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ABSTRACT

This paper considers condensation of mixed vapours of water and hydrocarbons in the
presence of a non-condensable gas, a system that exhibits two liquid phases. A model based
on the Maxwell-Stefan equations is developed to calculate the interphase mass and heat
transfer fluxes and determine the condensation rates along the height of a vertical condenser
tube. Simulations show that a simpler mass transfer model, using effective diffusivities,
leads to an overestimation of the condenser area required for a specified condensation duty.

© 2000 Elsevier Science Ltd

Introduction

Condensation is an operation of great industrial interest. An important problem is that of
condensing a mixture of hydrocarbons and steam (water vapour) in the presence of an inert gas such as
air, nitrogen or hydrogen. Such systems form two liquid phases when condensed, introducing additional
complications in the modelling and design of condensers. There are two main approaches for designing a
condenser: the equilibrium models and the non-equilibrium or rate based models. In the first group of
models [1,2], equilibrium between the gas and liquid phases is assumed, and the condenser is designed
with the so called condensation curve, a thermodynamic diagram with temperature-enthalpy co-ordinates
together with an appropriate heat transfer correlation. The second group of models [3,4,5] do not make
use of the equilibrium assumption and take account of the simultaneous heat and mass transfer processes
occurring between the phases. The equilibrium approach has been shown not to be reliable [6], while the
non-equilibrium approach gives better results when compared with experimental data [4]. Also, the non-
equilibrium approach gives a better insight into the real physical process of condensation, as it takes into
account heat and mass transfer rates explicitly, thus providing a theoretical framework in which all the
aspects of the process can be taken into account. These non-equilibrium models are also called film
models (because they are almost invariably based on the film model for interphase mass and heat transfer)

and have their origins in the works of Colburn and Hougen [7] and Colburn and Drew [8]. These early
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works were developed for condensation of binary vapour mixtures. It is now well recognised that for
systems containing three or more components we need to take account of diffusional interaction, or
coupling, effects. The correct formulation of mass transfer in multicomponent systems is based on the
Maxwell-Stefan diffusion equations. The early works of Colburn, Hougen and Drew have been extended
for the multicomponent case by using the Maxwell-Stefan equations [3,4,5].

An important issue regarding the non-equilibrium modet: = .- > which extent is it necessary to
take into account the diffusional interactions explicitly. This .25 %=, been previously addressed by
Taylor et. al. [4,9] who made simulations using an effective * *usivity model and the complete Maxwell-
Stefan film model of Krishna and Standart [10]. Webb [11] published a model for condenser design
taking the immiscibility of the condensate phases into accoun[,b but no simulation results were presented.
Furthermore, the model of Webb [11] does not take account of the influence of inerts, or noncondensable
components. The objective of this paper is to develop a model for condensation of vapours of
hydrocarbons and water, in the presence of an inert gas and examine the extent to which sophisticated

mass transfer models are required to describe the interphase mass and heat transfer process.

Model formulation
We develop a model for condensation inside a vertical tube. The gas flows co-currently with the
condensate downward inside the tube, while the coolant flows upwards, i.e. counter-currently, on the
outer side; see Fig. 1. The mixwre flowing inside is composed by » components: water, n,
noncondensable components and 7, hydrocarbons.

The mass balance for the component i in the gas phase, in a slice of a condenser can be written as

FIG. 1
Condensation inside a vertical tube.
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% =-N;; i=12,.n.The symbols are defined in in the Nomenclature; see also Fig. 2. The total vapor

molar flow is the sum of the component molar fluxes. A similar balance for the liquid phase is

I . .
%: N, .There are also n-n; liquid phase material balances. The total flow of condensate, water and

: . d(VH" : _
hydrocarbon is L=Z’.~ The energy balance for the gas phase is LI.Q=—EV, which relation,
. . . . v dTV \ V. . .
simplifies for ideal gas mixtures to VC, A =~q where g is the conductive heat transfer flux, given

by ¢" =h, (T' =T'). The heat transfer coefficient is corrected for the influence of the mass transfer

according to A4," = h,=, . The term hy is the zero flux heat transfer coefficient, which can be determined

/3

from a correlation for turbulent gas flow Nu =0.023Re**Pr'"® . The correction factor Zy is the well-

known Ackermann correction factor to take account of finite mass transfer rates (for further details see
Taylor and Krishna [12]): £, =@, [exp(®Py)-1; @, = Z:N,.C,,,./hv . Combining above equations we

Vv dTv . v 1 . C dTC
A =-h, (T" =T"). The energy balance for the coolant is L.C, ”

obtain VC, =—q" where g is

the conductive heat transfer flux, given by g% = h,(T' —T) . Here h, represents a combined heat transfer
coefficient, including the resistance in the condensate film, in the tube wall and the coolant heat transfer
coefficient. T is the coolant temperature. The working relation for the coolant temperature variation

C
¢ ddi = —h(T' -T°).

along the condenser length (area) is L.C,

Vapour

Via Vi Araa
AR

Condensate

FIG. 2
Fluxes and flows for heterogeneous vapour condensation.
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Consider now the phase equilibrium relations. We assume the ideal gas law to apply to the vapour
phase. We also postulate complete immiscibility between hydrocarbons and water, and assume that the

hydrocarbon mixture obeys Raoult’s Law. Each of the two condensed liquid phases exerts its own vapour
pressure. This gives for water equilibrium: y, P, — P, =0and for the hydrocarbon equilibrium:
y! —Kx' =0 where K, is simply given by K, = P,O/PT . There are in total n, equilibrium relations for the
hydrocarbons and 1 for water.

Condensate

be wall

TC

Coolant Vapour

FIG. 3
Temperature and composition profiles at any position in the condenser.

The temperature and composition profiles across the vapour phase, the condensate liquid phase

and the coolant are shown in Fig. 3. For the noncondensable components we must have the constraint that

there is no transfer flux across the interface, i.e. N, = 0. For determining the transfer fluxes for the
condensable species, we write for the gas phase: phase ¢ (k13" —y)+(' N, =(N)=0
where (N)=(J) +(y")N,and (J) =¢ [k J(y" = ¥').

In this work we use two different approaches for the calculation of the matrix [kv®]. The first

approach is based on the rigorous solution of the Maxwell-Stefan diffusion equations [10,12,13]. In this

approach(k,”1=[k,1{£,] where the correction factor matrix is[Z,]=[@][exp([@])—[/]]"" and the zero

flux matrix [k,]=[R]™ . The diagonal elements of [R] are R, =y, /x,, + Z ¥, /x, and the off-diagonal
=1

ki
elements are given by R, =-y, (l/xu. —l/K'm). The diagonal elements of the rate factor matrix [&] are

defined as @,;:N,/C.’f,,.Jerk/C.K,k whereas the off-diagonal elements of [&] are given by

k=L
k=i

@, =-N, (1/ cx,; —VYex, ) We calculate the binary pair mass transfer coefficients x; using the Chilton-
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Colburn analogy for heat and mass transfer. The correlation valid for turbulent flow (Re > 10000) is
Sh; = O.0?_3Re°'3Sc‘.',.l/3 where the Schmidt and Sherwood numbers are defined, respectively, by
Sc, = u/B;pand Sh; =x,d, /D, . The Dj are the Maxwell-Stefan diffusivities of the i-j pair in the vapour

mixture.

The Maxwell-Stefan equations come into their own when describing a mixture containing species
of widely different molar masses. In such cases diffusional interactions, or coupling effects can be
expected to be large. In the simulations we performed the molar masses of the components in the vapour
phase ranged from hydrogen (MW = 0.002 kg/mol) to n-decane (MW = 0.142 kg/mol), which represents
a 70-fold variation. Such large differences in component molar masses results in a large differences in
component pair diffusivities. Large differences in component pair diffusivities can give rise to significant
coupling effects.

Another approach considered in this work is the simple pseudo-binary form of the mass transfer

relations for the fluxes in the vapour phase. The pseudo-binary effective diffusivity can be calculated

n

using the Wilke formula, D, , = (1-y) z y,;/P; | The matrix of zero flux mass transfer coefficients
J=l
Jwi

[ko] is diagonal with the elements k =k,  where the mass transfer coefficients «, . are obtained by

inserting the effective diffusivitiy D, . into Chilton-Colburn equations. The correction factor matrix is

also diagonal and can be estimated wusing the following relations®, =N, /ck, .

and=z, =D, . /lexp(di,.eﬁ) —IJ. The diagonal [kv*] matrix of finite flux mass transfer coefficients has the

elementsk, " =k, .=, ;.

i

The mass transfer resistance in the gas phase is thé dominant one in condensation when an inert
component is present. It is therefore usual to neglect the mass transfer resistance in the liquid phase and
determine the interphase liquid compositions by means of one assumption: completely mixed or
completely unmixed liquid. Here we adopt the unmixed liquid, as suggested by Taylor and Krishna [12],

because this assumption is the more conservative one, i.e. not leading to underestimation of the condenser
. . P i 1 . o qe
area. The equations for the unmixed liquid are N;x," — N x;" =0 where the subscript R indicates a

reference component. In this work we take the heaviest hydrocarbon as the reference component. There
are n,-1 of this type.

An energy balance around the interphase is also needed. We assume that there is no enthalpy
change on mixing and that the condensate subcooling may be ignored. These assumptions lead to

By E (T" —T’)+iN,.(C,‘,',(T" ~THY+A)-h(T' -T%)=0.

i=1
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We must introduce the constraint that the sum of the mole fractions in the vapour phase and in the

condensed hydrocarbon liquid phase sum to unity. This constraint is taken care of by two summation

equations, one for the vapour side of the interphase Z y, =1=0 and one for the sum of the hydrocarbon
compositions in the liquid phase Zx,' -1=0.

We have a system of 2a+n,+1 of ordinary differential equations. These were integrated using a
4" order Runge-Kutta method with adaptative step size and error control. For the solution of the equations
a Newton-Raphson method is implemented, calculating the derivatives in analytical form. The inversion
of the Jacobian matrix is done by means of a LU decomposition method. All equations are solved

simultaneously without inner and outer loops; this ensures quick convergence.
Simulation results

The vapour mixture consists of hydrocarbons: n-hexane (7.5%), n-heptane (7.5%), n-octane (5%),
n-nonane (5%) and n-decane (5%)) and water vapour (40%). The non-condensables, either hydrogen or
nitrogen form the remainder of the vapour phase, i.e. 30 mole %. All the physical properties including
diffusivities, vapour pressures, thermal conductivities and densities were estimated as suggested by Reid
et. al. [14]. The vapour mixture is condensed inside a vertical tube, 6 m long, of 0.0254 m internal
diameter. The system pressure is 20 kPa and the vapour temperature entering the condenser tube is 340
K. The entering coolant temperature is 310 K. For the simulation with hydrogen as inert the total mass
flow of the entering vapour mixture is 0.0041 kg/s. For the case with nitrogen as inert, the total mass
flow is 0.0049 kg/s.

Figure 4 (a) shows the molar flux, calculated using the rigorous Maxwell-Stefan model, of water
and hydrocarbons along the condenser length. It is clear that the fluxes are lower when nitrogen is the
inert gas. This is because of the lower diffusivity of nitrogen than hydrogen in the vapour mixture. For
the case with hydrogen as inert gas, Fig. 4 (b) compares the fluxes calculated with the Maxwell-Stefan
model with those of the simpler Wilke effective diffusivity model. The latter simple model generally
calculates lower fluxes. Coupling effects are significant for the case with hydrogen as inert gas and this
coupling leads to higher fluxes of hydrocarbons and water !

In Fig. 5 the fraction of the total incoming vapour that is condensed is plotted against the
condenser tube length. If, for example, we aim for condensing 50% of the vapour mixture, the Maxwell-
Stefan model predicts a lower requirement for condenser area than the Wilke effective diffusivity model.
For hydrogen as inert gas the overestimation of the condenser tube area by the Wilke method is 25 %

whereas when nitrogen is the inert gas, the overestimation is only 10%.
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FIG. 4
Transfer fluxes. (a) Influence of inert. (b) Influence of mass transfer model.
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FIG. 5
Fractional vapour condensed.

Conclusions

We have developed a model for heterogeneous condensation of a mixture of hydrocarbon vapours
and water in the presence of an inert gas such as hydrogen or nitrogen. When nitrogen is used as inert gas
lower fluxes are obtained than when hydrogen is used as inert gas. The effective diffusivity approach to
calculation of the mass transfer fluxes overestimates the condenser area requirements by up to 25%. In
view of the simplicity of this approach, this approach could be used safely for design purposes, especially
when the inert gas is nitrogen (or air). When the inert gas is hydrogen diffusional coupling effects are

important and serve to enhance the fluxes and lead to lower condenser area requirements.
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Nomenclature

<

Greek
(4]

RSTE SE

[n)

J.A. Copati and R. Krishna

Area, m*

Total molar concentration, mol m™

effective diffusivity, m* s’

Maxwell-Stefan diffusivity, m® s’

heat transfer coefficient, W m2 K

Molar enthalpy, J mol™

Identity matrix, dimensionless

mass transfer coefficient, m s™'

matrix of mass transfer coefficients, m s

Phase equilibrium constant, dimensionless

molar flow rate of component in the liquid phase, mol s
Liquid molar flowrate, mol s

interphase mass transfer rate, mol s™

Nusselt number, dimensionless

pressure, Pa

conductive heat flux, W m*

Matrix of inverse mass transfer coefficients, s m”
Schmidt number, dimensionless

Sherwood number, dimensionless

Temperature, K

velocity, ms™

molar flow rate of component in the vapour phase, mol s’
Vapour molar flow rate, mol s

mole fraction liquid phase component, dimensionless

mole fraction vapour phase component, dimensionless

matrix of dimensionless rate factors, dimensionless
mass transfer coefficient, m s’

heat of vaporisation, J mol’!

viscosity, Pa s

mass density, kg m™

correction factor, dimensionless

Vol. 27, No. 3
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[=E] matrix of correction factors, dimensionless
Subscripts

eff effective

0 refers to the coolant

H heat transfer

R refers to a reference component
14 refers to the vapour phase
Superscripts

0 Refers to pure component

C Indicates coolant

I Interface

L Indicates liquid phase

vV Indicates vapour phase

w Indicates water

) Indicates finite transfer rates
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