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We have used nonequilibrium molecular dynamics (NEMD) simulations to evaluate diffusivities for binary
mixtures of methane/CF4, propane/CF4, n-butane/CF4, andn-butane/ethane in zeolite faujasite at 300 K. A
formula to estimate the error bars in the transport coefficients from NEMD is also presented. NEMD simulations
can give cross coefficients of the Onsager matrix with considerably smaller error bars than those obtained
from equilibrium MD (EMD). We evaluated diffusion coefficients that could not be evaluated previously
using EMD. An estimation scheme based on the Maxwell-Stefan formulation was tested for predicting
multicomponent diffusivities based on single component diffusion data. This estimation scheme works very
well for the systems tested.

1. Introduction

Zeolites are microporous crystalline materials with intra-
crystalline channels of width 3-12 Å. They are widely used in
the chemical industry for catalysis and separation applications.
The diffusivity of physisorbed molecules in the channels of
zeolites is an important parameter required for the design and
optimization of these applications. Experimental studies and
molecular modeling can be used to estimate the intracrystalline
diffusivities. However, for many cases of diffusion in zeolites,
the diffusivities obtained with different experimental techniques
do not agree with one another. Molecular modeling can give
insights into the microscopic mechanism of diffusion and may
explain some of the discrepancies observed. In this paper we
will discuss the use of a nonequilibrium molecular dynamics
(NEMD) technique for calculating binary transport diffusivities
in the zeolite faujasite. The results will also be used to test an
estimation scheme based on the Maxwell-Stefan formulation,
in which binary diffusivities are obtained from single-component
data.

Many authors1-7 have calculated the self-diffusivities of guest
molecules in zeolite channels using molecular simulations,
including both single components and mixtures. However, the
Fickian diffusivity (also referred to as the transport diffusivity)
is required in practical applications to describe diffusion in the
presence of a concentration gradient. Some studies in the
literature have reported the transport diffusivity of Lennard-
Jones spheres in zeolites.8-13 There have, however, been only
a few studies10,12,14,15in the literature where multicomponent
transport diffusivities from molecular simulations were reported.
Industrial applications of zeolites or other microporous materials
always involve multicomponent mixtures of molecules with
more complicated shapes than simple spheres, and in this work
we investigate multicomponent diffusion of smalln-alkanes in

the channels of faujasite. Faujasite is a large-pore zeolite
composed of supercages of approximately 12 Å in diameter,
tetrahedrally connected by 12-membered-ring windows of 7.5-Å
diameter.5 We study diffusion of four mixtures: methane/CF4,
propane/CF4, butane/CF4, and butane/ethane.

There are three main MD methods that are used to calculate
transport diffusivities: dual control volume grand canonical
molecular dynamics (DCV-GCMD), equilibrium molecular
dynamics (EMD), and nonequilibrium molecular dynamics
(NEMD). The DCV-GCMD method developed by Heffelfinger
and Van Swol16 involves the use of two control volumes located
at the ends of a diffusion zone and maintained at different
chemical potentials through insertion and deletion of particles.
Ahunbay et al.13 used this technique to study diffusion of
methane through single-crystal silicalite membranes. Arya et
al.9 have shown that DCV-GCMD may give incorrect results if
the ratio of insertions and deletions to molecular dynamics steps
is not large enough. The second method, EMD, involves the
use of Green-Kubo relations17 to calculate the transport
coefficients. This method has been used to calculate single and
multicomponent diffusivities in zeolites.10-12 Sanborn and
Snurr14 have shown that EMD might not work well for
multicomponent systems at low loadings or when one species
is very dilute. The third method uses an MD simulation with
an extra external force (equivalent to a chemical potential
gradient) applied on the molecules in the simulation to calculate
the transport coefficients.18 This method will be referred to as
NEMD here. It has been used by Maginn and co-workers to
calculate single-component diffusivities in microporous materi-
als.8,9 In this paper we will demonstrate that NEMD is more
efficient than EMD for mixtures.

Since simulations and experiments for multicomponent dif-
fusion are harder than single-component studies, it would be
very useful to have theoretical methods for estimating multi-
component diffusivities from single-component data. Some such
methods have been proposed in the literature10,19,20 These
methods, in general, involve the representation of the single-
component diffusion data by using some parameters and then
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the estimation of mixture diffusivities from these parameters
by a suitable model. However, it should be noted that single-
component diffusion behavior itself can become quite complex
depending on the sorbate molecule and the shape and con-
nectivity of the zeolite channels. Molecular simulations can be
used to test the validity of the binary diffusion estimation
methods and the approximations involved. Skoulidas et al.10

calculated both self-diffusivities and transport diffusivities of
CH4 and CF4 in silicalite and then used a refinement and
extension of the methodology suggested by Krishna and Baur21

for estimation of binary diffusivities from single-component
values. The binary diffusivities thus obtained were compared
against those obtained directly from EMD mixture simulations
and the agreement was found to be good. In this paper the
validity of this scheme is tested for larger molecules with
intramolecular degrees of freedom in the zeolite faujasite.

2. Theoretical Framework

2.1. Self-Diffusion and Transport Diffusion. The self-
diffusivity (Ds) of a tagged particle diffusing through the
intracrystalline space can be calculated with the Einstein
expression,

or using the velocity autocorrelation formalism

Herer is the position vector andV is the velocity vector of the
tagged particle.

The diffusion of a species under the influence of a concentra-
tion gradient is often called transport diffusion.5 Fick’s law of
diffusion defines the transport diffusivityDt as the proportional-
ity factor between the fluxJ and the concentration gradient

In generalDt is not equal to the self-diffusivity.
2.2. Different Formulations of Transport Diffusion. Here

we briefly review three different formulations for multicom-
ponent diffusion in porous materials. All of them are equivalent,
and given the parameters in one formulation we can always
calculate the parameters in the other two formulations. It is
important to specify the frame of reference with which we define
the diffusion coefficients. In some cases the fluxes are calculated
with respect to the center of mass of the system. Kamala et
al.15,22 used such a frame of reference for studying binary
diffusion in slit pores and zeolite NaY. In the case of zeolite
diffusion studied here, we assume that the zeolite crystal remains
fixed and all fluxes are defined relative to this fixed frame of
reference.

The Fickian equations for a mixture of two compounds in a
zeolite are

On the basis of simulations of CH4 and CF4 in faujasite, Sanborn
and Snurr12 showed that the cross terms cannot always be
neglected for diffusion of mixtures in zeolite membranes. For
a multicomponent system the Fickian transport equations can
be written in a matrix form

where J and c are column vectors and [D] is the N × N
diffusivity matrix.

The second formulation is based on nonequilibrium thermo-
dynamics and considers chemical potential gradients as the
fundamental driving forces for diffusion. This formulation is
more convenient from a statistical mechanics or molecular
simulations point of view. For binary diffusion in porous
materials the transport equations are

whereµi stands for the chemical potential of speciesi (units of
kJ/mol). TheL coefficients are sometimes referred to as Onsager
coefficients. Onsager postulated that the [L ] matrix is sym-
metric.23 [D] can be calculated as

where the elements of the square matrix [Γ] are given by

f is the fugacity, andcj is the concentration of speciesj inside
the zeolite.

A detailed introduction to the Maxwell-Stefan (MS) formu-
lation and a description of the physical significance of various
parameters can be found in the review article by Krishna and
Wesselingh.24 The Maxwell-Stefan (MS) diffusivities for
diffusion in porous materials are defined as follows

whereui is the velocity of speciesi with respect to the zeolite
andθj is the fractional occupancy of the speciesj. Fractional
occupancy is the ratio of loading (ni, molecules/supercage) to
the saturation loading (ni,s, molecules/supercage).

The MS diffusivities}i may be interpreted as inverse friction
coefficients describing the mobility of speciesi in the zeolite.
The exchange coefficients}ij reflect the correlation effects in
binary mixture diffusion as discussed by Skoulidas et al.10

2.3. Onsager Formulation for Tracer Diffusion. In this
section we will briefly discuss the Onsager formulation for
diffusion of tagged particles. Consider the diffusion of asingle
species through the zeolite pores. Let the number of particles
beN. We will tag some of the particles as 1 and the rest 2.N1

andN2 are the number of particles of type 1 and 2, respectively,
andN ) N1 + N2. The Green-Kubo relations6,17for the Onsager
coefficients in the binary diffusion case can be written as

J ) -[D]∇c (6)

J1 ) -L11∇µ1 - L12∇µ2 (7)

J2 ) -L21∇µ1 - L22∇µ2 (8)

[D] ) [L ][Γ] (9)

Γij ) RT
cj

d ln fi
d ln cj

(10)

-∇µi ) RT ∑
j)1,j*i

n θj(ui - uj)

}ij

+ RT
ui

}i

(11)

θi )
ni

ni,s
(12)

L11 )
1

3VkBT
∫〈∑

l)1

N1

V1,l(0)‚∑
m)1

N1

V1,m(t)〉 dt (13)

L12 )
1

3VkBT
∫〈∑

l)1

N1

V1,l(0)‚∑
m)1

N2

V2,m(t)〉 dt (14)

Ds ) lim
tf∞

〈|r(t) - r(0)|2〉
6t

(1)

Ds ) 1
3∫0

∞
〈V(0)·V(t)〉 dt (2)

J ) -Dt∇c (3)

J1 ) -D11∇c1 - D12∇c2 (4)

J2 ) -D21∇c1 - D22∇c2 (5)
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The correlation function can be split into self-functions and cross
functions as done by Theodorou and Maginn6,8 previously

whereL11 ) L11
self + L11

cross. The equation for the self-term
can be simplified in terms of a one-particle correlation function,
and the equation for the cross term can be simplified in terms
of correlations between two different particles:

where

Herec1 ) N1/V is the concentration of particles of type 1. Also
c1 ) Fzn1,sθ1, whereFz is the density of zeolite (unit cells/m3).
Note thata ) Ds/kBT. Similarly

where

where the angular brackets indicate an ensemble average and
V1,l is the velocity of thelth particle of type 1. Note that all the
equations in this section up to this point are valid for multi-
component diffusion as well as tagged particle diffusion. The
remaining equations in this section (eqs 21-26) are only for
tagged particle diffusion in a single component system. Then

whereR ) Fznsa andâ ) (Fzns)2b.
An equation forL11 in terms of the} coefficients can be

written and compared to eq 21. In case of tracer diffusion this
leads to

For tracer diffusion}12 ) }21 ) }11.

In general we would expect the above quantity to decrease with
loading because self-correlation will decrease with loading and

cross correlation will increase with loading. This expectation
will be tested below. Equations 25 and 26 connect important
parameters required in the MS formulation to correlations from
statistical mechanics.

3. Transport Coefficients from Molecular Dynamics
Simulation

NEMD or EMD can be used to evaluate the members of the
[L ] matrix. The Green-Kubo relations6,17 which involve the
evaluation of correlations between species velocities as shown
in eqs 13 and 14 can be used to evaluateLij from EMD. In
NEMD a mechanical forceFj is applied on each molecule of
speciesj in the MD simulation and the average flux 〈Ji〉 of
speciesi is measured from the simulation. ThenLij are evaluated
as

By applying a mechanical force on speciesj, we are adding an
extra potential to the energy of the system. This is equivalent
to applying a chemical potential gradient to the system. In our
MD simulation code all molecules are assigned a property called
“color charge”.8,25 All molecules of speciesj are given a color
charge of 1. All molecules of other species are assigned a color
charge of 0. During the MD run only the molecules with nonzero
color charge feel the external force. In the case of multiatomic
molecules, the color charge on each atom is proportional to its
mass and the sum of color charge on a molecule is equal to 1.
This is equivalent to applying the forceFj on the center of mass
of the multiatomic molecule. The term color charge is used to
make it clear that this is not an electrostatic charge in the force
field.

3.1. Force Field. We have performed EMD and NEMD
calculations for single-component diffusion of methane, ethane,
propane, butane, and CF4 in zeolite faujasite for various
fractional loadings. For consistency with previous simulations
from our research group,12,14,26 we considered a completely
siliceous form of faujasite without cations. Mixture simulations
were performed for mixtures of methane/CF4, propane/CF4,
butane/CF4, and ethane/butane. Force field parameters for
intermolecular interactions are listed in Table 1. They are the

TABLE 1: Force-Field Parameters for Zeolite-Sorbate and
Sorbate-Sorbate Interactionsa

nonbonded ε/kB, K σ, Å

CH4-CH4 147.95 3.73
CH3-CH3 72.0 3.923
CH2-CH2 72.0 3.923
CF4-CF4 134.0 4.662
CH4-O 133.3 3.214
CH3-O 83.8 3.364
CH2-O 83.8 3.364
CF4-O 109.57 3.734

bond angle kθ, kJ rad-2 θ0, deg

C-C-C 259.8 114

torsion a0/kB, K a1/kB, K a2/kB, K a3/kB, K

C-C-C-C 0.0 355.0 -68.2 791.3

a Lennard-Jones parameters for other sorbate-sorbate interactions
were obtained with the combining rules ofεij ) xεiεj andσij ) (σi +
σj)/2. A harmonic potential was used for the bond angle bending (V(θ)
) kθ(θ - θ0)2). Torsion angle potentials were treated with the cosine-
expansion formV(φ) ) a0 + a1(1 + cos(φ)) + a2(1 - cos(2φ)) +
a3(1 + cos(3φ)).

Lij )
〈Ji〉
Fj

(27)

L11
self )

1

3VkBT
∫〈∑

l)1

N1

V1,l(0)‚V1,l(t)〉 dt (15)

L11
cross)

1

3VkBT
∫〈∑

l)1

N1

∑
m)1,m*l

N1

V1,l(0)‚V1, m(t)〉 dt (16)

L11
self ) ac1 (17)

a ) 1
3kBT∫〈V1,l(0)‚V1,l(t)〉 dt (18)

L11
cross) bc1

2 (19)

b ) V
3kBT∫〈V1,l(0)‚V1,m(t)〉 dt (20)

L11 ) ac1 + bc1
2 ) Rθ1 + âθ1

2 (21)

L12 ) bc1c2 ) âθ1θ2 (22)

L22 ) ac2 + bc2
2 ) Rθ2 + âθ2

2 (23)

L21 ) bc2c1 ) âθ2θ1 (24)

R
â

)
1/}1

1/}11
(25)

R
â

) a
bFzns

)
∫〈V1,l(0)‚V1,l(t)〉 dt

FznsV∫〈V1,l(0)‚V1,m(t)〉 dt
(26)
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same as those used by Sanborn and Snurr.12,14 The intramo-
lecular parameters for bond-bending and torsion potentials were
taken from the literature27,28and can be found in Table 1. Alkane
bond lengths were kept fixed. Atomic coordinates of the faujasite
atoms were taken from the neutron diffraction work of Hriljac
et al.29 The interaction of silicon atoms with the guest molecules
was neglected in the force field, as is common. The zeolite
framework was considered rigid and a pretabulated potential
map was used for the Lennard-Jones interactions between zeolite
oxygen atoms and adsorbed Lennard-Jones centers.30 Sorbate
molecules were modeled using the united atom model for
methylene and methyl groups. Methane and CF4 were also
modeled as united atoms. All intermolecular interactions were
truncated at 12.1 Å. Typically each simulation contained 64-
100 mobile sorbate molecules. The unit cell of faujasite contains
8 supercages. Depending on the loading, we used 2 to 8 unit
cells with periodic boundary conditions.

3.2. Thermostats.Different types of thermostats31 are avail-
able in the literature for keeping the temperature of a system
constant during an MD simulation. Two of them were imple-
mented in our simulation code32 and tested for use during an
NEMD simulation. Note that the external force does work on
the system during an NEMD simulation, and the heat generated
should be removed to keep the system at constant temperature.
Different thermostats accomplish this task by using different
mechanisms. It is necessary to verify that no artificial effects
are introduced by the thermostat. Our results below indicate
that all thermostats tested show the same behavior. We have
implemented two slightly different versions of the Nose-Hoover
thermostat and will refer to them as NH1 and NH2. The NH1
thermostat acts on all particles of the system and maintains the
overall temperature of the system. The NH2 thermostat acts
separately on each species and controls the temperature of each
species independently. Another thermostat referred to as a
Gaussian thermostat keeps the kinetic temperatureTK,i of each
species in the system constant. Kinetic temperature of species
i, TK,i, is defined so that

wheredi is the number of degrees of freedom for one molecule,
EK,i is the total kinetic energy of speciesi, andNi is the number
of molecules of speciesi. Note that kinetic energy has to be
defined with respect to a reference frame. Two types of Gaussian
thermostats (referred to as Gauss1 and Gauss2) were used here.
In Gauss1 the zeolite frame of reference is chosen, which implies
that the thermostat is acting on all degrees of freedom (Nidi of
them). In Gauss2 kinetic energy is defined by removing the
degrees of freedom corresponding to the center of mass of the
diffusing species. Here there are onlyNidi - 3 degrees of
freedom. However, it should be noted that all other quantities
(velocities, fluxes) reported in this paper are defined with respect
to the absolute frame of reference, where the zeolite is kept
fixed. All four thermostats (NH1, NH2, Gauss1, and Gauss2)
were tested as shown in section 4.1.

Two finite-difference integration schemes were tested for
integrating the equations of motion. A 6th order Gear predictor-
corrector integration scheme (Gear6)31 was implemented in
combination with the NH1 and NH2 thermostats. A leapfrog
integration scheme as given by Brown and Clarke33 was
implemented for use with Gauss1 and Gauss2. After testing the
different integration schemes and thermostats as described
below, we decided to use Gear6 and NH2 for all the remaining
simulations.

3.3. EMD Implementation. In EMD a regular NVT-MD
simulation is done and species velocities are written to a file
every 0.1 ps. For a run of 10 ns this leads to storing of 100 000
velocity values in a disk file. The average velocity (the velocity
of center of mass) of each species in the system is calculated
separately and written to the disk file. The simulations were
run for an equilibration period of 1 ns and a production run of
10 ns. Flux correlation functions (eqs 13 and 14) between
different species were calculated from the stored velocities.
These correlation functions were integrated with respect to time
numerically by using Simpson’s rule. We have tested the
numerical integration with different intervals between writing
the velocities to the disk file. In our simulations, the numerical
integration error coming from the use of a 0.1-ps interval is
rather small. So an interval of 0.1 ps was used in all EMD
simulations. A smaller write interval (say 0.02 ps) can be used
for more accurate integrations, but this will lead to storing of
many more configurations in the disk file. Data from the same
EMD simulations were also used to calculate the self-diffusivi-
ties. The self-diffusivities were calculated with use of Einstein’s
formula (eq 1), and this required storing the position of each
particle every 1 ps in a disk file. Both Nose-Hoover (NH1
and NH2) and Gaussian thermostats (Gauss1 and Gauss2) were
tested to check the effect of different thermostats on EMD. All
of them gave the same results for a CH4/CF4 system at a total
loading of 1 molecule/unit cell and 50% methane. In all other
EMD simulations we have used the NH2 thermostat with the
Gear6 algorithm.

3.4. NEMD Implementation.For binary diffusion in zeolites,
there are four transport coefficients to be evaluated:L11, L12,
L21, andL22. An NEMD simulation with force applied on species
1 can be used to calculate two of them:L11 and L21. During
such a simulation the fluxes of species 1 and 2 are calculated
separately and eq 27 is used to evaluate theL coefficients.
Similarly a simulation with force applied on species 2 can be
used to evaluateL12 and L22. Onsager’s reciprocity theorem
states thatL12 ) L21. This equality can be used as a check on
the simulations.

In all simulations the external force was applied in the
x-direction and the flux in thex-direction was measured. The
evaluation of fluxJi during the simulation was done as follows:

whereFi is the particle density (in molecules/Å3) andτs is the
time span of the simulation (in ps). Note that the average
velocity 〈V〉 is calculated over all the particles of speciesi and
also over the length of the simulation. By taking the integral
inside the summation and substitutingFi ) Ni/V,

Thus, only the final positions and initial positions of all particles
are needed for evaluation of the average flux.

3.5. Calculation of Thermodynamic Factors.The evaluation
of Γij, the thermodynamic factors mentioned in eq 9, was done
with use of data obtained from binary grand canonical Monte
Carlo (GCMC) simulations. Adsorption isotherms were gener-
ated for adsorption from a gas of fixed mole fraction and

NidikBTK,i

2
) EK,i (28)

〈Ji〉 ) Fi〈V〉 ) Fi

1

τs

∫0

t)τs( 1

Ni
∑

k

Vi,k) dt (29)

〈Ji〉 )
1

Vτs
∑

k
∫0

t)τsVi,k dt (30)

〈Ji〉 )
1

Vτs
∑

k

[rik(τs) - rik(0)] (31)
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temperature but varying pressure. The loading of each species
was obtained as a function of total pressure in the gas phase
and these data were fitted to a semiempirical isotherm equation34

of the form

wheren is the loading of the species in molecules/supercage,P
is the gas-phase pressure,K is the Henry’s law constant,a is a
measure of saturation loading,κ represents an adsorbed phase
compressibility, andc determines the curvature of the isotherm.
From each binary GCMC run we obtained two isotherms (one
for each compound) and thus two sets of fitting parameters.
This process was repeated for different values ofyi, the mole
fraction of speciesi in the gas phase. Assume that isotherms
have been evaluated atyi,1, yi,2, ...,yi,k. Each of the 2k isotherms
was fitted to eq 32 to obtain 2k different sets of parameters.
The values of isotherm parameters corresponding to anyyi that
lie betweenyi,l andyi,l+1 were estimated by linearly interpolating
with respect toyi. The evaluation ofΓij for given loading (ni,
nj) was done numerically as follows.

This involved the evaluation of fugacitiesfi at two loadings:
(ni, nj) and (ni, nj + dn). The values ofP andyi that minimize
the error from the specified loading (ni, nj) were found by a
random search. Then the fugacity was evaluated asfi ) Pyi.
Similarly the fugacity corresponding to (ni, nj + dn) also was
evaluated and then eq 33 was used to evaluateΓij. The isotherms
for CH4/CF4 adsorption in faujasite at 300 K are given in Figure
1. The empirical equation fits quite well with the simulations
results. For CH4/CF4 and other mixtures the isotherm-equation
parameters are reported as a function of gas-phase composition
y elsewhere.35

4. Results

4.1. Comparison of Simulation Algorithms.To test the new
NEMD code, we calculated theL coefficients for binary
diffusion of CH4/CF4 mixtures and compared them against the
values obtained by Sanborn and Snurr12 using EMD. All the
main-term coefficients (L11 and L22) were found to be within
10% and all the cross coefficients (L21 andL12)were found to
be within 20%. Tests were done at two different loadings (2

and 4 molecules/supercage) and different mole fractions (0.25,
0.50, and 0.75). In addition, we ran all the single component
simulations below using both EMD and NEMD. In most cases
the single componentL coefficients obtained with the two
methods agreed with each other within an accuracy of 4%. The
maximum deviation observed was 10%.

To check the effect of different thermostats, a set of
simulations were done for an equimolar mixture of CH4 and
CF4 in faujasite at 300 K with the four different thermostats
mentioned above. Total loading was 2 molecules/supercage.
These simulations were repeated at different values of the
applied force, too (0.04-0.67 kJ/(mol Å)). The flux obtained
from the simulations is plotted as a function of the force in
Figure 2. The curves indicate that the response of the system is
linear up to an applied force of 0.33 kJ/(mol Å). Left panel of
Figure 2 shows that different thermostats start to behave
differently at high values of applied force. This is because the
applied force does work on the system and leads to heating of
the system. These four thermostats remove the heat from the
system in different ways, and this leads to different results at
such high applied force. The rest of the simulations reported
here were done with applied forces in the range 0.12-0.33 kJ/
(mol Å) and using the Gear6 integration scheme and the NH2
thermostat.

4.2. Single Component Diffusion.Single-component diffu-
sion of methane, ethane, propane, butane, and CF4 in faujasite
was investigated with both EMD and NEMD. Self-diffusivities
(Ds) and Onsager coefficients (L) were evaluated from EMD
simulations.L coefficients were also evaluated from the NEMD
simulations. The results from EMD had an estimated error of
10%, whereas the estimated error forL from NEMD was only
2%. See Appendix A for error estimation formulas. Figure 3
shows the results from MD simulations of methane at 300 K at
various loadings. A scheme based on the Maxwell-Stefan (MS)
formulation of diffusion where single component diffusion data
are used to predict mixture diffusion is explained in Appendix
B. We will refer to this scheme as the “MS estimation scheme”.
Continuous lines show the fit to the MS estimation scheme as
described by eqs 41-44 in the appendix. Figure 3 shows that
the transport diffusivityDt reaches a maximum around a
fractional loading of 0.6. This is a result of increases in bothL
and the thermodynamic factorΓ. Another way of looking at
this is as follows:Dt can be written as the product of} and d
ln f/d ln c. The term d lnf/d ln c increases monotonically,
following 1/(1- θ), for single-site Langmuir isotherm behavior.
For multisite adsorption the isotherm exhibits inflection behav-

Figure 1. Mixture adsorption isotherms of CH4 and CF4 in faujasite at 300 K. Each curve corresponds to a particular gas-phase compositionyCH4.
In the figure on the left, theyCH4 ) 0 curve lies on thex axis;, theyCH4 ) 1.0 curve is the topmost curve shown as a thick black line.yCH4 ) 0.1,
0.2,0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9 lie in between. In the figure on the right theyCH4 ) 0 curve is the topmost and theyCH4 ) 1.0 curve lies on
the x axis. For each case the symbols represent the data from GCMC and the lines represent eq 32.

n(P) ) KP[1 + ( KP
a(1 + κP))c](-1/c)

(32)

Γij ) RT
Fz

ln[fi(ni, nj + dn)] - ln[fi(ni, nj)]

dn
(33)
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ior. This is the case for CH4 in faujasite. As a consequence of
the inflection, that occurs at a loading of 10 molecules per cage,
the thermodynamic correction factor exhibits a sharp maximum
at this loading. The factor d lnf/d ln c decreases when the
loading increases beyond 10 molecules per cage and then
increases again as saturation loading is approached. The value
of LRTobtained from simulations does not agree well with the
MS estimation scheme at high loadings (last data point on the
right panel of Figure 3). This is because the assumption that}

varies linearly with loading is not true at higher loadings for
this system. We will, however, use the linear approximation
for MS estimations to keep the number of parameters to a
minimum (see Appendix B).

Results for other molecules are given in Figure 4. In all cases
of single-component diffusion, the MS diffusivity seems to be
a linear function of the fractional loading as suggested by eq
43. Equations 41 and 43 can be used to represent the single-
component diffusion data with just two parameters for each
species,}i(0) and úi, as described in the appendix. Similar
calculations were performed by Skoulidas and Sholl for diffusion
of various Lennard-Jones spheres in silicalite.36 It was found
that the variation of} as a function of fractional loading roughly
falls into two categories. In some cases it decreases as a linear
function of the fractional loading. This is similar to the behavior
of a lattice gas and was referred to as the “strong confinement”
scenario.10 In other cases} was found to remain a constant
and these were referred to as the “weak confinement” scenario.
In a more recent paper11 they investigated the effect of different
pore shapes. For some combination of pore shapes and sorbates
} initially increased with loading. In our current study in
faujasite we see that} decreases linearly with loading similar
to the strong confinement scenario. Using lattice models, Bhide

and Yashonath37,38 studied the different factors that affect
diffusivity vs concentration trends. However, currently there is
no way of quantitatively predicting these trends a priori other
than MD simulation. The mechanism of single-component
diffusion in zeolite pores is still not well understood. There are
many factors that may affect the observed diffusion behavior.
The strength of the interaction between the probe molecule and
the pore wall, and the size of the probe will affect the diffusion
behavior. The velocity correlations between neighboring par-
ticles are also important. The adsorption pattern also is
important. At low loading the molecules tend to adsorb at the
lowest energy sites, but at higher loading they may rearrange
to adsorb in some other pattern. Since all the above factors are
important in deciding the} vs loading trend, it might not always
be possible to classify the single-component diffusion behavior
as “strong” or “weak” confinement.

4.3. Binary Diffusion. TheL coefficients for binary mixture
diffusion of CH4/CF4 in faujasite are reported in Figure 5.
NEMD was able to give converged results with error bars of
less than 10% for most of the cross coefficients. For the runs
with a low loading of 1 molecule/supercage the error bars in
L12 andL21 were about 20%. However, EMD did not converge
for these conditions even after a 40-ns run. Thus NEMD appears
to be very efficient in calculating theL coefficients accurately.
Sanborn and Snurr14 were also not able to calculate theL
coefficients at a low loading of 1 molecule/supercage with EMD.
Figure 5 shows that at a given number of molecules/supercage
the L11 coefficient increases with the mole fraction of species
1. Similarly L22 increases with the mole fraction of species 2.
The cross coefficients vary roughly as an inverted parabola as
the mole fractions vary from zero to one. The results of the
MS estimation (described in Appendix B) are shown as lines

Figure 2. Average velocity of methane (left) and CF4 (right) in the direction of the applied force from NEMD simulations of an equimolar
methane/CF4 mixture in faujasite. Four sets of data are shown corresponding to four different thermostats. An external force is applied on methane.
Simulations were done at 300 K and a total loading of 2 molecules/supercage. The line represents a linear fit passing through the origin.

Figure 3. Ds (self), } (Maxwell-Stefan}1), Dt (transport), andL (Onsager) for CH4 in faujasite at 300 K. On the left, the lines represent
predictions according to eqs 41-44. On the right, the lines representDt andL calculated from}. Dt is plotted on the lefty axis andLRT is plotted
on the righty axis. The symbols represent values obtained from single component MD simulations.

13486 J. Phys. Chem. B, Vol. 108, No. 35, 2004 Chempath et al.



in Figure 5. The lines agree remarkably well with the symbols
which represent the binary simulation data.

Results for C3H8/CF4, C4H10/CF4, and C4H10/C2H6 are shown
in Figure 6. This is the first time that binary transport
diffusivities of nonspherical molecules such as butane and

propane in faujasite are being reported from MD simulations.
The estimated error in cross coefficients is less than 10%. Again,
the predictions from the MS estimation agree quite well with
the binary simulation results. The results here indicate that the
approximations involved in the MS estimation scheme hold very

Figure 4. Pure component} andDs for CF4 (a), C2H6 (b), C3H8 (c), and C4H10 (d) in faujasite at 300 K. The lines represent predictions according
to eqs 41 and 43.

Figure 5. Lij coefficients from NEMD simulations of methane (1) and CF4 (2) in faujasite at 300 K. The lines represent predictions according to
MS estimations. The squares, up triangles, down triangles, and circles representL11, L12, L21, andL22, respectively. The cross coefficients (L12 and
L21) are scaled by a factor of 10, so that they can be plotted on the samey axis. Total loading: (a) 1 molecule/supercage, (b) 2 molecules/supercage,
and (c) 4 molecules/supercage.
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well even in the case of nonspherical molecules such as butane
and propane. The estimations here were based on four param-
eters obtained from the data for single components. These four
parameters are}1(0),}2(0), ú1, andú2 (see Appendix B). These
parameters were evaluated from a series of single-component
calculations of self-diffusivity and transport diffusivity. They
can be used to predict diffusivities in various mixtures over the
whole range of compositions. We can also use the MS
formulation as a parameter-fitting scheme. Thus any binary
mixture diffusion data at a given temperature and varying
composition can be represented in terms of four parameters.

An important assumption in the MS estimation scheme is
that}1(θ1,θ2) is a function of total loadingθ ) θ1 + θ2 only.
In Figure 7 we plot}i values of each compound, obtained from
our binary simulations, against the total loading. The values
are normalized by dividing by}i(0), the pure component
Maxwell diffusivity at zero loading (see Table 2). It is clear
that the} values obtained from multicomponent simulations
show the same behavior as the single-component} values (see
Figures 3 and 4).

In the MS estimation scheme (Appendix B) we studied the
variation of single-component diffusion (bothDs and}) as a
function of fractional loading and then parametrized the data
in terms of}1 and}11. It was assumed that these quantities
have the same values in the multicomponent case as in the
single-component case, at a given value of total fractional
loadingθ. Equivalently we may do the parametrization using
the particle correlationsR and â too. As in the case of MS
estimationR and â may also be assumed to be functions of
total loading only. The functional form in eqs 21-24 suggests
that theL11 will increase withθ1 andL12 will initially increase

and then decrease (inverted parabola) for the cases of tracer
diffusion. In our mixture results where we keep the total loading
constant and vary the compositions also we see approximately
similar trends. The main terms increase with loading and the
cross terms plotted versus composition look roughly like an
inverted parabola.

4.4. Comparison of Error from EMD and NEMD. In
appendix A we have described different ways of calculating
the error bars for theL coefficients obtained from EMD and
NEMD. Equation 37 is very useful because it can be applied
before running the simulation itself. For the case of CH4/CF4

the error inL12 predicted by using eq 37 and the observed errors
are plotted in Figure 8. The error decreases with increasing

Figure 6. Lij coefficients from NEMD simulations: (a) propane (1) and CF4 (2) in faujasite at 300 K for a total loading of 3.125 molecules/
supercage; (b) butane (1) and CF4 (2) in faujasite at 300 K for a total loading of 2.5 molecules/supercage; and (c) butane (1) and ethane (2) in
faujasite at 300 K for a total loading of 2.5 molecules/supercage. The lines represent predictions according to MS estimations. The squares, up
triangles, down triangles, and circles representL11, L12, L21, andL22, respectively. The cross coefficients (L12 andL21) are scaled by a factor of 10,
so that they can be plotted on the samey axis.

Figure 7. }ivalues calculated from binary simulations are plotted as
a function of total loading. Thex axis is the total fractional loadingθ
(see eq 46).}i values are normalized by dividing by}i(0) taken from
Table 2. The solid line represents the expected behavior from the MS
estimation scheme. Data for methane (squares), ethane (down triangles),
propane (circles), butane (diamonds), and CF4 (up trangles) are shown.
This plot is constructed from the information in Figures 5 and 6.
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simulation time. The results on the left of Figure 8 are from an
NEMD run with applied force of 0.13 kJ/(mol Å) for a loading
of 4 molecules/supercage and 50% CH4 at 300 K. Observed
errors are defined according to eq 38. Observed errors from an
EMD run at the same condition are also reported in Figure 8
(see Appendix A). It can be seen that the predicted and observed
errors from NEMD match well. Also, for a given simulation
time, the errors observed from EMD are in general higher than
those from NEMD.

Similar calculations were also done for CH4/CF4 at 1
molecule/supercage, 300 K, and 25% CH4 with an applied force
of 0.33 kJ/(mol Å). In this case the errors from EMD are far
higher than those from NEMD, as shown on the right of Figure
8. EMD simulations require the evaluation of flux correlation
functions in order to evaluate theL coefficients. The flux
correlation functions between CH4 and CF4 at 1 molecule/
supercage and 25% CH4 are shown in Figure 9. We expect these
correlation functions,〈V1(0)V2(t)〉 and 〈V2(0)V1(t)〉, to be equal
so that Onsager’s reciprocal relations (L12 ) L21) are satisfied.
From the difference between the two correlation functions it
can be concluded that these flux correlation functions have not
converged. This is the reason for the observed large EMD error
in L12 in Figure 8.

At low loadings the cross coeffcients may become very small
and negligible compared to the main coefficients. Equation 7
shows that the flux of species 1 depends on gradients of
chemical potentials of both species. If∇µ1 is zero then the flux
of species 1 depends entirely on the cross coefficientL12. Even
if L12 is small (less than one-tenth ofL11) it has to be evaluated
accurately to evaluate the flux. Sanborn and Snurr12 have
previously demonstrated that there are situations where the cross
coefficients cannot be neglected.

5. Conclusions

We have used NEMD to evaluate binary diffusivities of
various mixtures in the zeolite faujasite at 300 K. A formula to
estimate the error bars in theL coefficients is also presented.
Using this formula the expected error bars can be calculated
before starting the simulation. NEMD simulations can give cross
coefficients of theL matrix with considerably smaller error bars
than those obtained from EMD. The Onsager coefficients for
diffusion of binary mixtures of small alkanes and CF4 are
calculated within acceptable error bars. These are results that
could not be obtained previously with EMD.

We applied an estimation scheme based on the Maxwell-
Stefan formulation of diffusion where multicomponent diffu-
sivities were predicted based on single-component diffusion data.
Four parameters obtained from single-component diffusivities
of two compounds are used to predict binary diffusivities at
any composition. This MS estimation scheme suggested by
Krishna and co-workers appears to work very well to describe

diffusion of binary mixtures containing short alkanes and CF4

in faujasite.
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Appendix A. Estimation of Error During NEMD

In EMD and NEMD theL coefficients are calculated by using
ensemble averages from the simulation. These ensemble aver-
ages will converge only if the simulations are done for a very
long time. Depending on the length of the simulations there
may be significant statistical errors in the estimatedL coef-
ficients. Sometimes the simulation is repeated with different
starting conditions and the standard deviation is used as a
measure of error. The alternate systematic way in which we
have estimated the errors is presented below.

During an NEMD simulation, the flux is measured as given
by eq 31, or equivalently:

The standard deviation in〈J〉 can be evaluated as the standard
deviation of the sum on the right-hand side of eq 34. Let the
true value of average velocity〈V〉 of speciesi due to the applied
force beV∞. This true value can be obtained only if we run the
simulation for infinite time. Values obtained from a simulation
of finite time τs with a finite number of particlesNi will have
a value ofV∞ ( δV. The expected value of [r(τs) - r(0)] for
each particle after a simulation of timeτs is V∞τs. In addition to
the overall movement in the direction of applied force, each
molecule has a self-diffusion-like motion. This self-diffusion
of each particle introduces a deviation of(σ to the displacement
of the particle.σ is the standard deviation in the displacement
of the particle because of self-diffusion only. For the Brownian
motion of a particle

The standard deviation for〈V〉, which is calculated as the average
over Ni particles, will be

The standard deviation in the value ofLij with forceFe applied
on speciesj will be

If the order of magnitude of the self-diffusion coefficient of
speciesi is known then the expected error from simulation can
be evaluated by using the above formula.

We can also estimate the error in the fluxJ from a simulation
by looking at the flux-components perpendicular to the applied
field. When a force is applied in thex-direction there should
not be a resultant flux in they- or z-direction. However, there
will be some small value of flux in any simulation because of
the statistical error coming from the finite size of the simulation.
The magnitude of this flux can be considered as another estimate

TABLE 2: Parameters that Describe Single Component
Diffusion in Faujasite at 300 Ka

molecule ni,sat }i(0) úi

CH4 14.7 3.48 0.49
C2H6 8.3 2.17 0.78
C3H8 6.6 1.39 1.13
C4H10 5.3 0.93 1.40
CF4 6.8 1.36 0.82

a }i(0) has the units of 10-8 m2/s, andúi is dimensionless. The
saturation values reported here are the loadings at 300 K and 107 kPa
in units of molecules/supercage.

〈Ji〉 ) F〈Vi〉 )
Ni

V
∑

k

1

Ni

[rik(τs) - rik(0)]

τs

(34)

σ ) x2Ds,iτs (35)

δV )
x(2Ds,iτs)

τs

1

xNi

) x2Ds,i

Niτs
(36)

δLij )
Fi

Fex2Ds,i

Niτs
(37)
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of error. During NEMD simulations fluxes in all 3 directions
are evaluated and another error estimate is obtained as

In EMD theLij are evaluated by eqs 13 and 14. On the right-
hand side of the equation there is a dot product of two vector
quantities. This can be expanded as the sum of three components

For simulations with cubic symmetry all threeLij on the right-
hand side of eq 40 should be equal. The standard deviation
between these 3 values can be used as an estimate of the error
on Lij obtained from an EMD simulation.

Appendix B. Estimation of Binary Diffusivities with MS
Estimation Scheme

The MS estimation scheme described below is based on the
works of Krishna and co-workers.10,24This scheme can be used
to estimate binary MS diffusivities from information about self-
diffusion and transport diffusion of single components.

On the basis of single-component tracer diffusion, an inverse
friction coefficient}11 for friction between particles of the same
species can be defined as

whereθ is the fractional coverage

Here n and nsat are the loading and saturation loading,
respectively.}1 is the MS diffusivity andDs,1 is the self-
diffusivity. These diffusivities can be evaluated from pure
component MD simulations as a function ofθ. Then}11 can
be evaluated by using eq 41. For all simulations in faujasite it
was found that the single-component MS diffusivity varies
linearly as suggested by

The ratio of}11 to }1 is found to be more or less a constant.
We define

Skoulidas et al.10 fitted the value ofú1 to a weakly decreasing
function ofθ. From our simulations also we found the calculated
values ofú1 to be slowly decreasing withθ. However, to keep
the number of parameters to a minimum,ú1 is assumed to be a
constant for each species.

Thus the single-component data of speciesi at a given
temperature are parametrized by two constantsDi(0) andúi. Note
that at very low loading}1(0) ) Ds,1(0) ) Dt(0). The parameters
that describe the single-component diffusion of various mol-
ecules in faujasite at 300 K are given in Table 2.

For binary diffusion the fractional loadings are defined as
follows

To describe binary diffusion in the MS formulation by using
eq 11, four values are required:}1, }2, }12, and}21. For binary
diffusion in zeolites, the Onsager reciprocity relation leads to
the constraintn2,sat}12 ) n1,sat}21 as derived by Skoulidas et
al.10 It is assumed that}1 and}2 are functions of the total

Figure 8. Percent error inL12 from NEMD and EMD for CH4 and CF4 in faujasite at 300 K for a total loading of (a) 4 molecules/supercage with
50% CH4 and (b) 1 molecule/supercage with 25% CH4. The filled symbols connected by solid lines are the error observed from simulations. The
dashed line is the error estimated by using eq 37.

Figure 9. Flux correlation functions for calculatingL12 andL21 from
EMD. These are evaluated from a 40-ns run of a CH4 (1)/CF4 (2)
mixture in faujasite at 300 K for a total loading of 1 molecule/supercage
and 25% methane.

δJx )
|Jy| + |Jz|

2
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∫0

∞
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fractional coverageθ only. They are assumed to follow the same
θ dependence as in the single-component case. Thus,

Another assumption is that}12, the friction between species 1
and 2, lies between}11 and}22. A logarithmic interpolation10

is used to estimate}12:

By interchanging the subscripts 1 and 2 for all the terms above,
}21 can be obtained. The}11 and}22 at the given loading are
obtained as

Thus, using eqs 44-50 and parameters}1(0), }2(0), ú1, and
ú2 we can predict mixture diffusion at any composition.

Appendix C. Relation betweenL and MS Diffusivity

By using an MS estimation scheme theL matrix for a binary
system can be calculated from single-component data. The
equations used to relate the Onsager matrixL to the MS
coefficients}1, }2, and }12 are given below. They can be
derived by equating the fluxes written in two formalisms
(Onsager and Maxwell-Stefan). It can be shown that

where|B| is the determinant of matrix [B] defined as:
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