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ABSTRACT: The emission of sulfur dioxide (SO2) from flue gases is harmful since trace SO2 impairs human health and the natural
environment. Therefore, developing new metal organic frameworks (MOFs) to capture this toxic molecule is of great importance in
flue gas desulfurization. In this work, we synthesized a new MOF, namely, ECUT-Th-60, which consists of two distinct channels
(3.0 Å × 4.1 Å and 2.3 Å × 4.8 Å). It shows SO2 uptakes of around 2.5 mmol/g at 0.1 kPa and 3.35 mmol/g at 1 bar, which are
higher than those of CO2 and N2 under identical conditions. Both simulated and experimental breakthrough tests proved that
ECUT-Th-60 can separate trace SO2 from SO2/CO2 mixtures. Impressively, complete separation of SO2 from SO2/CO2/N2
mixtures under both dry and humid conditions was also proved in ECUT-Th-60, predicting its potential application in flue gas
desulfurization.

■ INTRODUCTION
Sulfur dioxide (SO2), induced by the massive combustion of
fossil fuels, is harmful to human health (i.e., respiratory
disease) and the environment (i.e., acid rain) due to its high
corrosivity.1−7 It has already been listed as one of the most
hazardous gases by the World Health Organization (WHO).8,9

As a consequence, various strategies have been investigated to
decrease SO2 emissions. On the other hand, if SO2 was
gathered and purified, it could be utilized in the industry for
producing sulfuric acid.10 At present, established desulfuriza-
tion technologies such as using sodium hydroxide, ammonia
scrubbing, or using limestone-gypsum as an alkaline absorbent
are in use.11−14 However, all of these absorbents suffer from
shortcomings such as regeneration and recovery issues, hard to
produce new byproducts, and so on.15 Importantly, only
approximately 95% of SO2 can be removed using these
methods. The residual trace amount of SO2 remains in the flue
gas.16−18 As we know, even trace SO2 could irreversibly
influence the purification processes of other flue gases such as
CO2 or inactivate the adsorbents in the industry.19−23

Therefore, searching for a new effective adsorption technology

to achieve deep flue gas desulfurization (FGD) has evoked
widespread attention from the aspect of sustainable develop-
ment.
As an alternative, hybrid porous materials have been

proposed for SO2 capture very recently. Metal organic
frameworks (MOFs), assembled by metal cation/clusters and
organic linkers, have been considered promising candidates for
gas separation due to their easily tunable structure required to
guarantee shape or size selectivity. At present, many reported
MOFs have been applied for the separation of binary
components such as C3H8/C3H6,

24,25 C3H6/C2H4,
26 C3H4/

C3H6,
27,28 C2H2/C2H4,

29,30 C2H4/C2H6,
31,32 and CO2/

C2H2
33,34 and ternary components such as CH4/C2H6/

C3H8,
35 and C2H4/C2H2/C2H6.

36 However, compared with
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Figure 1. (a) Coordination environment of Th4+. (b) Coordination mode of the TBAPy ligand. (c) Framework structure of ECUT-Th-60 along
the [001] direction. (d) Corresponding space-filling models and the size of the two different channels along the [001] direction. Gray, C; red, O;
green, Th; and orange, H.

Figure 2. (a) N2 adsorption and desorption isotherms of ECUT-Th-60 at 77 K. (b) and (c) Adsorption isotherms for SO2, CO2, and N2 in ECUT-
Th-60 at different temperatures. (d) IAST selectivity of SO2/CO2 (1:99) and SO2/N2 (1:99) in ECUT-Th-60.
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other gas sorption and separation methods, the number of
MOFs reported for SO2 adsorption are small because of its
corrosive and destructive effect on the structure of MOFs.37

Especially under humid conditions, since SO2 can easily lead to
the generation of sulfite or sulfuric acid under water or oxygen
conditions, suitable MOFs for SO2 separation are scarcely
reported. For example, MOF-177 has a high SO2 uptake of
25.7 mmol/g at 298 K, but its crystallinity is changed after SO2
adsorption, indicating its chemical instability and unsuitability
for SO2 separation.38 Other reported MOFs such as MIL-
125(Ti)-NH2 and MFM-202a also suffered from this
problem.39,40 As we know, the flue gas mixture usually consists
of N2 or CO2 with a small part of SO2 (50−3000 ppm).
Therefore, developing new MOFs with high adsorption
capacity and selectivity of SO2 over N2 and CO2 and high
stability under humid conditions is of great significance. In
addition, the reversibility and energy-efficient recovery for
MOFs should be considered as well.
In this work, we reported a novel MOF, which has a higher

SO2 uptake than those of CO2 and N2 under identical
conditions. Both breakthrough simulations and experiments
were conducted to illustrate the separation performance of
ECUT-Th-60 with a simulated flue gas (SO2/CO2/N2
mixtures) under dry and humid conditions.

■ RESULTS AND DISCUSSION
The crystals of ECUT-Th-60 were synthesized by the
solvothermal method (Figure S1). Th(NO3)4 and H4L were
dissolved in a DMF solution at 110 °C. The synthesis process
is detailed in the Supporting Information. The structure was
determined by single-crystal X-ray diffraction. ECUT-Th-60
crystallized in the monoclinic space group C2/m. Two
independent thorium metal ions (Th1 and Th2) were
coordinated to nine oxygen atoms with a distance from 2.33
to 2.61 Å (Figure 1a), which is in the normal range.41,42 The
adjacent thorium ions were quadruply bridged by oxygen,
generating an infinite 1D metal chain. Each TBAPy ligand was
coordinated to eight thorium ions due to the four carboxylate
groups, where the linking pattern was μ2−η2: η1 (Figure 1b).
The packing diagram of ECUT-Th-60 gave two crystallo-
graphically distinct channels (3.0 Å × 4.1 Å and 2.3 Å × 4.8 Å,
considering the van der Waals radii of atoms) along the [001]
direction (Figure 1c,d). It is worth noting that the size of the
channels was comparable with the molecular size of SO2 (2.9 Å
× 3.4 Å × 4.8 Å),43,44 suggesting that ECUT-Th-60 might
result in a reasonable capture ability of SO2.
To verify the conjecture from the structure of ECUT-Th-60,

bulk crystals were synthesized for further research. The
matching powder X-ray diffraction (PXRD) patterns of
simulated and experimental ECUT-Th-60 indicated that no
other phase existed, indicating the pure phase in bulk ECUT-
Th-60 (Figures S2 and S3). The thermal stability of ECUT-
Th-60 was investigated by thermogravimetric analysis (Figure
S4). The initial mass losses up to 250 °C can be attributed to
the guest molecules such as DMF in the channels. After 450
°C, a significant mass loss occurred corresponding to the
collapse of the framework of ECUT-Th-60. Upon immersing
in methanol for 3 days, the TG curve showed that methanol
can be eliminated at around 150 °C. Therefore, the activated
ECUT-Th-60 was prepared at 150 °C under vacuum
conditions. Both ECUT-Th-60 after being immersed in
methanol and ECUT-Th-60a retain their framework as
evidenced by PXRD (Figure S3).

To examine the porosity, the N2 adsorption−desorption
behavior of ECUT-Th-60 was investigated at 77 K. As shown
in Figure 2a, a sharp increase was observed at low pressure for
ECUT-Th-60, which presented a typical I adsorption with an
uptake capacity of N2 of up to 170 cm3/g at 1 bar. The
Brunauer−Emmett−Teller (BET) surface area was calculated
to be 472 m2/g.
Permanent porosity motivated us to investigate the

adsorptive performance of ECUT-Th-60. Single-component
isotherms of SO2 were measured on ECUT-Th-60 at 273 and
298 K, respectively. The saturation adsorption capacity of SO2
reached 3.35 and 4.0 mmol/g at 298 and 273 K under 1 bar,
respectively, which exceeded those of other materials such as
commercial porous carbon (3.3 mmol/g), MOF-74 (3.03
mmol/g), SIFSIX-3-Ni (2.74 mmol/g), SIFSIX-3-Zn (2.10
mmol/g), and CPL-1 (2 mmol/g).4,45,46 At low pressure of 0.1
bar, the uptake of SO2 achieved was already 2.5 mmol/g, about
75% of the total uptake at 298 K and 1 bar. As we know, CO2
is the main competitor for SO2 removal. In addition, a higher
selectivity of SO2 over N2 is also necessary. Therefore, the
adsorption of CO2 and N2 at 298 and 273 K was also
performed. Although SO2 and CO2 are both acidic, the CO2
isotherms on ECUT-Th-60 were completely different from the
SO2 isotherms at either 298 or 273 K. Obviously, the
adsorption isotherms of SO2 are steeper than those of CO2
and N2. The uptake capacity of CO2 was only 1.7 mmol/g
under 1 bar and 0.25 mmol/g under 0.1 bar at 298 K, which
was significantly lower than that of SO2 under identical
conditions. A similar observation was also found for N2
adsorption. The adsorption capacity of N2 was only 0.18
mmol/g under 1 bar and 0.04 mmol/g under 0.1 bar at 298 K,
which can be considered negligible compared with the
adsorption capacity of SO2. Such a significant difference in
uptake capacity provided the great potential of separating SO2
over CO2 and N2 on ECUT-Th-60.
The isosteric heats of adsorption (Qst) of SO2 and CO2 were

calculated based on adsorption isotherms at 273 and 298 K
using the Clausius−Clapeyron equation.47,48 The Qst value of
SO2 increased from 14 to 57 kJ/mol over the whole range,
whereas the value remained almost constant for CO2 (17.8 kJ/
mol) (Figure S5). The calculated Qst for SO2 at full loading is
higher than those of other MOFs such as ELM-12 (41.6 kJ/
mol),13 MFM-300 (In) (39.6 kJ/mol),37 SIFSIX-1-Cu (36.1
kJ/mol), and SIFSIX-3-Zn (45.2 kJ/mol).45 The high Qst of
SO2 indicated a strong affinity of the ECUT-Th-60 framework
toward SO2.
To evaluate the separation property of ECUT-Th-60,

Henry’s constant of SO2 and CO2 and Henry’s selectivity
were also calculated based on the adsorption data at low
pressure.49 Henry’s constant was calculated to be 34.28
(mmol/g)/bar for SO2 and 2.56 (mmol/g)/bar for CO2
(Figures S6 and S7). Henry’s selectivity for SO2/CO2 was
13. Furthermore, the adsorption selectivity was also
determined using ideal adsorbed solution theory (IAST)
calculations, which are also very useful in predicting gas
separation. The IAST selectivity of ECUT-Th-60 for mixed
gases of SO2/CO2 (1/99 v/v) and SO2/N2 (1/99 v/v) was
calculated after fitting isotherms at 298 K to the dual-site
Langmuir−Freundlich equation. The fitting parameters are
shown in Table S1. As shown in Figure 2d, the selectivity
reached 27 for SO2/CO2 at 298 K and 1 bar, which is lower
than those of MFM-300 (In) (50),37 SIFSIX-1-Cu (70.7), and
SIFSIX-2-Cu-I (87.1).45 However, it is still higher than those
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of the benchmark cs-carbons (∼20), BC-4-650 (21), and BC-
5-650 (22).50,51 The selectivity for SO2/N2 was up to 835 at
298 K and 1 bar. All of these outstanding selectivities strongly
suggested the preferable adsorption of SO2 over CO2 and N2
on ECUT-Th-60.
Motivated by the different uptakes between SO2, CO2, and

N2 in ECUT-Th-60, we first evaluated the separation ability by
a simulated breakthrough (Figure 3a). Obviously, the long
separation time of about Δτ = 1400 for SO2 separation
indicated that ECUT-Th-60 might be the potential material in
SO2/CO2 separation. To further investigate the separation
ability of ECUT-Th-60 in real conditions, dynamic break-
through experiments were carried out. First, a SO2/CO2
mixture containing 2000 ppm of SO2 was introduced into
the column packed with ECUT-Th-60a. Clearly, CO2 started
to break through the column rapidly after 6 min/g, while the
SO2 breakthrough occurred after 206 min/g. This result
further confirmed the outstanding SO2 separation ability of
ECUT-Th-60. Given that a stable cycling performance and
easy regeneration are extremely important in the industry, the
breakthrough experiments were tested in duplicate. As shown
in Figure S8, no significant decrease in the retention time for
SO2 was observed, indicating that the stability of ECUT-Th-60
was well retained. Then, we used another ternary mixture of
SO2/CO2/N2 containing 1000 ppm of SO2 to mimic the flue
gas. As shown in Figure 3c, CO2 and N2 were rapidly eluted
after 3 min/g, followed by SO2 after 105 min/g. The recycling
use was further confirmed by another cycling test (Figure S9).

The breakthrough experiments proved that ECUT-Th-60 has
potential application in the removal of SO2 from dry gas
mixtures. Considering that the primary content of flue gas is
CO2, N2, and water vapor, the separation ability of our MOF
under humid conditions (3% water) was also investigated.
Impressively, the retention time for SO2 achieved was still 105
min/g, which by far exceeded those of CO2 and N2 (Figure
3d). This result is comparable with the breakthrough
experiments under dry conditions, which further confirmed
the superior SO2 separation ability of ECUT-Th-60 even
under humid conditions.

■ CONCLUSIONS
In summary, this work reported a new microporous MOF,
ECUT-Th-60, as the potential SO2 adsorbent. Single-
component adsorption isotherms of SO2, CO2, and N2
revealed a higher uptake of SO2 than CO2 and N2.
Experimental breakthrough tests further confirmed that SO2
could be separated from SO2/CO2 or SO2/CO2/N2 mixtures
with a ppm level. The good recycling ability of ECUT-Th-60
indicated that it could be applied in the industry considering its
cost and practicability.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.inorgchem.2c01634.

Figure 3. (a) Simulated breakthrough for the 1:99 (v/v) SO2/CO2 mixture on ECUT-Th-60. (b) Experimental breakthrough for the SO2/CO2
mixture at 298 K on ECUT-Th-60. (c) and (d) Experimental breakthrough for the SO2/CO2 /N2 mixture without and with 3% water. The flow
rate is 10 mL/min.
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Details of synthesis and instruments and other character-
izations such as PXRD, TG, and experimental break-
through experiments (PDF)
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Experimental Methods 

Materials:

Caution! Th(NO3)4 used in this study is a radioactive and chemically toxic reactant, so standard precautions 

and protection for handling such substances have been followed. 

    The ligand 1,3,6,8-tetrakis (P-benzoic acid) pyrene (H4TBAPy) was purchased from 

EXTENSION Technology Co.,Ltd. Other materials such as Th(NO3)4, N, N-dimethylformamide 

(DMF), and Trifluoroacetic acid (TFA) were purchased from Aladdin Chemistry Co., Ltd. without 

further purification.

Synthesis of ECUT-Th-60

ECUT-Th-60 was prepared by solvothermal method. Specifically, Th(NO3)4 (12 mg) and ligand 

H4TBAPy (17 mg) were mixed in 3.0 mL N, N-dimethylformamide (DMF) solution. About 300 

μL TFA was added in the mixture. Then the mixture was placed into reactor and the temperature 

was set for 150oC. After three days, the reactor was cooled down to room temperature and yellow 

crystals were obtained. 

Synthesis of activated ECUT-Th-60 (ECUT-Th-60a)

Bulk ECUT-Th-60 was immersed into methanol for three days. The methanol was changed three 

times every day. Subsequently, ECUT-Th-60 was activated at 150oC overnight under vacuum 

conditions to obtain ECUT-Th-60a.

Physical Measurements



The X-ray diffraction data of single crystal was collected at 298 K on a Bruker-Appex (II) 

diffractometer using graphite monochromated MoKα radiation (λ=0.71073 Å). The data of X-ray 

powder diffraction were collected on a Bruker AXSD8 Discover powder diffractometer at 40 

kV/40 mA for Cu Kα (λ= 1.5406 Å) at room temperature in the range of 5-50 °(2θ) with a scan 

speed of 0.1 °per step. Thermogravimetric analysis (TG) was performed by a TGA Q500 thermal

analysis system. All TGA experiments were performed under air condition from room temperature 

to 800°C at a rate of 5°C/min. 

Gas adsorption experiments. 

    The gas sorption isotherms were collected on a Belsorp-max. Roughly 100 mg of ECUT-Th-

60 were taken for the nitrogen adsorption experiments at 77 K. The adsorption isotherms for SO2 

and CO2 were obtained at temperature of 273 K and 298 K, respectively. Liquid nitrogen and water 

bath were used to maintain the experimental temperatures of 77 K, 273 K, and 298 K. 

Fitting of experimental data on pure component isotherms

The unary isotherm data for SO2 in ECUT-Th-60 at 273 K, and 298 K were fitted with the dual-

site Langmuir model, where we distinguish two distinct adsorption sites A and B: 
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The unary isotherm data for CO2, and N2 in ECUT-Th-60 at 273 K, and 298 K are fitted with 

good accuracy using the 1-site Langmuir model, with T-dependent parameters bA.



The unary isotherm fit parameters for SO2, CO2, and N2 are provided in Table S1.

Table S1. Dual-site Langmuir parameter fits for SO2, CO2, and N2 in ECUT-Th-60. 

Site A Site B

qA,sat

mol kg-1

bA

1Pa

EA

kJ mol-1

qB,sat

mol kg-1

bB

1Pa

EB

kJ mol-1

SO2 3 1.458E-06 13 1 2.008E-16 60

CO2 3.5 6.201E-09 17.8

N2 0.32 8.470E-06 1

Calculation of Isosteric Heat of Adsorption

The isosteric heats of adsorption were calculated from the dual-site Langmuir-Freundlich 

isotherms for ECUT-Th-10a using
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Where p is the pressure, T is the temperature, R is the gas constant (8.314 J mol-1 K-1). By drawing 

the lnP vs 1/T plot of gas at various loading, Qst = -slope×R. 



Calculation of selectivity via ideal adsorption solution theory (IAST)

    The adsorption selectivity of SO2/CO2 (1/99) and SO2 /N2 (1/99) in ECUT-Th-60 and was 

established by the Ideal Adsorbed Solution Theory (IAST). The adsorption selectivity was 

calculated from 

BA

BA
ads yy

qqS  (S4)

where the qA, and qB represent the molar loadings in ECUT-Th-60 that is in equilibrium with 

a bulk fluid mixture with mole fractions yA, and yB = 1 - yA. The molar loadings, also called 

gravimetric uptake capacities, are expressed in mol kg-1. 

Transient breakthrough simulations

The performance of industrial fixed bed adsorbers is dictated by a combination of adsorption 

selectivity and uptake capacity. Transient breakthrough simulations were carried out using the 

methodology described in earlier publications.1-5 The mixtures (1/99 SO2/CO2 mixtures at 298 K 

and 100 kPa) were investigated. 

For the breakthrough simulations, the following parameter values were used: length of packed 

bed, L = 0.3 m; voidage of packed bed,  = 0.4; superficial gas velocity at inlet, u = 0.04 m/s.



The y-axis is the dimensionless concentrations of each component at the exit of the fixed bed, 

normalized with respect to the inlet feed concentrations. The x-axis is the dimensionless 0i ic c

time, , defined by dividing the actual time, t, by the characteristic time, . 
tu
L





u

L

L length of packed bed adsorber, m

t time, s 

T absolute temperature, K 

u superficial gas velocity in packed bed, m s-1

 voidage of packed bed, dimensionless

 time, dimensionless

Breakthrough experiments. 

The breakthrough experiments were performed at 298 K. Bulk powder ECUT-Th-60a 

(around 800 mg) were filled into stainless steel column (Φ 46 mm×150 mm). First, the helium gas 

(100 mL/min) was introduced into the column for 30 min. Then the different gas mixture SO2/CO2 

(containing 2000 ppm SO2) and SO2/CO2/N2 mixture with or without water were passed through 

the column with 10 mL/min. The eluted gas stream from the column is monitored by a Hiden mass-

spectrometer. Prior to each cycling experiment, the adsorption bed was regenerated by He flow for 

3h at 333 K to ensure complete removal of adsorbed gas. 

Table S2. Crystal structure information for ECUT-Th-60.

Compound ECUT-Th-60

Formula C88H36O24Th3

Formula weight 2173.33

Color  Yellow



Crystal system monoclinic

Space group C2/m

a(Å) 32.6642(16)

b(Å) 29.7904(16)

C (Å) 11.7665(6)

α 90

β 92.590(4)

γ 90

Volume (Å3) 11438.1(10)

Z 4

Temperature for data collection (K) 293

Range for data collection θ(º) 3.319 to 25

No. of measured reflections 10248

No. of parameters 468

Goodness-of-fit on F2 1.082

Final R indexes[I≥2σ(I)] R1=0.1560,wR2=0.4066

Final R indexes [all data] R1=0.2094,wR2=0.4384

                                              R1 = FoFc/Fo. wR2 = [w (Fo
2Fc

2)2/w (Fo
2)2]1/2.

Table S3 Selected bond length (Å) and angles (°)for ECUT-Th-60

__________________________________________________________________

Bond length
Th(1)-O(1)#2             2.439(19)        Th(1)-O(2)             2.269(9) 
Th(1)-O(7)#2             2.47(2)                    Th(1)-O(8)             2.49(2)
Th1(1)-O(9)               2.55(5)                    Th(1)-O(10)#3       2.48(2)
Th(1)-O(3)                 2.398(17)        Th(1)-O(11)           2.528(16) 
Th(2)-O(2)                 2.360(16)        Th(2)-O(2) #3        2.360(16) 



Th(2)-O(4)#4             2.43(2)                    Th(2)-O(4) #2        2.43(2)
Th1(2)-O(5)#3           2.38(2)                    Th(2)-O(5)             2.38(2)
Th(2)-O(12)               2.37(2)                    Th(2)-O(12) #3      2.37(2) 
Th(2)-O(13)               2.74(5)                    Th(2)-O(13) #3      2.74(5) 

Symmetrical code: 1-X,+Y,-1-Z; 21/2-X,3/2-Y,-Z; 3-X,+Y,-Z; 4-1/2+X,3/2-Y,+Z; 5+X,1-Y,+Z

Bond angles
O(1)#1-Th(1)-O(7)#1       72.3(6)             O(1)-Th(1)-O(8)               70.2(8) 
O(1)#1-Th(1)-O(9)           95.3(11)       O(1)#1-Th(1) -O(10)#3     135.4(9) 
O(1)#1-Th(1)-O(11)         75.0(9)             O(2)-Th(1)-O(1)#1            140.6 (6) 
O(2)-Th(1)-O(7) #1          68.4(6)            O(2)-Th(1)-O(8)                 95.7(7) 
O(2)-Th(1)-O(9)               72.2(10)          O(2)-Th(1)-O(10)#3           70.6(7)  
O(2)-Th(1)-O(3)               137.3(8)          O(2)-Th(1)-O(11)               140.2(9) 
O(7)#1-Th(1)-O(8)           72.1(9)            O(7)#1-Th(1)-O(9)             68.6(10)
O(7)#1-Th(1)-O(10)#3     124.9(7)          O(7)#1-Th(1)-O(11)           142.1
O(8)-Th(1)-O(9)               140.6 (10)       O(8)-Th(1)-O(9)                 140.6(10)
O(8)-Th(1)-O(11)             79.4(8)            O(10)#3-Th(1)-O(8)           77.1(10)
O(10)#3-Th(1)-O(9)         128.8(12)        O(3)-Th(1)-O(1)#1             59.6(8)
O(3)-Th(1)-O(7)#1           109.2(7)          O(3)-Th(1)-O(8)                 125.1(8)
O(3)-Th(1)-O(9)               68.0(10)          O(3)-Th(1)-O(10)#3           125.8(7)
O(3)-Th(1)-O(11)             68.1(6)            O(11)-Th(1)-O(9)                133.6(9)
O(2)-Th(2)-O(2)#3           97.8(8)            O(2) #3-Th(2)-O(4)#4         67.5(6)
O(2)#3-Th(2)-O(4)#1       69.9(6)            O(2) -Th(2)-O(4)#1             67.5(6)
O(2)-Th(2)-O(4)#4           69.9(6)            O(2) -Th(2)-O(5)#3             75.7(7)
O(2)#3-Th(2)-O(5)#3       145.3(7)          O(2) -Th(2)-O(5)                 145.3(7)          
O(2)#3-Th(2)-O(5)           75.7(7)            O(2) -Th(2)-O(12)               80.5(6)
O(2)#3-Th(2)-O(12)         142.2(7)          O(2) -Th(2)-O(12)#3           142.2(7)
O(2)#3-Th(2)-O(12)#3     80.5(6)            O(2)#3-Th(2)-O(13)#3        130.5(14)
O(2)-Th(2)-O(13)#3         130.5(14)        O(2) -Th(2)-O(13)               130.5(14)
O(2)-Th(2)-O(13)#3         130.9 (15)       O(2) -Th(2)-O(13)#3           130.9(15)
O(2)#3-Th(2)-O(13)         130.5(14))       O(4) #1-Th(2)-O(4)#4         112.9(12)
O(4)#1-Th(2)-O(13)         116.4(12)        O(4) #4-Th(2)-O(13)#3       116.4(12)
O(4)#1-Th(2)-O(13)#3     130.7(12)        O(4) #4-Th(2)-O(13)           130.7(12)
O(5)#3-Th(2)-O(4)#4       78.5(8)            O(5) #3-Th(2)-O(4)#1         133.1(5)
O(5)-Th(2)-O(4)#4           133.1(5)          O(5) #1-Th(2)-O(4)#1         78.5(8)
O(5)#3-Th(2)-O(5)           128.1(12)          O(5) -Th(2)-O(13)#3         68.4(1)
O(5)#3-Th(2)-O(13)#3     60.0 (14)           O(5)-Th(2)-O(13)              60.4(14)          
O(5)#3-Th(2)-O(13)         68.4(14)            O(12)#3-Th(2)-O(4)#4      74.7(8)          
O(12)-Th(2)-O(4)#4         142.0(6)            O(12)#3-Th(2)-O(4)#1      142.0(6)          
O(12)-Th(2)-O(4)#1         74.7(8)              O(12)#3-Th(2)-O(5)#3      84.5(6)          
O(12)#3-Th(2)-O(5)#3     71.4(8)              O(12)#3-Th(2)-O(5)          71.4(8)          
O(12)-Th(2)-O(5)             84.5 (6)             O(12)-Th(2)-O(12)3          123.3(12)          
O(12)#3-Th(2)-O(13)       66.8(14)            O(12)-Th(2)-O(13)#3        66.8(14)         
O(12)#3-Th(2)-O(13)#3   56.7(14)            O(12)-Th(2)-O(13)            56.7(14)          
Symmetrical code: 11/2-X,3/2-Y,-Z; 2-X,+Y,-1-Z; 3-X,+Y,-Z; 4-1/2+X,3/2-Y,+Z; 5+X,1-Y,+Z





Figure S1. The photograph of ECUT-Th-60



 

Figure S2. The Rietveld refinement performed on X-ray powder diffraction data of ECUT-Th-

60. 



Figure S3. The PXRD patterns of the simulated data and the as-synthesized samples.



Figure S4. The TG curves of ECUT-Th-60 (black) and the CH3OH-exchanged samples (red).



Figure S5. The Qst value of SO2 and CO2 for ECUT-Th-60.



Figure S6. The Henry fitting of SO2 adsorption on ECUT-Th-60.



Figure S7. The Henry fitting of SO2 adsorption on ECUT-Th-60.



Figure S8. The second experimental breakthrough curve of ECUT-Th-60 for SO2/CO2 mixture.



Figure S9. The second experimental breakthrough curve of ECUT-Th-60 for a SO2/CO2/N2 

mixture without water.
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