

Check for updates

Hydrogen-Bonded Organic Frameworks Hot Paper

How to cite: *Angew. Chem. Int. Ed.* **2023,** *62,* e202305041 doi.org/10.1002/anie.202305041

Tuning Pore Polarization to Boost Ethane/Ethylene Separation Performance in Hydrogen-Bonded Organic Frameworks

*Yunzhe Zhou⁺ , Cheng Chen+ , Rajamani Krishna, Zhenyu Ji, Daqiang Yuan, and [Mingyan](http://orcid.org/0000-0003-2610-285X) Wu**

Abstract: Hydrogen-bonded organic frameworks (HOFs) show great potential in energy-saving C_2H_6 / $C₂H₄$ separation, but there are few examples of one-step acquisition of C_2H_4 from C_2H_6/C_2H_4 because it is still difficult to achieve the reverse-order adsorption of C_2H_6 and C_2H_4 . In this work, we boost the C_2H_6/C_2H_4 separation performance in two graphene-sheet-like HOFs by tuning pore polarization. Upon heating, an in situ solid phase transformation can be observed from **HOF-NBDA(DMA)** (DMA=dimethylamine cation) to **HOF-NBDA**, accompanied with transformation of the electronegative skeleton into neutral one. As a result, the pore surface of **HOF-NBDA** has become nonpolar, which is beneficial to selectively adsorbing C_2H_6 . The difference in the capacities for C_2H_6 and C_2H_4 is 23.4 cm³ g⁻¹ for **HOF-NBDA**, and the C_2H_6/C_2H_4 uptake ratio is 136%, which are much higher than those for **HOF-NBDA(DMA)** $(5.0 \text{ cm}^3 \text{ g}^{-1})$ and 108% respectively). Practical breakthrough experiments demonstrate **HOF-NBDA** could produce polymer-grade C_2H_4 from C_2H_6/C_2H_4 (1/99, v/v) mixture with a high productivity of 29.2 Lkg⁻¹ at 298 K, which is about five times as high as $\textbf{HOF-NBDA(DMA)}$ (5.4 Lkg⁻¹). In addition, in situ breakthrough experiments and theoretical calculations indicate the pore surface of **HOF-NBDA** is beneficial to preferentially capture C_2H_6 and thus boosts selective separation of C_2H_6/C_2H_4 .

Introduction

The polymer-grade ethylene $(C_2H_4 \ge 99.95\%)$ is a key feedstock widely used in producing polymers and high-value organic chemicals. In recent years, scientists agree that an economical and energy-efficient alternative purification method is desired to remove the inevitably existing byproduct (ethane, C_2H_6) from C_2H_4 . The adsorptive

separation based on porous materials has attracted extensive attention because of its energy saving and environmental friendliness, excellent reusability and high production efficiency. However, the extremely similar molecular sizes between C_2H_6 (3.81 × 4.08 × 4.82 Å³) and C_2H_4 (3.28 × 4.18 × 4.84 \AA ³) make it a great challenge for searching appropriate porous materials. Although it has been reported that $C_2H_6/$ C_2H_4 separation can be achieved by designing molecular sieve-like materials through pore engineering, it is still very difficult to realize one-step acquisition of high-purity C_2H_4 . [3–11]

Porous materials featuring nonpolar surfaces have been proven to be certainly beneficial for trapping C_2H_6 molecules and can be consequently regarded as good candidates for C_2H_6 -selective adsorbent.^[12–18] Hydrogen-bonded organic frameworks (HOFs) self-assembled by conjugated organic carboxylic acids through intermolecular hydrogen-bonding interactions usually have regulatable nonpolar channels and can be deemed to be potential C_2H_6 -selective materials.[12,19–21] Recently, molecular building blocks based on organic carboxylic acids have been developed for unveiling the self-assembly rules of HOFs to a certain extent through backbone geometry and directional dimeric hydrogen-bonding regulation.^[19,22-25] However, effective rules for rational design and self-assembly of HOFs have not been clearly established. In part, this is due to its fragile nature and poor rigidity of hydrogen bonding, allowing frameworks to often collapse after removal of guest molecules.^[22,26] Common solvents such as alcohols will form O-H-··O and/or N-H[.]··O interactions during the HOFs synthesis process, occupying a certain space in the channels or even leading to structural collapse after activation.^[26] In particular, the dimethylamine molecules generated in the synthesis process can seize the hydrions of the carboxylic acids to form electropositive dimethylamine cations and further form hydrogen bond interactions with the carboxylate groups on the electronegative framework, which results in high polarity in the $HOFs.$ ^[24] As we know, highly polar pore surfaces will simultaneously enhance the affinity for both C_2H_6 and C_2H_4

Prof. R. Krishna

Van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904, 1098 XH Amsterdam (The Netherlands) Prof. Dr. M. Wu University of Chinese Academy of Sciences Beijing, 100049 (China) [⁺] These authors contributed equally to this work.

Angew. Chem. Int. Ed. **2023**, *62*, e202305041 (1 of 8) © 2023 Wiley-VCH GmbH

^[*] Y. Zhou,⁺ Dr. C. Chen,+ Dr. Z. Ji, Prof. Dr. D. Yuan, Prof. Dr. M. Wu State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian 350002 (China) E-mail: wumy@fjirsm.ac.cn

molecules, which cannot efficiently discriminate C_2H_6 from C_2H_6 and C_2H_4 mixture. The good news, however, is that dimethylamine cations can be removed by thermal and/or vacuum activation, which will significantly reduce the polarity of the pore surface. Though the nonpolar pore surfaces will weaken the affinity for both C_2H_6 and C_2H_4 simultaneously, the selective adsorption of C_2H_6 can be realized. The reason is that the C_2H_6 molecule has a higher polarizability $(44.7 \times 10^{-25} \text{ cm}^3)$ than C_2H_4 $(42.52 \times 10^{-25} \text{ cm}^3)$, which renders it stronger interactions with the nonpolar pore surfaces that are full of aromatic moieties, wherein dispersion and induction interactions may afford major contribution to the preferential adsorption of C_2H_6 over C_2H_4 ^[24,25,27] Therefore, one-step acquisition of pure C_2H_4 from C_2H_6/C_2H_4 mixture can be realized.

Based on the above considerations, we herein report a strategy of tuning pore polarization to successfully convert highly polar pore surfaces featuring -COOH--⁻⁻OOCcarboxyl dimers into less polar pore surfaces with head-tohead carboxyl-··carboxyl dimers through in situ solid transformation, which realizes the enhancement of one-step C_2H_6/C_2H_4 separation performance. Under solvothermal condition, the propeller-like hexarboxylic acid 4',4'',4'''' nitrilotris(([1,1'-biphenyl]-3,5-dicarboxylic acid)) (abbreviated as H_6 NBDA) is employed to synthesize a hydrogenbonded organic framework (**HOF-NBDA(DMA)**, DMA= dimethylamine cation), in which deprotonated $H₅NBDA$ unit self-assembles into 2D graphene-sheet-like nets through intermolecular hydrogen bonds under the rule of reticular chemistry.[28–31] Furthermore, the electronegative layers are stacked in -ABCD- manner without interpenetration to form the 1D open channels along the crystallographic *a*-axis, where DMA molecules reside. Upon heating, **HOF-NBDA- (DMA)** can transform in situ into **HOF-NBDA** by loss of dimethylamine molecules (Me₂NH). Therefore, **HOF-NBDA** has nonpolar pore surfaces, which are stacked by electrically neutral 2D net constructed from H₆NBDA unit. As anticipated, **HOF-NBDA(DMA)** shows an unobvious difference in C_2H_6 and C_2H_4 adsorption capacity as 5.0 cm³ g⁻¹ between C_2H_6 and C_2H_4 , while **HOF-NBDA** shows the preferential adsorption of C_2H_6 over C_2H_4 (the difference in adsorption capacity increases to $23.4 \text{ cm}^3 \text{ g}^{-1}$). Furthermore, **HOF-NBDA** exhibits a significantly higher C_2H_6/C_2H_4 (1/99, v/v) selectivity (1.75) than that of **HOF-NBDA(DMA)** (1.40). Practical breakthrough experiments show that **HOF-NBDA(DMA)** exhibits an inefficient separation of the C_2H_6/C_2H_4 mixture with a interval of ca. 3.1 ming⁻¹. In contrast, **HOF-NBDA** could efficiently capture C_2H_6 from 1/99 C_2H_6/C_2H_4 mixture at different gas flow rates and temperatures, providing polymer-grade C_2H_4 in a significantly prolonged separation interval $(15.5 \text{ min g}^{-1})$, which is five times longer than that of **HOF-NBDA(DMA)** under the same conditions. The **HOF-NBDA** packed column can directly yield in a high C_2H_4 productivity of $29.2 \mathrm{Lkg}^{-1}$ at 298 K and 1 bar, which is about five times as high as **HOF-NBDA(DMA)** (5.4 Lkg⁻¹). In addition, in situ breakthrough experiments indicate the C_2H_6/C_2H_4 separation performance is greatly improved accompanied with the gradual heat treatment. Finally, theoretical calculations

Angew. Chem. Int. Ed. **2023**, *62*, e202305041 (2 of 8) © 2023 Wiley-VCH GmbH

indicate that the pore surface of **HOF-NBDA** is beneficial to preferentially capture C_2H_6 rather than C_2H_4 and thus boosts selective separation of C_2H_6/C_2H_4 , which is well consistent to the experimental result. On the whole, these results not only provide in-depth insights into conceivable reticular chemistry of HOFs platform, but also guide hydrogen bonding as a mainstream non-covalent interaction to fabricate artificial porous materials with selective separation properties in the field of energy-saving gas purification.[12,19–21, 23, 24, 32–38]

Results and Discussion

The hexacarboxylate skeleton H_6 NBDA was obtained through a multi-step synthesis reaction (Scheme S1, Figure S1, Supporting Information). A solvothermal reaction for three days afforded the yellow block crystals of **HOF-NBDA(DMA)**. Single-crystal X-ray diffraction (SCXRD) analysis revealed that **HOF-NBDA(DMA)** belongs to the monoclinic *P*-1 space group (Table S3). The asymmetric unit of **HOF-NBDA(DMA)** consists of two deprotonated $H₅NBDA$ units and two DMA (Figure S2a). Each $H₅NBDA$ unit is connected to three adjacent $H₅NBDA$ units through six sets of intermolecular hydrogen bonds to extend into 2D honeycomb-like layers. Among them, four are classical carboxyl-··carboxyl dimers (\angle O-H···O ranging from 169.8° to 177.8°, d (O-H-··O) ranging from 2.46 to 2.63 Å.) (H-1, Figure 1b and S3a). And the other two are rarely-seen -COOH-··⁻OOC- hydrogen bonds (A-H-··O recorded as 146.4° and 148.2°, d (N-H^{\dots}O) recorded as 2.69 Å and 2.72 Å.) (H-2, Figure 1b and S3a). It is worth noting that the 2D layers skeleton is overall electronegative, and DMA is connected to the COO^- of the skeleton by N-H \cdot ^{-O} hydrogen bonds, thus maintaining the overall electroneutrality. In the 2D layer, there are three kinds of windows (I, II and III, See Figure 1b) and the DMA are distributed in type I window. Interestingly, the layered frameworks are stacked in parallel in a rarely seen -ABCD- manner without interpenetration to form the 1D open channels along the crystallographic a-axis, with an average interlayer distance of ca. 3.68 Å (Figure 2a and S4a).

When degassed under dynamic vacuum, the block **HOF-NBDA(DMA)** crystals split into many pieces. Fortunately, the tiny activated samples also meet the requirements for SCXRD investigations. Therefore, the accurate structure of **HOF-NBDA** was successfully obtained. **HOF-NBDA** belongs to the orthorhombic *F*ddd space group. The asymmetric unit of **HOF-NBDA** contains a half H₆NBDA molecule, which is not deprotonated (Figure S2b). Each H_6 NBDA molecule is hydrogen bonded with three adjacent H_6 NBDA exclusively through carboxyl...carboxyl dimers (\angle O-H-··O record as 179.2° and 176.2° , d (O-H-··O) record as 2.60 and 2.62 Å, respectively) in the *bc* plane to form an electrically neutral 2D hexagonal honeycomb net (H-1, Figure 1c and S3b). Compared with **HOF-NBDA(DMA)**, the 2D layer of **HOF-NBDA** consists of two types of windows, i.e. type II and the larger type IV which is constructed by six isophthalate groups (Figure 1c). Similar to **HOF-NBDA-**

and the resulting monolayer network in **HOF-NBDA(DMA)**. (c) Upon heating, **HOF-NBDA(DMA)** in situ transforms into **HOF-NBDA**, accompanied with the removal of dimethylamine molecules and the reorganization of hydrogen bond dimers. (d) Scheme of H₆NBDA molecule and its simplified six-connected model. (e) For **HOF-NBDA(DMA)**, the layered frameworks are stacked in a -ABCD- manner without interpenetration, with the dimethylamine cations distributed in the pores. (f) The stacking structure of **HOF-NBDA**.

(DMA), the 2D layers of **HOF-NBDA** are also stacked in a -ABCD- manner without interpenetration (an interlamellar separation of 3.73 Å, Figures 1f, 2b and S4b), resulting in a 1D channel along the *a*-axis. Compared with the wavelike layers constructed by rigid aromatic tricarboxylated ligands (such as H_3BTB and H_3TATB),^[22,39] the propeller-like hexarboxylic acid H_6 NBDA derived from triphenylamine scaffolder can facilitate the formation of slip-packed 2D layered structures that are more similar to the free-standing graphene sheets.[40]

Hirshfeld surface analysis demonstrates that the electrostatic potential (ESP) on the pore walls is significantly different between **HOF-NBDA(DMA)** and **HOF-NBDA**. A lot of positive charge centers are formed in the DMA occupied pores (Figure 2c), which will increase the adsorption affinity of both C_2H_6 and C_2H_4 molecules simultaneously due to strong intermolecular electrostatic interactions. Such polar pore surfaces make it difficult to achieve efficient selective separation of C_2H_6/C_2H_4 mixture. However, in **HOF-NBDA** the pore surface becomes less polar, and the abundant phenyls and the consolidated carboxyl···carboxyl dimers on the pore walls benefit the preferential adsorption

of C_2H_6 molecules (Figure 2d). Such great difference in charge density distribution of the pore surface in these two crystals will bring special influence on their adsorption properties (Figure S5).

Both **HOF-NBDA(DMA)** and **HOF-NBDA** are composed of hexagonal network framework stacked in -ABCDmanner, and possess similar 2D layered graphene-sheet-like topological structure. The main difference between the two structures is the existence of DMA filled in the channels of the **HOF-NBDA(DMA)** framework. Whereas DMA will decompose at high temperature and the resulting $Me₂NH$ can be removed from the pores by vacuum.[41] Further experiments have been conducted to investigate this possibility. As expected, it was found that the powder X-ray diffraction (PXRD) peaks changed obviously and matched well to the **HOF-NBDA** pattern when the **HOF-NBDA- (DMA)** sample was activated by heating in air or under vacuum (Figure S6), which indicated a possible solid-state structural transformation. Therefore, freshly prepared bulk crystalline powder for in situ monitoring the solid-state transformation was measured on a Rigaku MiniFlex600 diffractometer after heating at different temperatures. As

Chemie

Research Articles

Angewandte Chemie

Figure 2. A cross-section view of the hexagonal porous windows in (a) **HOF-NBDA(DMA)** and (b) **HOF-NBDA**. The layered frameworks are stacked in slippage in a -ABCD- manner without interpenetration with average interlayer distances of ca. 3.68 and 3.73 Å, respectively. The steric electrostatic potential on the hexagonal channels of (c) **HOF-NBDA(DMA)** and (d) **HOF-NBDA**. The gradation on the scale bar is in Hartree/e.

shown in Figure 3, the as-prepared **HOF-NBDA(DMA)** shows no obvious change before 80 °C. When the temperature rises to 130 °C, the curves have pronounced changes. Especially the peaks located at 6.9° and 7.5° gradually weaken and completely disappear, and the peak located at 7.1° becomes a single independent peak when the temperature rises to 130° C, as well as a new peak appears at 8.6° . Under this heating condition, the **HOF-NBDA(DMA)** sample is successfully converted to **HOF-NBDA** as evidenced by the consistency in their corresponding PXRD patterns. Continuous heat treatment does not result in any signal change, even when the temperature reaches 200° C, indicating the occurrence of completely heat-induced structural transformation (Figure 3). In a word, we have achieved the removal of DMA and the reorganization of carboxyl--carboxyl dimers through in situ heating, and then realized the strategy of tuning pore polarization by changing the porous surface charge density distribution.

What makes sense is that the **HOF-NBDA** can be synthesized on a large scale in the laboratory by rapid synthesis methods (Figure S6), which greatly improves the

Angew. Chem. Int. Ed. **2023**, *62*, e202305041 (4 of 8) © 2023 Wiley-VCH GmbH

Figure 3. PXRD patterns collected after continual heating treatments at different temperatures confirm the in situ structural transformation from **HOF-NBDA(DMA)** to **HOF-NBDA**.

application possibilities of the material. The scanning electron microscope photographs show that the rapidly scale-up synthesized **HOF-NBDA** crystals are block and about 10 μm in size with an irregular polygonal shape (Figure S7). In addition, the high stability of materials is also a prerequisite for their practical application. **HOF-NBDA** shows exceptional chemical stability and maintains its crystallinity upon exposure to some common chemical solvents, such as EtOH, acetone, $CH₃CN$, and $CHCl₃$ etc. at room temperature (Figure S8). Even treated in boiling water or harsher chemical environment such as 12 M HCl for 24 h, their corresponding PXRD patterns are also consistent with the simulated ones (Figure S9). It also can be witnessed that there are almost unchanged in the variable-temperature PXRD patterns that measured up to 200° C in air atmosphere (Figures S10–S11, Table S4). The above experiments demonstrated the excellent thermal stability of both the in situ transformed crystalline **HOF-NBDA** and the quickly synthesized samples in large quantity.

The permanent porosities of **HOF-NBDA(DMA)** and **HOF-NBDA** were disclosed by N_2 sorption measurement. N2 isotherm at 77 K shows that **HOF-NBDA(DMA)** possesses typical type I sorption profile and takes up the N_2 amount of $168 \text{ cm}^3 \text{g}^{-1}$ at 1 bar, confirming its microporous nature with the BET surface area of 590 $m^2 g^{-1}$ (Figure 4a). In contrast, analysis by the PLATON program $^{[42]}$ shows that about 40.5% of the volume in **HOF-NBDA** is solventaccessible after removing $Me₂NH$ in the pores, which is much higher than that of **HOF-NBDA(DMA)** (about 31.5%). As anticipated, **HOF-NBDA** by scale-up synthesis shows good adsorption behavior for nitrogen, and takes up 297 cm³ g⁻¹ N₂ at 77 K and 1 bar. The isotherm also exhibits the type I sorption behavior and the BET surface area of **HOF-NBDA** is calculated to be $965 \text{ m}^2 \text{ g}^{-1}$, which is also much higher than that of **HOF-NBDA(DMA)**. More importantly, N_2 adsorption isotherms show that N_2 uptake of **HOF-NBDA** have only a slight decrease (279, 275 and $284 \text{ cm}^3 \text{ g}^{-1}$, respectively) after harsh treatments such as

Research Articles

Figure 4. (a) N2 adsorption isotherms of **HOF-NBDA** and **HOF-NBDA- (DMA)** at 77 K. (b) Adsorption isotherms of C_2H_6 and C_2H_4 of **HOF-NBDA(DMA)** (blue line) and **HOF-NBDA** (red line) at 298 K respectively. (c) C_2H_6 sorption cycles for **HOF-NBDA** at 298 K. (d) C_2H_6/C_2H_4 (1/99, v/v) IAST selectivity of **HOF-NBDA** and **HOF-NBDA(DMA)** at 298 K.

being evacuated at 180 °C for 3 h, being soaked in boiling water for 24 h and 12 M HCl for 24 h (Figure S12). These results indicate that **HOF-NBDA** possesses excellent structural robustness which is consistent with the PXRD results and has potential application in the gas adsorption and separation.

Examination of the single-component adsorption isotherms of C_2H_6 and C_2H_4 at 298 and 273 K was carried out after corroborating the permanent porosity in **HOF-NBDA- (DMA)** and the robust **HOF-NBDA**. Interestingly, both these two materials have successfully realized the reverseorder characteristic C_2H_6/C_2H_4 adsorption. As shown in Figure 4b, the C_2H_6 uptake amount $(65.2 \text{ cm}^3 \text{ g}^{-1})$ of **HOF-NBDA(DMA)** is slightly higher than that of C_2H_4 $(60.2 \text{ cm}^3 \text{ g}^{-1})$ at 298 K and 100 kPa, affording an adsorption amount difference of 5.0 cm³g⁻¹, and an C_2H_6/C_2H_4 uptake ratio of 108%. In comparison, **HOF-NBDA** exhibits an obviously preferential adsorption of C_2H_6 over C_2H_4 during the entire range of 1 bar (Figure 4b). **HOF-NBDA** displays an extremely high loading of C_2H_6 (89.2 cm³g⁻¹) at 298 K, which is 1.4 times higher than that of **HOF-NBDA(DMA)**. In addition, for **HOF-NBDA** the C_2H_6 uptake is much higher than that of C_2H_4 (65.8 cm³ g⁻¹), resulting an adsorption amount difference of 23.4 $\text{cm}^3 \text{g}^{-1}$, and a greatly enlarged C_2H_6/C_2H_4 uptake ratio of 136%. Such preferential adsorption of C_2H_6 over C_2H_4 is also monitored at 273 K (Figure S13). Cyclic tests demonstrate that **HOF-NBDA** can be facilely reactivated and the sorption isotherms of C_2H_6 have no obvious decrease after four cycles (Figure 4c). The experimental isosteric heats (Q_{st}) difference values between C_2H_6 and C_2H_4 for **HOF-NBDA(DMA)** and **HOF-NBDA** are increased from 2.2 to 3.6 $kJ \text{ mol}^{-1}$, which indicates that the separation performance for C_2H_6 and C_2H_4 is significantly enhanced after the structure transformation (Figure S14). The C_2H_6 uptake of **HOF-NBDA** (3.98 mmol g^{-1}) at 1 bar and 298 K is notably higher than those of benchmark HOF-BTB $(3.09 \text{ mmol g}^{-1})$, $[43]$ ZJU-HOF-10 $(2.19 \text{ mmol g}^{-1})$,^[20] HIAM-102 $(2.15 \text{ mmol g}^{-1})$,^[21] and HOF-76a $(2.95 \text{ mmol g}^{-1})$, $[12]$ but is slightly less than ZJU-HOF-1 $(4.87 \text{ mmol g}^{-1})$.^[19] Furthermore, the C₂H₆/C₂H₄ uptake ratio (136%) of **HOF-NBDA** at 1 bar outperforms most of the reported C_2H_6 -selective HOFs materials except HOF-76a (177%), further proving its excellent selectivity (Table S5). Based on the remarkable reverse-order C_2H_6/C_2H_4 adsorption, we further calculated the separation performance of these two HOFs at 298 K by the ideal adsorbed solution theory (IAST). For **HOF-NBDA**, with increasing pressure, the final IAST selectivity of C_2H_6/C_2H_4 (1/99, v/v) at 298 K is 1.75 (Figure 4d), which is higher than that of **HOF-NBDA- (DMA)** (1.40). The value is larger than the reverse-order characteristic HOF-BTB (1.4), and is comparable to ZJU-HOF-10 (1.9), HIAM-102 (1.9), HOF-76a (2.0), and ZJU-HOF-1 (2.25) (Figure S15 and Table S5). Overall, the above results clearly show that through tuning pore polarization the uptake of C_2H_6 , the C_2H_6/C_2H_4 uptake ratio as well as the C_2H_6/C_2H_4 selectivity has been greatly improved. Significantly, **HOF-NBDA** is one of the outstanding C_2H_6 selective HOFs materials reported and may serve as the high-efficiency adsorbent for one-step acquisition of C_2H_4 from C_2H_6/C_2H_4 mixture.

Angewandte

Chemie

In order to further verify that the strategy of tuning pore polarization is beneficial for practical C_2H_6/C_2H_4 separation, practical breakthrough experiments of the feed gas C_2H_6 / C_2H_4 in a volume ratio of 1/99 are conducted with a flow rate of 2 mLmin^{-1} at 298 K . Firstly, the breakthrough experiments were performed with **HOF-NBDA(DMA)**. As shown in Figure 5a, C_2H_4 flows out of the **HOF-NBDA**-**(DMA)** packed column firstly at 33.4 ming⁻¹, and the C_2H_6 is quickly detected at a small interval of ca. 3.1 min g^{-1} . The production of pure C_2H_4 from the C_2H_6/C_2H_4 (1/99, v/v) mixture by **HOF-NBDA(DMA)** adsorbent is calculated to be 5.4 Lkg⁻¹. Obviously, **HOF-NBDA(DMA)** is not a good adsorbent for one-step separation of the C_2H_6/C_2H_4 mixture. However, for **HOF-NBDA** the C_2H_4 elutes through the fixed bed first at ca. $47.5 \text{ min} \text{ g}^{-1}$ to yield an outflow of polymer-grade gas $(C_2H_4 \ge 99.95\%)$ with the undetectable amount of C_2H_6 (the detection limit of the GC instrument is 100 ppm). Subsequently, the C_2H_6 breaks through the adsorption bed at ca. 63.0 ming⁻¹ because C_2H_6 molecules are more efficiently adsorbed. As a result, there is a significant interval of 15.5 ming⁻¹ between C_2H_4 and C_2H_6 experimental breakthrough times, which is about five times as many as **HOF-NBDA(DMA)**. It is worth mentioning that this result is consistent with the simulated one (ca. 16.5 ming^{-1}) (Figure S16). In addition, the production of pure C_2H_4 from the C_2H_6/C_2H_4 (1/99, v/v) mixture for **HOF-NBDA** adsorbent is ca. $29.2 \mathrm{Lkg}^{-1}$, which is about four times higher than that of **HOF-NBDA(DMA)** and is in accord with the transient breakthrough simulations $(31.1 \mathrm{Lkg}^{-1})$. Furthermore, the breakthrough experiments for **HOF-NBDA** with other C_2H_6/C_2H_4 mixtures (1/15 and $1/9 \text{ C}$ H₆/C₂H₄) are also carried out (Figure S17–S21). As

Angew. Chem. Int. Ed. **2023**, *62*, e202305041 (5 of 8) © 2023 Wiley-VCH GmbH

Figure 5. (a) Experimental breakthrough curves for C_2H_6/C_2H_4 (1/99, v/ v) mixture in freshly prepared **HOF-NBDA(DMA)** (blue) and rapid synthesized **HOF-NBDA** (red) packed columns respectively with gas flow rate of the 2 mLmin⁻¹ at 298 K. (b) The cycling breakthrough experiment tests for a C_2H_6/C_2H_4 (1/99, v/v) mixture with gas flow rate of the 2 mLmin⁻¹ at 298 K. (c) Experiment breakthrough experiments under different gas flow rates at 298 K. (d) The breakthrough experiment under different temperatures with gas flow rate of the 2 mLmin^{-1} .

seen in Figure S17 and S18, for 1/15 and 1/9 C_2H_6/C_2H_4 mixtures, pure C_2H_4 first elutes through the column and the seperation intervals are 10.4 and 10.2 min g^{-1} respectively, which match well with the simulated ones (11.4 and 11.3 ming⁻¹). It is obvious that through tuning pore polarization **HOF-NBDA** which has nonpolar pore surfaces realizes the efficient C_2H_6/C_2H_4 separation. To our surprise, **HOF-NBDA** can keep the separation performance after several continuous measurement cycles, indicating its outstanding recyclability for C_2H_6/C_2H_4 separation (Figure 5b) and Figures S19–S20). Additionally, as shown in Figures 5cd, effective separation of C_2H_6/C_2H_4 can be achieved in breakthrough measurements at different gas flow rates (1 to 4 mL min^{-1} , respectively) and different temperatures (298, 313, 318, 323 and 328 K), which indicate that **HOF-NBDA** can achieve the one-step separation of C_2H_6/C_2H_4 mixtures in the complex working conditions.

To get a deeper understanding of the separation effect caused by the pore polarization changes, we performed a series of continual breakthrough experiments on a **HOF-NBDA(DMA)** packed adsorption bed. Following by the in situ programmed heating process, **HOF-NBDA(DMA)** experienced a solid transformation to **HOF-NBDA**, and the corresponding separation performance for C_2H_6/C_2H_4 (1/99, v/v) mixture was real-time monitored. As expected, increasing activation temperature, **HOF-NBDA(DMA)** is gradually transformed into **HOF-NBDA**, and the separation time intervals of C_2H_6/C_2H_4 (1/99, v/v) mixture are getting longer. When the packed column is gradually heated from 40 to 160° C, the breakthrough time intervals are increased from

Angew. Chem. Int. Ed. **2023**, *62*, e202305041 (6 of 8) © 2023 Wiley-VCH GmbH

7.2 to 25.6 minutes (calculated as 14.4 min g^{-1} by mass ratio) between C_2H_4 and C_2H_6 , which is 4.6 times as much as that of original **HOF-NBDA(DMA)** (Figure 6). The PXRD patterns and the ¹ H NMR spectrum confirm that **HOF-NBDA(DMA)** completely transforms to **HOF-NBDA** finally (Figures S1 and S6). These results indicate the in situ thermal activation can not only promote the complete structural transformation, which changes the pore polarity but also boost the C_2H_6/C_2H_4 separation efficiency simultaneously.

To gain precise insight into the binding sites of ethane and ethylene in HOFs, we performed calculations using Grand Canonical Monte Carlo (GCMC) method (Figure 7). In **HOF-NBDA(DMA)**, C_2H_6 molecule interacts with two phenyl rings and three carboxylic oxygen atoms to form triple C-H $\cdot\cdot\pi$ interactions (H $\cdot\cdot\pi$ distances, 3.54, 4.19 and 4.23 Å; corresponding C···C separations, 3.56, 3.72 and 3.87 Å, respectively) and triple C-H \cdots O interactions (H \cdots O distances, 2.78, 2.80 and 2.91 Å, respectively).^[12,19,44] The planar C_2H_4 molecule shows two strong C-H \cdot -O interactions (H \cdot ^{-O} distances, 2.52 and 2.56 Å, respectively) as well as electrostatic interactions with an adjacent DMA and a phenyl ring (corresponding C···C separations, 3.88, 3.46 and 3.57 Å , respectively).^[12, 19, 45, 46] The corresponding static binding energies of **HOF-NBDA(DMA)** for C_2H_6 and C_2H_4 molecules are calculated as 43.2 and $40.2 \text{ kJ} \text{mol}^{-1}$, with a difference in value of $3.0 \text{ kJ} \text{mol}^{-1}$. As shown in Figures 7c and 7d, for **HOF-NBDA**, C_2H_6 molecule slightly stands up in the pore to form three $C-H \rightarrow \pi$ interactions with the nearest phenyl ring (H_{··}·π distances from 2.95 to 4.32 Å), as well as the C···C separations $(3.66, 3.86 \text{ and } 3.99 \text{ Å},$ respectively). There are also quadruple C-H-··O interactions and the H···O distances are calculated to be 2.64, 2.77, 3.16 and 3.18 Å. In comparison, the C_2H_4 molecule laid flat in the channel and showed only three C-H-··O interactions (H-··O distances, 2.88, 2.90 and 2.92 Å, respectively), as well as electrostatic interactions between its planar skeleton and two adjacent phenyl rings (corresponding C···C separations, 3.88 and 3.98 Å, respectively). The corresponding static binding energies of **HOF-NBDA** for C_2H_6 and C_2H_4

Figure 6. Experimental breakthrough curves for C_2H_6/C_2H_4 (1/99, v/v) mixture (gas flow rate of 2 mL min⁻¹) in the real-time monitoring of a packed column with in situ transformation of **HOF-NBDA(DMA)** to **HOF-NBDA**.

Research Articles

Figure 7. Schematic theoretical calculated adsorption sites for (a) C_2H_6 and (b) C₂H₄ in **HOF-NBDA(DMA)**. The theoretical calculated adsorption sites for (c) C_2H_6 and (d) C_2H_4 in **HOF-NBDA**. The hydrogen atoms on the skeleton are omitted for clarity. The C-H-··O interactions are shown in dashed purple lines and the C-··C separations between gas molecule and the pore surface are shown in dashed green lines.

molecules are calculated as 35.8 and $31.0 \text{ kJ} \text{mol}^{-1}$. The difference in static binding energies of **HOF-NBDA** is $4.8 \text{ kJ} \text{mol}^{-1}$, which is higher than that in **HOF-NBDA-(DMA)**. The results of the theoretical calculation agree with the experimental isosteric heats (Q_{st}) , which further proves that compared with **HOF-NBDA(DMA)**, **HOF-NBDA** with nonpolar pore surfaces possesses high ethane adsorption and separation performance.

Conclusion

In conclusion, we have successfully tuned the pore polarization through in situ solid-state structural transformation between **HOF-NBDA(DMA)** and **HOF-NBDA**. Featuring larger and nonpolar pores, **HOF-NBDA** shows a dramatically enhanced performance on C_2H_6 -selective adsorption compared with **HOF-NBDA(DMA)**. For **HOF-NBDA**, the difference in adsorption capacities for C_2H_6 and C_2H_4 is 23.4 cm³ g⁻¹, and the C₂H₆/C₂H₄ uptake ratio is 136%, which are significantly improved (For **HOF-NBDA(DMA)**, 5.0 $\text{cm}^3 \text{g}^{-1}$ and 108% respectively). The experimental breakthrough curves confirmed that **HOF-NBDA** can efficiently adsorb C_2H_6 from C_2H_6/C_2H_4 (1/99, v/v) mixture to straightforwardly produce high-purity C_2H_4 with a significant interval of ca. $15.5 \text{ min} \, \text{g}^{-1}$, which is about a four-fold increase over **HOF-NBDA(DMA)**. The production of polymer-grade C2H4 produced by **HOF-NBDA** is

Angew. Chem. Int. Ed. **2023**, *62*, e202305041 (7 of 8) © 2023 Wiley-VCH GmbH

 $29.2 \mathrm{Lkg}^{-1}$, which is much higher than that of **HOF-NBDA**-**(DMA)** (5.4 Lkg⁻¹). The effective C_2H_6/C_2H_4 separation can also realize under different gas flow rates and temperatures on the **HOF-NBDA** packed column. In addition, in situ breakthrough experiments indicate the C_2H_6/C_2H_4 separation performance is greatly improved accompanied with the gradual heat treatment. Finally, theoretical calculations indicated that the pore surface of **HOF-NBDA** is enriched with C_2H_6 -affinity sites, which can enhance the preferential binding of C_2H_6 over C_2H_4 and thus boost selective separation of C_2H_6/C_2H_4 . These findings should inspire extensive research on new kind of C_2H_6 -selective HOF materials for one-step C_2H_6/C_2H_4 separation.

Acknowledgements

This work was supported by NSFC (21871266 and 22271282), Youth Innovation Promotion Association CAS and NSF of Fujian Province (No. 2021J01517 and 2020J06034).

Conflict of Interest

The authors declare no competing financial interest.

Data Availability Statement

The data that support the findings of this study are available in the Supporting Information of this article.

Keywords: C₂H₆/C₂H₄ Separation · Hydrogen-Bonded Organic Framework **·** Reticular Chemistry **·** Reverse-Order Adsorption **·** Solid Transformation

- [1] D. S. Sholl, R. P. Lively, *Nature* **2016**, *532*, [435–437.](https://doi.org/10.1038/532435a)
- [2] R. Krishna, *ACS Omega* **2020**, *5*, [16987–17004](https://doi.org/10.1021/acsomega.0c02218).
- [3] O. T. Qazvini, R. Babarao, Z.-L. Shi, Y.-B. Zhang, S. G. Telfer, *J. Am. Chem. Soc.* **2019**, *141*, [5014–5020](https://doi.org/10.1021/jacs.9b00913).
- [4] R.-B. Lin, H. Wu, L. Li, X.-L. Tang, Z. Li, J. Gao, H. Cui, W. Zhou, B. Chen, *J. Am. Chem. Soc.* **2018**, *140*, [12940–12946](https://doi.org/10.1021/jacs.8b07563).
- [5] P.-Q. Liao, W.-X. Zhang, J.-P. Zhang, X.-M. Chen, *Nat. Commun.* **2015**, *6*, 8697.
- [6] L. Li, R.-B. Lin, R. Krishna, H. Li, S. Xiang, H. Wu, J. Li, W. Zhou, B. Chen, *Science* **2018**, *362*, [443–446.](https://doi.org/10.1126/science.aat0586)
- [7] Y. Wang, C. Hao, W. Fan, M. Fu, X. Wang, Z. Wang, L. Zhu, Y. Li, X. Lu, F. Dai, Z. Kang, R. Wang, W. Guo, S. Hu, D. Sun, *Angew. Chem. Int. Ed.* **2021**, *60*, [11350–11358.](https://doi.org/10.1002/anie.202100782)
- [8] Y. Wang, M. Fu, S. Zhou, H. Liu, X. Wang, W. Fan, Z. Liu, Z. Wang, D. Li, H. Hao, X. Lu, S. Hu, D. Sun, *[Chem](https://doi.org/10.1016/j.chempr.2022.08.014)* **2022**, *8*, [3263–3274](https://doi.org/10.1016/j.chempr.2022.08.014).
- [9] Q. Dong, Y. Huang, K. Hyeon-Deuk, I. Y. Chang, J. Wan, C. Chen, J. Duan, W. Jin, S. Kitagawa, *Adv. Funct. [Mater.](https://doi.org/10.1002/adfm.202203745)* **2022**, *32*, [2203745](https://doi.org/10.1002/adfm.202203745).
- [10] K.-J. Chen, D. G. Madden, S. Mukherjee, T. Pham, K. A. Forrest, A. Kumar, B. Space, J. Kong, Q.-Y. Zhang, M. J. Zaworotko, *Science* **2019**, *366*, [241–246](https://doi.org/10.1126/science.aax8666).

- [11] B. Zhu, J.-W. Cao, S. Mukherjee, T. Pham, T. Zhang, T. Wang, X. Jiang, K. A. Forrest, M. J. Zaworotko, K.-J. Chen, *J. [Am.](https://doi.org/10.1021/jacs.0c11247) Chem. Soc.* **2021**, *143*, [1485–1492](https://doi.org/10.1021/jacs.0c11247).
- [12] X. Zhang, L. Li, J.-X. Wang, H.-M. Wen, R. Krishna, H. Wu, W. Zhou, Z.-N. Chen, B. Li, G. Qian, B. Chen, *J. Am. [Chem.](https://doi.org/10.1021/jacs.9b12428) Soc.* **2020**, *142*, [633–640.](https://doi.org/10.1021/jacs.9b12428)
- [13] L. Yang, L. Yan, W. Niu, Y. Feng, Q. Fu, S. Zhang, Y. Zhang, L. Li, X. Gu, P. Dai, D. Liu, Q. Zheng, X. Zhao, *Angew. Chem. Int. Ed.* **2022**, *61*, e202204046.
- [14] S.-M. Wang, H.-R. Liu, S.-T. Zheng, H.-L. Lan, Q.-Y. Yang, Y.-Z. Zheng, *Sep. Purif. [Technol.](https://doi.org/10.1016/j.seppur.2022.122378)* **2023**, *304*, 122378.
- [15] G.-D. Wang, J. Chen, Y.-Z. Li, L. Hou, Y.-Y. Wang, Z. Zhu, *Chem. Eng. J.* **2022**, *433*, [133786.](https://doi.org/10.1016/j.cej.2021.133786)
- [16] J. Pei, J.-X. Wang, K. Shao, Y. Yang, Y. Cui, H. Wu, W. Zhou, B. Li, G. Qian, *J. Mater. Chem. A* **2020**, *8*, [3613–3620](https://doi.org/10.1039/C9TA12671F).
- [17] S. Geng, E. Lin, X. Li, W. Liu, T. Wang, Z. Wang, D. Sensharma, S. Darwish, Y. H. Andaloussi, T. Pham, P. Cheng, M. J. Zaworotko, Y. Chen, Z. Zhang, *J. Am. [Chem.](https://doi.org/10.1021/jacs.1c02108) Soc.* **2021**, *143*, [8654–8660.](https://doi.org/10.1021/jacs.1c02108)
- [18] Z. Di, C. Liu, J. Pang, S. Zou, Z. Ji, F. Hu, C. Chen, D. Yuan, M. Hong, M. Wu, *Angew. Chem. Int. Ed.* **2022**, *61*, e202210343.
- [19] X. Zhang, J.-X. Wang, L. Li, J. Pei, R. Krishna, H. Wu, W. Zhou, G. Qian, B. Chen, B. Li, *[Angew.](https://doi.org/10.1002/anie.202100342) Chem. Int. Ed.* **2021**, *60*, [10304–10310.](https://doi.org/10.1002/anie.202100342)
- [20] J.-X. Wang, X.-W. Gu, Y.-X. Lin, B. Li, G. Qian, *ACS [Mater.](https://doi.org/10.1021/acsmaterialslett.1c00013) Lett.* **2021**, *3*, [497–503](https://doi.org/10.1021/acsmaterialslett.1c00013).
- [21] J. Liu, J. Miao, S. Ullah, K. Zhou, L. Yu, H. Wang, Y. Wang, T. Thonhauser, J. Li, *ACS Mater. Lett.* **2022**, *4*, [1227–1232](https://doi.org/10.1021/acsmaterialslett.2c00370).
- [22] Y.-L. Li, E. V. Alexandrov, Q. Yin, L. Li, Z.-B. Fang, W. Yuan, D. M. Proserpio, T.-F. Liu, *J. Am. [Chem.](https://doi.org/10.1021/jacs.0c02406) Soc.* **2020**, *142*, [7218–7224.](https://doi.org/10.1021/jacs.0c02406)
- [23] B. Yu, S. Geng, H. Wang, W. Zhou, Z. Zhang, B. Chen, J. Jiang, *Angew. Chem. Int. Ed.* **2021**, *60*, [25942–25948.](https://doi.org/10.1002/anie.202110057)
- [24] X. Ding, Z. Liu, Y. Zhang, G. Ye, J. Jia, J. Chen, *Angew. Chem. Int. Ed.* **2022**, *61*, e202116483.
- [25] J. Gao, Y. Cai, X. Qian, P. Liu, H. Wu, W. Zhou, D.-X. Liu, L. Li, R.-B. Lin, B. Chen, *[Angew.](https://doi.org/10.1002/anie.202106665) Chem. Int. Ed.* **2021**, *60*, 20400– [20406.](https://doi.org/10.1002/anie.202106665)
- [26] R.-B. Lin, Y. He, P. Li, H. Wang, W. Zhou, B. Chen, *[Chem.](https://doi.org/10.1039/C8CS00155C) Soc. Rev.* **2019**, *48*, [1362–1389](https://doi.org/10.1039/C8CS00155C).
- [27] J.-R. Li, R. J. Kuppler, H.-C. Zhou, *[Chem.](https://doi.org/10.1039/b802426j) Soc. Rev.* **2009**, *38*, [1477–1504.](https://doi.org/10.1039/b802426j)
- [28] O. M. Yaghi, *ACS Cent. Sci.* **2019**, *5*, [1295–1300.](https://doi.org/10.1021/acscentsci.9b00750)
- [29] W. Lu, Z. Wei, Z.-Y. Gu, T.-F. Liu, J. Park, J. Park, J. Tian, M. Zhang, Q. Zhang, T. Gentle III, M. Bosch, H.-C. Zhou, *[Chem.](https://doi.org/10.1039/C4CS00003J) Soc. Rev.* **2014**, *43*, [5561–5593](https://doi.org/10.1039/C4CS00003J).
- [30] R. Freund, S. Canossa, S. M. Cohen, W. Yan, H. Deng, V. Guillerm, M. Eddaoudi, D. G. Madden, D. Fairen-Jimenez, H.

Lyu, L. K. Macreadie, Z. Ji, Y. Zhang, B. Wang, F. Haase, C. Woell, O. Zaremba, J. Andreo, S. Wuttke, C. S. Diercks, *Angew. Chem. Int. Ed.* **2021**, *60*, [23946–23974](https://doi.org/10.1002/anie.202101644).

- [31] H. Jiang, D. Alezi, M. Eddaoudi, *Nat. Rev. [Mater.](https://doi.org/10.1038/s41578-021-00287-y)* **2021**, *6*, 466– [487](https://doi.org/10.1038/s41578-021-00287-y).
- [32] Y. Yang, H. Zhang, Z. Yuan, J.-Q. Wang, F. Xiang, L. Chen, F. Wei, S. Xiang, B. Chen, Z. Zhang, *Angew. Chem. Int. Ed.* **2022**, *61*, e202207579.
- [33] Y. Yang, L. Li, R.-B. Lin, Y. Ye, Z. Yao, L. Yang, F. Xiang, S. Chen, Z. Zhang, S. Xiang, B. Chen, *Nat. [Chem.](https://doi.org/10.1038/s41557-021-00740-z)* **2021**, *13*, 933– [939](https://doi.org/10.1038/s41557-021-00740-z).
- [34] L. Wang, L. Yang, L. Gong, R. Krishna, Z. Gao, Y. Tao, W. Yin, Z. Xu, F. Luo, *Chem. Eng. J.* **2020**, *383*, [123117](https://doi.org/10.1016/j.cej.2019.123117).
- [35] H. Wang, B. Li, H. Wu, T.-L. Hu, Z. Yao, W. Zhou, S. Xiang, B. Chen, *J. Am. Chem. Soc.* **2015**, *137*, [9963–9970](https://doi.org/10.1021/jacs.5b05644).
- [36] J. Liang, S. Xing, P. Brandt, A. Nuhnen, C. Schluesener, Y. Sun, C. Janiak, *J. Mater. Chem. A* **2020**, *8*, [19799–19804.](https://doi.org/10.1039/D0TA07457H)
- [37] P. Li, Y. He, H. D. Arman, R. Krishna, H. Wang, L. Weng, B. Chen, *Chem. Commun.* **2014**, *50*, [13081–13084](https://doi.org/10.1039/C4CC05506C).
- [38] B. Wang, R.-B. Lin, Z. Zhang, S. Xiang, B. Chen, *J. [Am.](https://doi.org/10.1021/jacs.0c06473) Chem. Soc.* **2020**, *142*, [14399–14416.](https://doi.org/10.1021/jacs.0c06473)
- [39] K. Sarkar, P. Dastidar, *[Langmuir](https://doi.org/10.1021/acs.langmuir.7b03326)* **2018**, *34*, 685–692.
- [40] C. H. Lui, L. Liu, K. F. Mak, G. W. Flynn, T. F. Heinz, *[Nature](https://doi.org/10.1038/nature08569)* **2009**, *462*, [339–341](https://doi.org/10.1038/nature08569).
- [41] H. Fang, B. Zheng, Z.-H. Zhang, P.-B. Jin, H.-X. Li, Y.-Z. Zheng, D.-X. Xue, *ACS Appl. Mater. [Interfaces](https://doi.org/10.1021/acsami.2c13500)* **2022**, *14*, [44460–44469](https://doi.org/10.1021/acsami.2c13500).
- [42] A. L. Spek, *Acta [Crystallogr.](https://doi.org/10.1107/S2056989019016244) Sect. E* **2020**, *76*, 1–11.
- [43] T.-U. Yoon, S. B. Baek, D. Kim, E.-J. Kim, W.-G. Lee, B. K. Singh, M. S. Lah, Y.-S. Bae, K. S. Kim, *Chem. [Commun.](https://doi.org/10.1039/C8CC04139C)* **2018**, *54*, [9360–9363](https://doi.org/10.1039/C8CC04139C).
- [44] M. Nishio, *[CrystEngComm](https://doi.org/10.1039/b313104a)* **2004**, *6*, 130–158.
- [45] D. Z. Veljkovic, G. V. Janjic, S. D. Zaric, *CrystEngComm* **2011**, *13*, 5005–5010.
- [46] G. R. Desiraju, *Chem. Commun.* **2005**, [2995–3001](https://doi.org/10.1039/b504372g).
- [47] Deposition numbers 2235806 (for **[HOF-NBDA\(DMA\)](https://www.ccdc.cam.ac.uk/services/structures?id=doi:10.1002/anie.202305041)**) and 2235816 (for **[HOF-NBDA](https://www.ccdc.cam.ac.uk/services/structures?id=doi:10.1002/anie.202305041)**) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access [Structures](http://www.ccdc.cam.ac.uk/structures) [service](http://www.ccdc.cam.ac.uk/structures).

Manuscript received: April 10, 2023

Accepted manuscript online: April 26, 2023

Version of record online: May 10, 2023

Angew. Chem. Int. Ed. **2023**, *62*, e202305041 (8 of 8) © 2023 Wiley-VCH GmbH

Supporting Information

Tuning Pore Polarization to Boost Ethane/Ethylene Separation Performance in Hydrogen-Bonded Organic Frameworks

*Y. Zhou, C. Chen, R. Krishna, Z. Ji, D. Yuan, M. Wu**

Materials and Instrumentation:

Unless otherwise stated, all reagents and solvents used in studies were purchased from commercial sources and were used without further purification.

¹H NMR spectra were obtained on a Bruker AVANCE III 400 (400 MHz) spectrometers. Crystallographical data were collected on a XtaLAB Synergy R, HyPix diffractometer equipped with Cu K α radiation ($\lambda = 1.54184$ Å). Powder X-ray diffraction (PXRD) patterns were performed on a MiniFlex 600 diffractometer equipped using Cu Kα (λ = 1.5406 Å), scanning at 1°/ min in a range of 4~50°. In order to collect the PXRD patterns at different temperatures, the sample was heated in air to the anticipated temperature and maintained for 10 min. The thermogravimetric analysis (TGA) was performed on a NETZSCH STA 449C unit at a heating rate of 10 ℃·min-1 under nitrogen atmosphere. The morphology of HOF-NBDA was characterized by using scanning electron microscopy ZEISS SIGMA 300 microscope.

Experimental Section:

Scheme S1. Synthesis routine of the H₆NBDA ligand.

Synthesis of Et6NBDA

The organic compound Et_6NBDA was synthesized by using the Suzuki-Miyaura coupling reaction. A mixture of tris(4-bromophenyl)-amine (1.5 g, 3.0 mmol), (3,5-bis(ethoxycarbonyl)phenyl)-boronic acid (5.2 g, 15.0 mmol), Cs2CO³ (6.5 g, 20.0 mmol) and Pd(PPh3)⁴ (0.2 g, 0.2 mmol) were dissolved in 250 mL degassed 1,4-dioxane

solvent, and then heated at 85 °C for 72 h under N_2 atmosphere. After the reaction was completed and cooled to room temperature, the organic solvent was removed under vacuum. 200 mL deionized water was added to the concentrated mixture, followed by extraction with dichloromethane $(3 \times 50 \text{ mL})$, and the combined extraction was dried with anhydrous Mg2SO4. After filtration, the dichloromethane was removed under vacuum, and then the crude product was purified by silica gel column chromatography to give 2.3 g yellow powdery solid Et₆NBDA (yield: 85 %). ¹H NMR (400 MHz, CDCl3): *δ*, 1.31 (t, 18H), 4.47 (q, 12H), 7.31 (d, 6H), 7.65 (d, 6H), 8.49 (s, 6H), 8.66 (s, 3H).

Synthesis of H6NBDA

The purified intermediate Et₆NBDA (5.0 g, 5.5 mmol) was dissolved in THF (200 mL), and 100 mL of KOH aqueous solution (4.5 M) was added. The resulting mixture was heated at 85 $^{\circ}$ C to stir and refluxed for 12 h. The volatiles were removed in vacuum, and then 250 mL deionized water was added to give a bright yellow clear solution. Then the solvent pH value was adjusted to 1 with concentrated hydrochloric acid. The resulting yellow solid was collected by filtration and washed several times with deionized water until neutral. After drying, yellow compound 3.7 g was obtained (yield: 90 %). ¹H NMR (400 MHz, DMSO-d6) (Figure S1): *δ*, 7.26 (d, 6H), 7.78 (d, 6H), 8.41 (t, 9H), 13.42 (s, 6H).

Synthesis of HOF-NBDA(DMA)

H6NBDA (120 mg, 0.2 mmol) was added to 3 mL DMF in a 25 mL Teflon vessel of the hydrothermal bomb and sonicated for 5 minutes. Then 60 μL glacial acetic acid was added to the mixture. The vessel was heated at 120 °C for two days and then slowly cooled to room temperature within one day. The yellow bulk crystals HOF-NBDA(DMA) ($[(Me_2NH_2)_2(H_5NBDA)_2]_n$) suitable for single crystal X-ray diffraction were obtained (80 mg, yield 66.7 %). ¹H NMR (400 MHz, DMSO-d₆): δ, 2.57 (s, 6H), 7.25 (d, 6H), 7.75 (d, 6H), 8.42 (t, 9H), 13.42 (s, 6H).

Synthesis of HOF-NBDA

The HOF-NBDA(DMA) crystals were exchanged with dry methanol for 3 days by replacing fresh methanol every 6 hours at room temperature. Then, the samples were degassed under dynamic vacuum at 100 °C for 10 h to afford HOF-NBDA, which can be demonstrated by PXRD patterns and ¹H NMR spectrum (Figure S1). Though the crystals break into pieces, fortunately the tiny crystals are suitable for single crystal X-ray diffraction. ¹H NMR (400 MHz, DMSO-d6): *δ*, 7.26 (d, 6H), 7.78 (d, 6H), 8.40 (t, 9H), 13.42 (s, 6H).

Scale-up synthesis of HOF-NBDA

In order to obtain a good deal of sample in one batch for adsorption and separation experiments, H_6NBDA (10.0) g, 13.5 mmol) was dissolved in 150 mL dry DMF in a beaker and the mixture was filtrated by a filter membrane (50 mm, 0.22 μm). Then 500 mL dry methanol was slowly added to the mixture with stirring, and yellow crystals were rapidly precipitated. The products were separated by suction filtration and further washed several times with methanol, which can be characterized by PXRD patterns and ¹H NMR spectrum. ¹H NMR (400 MHz, DMSO-d₆): *δ*, 7.26 (d, 6H), 7.78 (d, 6H), 8.42 (t, 9H), 13.43 (s, 6H).

Single-Crystal X-ray Crystallography

The X-ray diffraction data for HOF-NBDA(DMA) and HOF-NBDA were performed on a XtaLAB Synergy R, HyPix diffractometer with Cu K α radiation at 150K (λ = 1.54184 Å). Absorption corrections were performed using a multi-scan method. The structures were solved by direct methods and were refined by the least-squares method with *SHELXL*-2018 program package. All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms of the ligands were located by geometrical calculations, and their positions and thermal parameters were fixed during structural refinement. We use the "squeeze" command of the *PLATON* to clear the above-mentioned residual electron-density peaks to improve the quality of crystal structure data.

Adsorption/desorption experiments

All gas adsorption measurements were measured on Micromeritics 3 Flex. All the sorption experiments were maintained at 77 K with liquid nitrogen, at 273 K in an ice-water bath and 298 K in a water bath. The fresh sample of HOF-NBDA(DMA) was exchanged with dry methanol for 7 days and then the supercritical carbon dioxide (sc-CO₂) drying was used to obtain guest-free HOF-NBDA(DMA) with sc-CO₂ in a Tousimis[™] Samdri® PVT-3D critical point dryer. After sc-CO₂ treatment, guest-free HOF-NBDA(DMA) was tranfered to Micromeritics 3 Flex to carry out the experiment. In order to investigate the solid transformation of HOF-NBDA(DMA) into HOF-NBDA, guest-free HOF-NBDA(DMA) with sc-CO₂ was heated at 100 °C for 10 hours under a high vacuum to obtain HOF-NBDA. For HOF-NBDA, the scale-up synthesis sample was exchanged with dry methanol for 7 days and then vacuumed at room temperature for 12 hours. The above sample was then heated at 100 °C for 10 hours under a high vacuum. Then, guest-free HOF-NBDA was tranfered to Micromeritics 3 Flex to carry out the experiment.

Fitting of unary isotherm data

The unary isotherms for C_2H_6 and C_2H_4 measured at different temperatures in HOF-NBDA(DMA) and HOF-NBDA were fitted with excellent accuracy using either the 1-site Langmuir-Freundlich model:

$$
q = \frac{q_{sat}bp^{\nu}}{1 + bp^{\nu}}
$$
 (S1)

In eq [\(S1\),](#page-12-0) the Langmuir-Freundlich parameter b is temperature dependent,

$$
b = b_0 \exp\left(\frac{E}{RT}\right) \tag{S2}
$$

In eq $(S2)$, E is the energy parameter.

The unary isotherm fit parameters for HOF-NBDA and HOF-NBDA(DMA) are provided in [Table S1](#page-12-2) and [Table S2.](#page-12-3)

Table S1. 1-site Langmuir-Freundlich parameter fits for C_2H_6 and C_2H_4 in HOF-NBDA.

	q_{sat} (mol·kg ⁻¹⁾	b_0 (Pa ^{-v}	E (kJ·mol ⁻¹)	
C_2H_6	6.8	3.636E-11	27.3	1.16
C_2H_4	8.25	1.409E-10	\cap \cap \subset ر.	1 ₂ 1.1J

Table S2. 1-site Langmuir-Freundlich parameter fits for C_2H_6 and C_2H_4 in HOF-NBDA(DMA).

Isosteric heat of adsorption

The isosteric heat of adsorption, *Q*st, is defined as

$$
Q_{st} = -RT^2 \left(\frac{\partial \ln p}{\partial T}\right)_q \tag{S3}
$$

where the derivative in the right member of eq [\(S3\)](#page-12-4) is determined at constant adsorbate loading, *q*. The derivative was determined by analytic differentiation of the combination of eq [\(S1\),](#page-12-0) eq [\(S2\),](#page-12-1) and e[q \(S3\).](#page-12-4)

Separation potential

 $C_2H_6(1)/C_2H_4(2)$ mixture separations are envisaged to be carried out in fixed bed adsorbers. In such devices, the separations are dictated by a combination of adsorption selectivity and uptake capacity. Using the shock wave model for fixed bed adsorbers, Krishna^[1-2] has suggested that the appropriate metric is the separation potential, $\Delta q_{\scriptscriptstyle 1}^{}$

$$
\Delta q = q_1 \frac{y_{20}}{y_{10}} - q_2 \tag{S4}
$$

In eq [\(S4\)](#page-13-0) y_{10} , y_{20} are the mole fractions of the feed mixture during the adsorption cycle. In the derivation of eq [\(S4\),](#page-13-0) it is assumed that the concentration "fronts" traversed the column in the form of shock waves during the desorption cycle. The molar loadings *q*1, *q*² of the two components are determined using the Ideal Adsorbed Solution Theory (IAST) of Myers and Prausnitz using the unary isotherm fits as data inputs.^[3] The physical significance of *∆q* is the maximum productivity of pure C2H4(2) that is achievable in the adsorption cycle of PSA operations.

Transient breakthrough experiments vs simulations

Transient breakthrough experiments were carried out for binary $1/99 \text{ C}_2\text{H}_6(1)/\text{C}_2\text{H}_4(2)$ mixtures at a total pressure of 0.15 MPa and 298 K. The sample mass of HOF in the packed bed, m_{ads} is 1.4 g. The flow rates at the inlet, $Q_0 = 2$ mL min⁻¹. Transient breakthrough simulations were carried out for the exact same set of operating conditions as in the experiments, using the methodology described in earlier publications.^[1-2, 4-6] In these simulations, intra-crystalline diffusion influences are ignored. There is very good match between the experiments and simulations. From the transient breakthrough simulations, it is established that polymer grade C_2H_4 is recoverable. The productivities of purified C_2H_4 are determined as follows.

For 1/15 C₂H₆(1)/C₂H₄(2) mixtures the sample mass of HOF in the packed bed, m_{ads} is 1.7 g, The transient breakthrough simulations yielded the productivities of purified C_2H_4 as follows.

For 1/9 C₂H₆(1)/C₂H₄(2) mixtures the sample mass of HOF in the packed bed, m_{ads} is 1.7 g, The transient breakthrough simulations yielded the productivities of purified C_2H_4 as follows.

C_2H_4 product purity	C_2H_4 productivity	
99.95%+	0.9 mol·kg^{-1}	
99.9%+	1.03 mol·kg^{-1}	

Column breakthrough experiments

The breakthrough separation experiments for C_2H_6/C_2H_4 (1/99, v/v) were conducted in a fixed bed under ambient conditions. A quartz column with a length of 500 mm and an inner diameter of 3 mm was used for sample packing. The flow rate of the gas was regulated by a mass flow controller, and the gas flow out of the chromatographic column was detected by a gas chromatography (GC) with FID detector. All measurements were performed following a protocol established by the literature. In a vacuum glove box, 1.84 g HOF-NBDA(DMA) activated by sc-CO_2 was quickly loaded into a quartz column. After each separation experiment, the sample was *in situ* blowed with a He flow (20 mL⋅min⁻¹) for 4.0 h at a given temperature. For HOF-NBDA, in a vacuum glove box, 1.40 g sample was loaded into a quartz column. After each separation experiment, the HOF-NBDA sample was blowed under He flow (20 mL⋅min⁻¹) for 2.0 h at 373 K. For 1/9 and1/15 C₂H₆/C₂H₄ mixture, the sample mass of HOF-NBDA in the packed bed was 1.70 g, and other conditions being the same to the above experiment.

Computational details

The binding sites for C_2H_6 and C_2H_4 in HOF-NBDA(DMA) and HOF-NBDA were determined through classical molecular simulations. The single X-ray crystallographic structures were subject to geometry optimization through the Dmol3 module implemented with the Materials Studio program, using the generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) functional and the double numerical plus d-functions (DNP) basis set. The energy, force, and displacement convergence criteria were set as 1×10^{-5} Ha, 2×10^{-3} Ha/Å and 5×10^{-3} Å, respectively. The calculated electrostatic potential for HOF-NBDA(DMA) and HOF-NBDA was mapped onto the Connolly surface with a probe radius of 1.0 Å. Simulated annealing (SA) calculations were performed for a single molecule of C2H⁶ and C2H⁴ through a canonical Monte Carlo (NVT) process, and all HOF atoms were kept fixed at their positions throughout the simulations. The initial configurations were further optimized to ensure a more efficient energy landscape scanning for every HOF-C₂H_x complex, and the optimized configuration having the lowest energy was used as the global minimum for the subsequent analysis and calculation. The static binding energy (at T= 0 K) was then calculated: $\triangle E = E_{\text{HOF}} + E_{\text{gas}} - E_{\text{HOF+gas}}$.

Additional Data and Pictures

Figure S1. ¹H NMR (DMSO-d₆, 400 MHz) spectrum of H₆NBDA, HOF-NBDA, scale-up synthesized **HOF-NBDA**, **HOF-NBDA** from in situation breakthrough and **HOF-NBDA(DMA)**.

Figure S2. The asymmetric units of (a) **HOF-NBDA(DMA)** and (b) **HOF-NBDA**.

Figure S3. (a) H6NBDA molecules are arranged to form four sets of carboxyl…carboxyl dimers (∠O–H···O ranging from 169.8° to 177.8°, d (O-H···O) ranging from 2.46 to 2.63 Å.) and two pairs of N-H···O hydrogen bonds (\angle N–H···O recorded as 146.4° and 148.2°, *d* (N–H···O) recorded as 2.69 Å and 2.72 Å) in HOF-NBDA(DMA). (b) The adjacent H₆NBDA molecules are interconnected through solo carboxyl…carboxyl dimers (∠O–H···O record as 179.2° and 176.2°, *d* (O–H···O) record as 2.60 and 2.62 Å, respectively.) in **HOF-NBDA**.

Figure S4. A cross-section view of the hexagonal porous windows in (a) **HOF-NBDA(DMA)** and (b) **HOF-NBDA**. The layered frameworks are stacked in slippage in a -ABCD- manner without interpenetration with average interlayer distances of ca. 3.68 and 3.73 Å, respectively. The porous window details of A, B, C and D layers with different pore sizes are described.

Figure S5. The changes of electrostatic potential (ESP) on the guests loaded pore walls, (a) $C_2H_6@HOF-NBDA(DMA)$, (b) $C_2H_4@HOF-NBDA(DMA)$, (c) $C_2H_6@HOF-NBDA$ and (d) **C2H4@HOF-NBDA**, respectively. The gradation on the scale bar is in Hartree/e. The molecular electrostatic potential (MEP) of the C₂H₄ and C₂H₆ molecules mapped onto the Connolly surface.

Figure S6. PXRD patterns of simulated **HOF-NBDA**, **HOF-NBDA**, the scale-up synthesized **HOF-NBDA**, **HOF-NBDA** from in situation breakthrough, simulated **HOF-NBDA(DMA)** and **HOF-NBDA(DMA)**.

Figure S7. The scanning electron microscope photographs of the scale-up synthesized **HOF-NBDA** crystals.

Figure S8. PXRD patterns of **HOF-NBDA** after treated with different solvents for one day.

Figure S9. The PXRD patterns of **HOF-NBDA** are almost unchanged after heating at 180 °C in air atmosphere, and even soaking in boiling water or harsher chemical environment such as 12 M HCl for 24 h.

Figure S10. Variable-temperature PXRD patterns for **HOF-NBDA** in air atmosphere.

Figure S11. TGA curve of **HOF-NBDA(DMA)** (blue) and **HOF-NBDA** (red). The freshly synthesized **HOF-NBDA** experienced a weight loss before 100 °C, which was due to the removal of solvent molecules in the voids. The synthesized **HOF-NBDA(DMA)** experienced a weight loss before 200 °C, which was due to the removal of solvent molecules and the DMA molecules in the voids.

Figure S12. N₂ adsorption isotherms (77 K) of HOF-NBDA after treated under different conditions. In addition, the damaged samples can be easily reproduced by dissolving in DMF solution, and the N_2 uptake of recrystallized sample is almost the same as the original sample.

Figure S13. C2H⁶ and C2H⁴ adsorption isotherms of **HOF-NBDA(DMA)** (blue) and **HOF-NBDA** (red) at 273 K.

Figure S14. Calculated isosteric heats of adsorption of C₂H₆ and C₂H₄ in HOF-NBDA (red line) and **HOF-NBDA(DMA)** (blue line). The experimental isosteric heats (O_{st}) of $C₂H₆$ and $C₂H₄$ for **HOF-NBDA(DMA)** exhibit comparable values, 26.1 and 23.9 kJ⋅mol⁻¹ respectively, and the differential is only 2.2 kJ⋅mol⁻¹. The experimental Q_{st} of C₂H₆ and C₂H₄ for **HOF-NBDA** are 23.5 and 19.9 kJ⋅mol⋅¹, and the differential grows to 3.6 kJ∙mol-1 , indicating the separation performance for C2H⁶ and C2H⁴ is significantly enhanced after the structure transformation.

Figure S15. C₂H₆ uptake and IAST selectivity among representative reverse-order characteristic HOFs.

Figure S16. The simulated and experimental breakthrough curves with C2H6/C2H⁴ (1/99, v/v) in the **HOF-NBDA** packed column at 298 K.

Figure S17. The simulated and experimental breakthrough curves with C₂H₆/C₂H₄ (1/15, v/v) separation in the **HOF-NBDA** packed column at 298 K.

Figure S18. The simulated and experimental breakthrough curves for C2H6/C2H⁴ (1/9, v/v) in the **HOF-NBDA** packed column at 298 K.

Figure S19. (a) The cycling breakthrough experiments for C_2H_6/C_2H_4 (1/15, v/v) mixture with gas flow rate of 2 mL∙min⁻¹ at 298 K. (b) The breakthrough experiment under different temperatures with gas flow rate of 2 mL·min⁻¹.

Figure S20. (a) The cycling breakthrough experiments for C₂H₆/C₂H₄ (1/9, v/v) mixture with gas flow rate of 2 mL∙min⁻¹ at 298 K. (b) The breakthrough experiment under different temperatures with gas flow rate of 2 mL·min⁻¹.

Figure S21. The separation potentials (*Δq*) of **HOF-NBDA** for different C2H6/C2H⁴ mixtures. For 1/99, 1/15 and 1/9 C2H6/C2H⁴ mixtures, the separation potentials are calculated as 2.2, 2.0 and 1.9 mol∙kg-1 respectively.

Table S3. Crystallographic data of **HOF-NBDA(DMA)** and **HOF-NBDA**.

Table S4. Comparison of stabilities for some typical HOFs.

^a TGA under N₂ atmosphere. b TGA under air atmosphere. c TGA under Ar atmosphere. d VT-PXRD under air atmosphere. e VT-PXRD under N₂ atmosphere. ^fHOF material remains stable when exposed to SO₂.

Table S5. Summary and comparison of reverse-order adsorption characteristic HOFs with adsorption capacity and C2H6/C2H⁴ selectivity under ambient conditions.

Refs.

- [1] R. Krishna, *RSC Adv.* **2017**, *7*, 35724-35737.
- [2] R. Krishna, *Acs Omega* **2020**, *5*, 16987-17004.
- [3] A. L. Myers, J. M. Prausnitz, *Aiche J.* **1965**, *11*, 121-130.
- [4] R. Krishna, *Microporous Mesoporous Mater.* **2014**, *185*, 30-50.
- [5] R. Krishna, *RSC Adv.* **2015**, *5*, 52269-52295.
- [6] R. Krishna, *Sep. Purif. Technol.* **2018**, *194*, 281-300.
- [7] T.-U. Yoon, S. B. Baek, D. Kim, E.-J. Kim, W.-G. Lee, B. K. Singh, M. S. Lah, Y.-S. Bae, K. S. Kim, *Chem. Commun.* **2018**, *54*, 9360-9363.
- [8] J. Liu, J. Miao, S. Ullah, K. Zhou, L. Yu, H. Wang, Y. Wang, T. Thonhauser, J. Li, *ACS Materials Lett.* **2022**, *4*, 1227-1232.
- [9] X. Zhang, L. Li, J.-X. Wang, H.-M. Wen, R. Krishna, H. Wu, W. Zhou, Z.-N. Chen, B. Li, G. Qian, B. Chen, *J. Am. Chem. Soc.* **2020**, *142*, 633-640.
- [10] X. Zhang, J.-X. Wang, L. Li, J. Pei, R. Krishna, H. Wu, W. Zhou, G. Qian, B. Chen, B. Li, *Angew. Chem. Int. Ed.* **2021**, *60*, 10304-10310.
- [11] J.-X. Wang, X.-W. Gu, Y.-X. Lin, B. Li, G. Qian, *ACS Materials Lett.* **2021**, *3*, 497-503.
- [12] F. Hu, C. Liu, M. Wu, J. Pang, F. Jiang, D. Yuan, M. Hong, *Angew. Chem. Int. Ed.* **2017**, *56*, 2101-2104.
- [13] P. Li, Y. He, H. D. Arman, R. Krishna, H. Wang, L. Weng, B. Chen, *Chem. Commun.* **2014**, *50*, 13081-13084.
- [14] Q. Yin, P. Zhao, R.-J. Sa, G.-C. Chen, J. Lu, T.-F. Liu, R. Cao, *Angew.Chem. Int.Ed.* **2018**, *57*, 7691-7696.
- [15] I. Hisaki, S. Nakagawa, N. Ikenaka, Y. Imamura, M. Katouda, M. Tashiro, H. Tsuchida, T. Ogoshi, H. Sato, N. Tohnai, M. Miyata, *J. Am. Chem. Soc.* **2016**, *138*, 6617-6628.
- [16] D. Inokuchi, Y. Hirao, K. Takahashi, K. Matsumoto, H. Mori, T. Kubo, *J. Phys. Chem. C* **2019**, *123*, 6599-6606.
- [17]Y. Yang, L. Li, R.-B. Lin, Y. Ye, Z. Yao, L. Yang, F. Xiang, S. Chen, Z. Zhang, S. Xiang, B. Chen, *Nat. Chem.* **2021**, *13*, 933-939.
- [18] W. Yang, F. Yang, T.-L. Hu, S. C. King, H. Wang, H. Wu, W. Zhou, J.-R. Li, H. D. Arman, B. Chen, *Cryst. Growth Des.* **2016**, *16*, 5831-5835.
- [19] M. Mastalerz, I. M. Oppel, *Angew. Chem. Int. Ed.* **2012**, *51*, 5252-5255.
- [20] W. Yang, A. Greenaway, X. Lin, R. Matsuda, A. J. Blake, C. Wilson, W. Lewis, P. Hubberstey, S. Kitagawa, N. R. Champness, M. Schroeder, *J. Am. Chem. Soc.* **2010**, *132*, 14457-14469.
- [21] Q. Yin, J. Lu, H.-F. Li, T.-F. Liu, R. Cao, *Cryst. Growth Des.* **2019**, *19*, 4157-4161.
- [22] A. Karmakar, R. Illathvalappil, B. Anothumakkool, A. Sen, P. Samanta, A. V. Desai, S. Kurungot, S. K. Ghosh, *Angew.Chem. Int.Ed.* **2016**, *55*, 10667-10671.
- [23] B. Han, H. Wang, C. Wang, H. Wu, W. Zhou, B. Chen, J. Jiang, *J. Am. Chem. Soc.* **2019**, *141*, 8737-8740.
- [24] I. Hisaki, Q. Ji, K. Takahashi, N. Tohnai, T. Nakamura, *Cryst. Growth Des.* **2020**, *20*, 3190-3198.
- [25] I. Hisaki, Y. Suzuki, E. Gomez, Q. Ji, N. Tohnai, T. Nakamura, A. Douhal, *J. Am. Chem. Soc.* **2019**, *141*, 2111-2121.
- [26] M. Khanpour, W.-Z. Deng, Z.-B. Fang, Y.-L. Li, Q. Yin, A.-A. Zhang, F. Rouhani, A. Morsali, T.-F. Liu, *Chem. Eur. J.* **2021**, *27*, 10957-10965.

[27] J. Liang, S. Xing, P. Brandt, A. Nuhnen, C. Schluesener, Y. Sun, C. Janiak, *J. Mater. Chem. A* **2020**, *8*, 19799-19804.

Notation

