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We have used nonequilibrium molecular dynamics (NEMD) simulations to evaluate diffusivities for binary
mixtures of methane/GFpropane/CE, n-butane/CEk, andn-butane/ethane in zeolite faujasite at 300 K. A
formula to estimate the error bars in the transport coefficients from NEMD is also presented. NEMD simulations
can give cross coefficients of the Onsager matrix with considerably smaller error bars than those obtained
from equilibrium MD (EMD). We evaluated diffusion coefficients that could not be evaluated previously
using EMD. An estimation scheme based on the Maxw®tefan formulation was tested for predicting
multicomponent diffusivities based on single component diffusion data. This estimation scheme works very
well for the systems tested.

1. Introduction the channels of faujasite. Faujasite is a large-pore zeolite
. ) . . o composed of supercages of approximately 12 A in diameter,
Zeolites are microporous crystalline materials with intra- tetrghedrally connected by 12-membered-ring windows of 7.5-A

crystalline channels of width-312 A. They are widely used in diametef® We study diffusion of four mixtures: methane/GF
the chemical industry for catalysis and separation applications. ,ronane/CE butane/Ck, and butane/ethane.

The diffusivity of physisorbed molecules in the channels of
zeolites is an important parameter required for the design and
optimization of these applications. Experimental studies and
molecular modeling can be used to estimate the intracrystalline
diffusivities. However, for many cases of diffusion in zeolites,
the diffusivities obtained with different experimental techniques
do not agree with one another. Molecular modeling can give
insights into the microscopic mechanism of diffusion and may
explain some of the discrepancies observed. In this paper we
will discuss the use of a nonequilibrium molecular dynamics
(NEMD) technique for calculating binary transport diffusivities

in the zeolite faujasite. The results will also be used to test an
estimation scheme based on the Maxw&tefan formulation,

in which binary diffusivities are obtained from single-component

data. . . .
I coefficients. This method has been used to calculate single and
Many author§ 7 have calculated the self-diffusivities of guest multicomponent diffusivities in zeolité§-12 Sanborn and

molecules in zeolite channels using molecular simulations, gnyrg4 have shown that EMD might not work well for
including both single components and mixtures. However, the multicomponent systems at low loadings or when one species
Fickian diffusivity (also referred to as the transport diffusivity) g very dilute. The third method uses an MD simulation with
is required in practical applications to describe diffusion inthe 5, extra external force (equivalent to a chemical potential

presence of a concentration gradient. Some studies in thegradient) applied on the molecules in the simulation to calculate
literature have reported the transport diffusivity of Lennard-  {he transport coefficient€ This method will be referred to as
Jones Sphgres in zeglit%sl.3 '_I'here have, howeve_r, been only  NEMD here. It has been used by Maginn and co-workers to
a few studie¥'214%%in the literature where multicomponent  caicjate single-component diffusivities in microporous materi-
transport diffusivities from molecular simulations were reported. 41589 |n this paper we will demonstrate that NEMD is more
Industrial applications of zeolites or other microporous materials officient than EMD for mixtures.

always involve multicomponent mixtures of molecules with
more complicated shapes than simple spheres, and in this workru
we investigate multicomponent diffusion of smalhlkanes in

There are three main MD methods that are used to calculate
transport diffusivities: dual control volume grand canonical
molecular dynamics (DCV-GCMD), equilibrium molecular
dynamics (EMD), and nonequilibrium molecular dynamics
(NEMD). The DCV-GCMD method developed by Heffelfinger
and Van Swdf involves the use of two control volumes located
at the ends of a diffusion zone and maintained at different
chemical potentials through insertion and deletion of particles.
Ahunbay et al® used this technique to study diffusion of
methane through single-crystal silicalite membranes. Arya et
al? have shown that DCV-GCMD may give incorrect results if
the ratio of insertions and deletions to molecular dynamics steps
is not large enough. The second method, EMD, involves the
use of GreenKubo relation$’ to calculate the transport

Since simulations and experiments for multicomponent dif-
sion are harder than single-component studies, it would be
very useful to have theoretical methods for estimating multi-
PA— y A . o component diffusivities from single-component data. Some such
T B e e e nesiwesim oy Metods have been proposed in the terdi These

T Northwestern University. methods, in general, involve the representation of the single-

* University of Amsterdam. component diffusion data by using some parameters and then
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the estimation of mixture diffusivities from these parameters J=—[D]Vc (6)

by a suitable model. However, it should be noted that single- )

component diffusion behavior itself can become quite complex Where J and ¢ are column vectors andD] is the N x N
depending on the sorbate molecule and the shape and condiffusivity matrix. o o

nectivity of the zeolite channels. Molecular simulations can be ~ The second formulation is based on nonequilibrium thermo-
used to test the validity of the binary diffusion estimation dynamics and considers chemical potential gradients as the
methods and the approximations involved_ Skou“das é? a' fundamental nglng forces for diffusion. This formulation is
calculated both self-diffusivities and transport diffusivities of More convenient from a statistical mechanics or molecular
CH; and CR in silicalite and then used a refinement and Simulations point of view. For binary diffusion in porous
extension of the methodology suggested by Krishna and?Baur Materials the transport equations are

for estimation of binary diffusivities from single-component 3= LV — L.V @)
values. The binary diffusivities thus obtained were compared 1 1VHL T F12 Vi
against those obtained directly from EMD mixture simulations 3= — LoVt — LoV 8)
and the agreement was found to be good. In this paper the 2 21 V#y ™ L2 Vit
validity of this scheme is tested for larger molecules with

h . . e whereu; stands for the chemical potential of spedié€snits of
intramolecular degrees of freedom in the zeolite faujasite.

kJ/mol). ThelL coefficients are sometimes referred to as Onsager
. coefficients. Onsager postulated that thg natrix is sym-
2. Theoretical Framework metric23 [D] can be calculated as

2.1. Self-Diffusion and Transport Diffusion. The self-

diffusivity (Ds) of a tagged particle diffusing through the [D] = [L][T] )
|ntracry§talllne space can be calculated with the Einstein where the elements of the square matii ére given by
expression,
RTdINf;
. Or() — r(0)/’0 I,=— 10
DszllmM 1) ¢ ding (10)
t—o0 6t
or using the velocity autocorrelation formalism IAZ ch:O:‘iLtlgacity, and; is the concentration of speciginside
1 e A detailed introduction to the MaxweliStefan (MS) formu-
Ds= ;3,];) [3(0)v(t) Lt @) lation and a description of the physical significance of various

parameters can be found in the review article by Krishna and
Herer is the position vector and is the velocity vector of the  Wesseling?* The Maxwell-Stefan (MS) diffusivities for

tagged particle. diffusion in porous materials are defined as follows
The diffusion of a species under the influence of a concentra-
tion gradient is often called transport diffusidiFick’s law of noo6(u—w) U
diffusion defines the transport diffusivi9; as the proportional- —Vu; =RT —— +RT— (11)
ity factor between the flux) and the concentration gradient =1y B B
J=-D,Vc 3) wherey; is the velocity of specieswith respect to the zeolite
and; is the fractional occupancy of the specje$ractional
In generalDy is not equal to the self-diffusivity. occupancy is the ratio of loadingy( molecules/supercage) to

2.2. Different Formulations of Transport Diffusion. Here the saturation loadingn(s, molecules/supercage).
we briefly review three different formulations for multicom-
ponent diffusion in porous materials. All of them are equivalent, 0 N (12)
and given the parameters in one formulation we can always L
calculate the parameters in the other two formulations. It is
important to specify the frame of reference with which we define The MS diffusivities®; may be interpreted as inverse friction
the diffusion coefficients. In some cases the fluxes are calculatedcoefficients describing the mobility of species the zeolite.
with respect to the center of mass of the system. Kamala etThe exchange coefficien#®; reflect the correlation effects in
all>22 ysed such a frame of reference for studying binary binary mixture diffusion as discussed by Skoulidas éfal.
diffusion in slit pores and zeolite NaY. In the case of zeolite  2.3. Onsager Formulation for Tracer Diffusion. In this
diffusion studied here, we assume that the zeolite crystal remainssection we will briefly discuss the Onsager formulation for
fixed and all fluxes are defined relative to this fixed frame of diffusion of tagged particles. Consider the diffusion cfimgle

reference. species through the zeolite pores. Let the number of particles
The Fickian equations for a mixture of two compounds in a beN. We will tag some of the particles as 1 and the resti2.
zeolite are andN; are the number of particles of type 1 and 2, respectively,
andN = N; + N,. The Greer-Kubo relation&!’ for the Onsager
Jy=—Dy;,Ve; — D,V (4) coefficients in the binary diffusion case can be written as
\]2 = _D21VC1 — DZZVCZ (5) 1 Ny Ny
. . . . - L= —Tfivl (0)- Zvl m(t) Et (13)
On the basis of simulations of Gldnd CR in faujasite, Sanborn 3Vkg = =

and Snur¥? showed that the cross terms cannot always be

neglected for diffusion of mixtures in zeolite membranes. For 1 N1 N

a multicomponent system the Fickian transport equations can Ly,= —TfDZU“(O). szvm(t)Edt (14)
be written in a matrix form 3Vkg = m=
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The correlation function can be split into self-functions and cross TABLE 1: Force-Field Parameters for Zeolite—Sorbate and

functions as done by Theodorou and Madifpreviously Sorbate—Sorbate Interactions®
. nonbonded elks, K o, A
1 1

self _ . CH,—CH, 147.95 3.73
Ly, = VT Tfi”u(o) vy (O (15) CHy—CH; 720 3.923
kB = CH,—CH;, 72.0 3.923
CF—CFR,y 134.0 4.662
1 Neoo N CH,—O 133.3 3.214
Lllcross: Tf% Z v1,(0)0, (Ot (16) CH;—0O 83.8 3.364
3VkB S el ’ CH,-O 83.8 3.364
CF—-0 109.57 3.734

wherelL;; = L% + L1105 The equation for the self-term

L . i . bond angle , kd rad? 6o, de
can be simplified in terms of a one-particle correlation function, g i o €9
and the equation for the cross term can be simplified in terms c-c-C 259.8 114
of correlations between two different particles: torsion alks K adke K adke K adks K
Lllself: ac, (17) c-Cc-Cc-C 0.0 355.0 —68.2 791.3
aLennard-Jones parameters for other sorbatebate interactions
where were obtained with the combining rules gf= ,/¢;¢; andoj = (0i +

0j)/2. A harmonic potential was used for the bond angle bendiitg)(
1 = ky(6 — 60)?). Torsion angle potentials were treated with the cosine-
a= ﬁ—f@u(o)'%ﬂt)mt (18) expansion form7(¢) = ay + ai(1 + cosg)) + a1 — cos(2)) +
ag(1 + cos(3)).

Herec, = N/V is the concentration of particles of type 1. Also  cross correlation will increase with loading. This expectation

&1 = pM 1, Wherep, is the density of zeolite (unit cellsAn will be tested below. Equations 25 and 26 connect important
Note thata = DdkgT. Similarly parameters required in the MS formulation to correlations from
statistical mechanics.
Lllcross: bCl2 (19)
3. Transport Coefficients from Molecular Dynamics
where Simulation

v NEMD or EMD can be used to evaluate the members of the
b= wfwl,l(o).vl,m(t)mt (20) [L] matrix. The GreerKubo relation&” which involve the
evaluation of correlations between species velocities as shown
egs 13 and 14 can be used to evaluaterom EMD. In
EMD a mechanical forcé; is applied on each molecule of
speciesj in the MD simulation and the average xluJ,0Jof
species is measured from the simulation. Thiepare evaluated

where the angular brackets indicate an ensemble average an{“
v1) is the velocity of thdth particle of type 1. Note that all the

equations in this section up to this point are valid for multi-
component diffusion as well as tagged particle diffusion. The

remaining equations in this section (eqs-2b) are only for as
tagged particle diffusion in a single component system. Then 0.0
2 2 Li=E 27)
L,,=ac, + bc,”=ab, + 6, (21) i
L,,= bec, = 46,0 22) By applying a mechanical force on specjewe are adding an
127 2 = PULYs

extra potential to the energy of the system. This is equivalent
to applying a chemical potential gradient to the system. In our

L,,= ac, + bc,” = ad, + 6, (23) MD simulation code all molecules are assigned a property called
“color charge™25 All molecules of speciegare given a color
L,y = beyey = 80,0, (24) charge of 1. All molecules of other species are assigned a color
charge of 0. During the MD run only the molecules with nonzero
wherea = p;na andp = (p-ng)?b. color charge feel the external force. In the case of multiatomic

An equation forly; in terms of theb coefficients can be  molecules, the color charge on each atom is proportional to its
written and compared to eq 21. In case of tracer diffusion this mass and the sum of color charge on a molecule is equal to 1.

leads to This is equivalent to applying the forég on the center of mass
of the multiatomic molecule. The term color charge is used to
a_ 1P, (25) make it clear that this is not an electrostatic charge in the force
B 1Py, field.
3.1. Force Field.We have performed EMD and NEMD
For tracer diffusionb;2 = D1 = P11. calculations for single-component diffusion of methane, ethane,
propane, butane, and @Hn zeolite faujasite for various
« a f@u(o)’”u(t)mt fractional loadings. For consistency With previous simulations
== = (26) from our research grouls;}42%we considered a completely
B bp,ng PNV f 1,(0)- vy (t) it siliceous form of faujasite without cations. Mixture simulations

were performed for mixtures of methane/Ckpropane/Ck
In general we would expect the above quantity to decrease withbutane/Ck, and ethane/butane. Force field parameters for
loading because self-correlation will decrease with loading and intermolecular interactions are listed in Table 1. They are the
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same as those used by Sanborn and S@dfrThe intramo- 3.3. EMD Implementation. In EMD a regular NVT-MD
lecular parameters for bond-bending and torsion potentials weresimulation is done and species velocities are written to a file
taken from the literaturé28and can be found in Table 1. Alkane every 0.1 ps. For a run of 10 ns this leads to storing of 100 000
bond lengths were kept fixed. Atomic coordinates of the faujasite velocity values in a disk file. The average velocity (the velocity
atoms were taken from the neutron diffraction work of Hriljac of center of mass) of each species in the system is calculated
et al?® The interaction of silicon atoms with the guest molecules separately and written to the disk file. The simulations were
was neglected in the force field, as is common. The zeolite run for an equilibration period of 1 ns and a production run of
framework was considered rigid and a pretabulated potential 10 ns. Flux correlation functions (eqs 13 and 14) between
map was used for the Lennard-Jones interactions between zeolitelifferent species were calculated from the stored velocities.
oxygen atoms and adsorbed Lennard-Jones cett&wsrbate These correlation functions were integrated with respect to time
molecules were modeled using the united atom model for numerically by using Simpson’s rule. We have tested the
methylene and methyl groups. Methane and, @fre also numerical integration with different intervals between writing
modeled as united atoms. All intermolecular interactions were the velocities to the disk file. In our simulations, the numerical
truncated at 12.1 A. Typically each simulation containee-64  integration error coming from the use of a 0.1-ps interval is
100 mobile sorbate molecules. The unit cell of faujasite contains rather small. So an interval of 0.1 ps was used in all EMD
8 supercages. Depending on the loading, we used 2 to 8 unitsimulations. A smaller write interval (say 0.02 ps) can be used
cells with periodic boundary conditions. for more accurate integrations, but this will lead to storing of

3.2. Thermostats Different types of thermostatsare avail- many more configurations in the disk file. Data from the same
able in the literature for keeping the temperature of a system EMD simulations were also used to calculate the self-diffusivi-
constant during an MD simulation. Two of them were imple- ties. The self-diffusivities were calculated with use of Einstein’s
mented in our simulation coéfand tested for use during an  formula (eq 1), and this required storing the position of each
NEMD simulation. Note that the external force does work on particle every 1 ps in a disk file. Both Noséloover (NH1
the system during an NEMD simulation, and the heat generatedand NH2) and Gaussian thermostats (Gaussl and Gauss2) were
should be removed to keep the system at constant temperaturetested to check the effect of different thermostats on EMD. All
Different thermostats accomplish this task by using different of them gave the same results for a ffEF,; system at a total
mechanisms. It is necessary to verify that no artificial effects loading of 1 molecule/unit cell and 50% methane. In all other
are introduced by the thermostat. Our results below indicate EMD simulations we have used the NH2 thermostat with the
that all thermostats tested show the same behavior. We haveGear6 algorithm.
implemented two slightly different versions of the Nes¢oover 3.4. NEMD Implementation. For binary diffusion in zeolites,
thermostat and will refer to them as NH1 and NH2. The NH1 there are four transport coefficients to be evaluateg;, Lo,
thermostat acts on all particles of the system and maintains thel,;, andL,,. An NEMD simulation with force applied on species
overall temperature of the system. The NH2 thermostat acts 1 can be used to calculate two of therbj; andL,;. During
separately on each species and controls the temperature of eacbuch a simulation the fluxes of species 1 and 2 are calculated
species independently. Another thermostat referred to as aseparately and eq 27 is used to evaluate ltheoefficients.
Gaussian thermostat keeps the kinetic temperdiyref each Similarly a simulation with force applied on species 2 can be
species in the system constant. Kinetic temperature of speciesused to evaluaté;, and Ly, Onsager’s reciprocity theorem
i, Tk, is defined so that states that.;, = L,i. This equality can be used as a check on

the simulations.
Nidikg Ty i _ o8 In all simulations the external force was applied in the

2 Tk (28) x-direction and the flux in the-direction was measured. The

evaluation of fluxJ; during the simulation was done as follows:
whered; is the number of degrees of freedom for one molecule,

Ex,i is the total kinetic energy of specigsandN; is the number 1 =1

of molecules of species Note that kinetic energy has to be D= b= P Jo ﬁZ”ivk dt (29)
defined with respect to a reference frame. Two types of Gaussian s '

thermostats (referred to as Gaussl and Gauss2) were used herﬁrherepi is the particle density (in molecules)fand s is the

In Gauss1 the zeolite frame of reference is chosen, which impliesjme span of the simulation (in ps). Note that the average
that the thermostat is acting on all degrees of freedsu Of velocity [2Cis calculated over all the particles of speciemd

them). In Gauss2 kinetic energy is defined by removing the 4155 gver the length of the simulation. By taking the integral
degrees of freedom corresponding to the center of mass of thejsige the summation and substitutipg= N/V

diffusing species. Here there are oryd, — 3 degrees of

freedom. However, it should be noted that all other quantities 1 t=1,

(velocities, fluxes) reported in this paper are defined with respect = _Z f;) vy ot (30)

to the absolute frame of reference, where the zeolite is kept Vg

fixed. All four thermostats (NH1, NH2, Gaussl, and Gauss?2) 1

were tested as shown in section 4.1. B0= —S [ () — r,(0)] (31)
Two finite-difference integration schemes were tested for ' VTSZ ' '

integrating the equations of motion. A 6th order Gear predictor

corrector integration scheme (Ged&®%yvas implemented in Thus, only the final positions and initial positions of all particles

combination with the NH1 and NH2 thermostats. A leapfrog are needed for evaluation of the average flux.

integration scheme as given by Brown and Clatkeas 3.5. Calculation of Thermodynamic Factors.The evaluation

implemented for use with Gauss1 and Gauss2. After testing theof I'jj, the thermodynamic factors mentioned in eq 9, was done

different integration schemes and thermostats as describedwith use of data obtained from binary grand canonical Monte

below, we decided to use Gear6 and NH2 for all the remaining Carlo (GCMC) simulations. Adsorption isotherms were gener-

simulations. ated for adsorption from a gas of fixed mole fraction and
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Figure 1. Mixture adsorption isotherms of GHind Ck in faujasite at 300 K. Each curve corresponds to a particular gas-phase compgasition
In the figure on the left, thgcy, = O curve lies on thex axis;, theycy, = 1.0 curve is the topmost curve shown as a thick black §ag, = 0.1,
0.2,0.3,0.4, 0.5, 0.6, 0.7, 0.8, and 0.9 lie in between. In the figure on the rigi&ihes 0 curve is the topmost and tlyen, = 1.0 curve lies on
the x axis. For each case the symbols represent the data from GCMC and the lines represent eq 32.

temperature but varying pressure. The loading of each speciesand 4 molecules/supercage) and different mole fractions (0.25,
was obtained as a function of total pressure in the gas phase0.50, and 0.75). In addition, we ran all the single component
and these data were fitted to a semiempirical isotherm eqd4tion simulations below using both EMD and NEMD. In most cases

of the form the single component coefficients obtained with the two
methods agreed with each other within an accuracy of 4%. The
n(P) = Kp[l + (—KP )C](”C) (32) maximum deviation observed .was 10%.
a(l+ «P) To check the effect of different thermostats, a set of

simulations were done for an equimolar mixture of £ahd

is th h keis the H s | X CF4 in faujasite at 300 K with the four different thermostats
Is the gas-phase pressukeis the Henry's law constana is a mentioned above. Total loading was 2 molecules/supercage.
measure of saturation loadingepresents an adsorbed phase These simulations were repeated at different values of the

compressibility, and determines the curvature of the isotherm. applied force, too (0.040.67 kJ/(mol A)). The flux obtained
From eﬁCh binary CSCM% “;]n we obtalnedft\?\{o_lsotherms (ON€ fom the simulations is plotted as a function of the force in
or €ach compoun ) and thus “’.VO sets of fitting parameters. Figure 2. The curves indicate that the response of the system is
ThIS.pI’OCGSS Wgs.rgpeated for different valuegipfhg mole linear up to an applied force of 0.33 kJ/(mol A). Left panel of
fraction of species in the gas phase. Assume that isotherms Figure 2 shows that different thermostats start to behave
have been evaluatedyt, ¥i.2 ... Vi Each of the Risotherms differently at high values of applied force. This is because the

%?S f'ttled to fe_q 3hz to obtainiifferent sets %f parameters. applied force does work on the system and leads to heating of
e values of isotherm parameters corresponding toyatfat the system. These four thermostats remove the heat from the

Iie_- betweery;, andy, 1 were es_timated by Iin_early inte_r polating system in different ways, and this leads to different results at
with respect . The evaluation ol for given loading 6. such high applied force. The rest of the simulations reported
n) was done numerically as follows. here were done with applied forces in the range 60.33 kJ/
_ (mol A) and using the Gear6 integration scheme and the NH2
= &rln[fi(ni, n, +dn)] — In[fi(n;, n)] 33) thermostat.
Pz dn 4.2. Single Component DiffusionSingle-component diffu-
o . . . sion of methane, ethane, propane, butane, andrCfaujasite
This involved the evaluation of fugacitidsat two '0_6“,"”,951 was investigated with both EMD and NEMD. Self-diffusivities
(ni, m) and @, n; + dn). The values oP andy; that minimize 5y anq Onsager coefficients ) were evaluated from EMD
the error from the specified loadingi(n) were found by @ gjmyationsL coefficients were also evaluated from the NEMD
random search. Then the fugacity was evaluated asPy. simulations. The results from EMD had an estimated error of

Similarly the fugacity corresponding toy(n; + dn) .also was 10%, whereas the estimated error flofrom NEMD was only
evaluated and then eq 33 was used to evalliafhe isotherms o5 “See Appendix A for error estimation formulas. Figure 3

for CH,/CF, adsorption in faujasite at 300 K are given in Figure - g5 the results from MD simulations of methane at 300 K at
1. The empirical equation fits q_uite well wi_th the simulatiqns various loadings. A scheme based on the Maxw8tefan (MS)
results. For CH/CF, and other mixtures the |sotherm—equat|o.n. formulation of diffusion where single component diffusion data
parameters are reported as a function of gas-phase composition, . sed to predict mixture diffusion is explained in Appendix
y elsewheré? B. We will refer to this scheme as the “MS estimation scheme”.
Continuous lines show the fit to the MS estimation scheme as
described by eqs 4344 in the appendix. Figure 3 shows that
4.1. Comparison of Simulation Algorithms.To test the new the transport diffusivityD; reaches a maximum around a
NEMD code, we calculated thé& coefficients for binary fractional loading of 0.6. This is a result of increases in Hoth
diffusion of CHy/CF4, mixtures and compared them against the and the thermodynamic factdr. Another way of looking at
values obtained by Sanborn and Sktirsing EMD. All the this is as follows: D; can be written as the product & and d
main-term coefficientsL(;; and L) were found to be within In f/d In c. The term d Inf/d In c increases monotonically,
10% and all the cross coefficientk,{ and Liz)were found to following 1/(1 — 6), for single-site Langmuir isotherm behavior.
be within 20%. Tests were done at two different loadings (2 For multisite adsorption the isotherm exhibits inflection behav-

wheren is the loading of the species in molecules/supercBge,

4. Results
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Figure 2. Average velocity of methane (left) and €Hight) in the direction of the applied force from NEMD simulations of an equimolar
methane/Clkmixture in faujasite. Four sets of data are shown corresponding to four different thermostats. An external force is applied on methane.
Simulations were done at 300 K and a total loading of 2 molecules/supercage. The line represents a linear fit passing through the origin.
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Figure 3. Ds (self), P (Maxwell—-Stefan®,), D: (transport), and_ (Onsager) for Chlin faujasite at 300 K. On the left, the lines represent
predictions according to egs 444. On the right, the lines represditandL calculated fromb. Dy is plotted on the lefy axis andLRTis plotted
on the righty axis. The symbols represent values obtained from single component MD simulations.

ior. This is the case for CHn faujasite. As a consequence of and Yashonafi3® studied the different factors that affect
the inflection, that occurs at a loading of 10 molecules per cage, diffusivity vs concentration trends. However, currently there is
the thermodynamic correction factor exhibits a sharp maximum no way of quantitatively predicting these trends a priori other
at this loading. The factor d Iffd In ¢ decreases when the than MD simulation. The mechanism of single-component
loading increases beyond 10 molecules per cage and thendiffusion in zeolite pores is still not well understood. There are
increases again as saturation loading is approached. The valuenany factors that may affect the observed diffusion behavior.
of LRTobtained from simulations does not agree well with the The strength of the interaction between the probe molecule and
MS estimation scheme at high loadings (last data point on the the pore wall, and the size of the probe will affect the diffusion
right panel of Figure 3). This is because the assumptionhat behavior. The velocity correlations between neighboring par-
varies linearly with loading is not true at higher loadings for ticles are also important. The adsorption pattern also is
this system. We will, however, use the linear approximation important. At low loading the molecules tend to adsorb at the
for MS estimations to keep the number of parameters to a lowest energy sites, but at higher loading they may rearrange
minimum (see Appendix B). to adsorb in some other pattern. Since all the above factors are
Results for other molecules are given in Figure 4. In all cases important in deciding th@® vs loading trend, it might not always
of single-component diffusion, the MS diffusivity seems to be be possible to classify the single-component diffusion behavior
a linear function of the fractional loading as suggested by eq as “strong” or “weak” confinement.
43. Equations 41 and 43 can be used to represent the single- 4.3. Binary Diffusion. TheL coefficients for binary mixture
component diffusion data with just two parameters for each diffusion of CHJ/CF, in faujasite are reported in Figure 5.
speciesPi(0) and ¢;, as described in the appendix. Similar NEMD was able to give converged results with error bars of
calculations were performed by Skoulidas and Sholl for diffusion less than 10% for most of the cross coefficients. For the runs
of various Lennard-Jones spheres in silicalftét was found with a low loading of 1 molecule/supercage the error bars in
that the variation ob as a function of fractional loading roughly  L;, andL,; were about 20%. However, EMD did not converge
falls into two categories. In some cases it decreases as a lineafor these conditions even after a 40-ns run. Thus NEMD appears
function of the fractional loading. This is similar to the behavior to be very efficient in calculating thie coefficients accurately.
of a lattice gas and was referred to as the “strong confinement” Sanborn and Snuft were also not able to calculate the
scenario In other case® was found to remain a constant coefficients at a low loading of 1 molecule/supercage with EMD.
and these were referred to as the “weak confinement” scenario.Figure 5 shows that at a given number of molecules/supercage
In a more recent paperthey investigated the effect of different  the L1; coefficient increases with the mole fraction of species
pore shapes. For some combination of pore shapes and sorbatek. Similarly L,, increases with the mole fraction of species 2.
b initially increased with loading. In our current study in The cross coefficients vary roughly as an inverted parabola as
faujasite we see tha decreases linearly with loading similar  the mole fractions vary from zero to one. The results of the
to the strong confinement scenario. Using lattice models, Bhide MS estimation (described in Appendix B) are shown as lines
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in Figure 5. The lines agree remarkably well with the symbols propane in faujasite are being reported from MD simulations.
which represent the binary simulation data. The estimated error in cross coefficients is less than 10%. Again,
Results for GHg/CF4, C4H1¢o/CF4, and GH1¢/CzHg are shown the predictions from the MS estimation agree quite well with
in Figure 6. This is the first time that binary transport the binary simulation results. The results here indicate that the
diffusivities of nonspherical molecules such as butane and approximations involved in the MS estimation scheme hold very
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well even in the case of nonspherical molecules such as butane s
and propane. The estimations here were based on four param- 08 TR i
eters obtained from the data for single components. These four = 0
parameters af®;(0), P2(0), &1, ands, (see Appendix B). These é 06
parameters were evaluated from a series of single-component s °
calculations of self-diffusivity and transport diffusivity. They o4 o
can be used to predict diffusivities in various mixtures over the g :
whole range of compositions. We can also use the MS 202
formulation as a parameter-fitting scheme. Thus any binary
mixture diffusion data at a given temperature and varying % 02 04 o6 08 1
composition can be represented in terms of four parameters. Total fractional loading
An important assumption in the MS estimation scheme is Figure 7. Pvalues calculated from binary simulations are plotted as
that$1(01,0,) is a function of total loading = 0, + 0, only. a function of total loading. Th& axis is the total fractional loading

In Figure 7 we plo®; values of each compound, obtained from (see eq 46)b; values are normalized by dividing ;(0) taken from
our binary simulations, against the total loading. The values Taple 2 The solid line represents the expected behavior from t_he MS
are normalized by dividing byb;(0), the pure component estimation _scheme. Datafor_methane (squares), ethane (down triangles),
Maxwell diffusivity at zero loading (see Table 2). It is clear propane (circles), butane (diamonds), and (Lfs trangles) are shown.
’ . . . This plot is constructed from the information in Figures 5 and 6.

that the® values obtained from multicomponent simulations
show the same behavior as the single-compoBevilues (see and then decrease (inverted parabola) for the cases of tracer
Figures 3 and 4). diffusion. In our mixture results where we keep the total loading

In the MS estimation scheme (Appendix B) we studied the constant and vary the compositions also we see approximately
variation of single-component diffusion (bos andb) as a similar trends. The main terms increase with loading and the
function of fractional loading and then parametrized the data cross terms plotted versus composition look roughly like an
in terms ofB; andP;;. It was assumed that these quantities inverted parabola.
have the same values in the multicomponent case as in the 4.4. Comparison of Error from EMD and NEMD. In
single-component case, at a given value of total fractional appendix A we have described different ways of calculating
loading 6. Equivalently we may do the parametrization using the error bars for thé coefficients obtained from EMD and
the particle correlations. and 8 too. As in the case of MS ~ NEMD. Equation 37 is very useful because it can be applied
estimationa. and 5 may also be assumed to be functions of before running the simulation itself. For the case of CHF,
total loading only. The functional form in eqs 224 suggests  the error inL1, predicted by using eq 37 and the observed errors
that thel; will increase withf; andL1, will initially increase are plotted in Figure 8. The error decreases with increasing



Evaluation of Diffusivities for Binary Mixtures J. Phys. Chem. B, Vol. 108, No. 35, 20043489

TABLE 2: Parameters that Describe Single Component diffusion of binary mixtures containing short alkanes and, CF
Diffusion in Faujasite at 300 K@ in faujasite.
molecule M sat Hi(0) & )

CH. 147 3.48 0.49 A_cknowle_dgment. This V\_/ork has been supported by the U.S.

CoHe 83 217 0.78 National Science Foundation.

CsHg 6.6 1.39 1.13 . o .

C4H1o 5.3 0.93 1.40 Appendix A. Estimation of Error During NEMD

CFk4 6.8 1.36 0.82

In EMD and NEMD thel coefficients are calculated by using

#$;(0) has the units of 10 m?s, and is dimensionless. The  ensemble averages from the simulation. These ensemble aver-
saturation values reported here are the loadings at 300 K akPE)  g465 will converge only if the simulations are done for a very
In units of molecules/supercage. long time. Depending on the length of the simulations there
may be significant statistical errors in the estimatedoef-
ficients. Sometimes the simulation is repeated with different
starting conditions and the standard deviation is used as a
measure of error. The alternate systematic way in which we
have estimated the errors is presented below.
During an NEMD simulation, the flux is measured as given
eq 31, or equivalently:

simulation time. The results on the left of Figure 8 are from an
NEMD run with applied force of 0.13 kJ/(mol A) for a loading

of 4 molecules/supercage and 50% &t 300 K. Observed
errors are defined according to eq 38. Observed errors from an
EMD run at the same condition are also reported in Figure 8
(see Appendix A). It can be seen that the predicted and observedDy
errors from NEMD match well. Also, for a given simulation

time, the errors observed from EMD are in general higher than
those from NEMD ? J N 1 [rulzd — r(0)]
o Z LU= plii L= —Z—— (34)
Similar calculations were also done for @BF, at 1 VN Tq

molecule/supercage, 300 K, and 25% {tith an applied force

of 0.33 kJ/(mol A). In this case the errors from EMD are far The standard deviation i@Ccan be evaluated as the standard
higher than those from NEMD, as shown on the right of Figure geviation of the sum on the right-hand side of eq 34. Let the
functions in order to evaluate the coefficients. The flux  force bew.. This true value can be obtained only if we run the
correlation functions between GHand Ck at 1 molecule/  simulation for infinite time. Values obtained from a simulation
supercage and 25% Gldre shown in Figure 9. We expect these  of finite time 5 with a finite number of particlesl; will have
correlation functions(2:(0)v(t)land [22(0)va(t)L) to be equal 3 value ofv. + d0v. The expected value of fzs) — r(0)] for

so that Onsager’s reciprocal relatiohs{= L21) are satisfied.  each particle after a simulation of timeis v.7s. In addition to
From the difference between the two correlation functions it the overall movement in the direction of apphed force, each

can be concluded that these flux correlation functions have not molecule has a self-diffusion-like motion. This self-diffusion

converged. This is the reason for the observed large EMD error of each particle introduces a deviationsaf to the displacement

in L1z in Figure 8. of the particle.o is the standard deviation in the displacement
At low loadings the cross coeffcients may become very small of the particle because of self-diffusion only. For the Brownian

and negligible compared to the main coefficients. Equation 7 motion of a particle

shows that the flux of species 1 depends on gradients of

chemical potentials of both speciesMf, is zero then the flux o=./2D

of species 1 depends entirely on the cross coeffidigntEven

if L12is small (less than one-tenth bfy) it has to be evaluated 11,4 gtandard deviation f@BG which is calculated as the average

accu_rately to evaluate the flux. Sanb_orn _and SHuhave over N; particles, will be

previously demonstrated that there are situations where the cross

coefficients cannot be neglected.

7, (35)

Si

_W@Dgt) 1 2Dy

v - > =

= AN (36)
5. Conclusions Ts m Nizg

We have used NEMD to evaluate binary diffusivities of
various mixtures in the zeolite faujasite at 300 K. A formula to
estimate the error bars in thecoefficients is also presented.
Using this formula the expected error bars can be calculated

The standard deviation in the valuelgfwith force Fe applied
on specieg will be

before starting the simulation. NEMD simulations can give cross 5L = Pi 2D 37)
coefficients of the. matrix with considerably smaller error bars " FAN Nz
than those obtained from EMD. The Onsager coefficients for
diffusion of binary mixtures of small alkanes and L&€  f the order of magnitude of the self-diffusion coefficient of
calculated within acceptable error bars. These are results tha%pecieé is known then the expected error from simulation can
could not be obtained previously with EMD. be evaluated by using the above formula.

We applied an estimation scheme based on the Maxwell We can also estimate the error in the fliftom a simulation

Stefan formulation of diffusion where multicomponent diffu- by looking at the flux-components perpendicular to the applied
sivities were predicted based on single-component diffusion data.field. When a force is applied in thedirection there should
Four parameters obtained from single-component diffusivities not be a resultant flux in thg- or z-direction. However, there

of two compounds are used to predict binary diffusivities at will be some small value of flux in any simulation because of
any composition. This MS estimation scheme suggested by the statistical error coming from the finite size of the simulation.
Krishna and co-workers appears to work very well to describe The magnitude of this flux can be considered as another estimate
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Figure 8. Percent error i1z from NEMD and EMD for CH and Ch in faujasite at 300 K for a total loading of (a) 4 molecules/supercage with
50% CH, and (b) 1 molecule/supercage with 25% fLHhe filled symbols connected by solid lines are the error observed from simulations. The
dashed line is the error estimated by using eq 37.

10 On the basis of single-component tracer diffusion, an inverse
8l — v, 0)v,0> friction coefficientP, for friction between particles of the same
-------- <V5(0)v,(t)> species can be defined as
6
1 1 0
Ng- 4 _— = + e (41)
OB | /\ /\\ D, B Py
0 /\‘\r“ where@ is the fractional coverage
-2 T k
0 = ning, (42)
% 5 10 15 20
time, ps Here n and negy are the loading and saturation loading,
Figure 9. Flux correlation functions for calculatinigi, andL; from respectively.P; is the MS diffusivity andDs 1 is the self-
EMD. These are evaluated from a 40-ns run of a;GH/CF, (2) diffusivity. These diffusivities can be evaluated from pure

mixture in faujasite at 300 K for a total loading of 1 molecule/supercage component MD simulations as a function @f Then®,; can
and 25% methane. be evaluated by using eq 41. For all simulations in faujasite it
was found that the single-component MS diffusivity varies

of error. During NEMD simulations fluxes in all 3 directions linearly as suggested by
are evaluated and another error estimate is obtained as

b,(0) =D,(0)[1 - ] (43)
1= 191 + 134 (38) The ratio ofP1; to B is found to be more or less a constant.
X 2 We define
£ =Du/b, (44)

In EMD thel; are evaluated by egs 13 and 14. On the right-
hand _s_ide of _the equation there is a dot product of two Vector gy jigas et at fitted the value oft; to a weakly decreasing
quantities. This can be expanded as the sum of three Components,,tion of 9. From our simulations also we found the calculated
values of¢; to be slowly decreasing with. However, to keep

o i . . . . the number of parameters to a minimuia,js assumed to be a
_ ﬁ, |:]i,x(o)Ji,x(t) + Ji,y(o)Jj,y(t) "‘_Ji,z(o)]i,z(t)lzldt (39) constant for each species.

i VKT Thus the single-component data of specieat a given
temperature are parametrized by two constBx(®) andg;. Note
L = (Lijxx + Lijyy + Lij23/3 (40) that at very low loading;(0) = Ds 1(0) = Dy(0). The parameters

that describe the single-component diffusion of various mol-
ecules in faujasite at 300 K are given in Table 2.
For simulations with cubic symmetry all thrég on the right- For binary diffusion the fractional loadings are defined as
hand side of eq 40 should be equal. The standard deviationfollows
between these 3 values can be used as an estimate of the error
on L; obtained from an EMD simulation. 01= NNy oo 0, = Ny/N, o (45)
Appendix B. Estimation of Binary Diffusivities with MS 0=0,+0; (46)

Estimation Scheme . . e . .
To describe binary diffusion in the MS formulation by using

The MS estimation scheme described below is based on theeq 11, four values are requiretd;, B,, P12, andP-1. For binary
works of Krishna and co-worke#8:24This scheme can be used diffusion in zeolites, the Onsager reciprocity relation leads to
to estimate binary MS diffusivities from information about self- the constrainty, saP12 = N1 saP21 as derived by Skoulidas et
diffusion and transport diffusion of single components. all® It is assumed tha®; and B, are functions of the total
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fractional coveragé only. They are assumed to follow the same
6 dependence as in the single-component case. Thus,

,(6,,60,) = P,(0)[1 — 6] (47)

B,(0,,0,) = D,(0)[1 — 6] (48)
Another assumption is tha,,, the friction between species 1
and 2, lies betwee®;; andP,,. A logarithmic interpolatioff

is used to estimat®;:

04/(61+0 0/(61+0
[N 514l H0s 2)[n1 saP22] A00) (49)

N, saP12 =

By interchanging the subscripts 1 and 2 for all the terms above,

P,;1 can be obtained. ThB;; andPy; at the given loading are
obtained as

b, = &D4(0) ED,(6)

Thus, using eqs 4450 and paramete®,(0), P»(0), &1, and
&> we can predict mixture diffusion at any composition.

and B,,= (50)

Appendix C. Relation betweenL and MS Diffusivity
By using an MS estimation scheme thenatrix for a binary

system can be calculated from single-component data. The

equations used to relate the Onsager malrixo the MS
coefficientsb;, P,, andP;, are given below. They can be
derived by equating the fluxes written in two formalisms
(Onsager and MaxweHStefan). It can be shown that

0,
p |1
5 T 501N sar

Lll = RTI B| DZ DZ (51)
91
LlZ RTl B| 2 1,sat (52)
1 0,
L= R'If')|B| D, + 'D_lzleznz'sat (53)
0,
I‘21: R-ﬁB| _1_)_21] gan,Sat (54)
where|B| is the determinant of matrixg] defined as:
Loy g -
P, k=;¢i P, ij (i=]) 'Dij
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