
analogues of M–MOF-76 (M=Y, Sm, Eu, and Dy) showed
the reversed C2H6/C2H4 adsorption selectivity.[14] According
to isoreticular chemistry, isomorphic Tb-MOF-76(NH2) was
readily obtained by using the amino-functionalized linker 2-
amino-1,3,5-benzenetricarboxylate (NH2-BTC), which pro-
vides an elegant example of controlling pore chemistry for
advancing C2H6/C2H4 separation. It was found that the
introduction of � NH2 groups decreased pore sizes from 7.9×
7.9 Å2 in Tb-MOF-76 to 7.2×7.2 Å2 in Tb-MOF-76(NH2),
facilitating the multiple guest-host interactions in confined
pores. Through obstructing the OMSs with the water
ligands, both MOFs show the C2H6-selective adsorption
behavior. Compared to Tb-MOF-76, Tb-MOF-76(NH2) has
increased C2H4 and C2H6 uptakes and C2H6/C2H4 selectivity
(1.7 vs 2.1), superior to most reported C2H6-selective MOFs,
and also displays the improved separation performance for
1/1, 1/9, and 1/15 (v/v) C2H6/C2H4 mixtures, obtaining the
pure C2H4 by one step. Thus, the installation of � NH2 groups
optimizes the pore environment elaborately, endowing Tb-
MOF-76(NH2) with great potential as a superior adsorbent
for C2H4 purification from C2H6/C2H4 mixtures.

Results and Discussion

In performing functional modification, it is of paramount
importance to synthesize MOFs with high stability. Herein,
adjustable and highly stable Tb-MOF-76 was selected as a
platform for � NH2 functionalization. The high quality of
single crystals of Tb-MOF-76(NH2) can be prepared through

the solvothermal reaction of NH2-BTC with Tb3+ ions,
which is isostructural to Tb-MOF-76 crystallized in a P4122
space group (CCDC No. 2192249, as shown in Figure S1–S3,
Table S1 and S2).[15] The Tb3+ centres have distorted
pentagonal-bipyramidal geometries (Figure S4), and are
bridged by carboxylates to form a helical rod-shaped
secondary building unit (SBU) (Figure 1). The SBUs are
connected with organic linkers to construct an open frame-
work possessing square channels. Compared to Tb-MOF-76,
Tb-MOF-76(NH2) has free � NH2 groups pointing into the
channels, which decreases the pore dimensions to 7.2×
7.2 Å2 from 7.9×7.9 Å2 (excluding the van der Waals radii)
in Tb-MOF-76 (Figure 1). The pore sizes of Tb-MOF-
76(NH2) is closer to the kinetic diameter of C2H4 (4.16 Å)
and C2H6 (4.44 Å), which would impose multipoint adsorb-
ing sites for C2H4 and C2H6 molecules considering size-
matching effect.

Thermogravimetric analysis (TGA) showed the removal
of coordinated water molecules at a high temperature for
the two MOFs (Figure S5 and S6). During activation process
of MOFs, the coordinated water molecules were hold in
order to avoid the formation of OMSs that on one hand are
unfavorable to binding C2H6 over C2H4, on the other hand
are easily attacked by water in realistic work environment.
For this regard, the MOFs exchanged in methanol for 72 h
were activated at 373 K under high vacuum to remove lattice
solvents, as shown in TGA curves (Figure S5 and S6). Power
X-ray diffraction (PXRD) of two desolvated MOFs remain
unchanged, indicating the framework rigidness (Figure S2
and S3). Both MOFs show typically type-I isotherms for N2

at 77 K (Figure 2a). As expected, the introduction of � NH2

groups moderately decreases the pore sizes of Tb-MOF-
76(NH2) (8.2 Å) compared to Tb-MOF-76 (8.8 Å), the
smaller pore sizes would be more favorable to form multiple
contacts between the framework and gases.

To evaluate the tuning on absorption performance via
� NH2 modification, the sorption isotherms of C2H6 and
C2H4 were measured at 273 and 298 K (Figure 2b and 2c).
At 100 kPa, the loadings of Tb-MOF-76 for C2H6 and C2H4

Figure 1. Isostructural frameworks of Tb-MOF-76 and Tb-MOF-76(NH2)
assembled by rod-shaped SBUs and BTC/NH2-BTC linkers.
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are 68.0 and 62.6 cm3g� 1 at 298 K and 80.6 and 78.6 cm3g� 1

at 273 K, respectively, while the loadings of Tb-MOF-
76(NH2) for C2H6 and C2H4 are increased to 73.3 and
66.6 cm3g� 1 at 298 K and 87.5 and 83.1 cm3g� 1 at 273 K,
respectively. Compared to Tb-MOF-76, besides higher
uptakes, Tb-MOF-76(NH2) also exhibited steeper adsorp-
tion isotherms of C2H6 and C2H4, implying the immobiliza-
tion of � NH2 groups strengthens the adsorbate-adsorbent
interactions. This finding coincides with the calculated
results of isosteric heat of adsorption (Qst) by fitting the gas
adsorption isotherms at 273, 298, and 313 K to the virial
equation (Figure 2d, S7–S12), which display notably higher
Qst values in two MOFs for C2H6 (32.8–30.7 kJmol� 1 for Tb-
MOF-76(NH2), 25.2–21.7 kJmol� 1 for Tb-MOF-76) com-
pared to C2H4 (30.9–29.5 kJmol� 1 for Tb-MOF-76(NH2),
22.4–20.1 kJmol� 1 for Tb-MOF-76) in the measured pressure
region. Meanwhile, Tb-MOF-76(NH2) shows higher Qst for
the two gases relative to Tb-MOF-76. The decreased pore
sizes in Tb-MOF-76(NH2) allow closer interactions between
the framework and gas molecules, improving adsorption
affinity. For two MOFs, besides the higher Qst values of
C2H6 than C2H4, the isotherms of C2H6 are also increased
more sharply than C2H4 (Figure S11 and S12). These
observations validate the stronger affinity of the framework
toward C2H6 over C2H4, supporting the C2H6-selective
behavior in two MOFs.

Although the C2H6 uptake of Tb-MOF-76(NH2) at 298 K
and 100 kPa is lower than some benchmark C2H6-selective
MOFs (Figure 3a), such as CPM-233 (166.8 cm3g� 1),[16]

CPM-733 (159.6 cm3g� 1),[16] JNU-2 (92 cm3g� 1),[17] and TJT-
100 (86 cm3g� 1),[18] but exceeds or is comparable with most
reported top-performance adsorbents for C2H6/C2H4 separa-
tion, including Cu(Qc)2 (60 cm3g� 1),[11] MAF-49
(38 cm3g� 1),[13a] NKCOF-23 (60.5 cm3g� 1),[7a] and HIAM-102
(48.3 cm3g� 1).[19] The cycle tests demonstrate the facile
reactivation of Tb-MOF-76(NH2), wherein the sorption

isotherms of C2H6 and C2H4 are reversible and have no
decrease in adsorption capacities (Figure 3b).

Ideal adsorbed solution theory (IAST) was utilized to
assess and compare the selectivity of Tb-MOF-76(NH2) and
Tb-MOF-76 for 1/1, 1/9, and 1/15 C2H6/C2H4 mixtures at
298 K (Figure S13 and S14). Tb-MOF-76 exhibits the C2H6/
C2H4 selectivity of about 1.7 for these mixtures at 100 kPa,
while Tb-MOF-76(NH2) shows an obviously high selectivity
of about 2.1 (Figure 4a). Since the low content of C2H6 in
actual cracked gas mixtures (C2H6/C2H4, 1 :15), it is crucial
that the material has a high loading for C2H6 at low partial
pressure. Figure 4b presents a comparison of Tb-MOF-
76(NH2) with some typical C2H6-selective MOFs when we
set C2H6/C2H4 selectivity at 100 kPa and C2H6 uptake at
6.25 kPa (partial pressure of C2H6 in cracked gas mixtures)
as concurrent objectives. The selectivity and C2H6 uptake in
Tb-MOF-76(NH2) are only lower than benchmark MAF-49
(2.7),[13a] Fe2(O2)(dobdc) (4.4),[7b] and ZJU-120a (2.74),[10]

but higher than some top-performing C2H6-selective MOFs,
such as MUF-15 (1.96),[20] Azole-Th-1 (1.46),[21] CPM-733
(1.75),[16] and ZIF-8 (1.7).[22] Taken together, previously
reported C2H6-selective MOFs commonly display either low
selectivity or few C2H6 uptake at low partial pressure, Tb-
MOF-76(NH2) exhibits a well balance in uptake and
selectivity, rendering it among the benchmark material for
this important separation.

To gain deeper insights into the origin of enhanced gas
uptake and selectivity by � NH2 functionalization, grand
canonical Monte Carlo (GCMC) simulations were done to
reveal the adsorption details. It shows that both C2H4 and
C2H6 molecules are located at the corners of channels near

Figure 2. a) N2 sorption isotherms at 77 K, the insert indicates pore
size distribution; b) C2H6 and C2H4 sorption isotherms at 273 K;
c) C2H6 and C2H4 sorption isotherms at 298 K; d) Qst plots of C2H6 and
C2H4.

Figure 3. a) Comparison of C2H4 and C2H6 uptakes in some C2H6-
selective materials; b) C2H6 and C2H4 of sorption cycles for Tb-MOF-
76(NH2) at 298 K.

Figure 4. a) IAST selectivity of Tb-MOF-76 and Tb-MOF-76(NH2) for
C2H6/C2H4 mixtures; b) comparison of C2H6 uptakes and C2H6/C2H4

selectivity in different MOFs.
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the rod-shaped SBUs. There only exists C� H···O hydrogen
bonds between Tb-MOF-76 and C2H6 or C2H4 molecules,
but for Tb-MOF-76(NH2) there are not only C� H···O
hydrogen bonds but also C� H···π and C� H···N interactions
from the aromatic rings and � NH2 groups of ligands. For
Tb-MOF-76, the C2H6 molecule is bound to carboxyl O
atoms from two BTC through four strong C� H···O inter-
actions (H···O=2.765–2.993 Å) (Figure 5a), by contrast,
three weak C� H···O interactions (H···O distances=3.165 Å–
3.265 Å) formed with the C2H4 molecule are fewer and
weaker (Figure 5b), in accord with the selectivity of C2H6

over C2H4. For Tb-MOF-76(NH2), C2H6 interacts with one
phenyl ring from the ligand, two amino N atoms and four O
atoms from three carboxyl groups and one water ligand to
form four C� H···O, two C� H···N, and one C� H···π inter-

actions with the distances in the range of 2.681–3.082 Å
(Figure 5c), but C2H4 forms weaker and fewer C� H···O/N/π
interactions with longer distances (2.798–3.221 Å) (Fig-
ure 6d). As a result, the smaller pore sizes and more binding
sites in Tb-MOF-76(NH2) lead to C2H4 and C2H6 molecules
in close contact with the pore walls compared to the
corresponding gases with Tb-MOF-76. Meanwhile, it also
reveals that in two MOFs there exist stronger contacts
toward C2H6 than C2H4, agreeing with their C2H6-selective
features.

Furthermore, the interactions of C2H6 and C2H4 in Tb-
MOF-76(NH2) were further studied by simulations at 298 K
and 100 kPa. It found three crucial C2H6 and C2H4 molecules
interacting with the pore walls, as given in Figure 6. Both
C2H6-I and C2H6-II form four strong C� H···π/N/O interac-
tions with the phenyl groups, amino N atoms, and carboxyl
O atoms, while C2H6-III interacts with carboxyl O and
amino N atoms through three strong hydrogen bonds
(Figure 6a). Three C2H4 molecules also contact with the
framework through C� H···π/N/O hydrogen bonds (Figure
6b). In brief, there are more and stronger contacts between
the framework and C2H6 compared to C2H4, thus forming a
priority of adsorption for C2H6 over C2H4.

To validate the positive effect of � NH2 groups on C2H6/
C2H4 separation, transient breakthrough simulations for
C2H6/C2H4 mixtures (1/1, 1/9, and 1/15, v/v) on Tb-MOF-
76(NH2) and Tb-MOF-76 in fixed beds were conducted at
298 K and 100 kPa (see Supporting Information).[22] As
shown in Figure 7a,b,c, two MOFs can achieve efficient
separations for three C2H6/C2H4 mixtures, wherein C2H4

breakthrough first occurred and subsequently reached a
plateau to yield the polymer-grade C2H4, then C2H6 passed
through the fixed bed after long times (τbreak). The separa-
tion potential (ΔQ) as a combined selectivity-capacity metric
to quantify the mixture separation performance was utilized
for further comparison.[7b,23] As given in Figure 7d,e,f, the
amounts of pure C2H4 can be recovered by Tb-MOF-
76(NH2) reached up to 1.91, 4.61, and 4.95 mmol cm� 3 for
the 1/1, 1/9, and 1/15 mixtures, respectively, greatly outper-
form the values of 1.19, 2.65, and 2.82 mmolcm� 3 in Tb-
MOF-76. The ΔQ of Tb-MOF-76(NH2) are not good as
Fe2(O2)(dobdc),

[7b] but are better than other C2H6-selective
materials including MAF-49,[7b] UPC-613,[8d] PCN-250,[24] and
UiO-67-(NH2)2,

[8b] meaning the most promising prospect for
C2H6/C2H4 separation (Table S3).

Next, dynamic breakthrough experiments were con-
ducted at 298 K and 1 atm using C2H6/C2H4/Ar (5/5/90, 1/9/
90, and 1/15/84, v/v/v) mixtures with Ar as the carrier gas
introduced over the packed columns of Tb-MOF-76(NH2)
and MOF-76 (flow rate=7.0 mL min� 1), respectively. The
breakthrough curves depicted in Figure 8a,b,c show the
effective separation of C2H6/C2H4 mixtures, in which Tb-
MOF-76(NH2) reveals an obviously better separation per-
formance than Tb-MOF-76, in accordance with the single-
component sorption, IAST selectivity, and transient break-
through simulations. Comparing Figure 7a,b,c with Fig-
ure 8a,b,c, it is particularly noteworthy that the quantitative
agreement between the transient breakthrough simulations
with experiments. As predicted, C2H4 first eluted through

Figure 5. C2H6 and C2H4 preferential adsorption sites in Tb-MOF-76 (a
and b) and Tb-MOF-76(NH2) (c and d).

Figure 6. Adsorption sites of C2H6 (a) and C2H4 (b) in Tb-MOF-
76(NH2).
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the column to yield an outflow of pure C2H4 (>99.9%) with
an undetectable C2H6 signal, whereas Tb-MOF-76(NH2)
retained C2H6 until reaching 58.5, 50.7, and 44.1 ming� 1 for
1/1, 1/9, and 1/15 C2H6/C2H4 mixtures, respectively.

The productivities of �99.5% and �99.95% C2H4 purity
were calculated on the basis of simulating experimental
breakthrough curves to compare separation performance
(Table S4). For Tb-MOF-76(NH2), 6.20, 11.68, and
17.66 Lkg� 1 of C2H4 with �99.95% purity can be recovered
from the 1/1, 1/9, and 1/15 C2H6/C2H4 mixtures in one cycle;
by contrast, the corresponding values of 1.90, 4.48, and
7.53 Lkg� 1 for Tb-MOF-76 are significantly lower. Notably,

in industrial practice without containing inert carrier gas, the
C2H4 productivity values for Tb-MOF-76(NH2) would be
higher than the found in our experiments. The value of
17.66 Lkg� 1 C2H4 (�99.95%) for Tb-MOF-76(NH2) is
nearly 2.4 times for Tb-MOF-76 with 7.53 Lkg� 1

(�99.95%), 2.5 times for HOF-76a with 7.2 Lkg� 1

(>99.9%),[25] 2.8 times for MAF-49 with 6.27 Lkg� 1

(>99.95%),[7b] 4 times for Cu(Qc)2 with 4.4 Lkg� 1

(>99.9%),[11] and only trails than top-performing JNU-2
with 21.1 Lkg� 1 (>99.99%)[17] and Fe2(O2)(dobdc) with
18.59 Lkg� 1 (>99.95%)[7b] (Figure 8d). For �99.5% C2H4

purity, Tb-MOF-76(NH2) also reveals obviously higher

Figure 7. Simulated breakthrough curves of Tb-MOF-76(NH2) and Tb-MOF-76 for C2H6/C2H4 mixtures: a) 1/1, b) 1/9, and c) 1/15; d–f) separation
potential of selected MOFs for C2H6/C2H4 mixtures: d) 1/1, e) 1/9, and f) 1/15.

Figure 8. a–c) Experimental breakthrough curves of Tb-MOF-76(NH2) and Tb-MOF-76 for C2H6/C2H4 mixtures at 298 K; d) comparison of C2H4

productivity for porous materials; e) comparison of the comprehensive separation performance in different C2H6-selective MOFs.
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productivities than Tb-MOF-76 (Table S4). The higher
separation potential and C2H4 productivity, determined
from the breakthrough curves, confirm that the introduction
of � NH2 groups in the framework significantly improves the
separation performance of MOFs for C2H6/C2H4 mixtures.

Great recyclability and reusability of adsorbents are
essential conditions for practical industrial applications. For
Tb-MOF-76(NH2), we performed multiple breakthrough
experiments of C2H6/C2H4 mixtures (1/1) under the same
conditions, and it showed no any deterioration in separation
performance (Figure S15). PXRD patterns also confirmed
that the structural stability of Tb-MOF-76(NH2) after cycle
experiments (Figure S2 and S3). In a nutshell, Tb-MOF-
76(NH2) displays better one-step separation performance
for C2H6/C2H4 mixtures than the reported C2H6-selective
materials in references, in comprehensive consideration of
separation potential, C2H4 productivity, C2H6/C2H4 selectiv-
ity, C2H6 uptake, and C2H6 Qst (Figure 8e). These advances
enable Tb-MOF-76(NH2) to be one of excellent materials
for C2H6/C2H4 separation.

Considering the real application environments, the
stability of Tb-MOF-76(NH2) toward air, water humidity,
and acid-base environments was monitored by PXRD. As
shown in Figure S16, after the samples were exposed in air
for 40 days, relative humidity (65%) for 10 days, and differ-
ent aqueous solutions with pH=3–10 for 1 day, it remains
intact with no obvious phase transformation.

Conclusion

In summary, we have performed an uncommon and crucial
systematic comparative example to tune the pore environ-
ment by pore engineering strategy using amino-functionali-
zation for improving C2H6/C2H4 separation. The pore
environments were successfully engineered by adopting the
amino-functionalized linkers to replacing parent linkers in
Tb-MOF-76. The obtained material Tb-MOF-76(NH2) with
the rich � NH2 groups in pores displays significantly high
C2H6 uptakes and C2H6/C2H4 adsorption selectivity com-
pared to Tb-MOF-76 (2.1 vs 1.7). Consequently, Tb-MOF-
76(NH2) greatly improves the separation performance for
C2H6/C2H4 mixtures, in which 17.66 Lkg� 1 polymer-grade
C2H4 product (�99.95%) can be directly collected in a
single breakthrough process compared to 7.53 Lkg� 1 by Tb-
MOF-76. Together with robust framework stability, Tb-
MOF-76(NH2) would be promising for the application in
multiple separation process. The amino-functionalization
method presented in this work is efficacious, and will
provide an important strategy to facilitate the rational
design of MOF adsorbents for efficient challenging industri-
al C2H6/C2H4 separation.
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