Journal of Materials Chemistry A

PAPER

Cite this: J. Mater. Chem. A, 2016, 4, 15081

Received 20th June 2016 Accepted 4th September 2016

DOI: 10.1039/c6ta05142a

www.rsc.org/MaterialsA

Introduction

Two heterovalent copper–organic frameworks with multiple secondary building units: high performance for gas adsorption and separation and I₂ sorption and releaset

Shuo Yao,^a Xiaodong Sun,^a Bing Liu,^a Rajamani Krishna, ^b Guanghua Li,^a Qisheng Huo^a and Yunling Liu^{*a}

With the help of the multiple secondary building unit (SBU) strategy, two novel heterovalent Cu–MOFs, $[(Cu_41_4)Cu_4L_4(DABCO)_2]\cdot 16DMF$ (JLU-Liu31) and $[(Cu_41_4)Cu_3L_3(DABCO)(DMF)_2]\cdot 18DMF$ (JLU-Liu32) $[H_2L = pyridine-3,5-bis(phenyl-4-carboxylic acid), DABCO = 1,4-diazabicyclo[2.2.2]-octane], have been$ successfully solvothermally synthesized and structurally characterized. Both of the two compounds feature multiple SBUs and exhibit novel topologies. JLU-Liu31 possesses the largest sustainable pore volume among the MOFs based on Cu_4I_4 clusters. Moreover, the adsorption behaviours of the desolvated JLU-Liu31 material for some small gases (H₂, O₂, CO₂, CH₄, C₂H₆ and C₃H₈) have been analysed in low pressure regions; meanwhile, it exhibits commendable selectivity for $O₂$ over N₂, and C₃H₈ over CH₄. The remarkable results illustrate that JLU-Liu31 is a good candidate for application in the separation of light hydrocarbons. Additionally, JLU-Liu32 exhibits impressive performance for I₂ sorption and release in solvents. PAPER
 Published on 16 September 2016.
 Published on 16 September 2016.
 **Published on 16 September 2016. Downloaded by Universiteit van Amsterdam on 16 September 2016.

Thus the must are considered by Universiteit van**

Light hydrocarbons are widely utilized as important raw materials and energy sources for industrial products and fine chemicals. Methane as the basis of natural gas is considered to be a preferable candidate for a more clean energy source for generating the smallest amount of $CO₂$ for each unit of heat.¹ Although ethane and propane signicantly enhance the value as petrochemical feedstock, they are impurities of natural gas and reduce the conversion rate.² Furthermore, the addition of oxygen to fuel streams can improve the combustion efficiency at the same time. Feedstock oxygen is currently produced by cryogenic air separation of $O₂$ over competing air component N_2 , which is expensive and energy consuming.³ Therefore, it is important to develop materials with efficient selectivity to purify natural gases and separate oxygen from nitrogen in the air.

Metal–organic frameworks as a type of burgeoning materials, which possess fascinating diversity of architectures and great prospects to approach the challenges in the applications of gas adsorption and separation, luminescence sensing, and catalysis, provide us the impetus to actively pursue them over the past two decades.⁴ A variety of synthesis strategies are put forward to design and synthesize MOFs with good performance for gas adsorption and separation, such as secondary building units $(SBUS),^5$ open metal sites $(OMSS),^6$ Lewis basic sites (LBSs),⁷ ionic skeletons⁸ and so forth. Of these strategies, the SBU strategy is a powerful way to fabricate MOFs. The clusters of Cu-paddlewheels and $Cu₄I₄$ are the classical SBUs in the MOF family. We are looking forward to acquiring frameworks with the two kinds of SBUs simultaneously. It is widely known that a Cu-paddlewheel is coordinated to four carboxylate groups and the terminal coordinated groups can be solvent molecules or N-containing ligands. In addition, $Cu₄I₄$ clusters prefer to coordinate to four N atoms.⁹ Based on the above considerations, we choose heterofunctional pyridine-3,5-bis(phenyl-4-carboxylic acid) $(H₂L)$ as an organic ligand which contains both carboxylate and pyridyl groups. Since the Cu ions in the two kinds of SBUs have different valence states, we use CuI as the metal source which possesses monovalent copper and is easily oxidized to bivalent. It is worth noting that MOFs with a novel topology and huge porosity can be achieved by employing mixed ligands.¹⁰ Accordingly, 1,4-diazabicyclo[2.2.2]-octane (DABCO) as a second ligand is introduced into the above system to construct the

^aState Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China. E-mail: yunling@jlu. edu.cn; Fax: +86-431-85168624; Tel: +86-431-85168614

b Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands. E-mail: r.krishna@contact.uva.nl

[†] Electronic supplementary information (ESI) available: Materials and methods, crystal data and structure refinement, structure information, XRD, TGA, gas adsorption and adsorption selectivity. CCDC 1480153 and 1480154. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c6ta05142a

framework. Fortunately, we successfully prepare two intriguing heterovalent copper–organic frameworks $[{\rm Cu_4I_4)Cu_4L_4(DABCO)_2}$. 16DMF (JLU-Liu31) and $[(Cu₄I₄)Cu₃L₃(DABCO)(DMF)₂] \cdot 18DMF$ (JLU-Liu32), which are made up of multiple SBUs. Additionally, both of them exhibit novel topologies that have been accessed for the first time. JLU-Liu31 can provide the largest sustainable pore volume among the MOFs based on $Cu₄I₄$ clusters. Moreover, the adsorption behaviour of the desolvated JLU-Liu31 material for some other small gases $(H_2, O_2, CO_2, CH_4, C_2H_6, C_3H_8)$ has been analysed. Ideal adsorbed solution theory (IAST) calculations and breakthrough simulations have also been performed to investigate the gas selectivity in low pressure regions. The commendable results illustrate that JLU-Liu31 is a good candidate for application in light hydrocarbon purification. Because JLU-Liu32 is not stable after removing the guest molecules, it only exhibits impressive I_2 sorption and release performance in solvent. **Source** of Meterials Chemistry Awareneously, present to intergrity simulated one based on the single ergostal X-ny density (and 1) and 1

Experimental

Materials and methods

All chemicals were obtained from commercial sources and used without further purification. Powder X-ray diffraction (PXRD) data were collected on a Rigaku D/max-2550 diffractometer with Cu K_a radiation ($\lambda = 1.5418$ Å). Elemental analyses (C, H, and N) were performed by using a vario MICRO (Elementar, Germany). Thermal gravimetric analyses (TGA) were performed on a TGA Q500 thermogravimetric analyzer used in air with a heating rate of 10 $^{\circ} \mathrm{C}$ min $^{-1}$. The liquid state UV-vis spectra were recorded on a SHIMADZU UV-2450 UV-visible spectrophotometer within 200–700 nm by using the same solvent as the blank.

Synthesis of JLU-Liu31

CuI (12 mg 0.06 mmol) and H_2L (4 mg, 0.01 mmol) were added to N,N-dimethylformamide (DMF) (2 mL)/DABCO (0.1 mL) with $HNO₃$ (0.2 mL) (2.2 mL $HNO₃$ in 10 mL DMF). The mixture was kept at room temperature for 6 hours until the colour became dark brown. Single crystals of JLU-Liu31 were obtained when the mixture was heated at 85 $^{\circ}\mathrm{C}$ for 24 hours. Green stick crystals were obtained and air-dried (yield 50%, based on H_2L). Elemental analysis (%) Calcd for JLU-Liu31 $[(Cu₄I₄)Cu₄L₄(DABCO)₂]$. 16DMF: C, 44.40; H, 4.93; N, 9.14; found: C, 43.82; H, 4.79; N, 8.81. The experimental PXRD pattern is in good agreement with the simulated one based on the single-crystal X-ray data, indicating the purity of the as-synthesized product (Fig. S1†).

Synthesis of JLU-Liu32

A mixture of CuI (18 mg 0.095 mmol), $H₂L$ (5 mg, 0.015 mmol), DMF (1 mL), DABCO (0.2 mL) and $HNO₃$ (0.3 mL) (2.2 mL $HNO₃$ in 10 mL DMF) was sealed into a 20 mL capped vial and kept for 6 hours at room temperature until it became dark brown. The mixture was heated at 85 $^{\circ} \mathrm{C}$ for 24 hours and blue block crystals of JLU-Liu32 were obtained. The crystals were collected and washed with DMF (yield 55%, based on H_2L). Elemental analysis calcd (%) for JLU-Liu32, $[(Cu₄I₄)Cu₃L₃(DABCO)(DMF)₂]$. 18DMF: C, 42.13; H, 5.32; N, 10.79; found: C, 41.24; H, 5.20; N, 10.98. The experimental PXRD pattern agrees well with the

simulated one based on the single-crystal X-ray data, indicating the purity of the as-synthesized product (Fig. S2†).

X-ray crystallography

Crystallographic data for two compounds were collected on a Bruker Apex II CCD diffractometer using graphite-monochromated Mo-K α ($\lambda = 0.71073$ Å) radiation at room temperature. The structures were solved by direct methods and refined by full-matrix least-squares on F^2 using version 5.1.¹¹ All the metal atoms were located first, and then the oxygen and carbon atoms of the compound were subsequently found in difference Fourier maps. The hydrogen atoms of the ligand were placed geometrically. All non-hydrogen atoms were refined anisotropically. The final formula was derived from crystallographic data combined with elemental and thermogravimetric analysis data. The detailed crystallographic data are listed in Table S1.† Crystallographic data for JLU-Liu31 (1480153) and JLU-Liu32 (1480154) have been deposited with Cambridge Crystallographic Data Centre. Topology information for the two compounds was calculated by using TOPOS 4.0.¹²

Gas adsorption measurements

 N_2 , H_2 , O_2 , CO_2 , CH_4 , C_2H_6 and C_3H_8 gas adsorption measurements were performed on Micromeritics ASAP 2420, Micromeritics ASAP 2020 and Micromeritics 3-Flex instruments. Before gas adsorption measurements, JLU-Liu31 was exchanged with fresh acetone 10 times for 2 days and JLU-Liu32 was exchanged with fresh ethanol to completely remove the nonvolatile solvent molecules, which can be proved by TGA analysis (Fig. S3 and S4†). The samples were activated by drying under dynamic vacuum at room temperature for 1 hour. Before the measurement, the sample was dried again by using the 'outgas' function of the surface area analyzer for 10 h at 100 $^{\circ}$ C.

Results and discussion

Crystal structure descriptions

Single-crystal X-ray diffraction analysis shows that JLU-Liu31 crystallizes in the orthorhombic crystal system with the space group of Cmcm. As shown in Fig. 1a, JLU-Liu31 consists of ternary SBUs: an organic SBU formed by 3-connected ligands which contain carboxyl and pyridyl groups; an inorganic SBU composed of familiar paddlewheels which possess four carboxyl groups from four ligands and two terminal coordinated DABCO groups; an inorganic SBU constructed by the cluster of $Cu₄I₄$ which coordinates to four pyridyl groups from four ligands. Fig. 1b distinctly illustrates the formation of the 3D framework. The copper paddlewheels are weaved by ligands to configure 2D layers, and the 2D layers are further bridged by $Cu₄I₄$ clusters to fabricate the 3D framework. Meanwhile, the DABCO ligands join the adjacent paddlewheels to doubly support the framework and to a considerable extent increase the rigidity of the framework. Although the supporting DABCO reduces the window size of the framework, it still contains a relatively large one-dimensional channels with a diameter of 11.4 $\AA \times 9.6 \AA$ and a small one with 2.5 $\AA \times 4.3 \AA$ considering the van der

Fig. 1 Single-crystal structure of JLU-Liu31: (a) ternary SBUs consisting of ligand and metal cores. (b) The formation of a 3D framework from a 2D layer and the double reinforcement of the structure by DABCO. (c) Polyhedral view of the framework. (d) Topological features of the compound displayed by tiles.

Waals radius. From a topological point of view, the ligand is regarded as a 3-connected node with a triangular geometry, the terminal coordinated paddlewheel can be seen as a 6-connected node with an octahedral geometry and the $Cu₄I₄$ cluster is considered as a 4-connected node with a tetrahedral geometry. Consequently, the structure of JLU-Liu31 can be described as a $(3, 4, 6)$ -connected network with a Schläfli symbol of $(5^2 \cdot 6)_4$ $(5^4 \cdot 6^2)(5^4 \cdot 6^8 \cdot 8 \cdot 9^2)_2$, which has been accessed for the first time (Fig. 1c and Table S2†). Furthermore, the topological features displayed by tiles are shown in Fig. 1d and S5.† The overall topology is made up of three types of tiles of $[5^2.6^2]$, $[5^2 \cdot 6^2]$ and $[6^8]$. The PLATON calculation reveals a total solventaccessible volume of 14 986.3 \AA ³ per unit cell, which accounts for approximately 71.5% of the cell volume, exhibiting high porosity and offering possibilities for gas adsorption.

The X-ray crystallographic analysis revealed that JLU-Liu32 crystallizes in the orthorhombic crystal system with the space group of Pnnm. As can be seen in Fig. 2a, JLU-Liu32 possesses more pluralistic systems of quinary SBUs: the same organic SBU as JLU-Liu31 and four types of inorganic SBUs. The four types of inorganic SBUs are composed of a 4-connected classical paddlewheel, a 5-connected paddlewheel with one terminal coordinated DABCO group, a 6-connected paddlewheel with two terminal coordinated DABCO groups and a cluster of $Cu₄I₄$ which coordinates to three pyridyl groups from three ligands and one DABCO group. Fig. 2b shows the space-filling model of JLU-Liu32 which can illustrate the window size of the channel along the [001] direction distinctly. Five types of SBUs can be simplified as triangular, tetrahedral, square, pyramidal and octahedral geometries. Therefore, the overall structure of JLU-Liu32 possesses a new type of topology with a Schläfli symbol of $(5^2 \cdot 8^2 \cdot 11^2)(5^2 \cdot 8)_8(5^3 \cdot 8^3)_2(5^3)_4(5^4 \cdot 8^2)_4(5^5 \cdot 8^5)_2(5^8 \cdot 8^7)$ (Fig. 2c and d and Table S2†). As represented in Fig. 2e and S6,†

Fig. 2 Single-crystal structure of JLU-Liu32: (a) multiple SBUs consisting of ligand and metal cores. (b) The space-filling model of the channel along the [001] direction. (c) Polyhedral view of the framework. (d) The new type of topology. (e) Topological features of the compound displayed by tiles.

there are four kinds of tiles of $[5^6 \tcdot 8^2]$, $[5^2 \tcdot 8^2]$, $[5^2 \tcdot 8^2 \tcdot 10^2]$ and $[5^4 \cdot 8^2 \cdot 10^2]$. The PLATON calculation reveals a total solventaccessible volume of 31 719.7 \AA ³ per unit cell, which accounts for approximately 78.2% of the cell volume.

Thermal gravimetric analyses (TGA)

TGA was carried out to evaluate the thermal stability of the two compounds and the pore volume which was occupied by guest molecules under atmospheric environment. It turns out that the framework of JLU-Liu31 can be stable up to about 280 $^{\circ} \mathrm{C}$ with approximately 45% weight loss before 200 $^{\circ} \mathrm{C}$ owing to the removal of guest molecules (Fig. S3†). JLU-Liu32 is stable up to 300 °C with approximately 40% weight loss observed before 200 °C because of the removal of guest molecules (Fig. S4†). It is obvious that both of the two compounds exhibit more prominent pore volume and good thermal stability than InOF-8 (ref. 13) and COZ-1 (ref. 14) which both comprise $Cu₄I₄$ clusters.

Gas adsorption and separation behaviours

It is generally known that the four coordination bonds which are formed by $Cu₄I₄$ cluster and nitrogen containing groups don't have enough strength to support the framework when the guest molecules are removed. Therefore, only few reported MOFs with $Cu₄I₄$ clusters possess good performance for gas adsorption.¹³⁻¹⁵ Although the permanent porosity of COZ-1 can be confirmed by N_2 sorption measurements, the experimental pore volume is much lower than the theoretical one which can

be ascribed to the integrity loss of the framework. Beneting from the $Cu₄I₄$ cluster and DABCO double supporting the framework simultaneously as a fence, JLU-Liu31 shows commendable gas adsorption behaviour. The permanent porosity and surface areas of activated JLU-Liu31 were investigated by reversible N_2 sorption experiments at 77 K. The N_2 adsorption of activated JLU-Liu31 reveals a reversible type-I isotherm characteristic which is the nature of microporous materials (Fig. 3). The BET surface area and Langmuir surface area of JLU-Liu31 were calculated to be 1700 m^2 g⁻¹ and 2300 m^2 g^{-1} , respectively. To the best of our knowledge, JLU-Liu31 shows the highest surface area among the MOFs or inorganic–organic materials based on $Cu₄I₄$ SBUs. The experimental micropore volume is 0.85 cm³ g^{-1} which is close to the theoretical value of 0.95 cm^3 g^{-1} . The close numerical values indicate that the pores in JLU-Liu31 are able to keep its integrity and ensure its good adsorption performance. Although JLU-Liu32 exhibits high performance in terms of pore volume and thermal stability from analysing the structure and TGA, there is almost no N_2 adsorption. This can be attributed to the fact that the whole 3D framework of JLU-Liu32 is only propped up by $Cu₄I₄$ clusters and it will collapse after the removal of guest molecules or upon activation under vacuum. On the basis of the above reasons, JLU-Liu32 is not an appropriate candidate material for gas adsorption. Sources of Meterials Chemistry A

by excellent the integration of the framework, senetting (UNS)ⁿ and 10.14:110 where the response on the integration of the integration of the integration of the integration of the integ

In the light of the high stability and surface area of JLU-Liu31, we investigate its adsorption performance for some other small gases. In comparison with nitrogen, oxygen is also a kind of diatomic gas molecule with a similar dynamic radius (N₂: 3.64 Å, O₂: 3.46 Å). Consequently, it is not easy to achieve the separation of them and seldom reported MOF materials are related to the highly selective separation of O_2 over N_2 .¹⁶ We investigate the capacity of oxygen adsorption for JLU-Liu31. The results indicate that the maximum adsorption amount of $O₂$ is 700 cm³ g⁻¹ at 77 K (Fig. 3), which is significantly higher than that of other highly porous MOFs.¹⁷ In comparing with N_2 gas sorption isotherms measured under the same conditions, O_2 is more favourably adsorbed over N_2 with an O_2/N_2 selectivity of 1.34 at 0.2P/ P_0 . The O₂/N₂ selectivity of JLU-Liu31 is higher than those of Fe/Cu-BTC and Co/Cu-BTC with open metal sites

Fig. 3 Oxygen (red) and nitrogen (blue) sorption isotherms of JLU-Liu31 at 77 K.

(OMSs)¹⁸ and JLU-Liu18 without OMSs.¹⁹ Most reported MOFs with high O_2/N_2 selectivity can be ascribed to the following: (i) $O₂$ can side-on or end-on coordinate to the OMSs, and (ii) the pore size ranges between the kinetic diameter of O_2 and N_2 . For JLU-Liu31, the unique pore size and shape induce the high selectivity collaboratively. Low-pressure uptake of H_2 is also detected and the adsorption amount is 1.17 wt% (131 cm³ g^{-1}) and 0.54 wt% $(61 \text{ cm}^3 \text{ g}^{-1})$ at 77 and 87 K under 1 bar, respectively (Fig. S8†), which are comparable with those of reported MOFs.²⁰ At low coverage, the isosteric heat (Q_{st}) of JLU-Liu31 for H_2 is 8 kJ mol⁻¹.

The $CO₂$ adsorption performance was explored and the adsorption isotherms are shown in Fig. 4. The amount of $CO₂$ uptake for JLU-Liu31 is 35 and 17 cm^3 g^{-1} at 273 and 298 K under 1 bar, respectively. To make a thorough inquiry for the interaction between $CO₂$ and the framework, the behaviour of the isosteric heat was analysed. At zero loading, the adsorption enthalpy of JLU-Liu31 is 32.6 kJ mol⁻¹ (Fig. S9†). Albeit the amount of $CO₂$ adsorption is normal, its Q_{st} is relatively higher than that of dia-7i-1-Co²¹ and slightly lower than that of HKUST-1.²² The potential storage and selective separation applications for some light hydrocarbons of CH_4 , C_2H_6 and C_3H_8 , which are the primary compositions of flue gas, natural gas and biogas, are also evaluated at 273 and 298 K under 1 bar, respectively. The maximum adsorption of CH₄ is 14 and 8 $\mathrm{cm}^3 \, \mathrm{g}^{-1}$, $\mathrm{C_2H_6}$ is 142 and 68 $\mathrm{cm}^3 \, \mathrm{g}^{-1}$ and C_3H_8 is 191 and 169 cm³ g⁻¹, respectively (Fig. 4). Furthermore, the Q_{st} of CH₄, C₂H₆ and C₃H₈ is 13, 25 and 20 kJ mol⁻¹, respectively, as estimated from the sorption isotherms at 273 and 298 K (Fig. S10–S12†).

In the interest of assessing the practical separation ability of JLU-Liu31 for $CO₂$, the theoretical separation of $CO₂/CH₄$ (5%) and 95%, 50% and 50%) is analysed by using the IAST model which is a common method to predict binary mixture gas adsorption from experimental single-component isotherms. Adopting the dual-site Langmuir–Freundlich equation, we successfully fit the data and the model fits the isotherms at 298 K very well $(R^2 > 0.9999)$ (Fig. 5a).²³ Afterward, the fitting

Fig. 4 (a) CO_2 ; (b) CH_4 ; (c) C_2H_6 ; (d) C_3H_8 gas sorption isotherms of JLU-Liu31 at 273 and 298 K under 1 bar.

Fig. 5 $CO₂$, CH₄, C₂H₆ and C₃H₈ adsorption isotherms at 298 K along with the dual-site Langmuir Freundlich (DSLF) fits (a, c); gas mixture adsorption selectivity is predicted by IAST at 298 K and 100 kPa for JLU-Liu31 (b, d).

parameters are used to predict multi-component adsorption by IAST (Table S5†). At 298 K and 1 bar, the selectivity of JLU-Liu31 for $CO₂$ over CH₄ is 2.7 and 2.6 (Fig. 5b), which are comparable to the values of ZIF-8 and some carbon materials under the same measurement conditions.²⁴ The potential application for the separation of industrial light hydrocarbons is also investigated for JLU-Liu31 by IAST. The same fitting method is employed to achieve the tting parameters (Fig. 5c and Table S5[†]). As shown in Fig. 5d, the selectivity for C_2H_6 over CH₄ and C_3H_8 over CH₄ for equimolar is 12 and 573 at 298 K and 1 bar, respectively. It is worth mentioning that the selectivity for C_3H_8 over CH₄ is much higher than the very high value of UTSA-35a²⁵ and FJI-C1.²⁶

The performance of industrial fixed bed adsorbers is dictated by a combination of adsorption selectivity and uptake capacity. To further demonstrate the separation potential of JLU-Liu31, we performed transient breakthrough simulations using the simulation methodology described in the literature.²⁷ For the breakthrough simulations, the following parameter values were used: length of the packed bed, $L = 0.3$ m; voidage of the packed bed, $\epsilon = 0.4$; superficial gas velocity at the inlet, $u = 0.04$ m s⁻¹. We investigated the simulation results for the

Fig. 6 Simulations of transient breakthrough characteristics for an equimolar 4-component $CH_4/CO_2/C_2H_6/C_3H_8$ mixture (a) and equimolar 3-component CH₄/C₂H₆/C₃H₈ mixture (b) in JLU-Liu31 at 100 kPa and 298 K.

transient breakthrough of an equimolar 4-component $CH_4/CO_2/$ C_2H_6/C_3H_8 mixture and 3-component $CH_4/C_2H_6/C_3H_8$ mixture in a fixed bed packed with JLU-Liu31 operating at a total pressure of 100 kPa and 298 K (Fig. 6). The transient breakthrough simulation results are presented in terms of dimensionless time, τ , defined by dividing the actual time, t , by the characteristic time, $L\varepsilon/u$. The y-axis represents the dimensionless concentration of the components at the exit of the fixed bed adsorber. The results indicate that JLU-Liu31 is suitable for selective adsorption of propane from the four component gas mixture and fractionating a mixture of C1/C2/C3 hydrocarbons into three fractions.

Iodine adsorption and desorption experiments

Both of the two compounds are evaluated with respect to their abilities of sorption and release of iodine in solvents. Before the measurement, JLU-Liu31 is solvent exchanged with acetone for 2 days, while the exchanging solvent for JLU-Liu32 is ethanol. Then, 100 mg of the activated samples are soaked in 3 mL cyclohexane solution of I_2 (0.01 M) in a sealed vial and kept at room temperature. As illustrated in Fig. 7a and S13a, \dagger the I₂ adsorption process can be observed with the colour fading from claret red to light pink after 24 h in a cyclohexane solution of I_2 . Additionally, Fig. 7b and S13b† present the I_2 release processes with a colour change to dark brown after 12 h of immersion of 20 mg I2-adsorbed samples in ethanol. The total adsorption value of I_2 in molecules per formula unit is 3.65 and 4 for JLU-Liu31 and JLU-Liu32. It is noteworthy that the uptakes of I_2 being adsorbed per formula unit are lower than those of ZIF-8 (ref. 28) while higher than those of ${Cu_2I_2}$)(tetra-4-(4-pyridyl) phenylmethane)] \cdot solvent \rangle_n^{29} and $\{[Zn_3(\text{p-Llac})_2(\text{pybz})_2]\cdot 3I_2\}$ _n.³⁰ Published on $\frac{1}{2}$
 Published on 05 September 2016.

The constraints of energy on a simple on a simple on the simulation create with interaction and time and tim

The release dynamic process can also be detected by using the UV-vis spectra. As represented in Fig. 8, the evolution of UV-vis spectra showed λ_{max} at 204, 231, and 360 nm which should be ascribed to the concentration of I_2 and polyiodide I_3^- . The inserts in Fig. 8 show the I_2 release rate of the compounds in ethanol, which are plotted as the absorption intensity at 231 nm versus time. For the two compounds, the release of I_2

Fig. 7 (a) Photographs of the time-dependent I_2 adsorption process of 100 mg JLU-Liu32 in 3 mL cyclohexane. (b) Photographs of the timedependent I₂ release process of 20 mg JLU-Liu32 in 3 mL ethanol.

Fig. 8 UV-vis spectra of I_2 release in ethanol for JLU-Liu31 (a) and JLU-Liu32 (b). The insets are dynamic intensity (monitored at 231 nm) vs. time plots.

increases sharply and then gently. However, JLU-Liu32 (2.3 \times 10^{-6} mol L^{-1} min⁻¹) releases the iodine more quickly than JLU-Liu31 $(8.5 \times 10^{-7} \text{ mol L}^{-1} \text{ min}^{-1})$ according to the standard curve (Fig. S14 and S15†), which is faster than JLU-Liu15.³¹ The notable performance of JLU-Liu32 for I_2 sorption and release is governed by its outstanding porosity which is more open than that of JLU-Liu31.

Conclusions

In summary, by adopting the powerful synthesis strategy of multiple SBUs, we have successfully solvothermally synthesized and structurally characterized two novel heterovalent Cu–MOFs based on a tridentate heterofunctional ligand and a secondary DABCO ligand. Both of the two compounds feature multiple SBUs and novel topologies. JLU-Liu31 possesses the largest sustainable pore volume among the MOFs based on $Cu₄I₄$ clusters and exhibits notable adsorption for some small gases and light hydrocarbons. Meanwhile, it displays preferable selectivity for O_2 over N_2 , and C_3H_8 over CH₄ as well. In addition, JLU-Liu32 exhibits impressive performance for I_2 sorption and release in solvents. Published on 05 September 2016. Downloaded by the september 2016. And the sep

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21373095 and 21371067).

Notes and references

- 1 P. Nugent, Y. Belmabkhout, S. D. Burd, A. J. Cairns, R. Luebke, K. Forrest, T. Pham, S. Ma, B. Space, L. Wojtas, M. Eddaoudi and M. J. Zaworotko, Nature, 2013, 495, 80– 84; Y. He, W. Zhou, T. Yildirim and B. Chen, Energy Environ. Sci., 2013, 6, 2735–2744; Y. He, W. Zhou, G. Qian and B. Chen, Chem. Soc. Rev., 2014, 43, 5657–5678.
- 2 S. Chaemchuen, N. A. Kabir, K. Zhou and F. Verpoort, Chem. Soc. Rev., 2013, 42, 9304–9332; I. Spanopoulos, C. Tsangarakis, E. Klontzas, E. Tylianakis, G. Froudakis, K. Adil, Y. Belmabkhout, M. Eddaoudi and P. N. Trikalitis, *J. Am.* Chem. Soc., 2016, 138, 1568–1574; D. M. D'Alessandro, B. Smit and J. R. Long, Angew. Chem., Int. Ed., 2010, 49,

6058–6082; H. Wu, Q. Gong, D. H. Olson and J. Li, Chem. Rev., 2012, 112, 836–868.

- 3 N. A. Khan, S. Shaikhutdinov and H.-J. Freund, Catal. Lett., 2006, 108; A. R. Smith and J. Klosek, Fuel Process. Technol., 2001, 70, 115.
- 4 Y. Cui, B. Li, H. He, W. Zhou, B. Chen and G. Qian, Acc. Chem. Res., 2016, 49, 483–493; H. Li, M. Eddaoudi, M. O'Keeffe and O. M. Yaghi, Nature, 1999, 402, 276; J.-R. Li, J. Sculley and H.-C. Zhou, Chem. Rev., 2012, 112, 869–932; Y. Cui, Y. Yue, G. Qian and B. Chen, Chem. Rev., 2012, 112, 1126–1162; L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van Duyne and J. T. Hupp, Chem. Rev., 2012, 112, 1105–1125; J. Liu, L. Chen, H. Cui, J. Zhang, L. Zhang and C. Y. Su, Chem. Soc. Rev., 2014, 43, 6011–6061.
- 5 D. J. Tranchemontagne, J. L. Mendoza-Cortes, M. O'Keeffe and O. M. Yaghi, Chem. Soc. Rev., 2009, 38, 1257–1283.
- 6 Y.-W. Li, J.-R. Li, L.-F. Wang, B.-Y. Zhou, Q. Chen and X.-H. Bu, J. Mater. Chem. A, 2013, 1, 495–499.
- 7 K. Liu, B. Li, Y. Li, X. Li, F. Yang, G. Zeng, Y. Peng, Z. Zhang, G. Li, Z. Shi, S. Feng and D. Song, Chem. Commun., 2014, 50, 5031–5033.
- 8 Y.-X. Tan, Y.-P. He and J. Zhang, Chem. Commun., 2011, 47, 10647–10649.
- 9 Y.-X. Tan, Y.-P. He and J. Zhang, Chem. Mater., 2012, 24, 4711–4716; Z. Fu, J. Lin, L. Wang, C. Li, W. Yan and T. Wu, Cryst. Growth Des., 2016, 16, 2322–2327; G. Kang, Y. Jeon, K. Y. Lee, J. Kim and T. H. Kim, Cryst. Growth Des., 2015, 15, 5183–5187.
- 10 N. C. Burtch and K. S. Walton, Acc. Chem. Res., 2015, 48, 2850–2857; V. Guillerm, D. Kim, J. F. Eubank, R. Luebke, X. Liu, K. Adil, M. S. Lah and M. Eddaoudi, Chem. Soc. Rev., 2014, 43, 6141–6172.
- 11 G. M. Sheldrick, SHELXTL-NT, version 5.1, Bruker AXS Inc., Madison, WI, 1997.
- 12 V. A. Blatov, A. P. Shevchenko and D. M. Proserpio, Cryst. Growth Des., 2014, 14, 3576–3683.
- 13 J. Qian, F. Jiang, K. Su, J. Pan, Z. Xue, L. Liang, P. P. Bag and M. Hong, Chem. Commun., 2014, 50, 15224–15227.
- 14 Y. Kang, F. Wang, J. Zhang and X. Bu, J. Am. Chem. Soc., 2012, 134, 17881–17884.
- 15 X. Luo, Y. Cao, T. Wang, G. Li, J. Li, Y. Yang, Z. Xu, J. Zhang, Q. Huo, Y. Liu and M. Eddaoudi, J. Am. Chem. Soc., 2016, 138, 786–789; C. W. Zhao, J. P. Ma, Q. K. Liu, X. R. Wang, Y. Liu, J. Yang, J. S. Yang and Y. B. Dong, Chem. Commun., 2016, 52, 5238–5241.
- 16 Y. E. Cheon, J. Park and M. P. Suh, Chem. Commun., 2009, 5436–5438; D. J. Xiao, M. I. Gonzalez, L. E. Darago, K. D. Vogiatzis, E. Haldoupis, L. Gagliardi and J. R. Long, J. Am. Chem. Soc., 2016, 138, 7161–7170; Z. Zhang, S. Xiang, K. Hong, M. C. Das, H. D. Arman, M. Garcia, J. U. Mondal, K. M. Thomas and B. Chen, Inorg. Chem., 2012, 51, 4947–4953; E. D. Bloch, L. J. Murray, W. L. Queen, S. Chavan, S. N. Maximoff, J. P. Bigi, R. Krishna, V. K. Peterson, F. Grandjean, G. J. Long, B. Smit, S. Bordiga, C. M. Brown and J. R. Long, *J. Am.* Chem. Soc., 2011, 133, 14814–14822; M. Dinca and J. R. Long, J. Am. Chem. Soc., 2005, 127, 9376–93774;

P. D. Southon, D. J. Price, P. K. Nielsen, C. J. McKenzie and C. J. Kepert, J. Am. Chem. Soc., 2011, 133, 10885–10891.

- 17 S. Ma, X. S. Wang, D. Yuan and H. C. Zhou, Angew. Chem., Int. Ed., 2008, 47, 4130–4133; Y. E. Cheon and M. P. Suh, Chem. Commun., 2009, 45, 2296–2298.
- 18 D. F. Sava Gallis, M. V. Parkes, J. A. Greathouse, X. Zhang and T. M. Nenoff, Chem. Mater., 2015, 27, 2018–2025.
- 19 S. Yao, D. Wang, Y. Cao, G. Li, Q. Huo and Y. Liu, J. Mater. Chem. A, 2015, 3, 16627–16632.
- 20 J. L. C. Rowsell and O. M. Yaghi, J. Am. Chem. Soc., 2006, 128, 1304–1315; D. F. Sava, V. C. Kravtsov, F. Nouar, L. Wojtas, J. F. Eubank and M. Eddaoudi, J. Am. Chem. Soc., 2008, 130, 3768–3770; X. Li, X. Chen, F. Jiang, L. Chen, S. Lu, Q. Chen, M. Wu, D. Yuan and M. Hong, Chem. Commun., 2016, 52, 2277–2280. Puber

Published on 05 Notes Collection of the three fonds on 1, by the main of Published behinds V .

1. A September 2016. Downloaded by Universiteit van Amsterdam on 1, A September 2016. Note An Amsterdam on 1, Amsterda
	- 21 S. K. Elsaidi, M. H. Mohamed, L. Wojtas, A. Chanthapally, T. Pham, B. Space, J. J. Vittal and M. J. Zaworotko, J. Am. Chem. Soc., 2014, 136, 5072–5077.
	- 22 Q. M. Wang, D. Shen, M. Bülow, M. L. Lau, S. Deng, F. R. Fitch, N. O. Lemcoff and J. Semanscin, Microporous Mesoporous Mater., 2002, 55, 217–230.
	- 23 W. Lu, D. Yuan, J. Sculley, D. Zhao, R. Krishna and H. C. Zhou, J. Am. Chem. Soc., 2011, 133, 18126–18129;

S. D. Burd, S. Ma, J. A. Perman, B. J. Sikora, R. Q. Snurr, P. K. Thallapally, J. Tian, L. Wojtas and M. J. Zaworotko, J. Am. Chem. Soc., 2012, 134, 3663–3666; H. Zhao, Z. Jin, H. Su, J. Zhang, X. Yao, H. Zhao and G. Zhu, Chem. Commun., 2013, 49, 2780–2782.

- 24 S. R. Venna and M. A. Carreon, J. Am. Chem. Soc., 2010, 132, 76–77; H. Wang, X. Zeng and D. Cao, J. Mater. Chem. A, 2014, 2, 11341–11348.
- 25 Y. He, Z. Zhang, S. Xiang, F. R. Fronczek, R. Krishna and B. Chen, Chem. Commun., 2012, 48, 6493–6495.
- 26 Y. Huang, Z. Lin, H. Fu, F. Wang, M. Shen, X. Wang and R. Cao, ChemSusChem, 2014, 7, 2647–2653.
- 27 R. Krishna, RSC Adv., 2015, 5, 52269–52295; R. Krishna, Microporous Mesoporous Mater., 2014, 185, 30–50.
- 28 J. T. Hughes, D. F. Sava, T. M. Nenoff and A. Navrotsky, J. Am. Chem. Soc., 2013, 135, 16256–16259.
- 29 H. Kitagawa, H. Ohtsu and M. Kawano, Angew. Chem., Int. Ed. Engl., 2013, 52, 12395–12399.
- 30 M.-H. Zeng, Q.-X. Wang, Y.-X. Tan, S. Hu, H.-X. Zhao, L.-S. Long and M. Kurmoo, J. Am. Chem. Soc., 2010, 132, 2561–2563.
- 31 X. Luo, L. Sun, J. Zhao, D.-S. Li, D. Wang, G. Li, Q. Huo and Y. Liu, Cryst. Growth Des., 2015, 15, 4901–4907.

Electronic Supplementary Information (ESI)

Two heterovalent copper–organic frameworks with multiple secondary building units: high performance of gas adsorption and separation, I² sorption and release

Shuo Yao, ^a Xiaodong Sun, ^a Bing Liu, ^a Rajamani Krishna, ^b Guanghua Li, a Qisheng Huo, ^a and Yunling Liu* a

*a. State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China *E-mail: yunling@jlu.edu.cn; Fax: +86-431-85168624; Tel: +86-431-85168614 b. Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands. E-mail: r.krishna@contact.uva.cl.*

S1. Calculation procedures of selectivity from IAST

The measured experimental data is excess loadings (q^{ex}) of the pure components CO₂, CH₄, C₂H₆ and C_3H_8 for **JLU-Liu31**, which should be converted to absolute loadings (*q*) firstly.

$$
q = q^{ex} + \frac{pV_{pore}}{ZRT}
$$

Here *Z* is the compressibility factor. The Peng-Robinson equation was used to estimate the value of compressibility factor to obtain the absolute loading, while the measure pore volume $0.85 \text{ cm}^3 \text{ g}^{-1}$ is also necessary.

The dual-site Langmuir-Freundlich equation is used for fitting the isotherm data at 298K.

$$
q = q_{m_1} \times \frac{b_1 \times p^{1/n_1}}{1 + b_1 \times p^{1/n_1}} + q_{m_2} \times \frac{b_2 \times p^{1/n_2}}{1 + b_2 \times p^{1/n_2}}
$$

Here *p* is the pressure of the bulk gas at equilibrium with the adsorbed phase (kPa), *q* is the adsorbed amount per mass of adsorbent (mol kg⁻¹), q_{ml} and q_{m2} are the saturation capacities of sites 1 and 2 (mol kg⁻¹), b_1 and b_2 are the affinity coefficients of sites 1 and 2 (1/kPa), n_1 and n_2 are the deviations from an ideal homogeneous surface.

The selectivity of preferential adsorption of component 1 over component 2 in a mixture containing 1 and 2, perhaps in the presence of other components too, can be formally defined as

$$
S = \frac{q_1/q_2}{p_1/p_2}
$$

 q_1 and q_2 are the absolute component loadings of the adsorbed phase in the mixture. These component loadings are also termed the uptake capacities. We calculate the values of q_1 and q_2 using

the Ideal Adsorbed Solution Theory (IAST) of Myers and Prausnitz.

S2. Calculations of the **isosteric** heats of gas adsorption (O_{st})

A virial-type expression comprising the temperature-independent parameters a_i and b_j was employed to calculate the enthalpies of adsorption for CH_4 , C_2H_6 and C_3H_8 (at 273 and 298 K) on compounds. In each case, the data were fitted using the equation:

$$
ln^{P} = ln^{N} + \frac{1}{T} \sum_{i=0}^{m} a_{i} N^{i} + \sum_{j=0}^{n} b_{j} N^{j}
$$

Here, P is the pressure expressed in Torr, N is the amount adsorbed in mmol g^{-1} , T is the temperature in K, a_i and b_i are virial coefficients, m , n represent the number of coefficients required to adequately describe the isotherms (*m* and *n* were gradually increased until the contribution of extra added *a* and *b* coefficients was deemed to be statistically insignificant towards the overall fit, and the average value of the squared deviations from the experimental values was minimized). The values of the virial coefficients a_0 through a_m were then used to calculate the isosteric heat of adsorption using the following expression.

$$
Q_{st} = -R \sum_{i=0}^{m} a_i N^i
$$

*Q*st is the coverage-dependent isosteric heat of adsorption and *R* is the universal gas constant. The heats of gas sorption for JLU-Liu31 in this manuscript are determined by using the sorption data measured in the pressure range from 0-1 bar (273 and 298 K for gases), which is fitted by the virialequation very well.

S3. Supporting Figures

Fig. S1 PXRD patterns of JLU-Liu31 for simulated, as-synthesized, activated and I₂-adsorbed samples. The differences in reflection intensity are probably due to preferred orientations in the powder samples.

Fig. S2 PXRD patterns of JLU-Liu32 for simulated, as-synthesized and I₂-adsorbed samples. The differences in reflection intensity are probably due to preferred orientations in the powder samples.

Fig. S3 TGA curves of JLU-Liu31 for the as-synthesized, activated and iodine adsorbed samples.

Fig. S4 TGA curves of JLU-Liu32 for the as-synthesized, activated and iodine adsorbed samples.

Fig. S5 Topological features of JLU-Liu31 displayed by tiles and face symbols for pink, yellow and blue tiles are $(5^2.6^2)$, $(5^2.6^2)$ and (6^8) .

Fig. S6 Topological features of JLU-Liu32 displayed by tiles and face symbols for green, pink, red and yellow tiles are $(5^6.8^2)$, $(5^2.8^2)$, $(5^2.8^2.10^2)$ and $(5^4.8^2.10^2)$.

Fig. S7 The pore size distribution of JLU-Liu31 calculated by using the DFT method.

In order to ensure the accuracy and repeatability of results for the gas adsorption and isosteric heats of JLU-Liu31, we prepare another three batches of samples to make parallel experiments and get another three sets of data for H_2 , CO_2 , CH_4 , C_2H_6 and C_3H_8 . Fig. S8-12 shows the three sets of adsorption isotherms for the five kinds of gases and their isosteric heats calculated by viral method.

Fig. S8 (a) H₂ sorption isotherms of JLU-Liu31 for three batches of samples at 77 and 87 K; (b) isosteric heats of H_2 for the corresponding three samples; (c)-(e) nonlinear curves fitting of H_2 for the corresponding three samples.

Fig. S9 (a) CO₂ sorption isotherms of JLU-Liu31 for three batches of samples at 273 and 298 K; (b) isosteric heats of CO_2 for the corresponding three samples; (c)-(e) nonlinear curves fitting of CO_2 for the corresponding three samples.

Fig. S10 (a) CH₄ sorption isotherms of JLU-Liu31 for three batches of samples at 273 and 298 K; (b) isosteric heats of CH⁴ for the corresponding three samples; (c)-(e) nonlinear curves fitting of CH⁴ for the corresponding three samples.

Fig. S11 (a) C_2H_6 sorption isotherms of JLU-Liu31 for three batches of samples at 273 and 298 K; (b) isosteric heats of C_2H_6 for the corresponding three samples; (c)-(e) nonlinear curves fitting of $C₂H₆$ for the corresponding three samples.

Fig. S12 (a) C₃H₈ sorption isotherms of JLU-Liu31 for three batches of samples at 273 and 298 K; (b) isosteric heats of C_3H_8 for the corresponding three samples; (c)-(e) nonlinear curves fitting of C3H⁸ for the corresponding three samples.

Fig. S13 (a) Photographs of time-dependent I₂ adsorption process of 100 mg JLU-Liu31 in 3mL cyclohexane. (b) Photographs of time-dependent I_2 release process of 20 mg JLU-Liu31 in 3 mL ethanol.

Fig. S14 UV-vis spectra of iodine in ethanol.

Fig. S15 Calibration plot of standard iodine by UV-vis spectra.

S4. Supporting Tables

compound	JLU-Liu31	JLU-Liu32	
Formula	$C_{136}H_{180}Cu_8I_4N_{24}O_{32}$	$C_{123} H_{185} Cu_7 I_4 N_{27} O_{32}$	
Formula weight	3678.95	3506.36	
Temperature (K)	293(2)	296(2)	
Wavelength (\AA)	0.71073	0.71073	
Crystal system	orthorhombic	orthorhombic	
Space group	Cmcm	Pnnm	
a(A)	33.712(7)	34.9115(8)	
b(A)	19.058(4)	41.3131(9)	
c(A)	33.611(7)	28.9710(6)	
α (°)	90	90	
β (°)	90	90	
γ (°)	90	90	
$V(\AA^3)$	21595(7)	41784.9(16)	
Z, D_c (Mg/m ³)	4,1.132	8, 1.116	
F(000)	7456	14280	
θ range (deg)	1.208-25.326	2.24-19.44	
reflns collected/unique	68324/10118	272669/37874	
R_{int}	0.0846	0.1228	
data/restraints/params	10118/0/277	37874/77/878	
GOF on F^2	1.034	0.836	
R_1 , w R_2 (I>2 $\sigma(I)$)	0.0492, 0.1465	0.0499, 0.1173	
R_1 , w R_2 (all data)	0.0750, 0.1575	0.1302, 0.1332	

Table S1. Crystal data and structure refinements for JLU-Liu31 and JLU-Liu32

Since the highly disordered guest molecules were trapped in the channels of the two compounds and could not be modeled properly, there are "Alert level A" about "Check Reported Molecular Weight" and "VERY LARGE Solvent Accessible VOID(S) in Structure" in the "checkCIF/PLATON report" files for JLU-Liu31 and JLU-Liu32. The final formula of JLU-Liu31 and JLU-Liu32 were derived from crystallographic data combined with elemental and thermogravimetric analysis data.

Table S2. The topological information for JLU-Liu31 and JLU-Liu32 calculated by TOPOS 4.0 and Systre.

Compound JLU-Liu31

Compound JLU-Liu32

	BET $(m^2 g^1)$	77K	$H_2(wt\%)$ 87K	273K	$CO2$ (cm ³ g ⁻¹) 298K	CH_4 (cm ³ g ⁻¹) 273K	298K	C_2H_6 (cm ³ g ⁻¹) 273K	298K	273K	C_3H_8 (cm ³ g ⁻¹) 298K
	1700	1.17	0.54	35	17	14	8	142	68	191	169
2	1690	1.06	0.68	41	20	17	8	138	70	210	182
3	1610	1.15	0.70	45	22	17	9	142	70	208	183
$\boldsymbol{4}$	1640	0.99	0.70	53	21	17		144	70	212	186

Table S3. The adsorption amounts of JLU-Liu31 for H₂, CO₂, CH₄, C₂H₆ and C₃H₈ for four batches of samples.

Table S4. The H₂, CO₂, CH₄, C₂H₆ and C₃H₈ isosteric heats of JLU-Liu31 for four batches of samples.

\mathbf{v}	H_2 (kJ/mol)	$CO2$ (kJ/mol)	$CH4$ (kJ/mol)	C_2H_6 (kJ/mol)	C_3H_8 (kJ/mol)
	16.8	32.6		25	20
2	79	31.6	14	25	19
3	8.0	30.7		24	20
4	7.8	32.3		24	19

Table S5. The refined parameters for the Dual-site Langmuir-Freundlich equations fit for the pure isotherms of CO₂, CH₄, C₂H₆ and C₃H₈ for JLU-Liu31 at 298 K.

