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ABSTRACT: In this paper, a series of bisbenzimidazole-functionalized highly porous
covalent triazine frameworks (CTF-BIBs) has been constructed from a new organic
building block, 1,4-bis(S-cyano-1H-benzimidazole-2-yl)benzene, via ionothermal
polymerization. The physical porosity and gas adsorption properties of these CTEF-
BIBs were characterized, and the resulting CTF-BIBs exhibit significantly high
Brunauer—Emmett—Teller surface areas (1636—2088 m* g~') and notable CO,
uptakes (86.4—97.6 cm® g7 at 273 K and 1 bar; 48.5—-56.8 cm® g™' at 298 K and
1 bar). More importantly, these CTF-BIBs exhibit excellent selective separation
abilities for CO,/N,, CO,/CH,, C,H¢;/CH,, and C;Hgy/CH,, particularly for
equimolar mixtures C;Hg/CH, (386.6 for CTF-BIB-1 under 1 bar and 298 K).
Furthermore, transient breakthrough simulations were carried out for equimolar CO,/
C;H,y/C,Hy/CH, mixtures, and CTF-BIBs display good separation performance in
industrial fixed bed adsorbers. These results clearly demonstrate that the synthesized
CTF-BIBs may serve as potential materials for CO, capture and adsorptive separation

ption and separation

29

for small hydrocarbons.
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B INTRODUCTION

Worldwide environment and energy issues have attracted
enormous attention because of global warming and diminish-
ing fossil fuel reserves. CO, capture and storage (CCS)
technologies are considered as a vital proposal to solve the
greenhouse effects caused by the escalating level of
anthropogenic CO,." The traditional CCS technologies,
including amine scrubbing and cryogenic separation, suffer
high cost, severe corrosion of equipment, and chemical
decomposition in the regeneration process.”” Hence, devel-
oping new methods and materials for CCS is an urgent task to
alleviate or eliminate the abovementioned constraints. In
recent years, porous adsorbents have demonstrated significant
promise for CCS.*~°

Currently, natural gas mainly consisting of methane (CH,)
has become a major energy fuel instead of controversial coal
and oil, which is attributed to the lowest carbon amount of
CH, and the least CO, emission per unit energy.”* However,
varying amounts of impurities in natural gas, such as CO,,
C,H¢, C;Hg, and so forth, will severely reduce the utilization
efficiency of CH,. Thus, the selective separation of CO,/CH,,
C,H,/CH,, and C;Hg/CH, is of immense importance for
purifying natural gas.”~"> The cryogenic distillation method is
the traditional separation and purification technology of these
hydrocarbon mixtures, which not only requires high pressure
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and very low temperature but also consumes a lot of energy
during the separation process. To date, the pressure swing
adsorption process,'” which is the most efficient and
economical separation technology, has been widely developed.
In this technology, porous adsorbents play a key role in the
efficiency of separation because of their excellent adsorption
capacity.

To be practical, porous adsorbents such as metal—organic
frameworks (MOFs) and porous organic polymers (POPs)
have shown excellent potential for CO, capture and the
separation of light hydrocarbons (C;H,, C,Hg vs CH,)."*™"7
Compared with MOFs, various new kinds of POPs such as
covalent organic frameworks,'® conjugated microporous
polymers,”” polymers of intrinsic microporosity,”’ hyper-
cross-linked polymers,”" benzimidazole-linked polymers
(BILPs),”*® porous aromatic frameworks (PAFs),”* and
covalent triazine frameworks (CTFs),”*® have shown higher
mechanical, physical, and chemical stability. Meanwhile, the
other advantages of POPs, including variable morphologies,
large surface areas, and easy modification, make them easy to
achieve high storage capacity and high selectivity. Researchers
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can not only change the pore properties of POPs by selecting
structurally different organic building blocks but also provide
the affinity sites for particular gas by introducing different
functional groups/ sites, such as porphyrins,'” benzimidazole,””
carbazole,” Troger’s base,”*** and N—heterocyclic,30 thereby
increasing the preferential interaction of specific gases.

CTFs, as a representative class of POPs, were first
synthesized through ionothermal polymerization by Thomas
et al. in 2008.”%*° Notably, not only do CTFs inherit the
merits of POPs, but also the synthetic raw materials (cyanic
monomers) of CTFs are easily obtained. In these polymer-
izations, ZnCl, is used as both catalyst and reaction solvent.
Compared with the vast majority of POPs, the synthesis
process of CTFs does not require expensive transition/noble
metal catalysts, as well as anhydrous and inert conditions.
These characteristics of CTFs make them be of great
advantage in a wide range of applications such as sensing,*'
gas adsorption/separations,”” photocatalysis,” electrode ma-
terials in supercapacitors,34 or oxygen reduction reaction.” So
far, researchers used a variety of strategies to build new types of
CTFs for the purpose of increasing the adsorption capacity of
CO,. The introduction of nitrogen groups in aromatic cyano
building blocks has proven to be a significant strategy to
increase CO, capture, such as lutidine and pyrimidine building
units,*® pyridine,”” and benzimidazole groups.”* However, the
fabrication of CTFs for the high-performance capture CO, and
CO,/CH,, C,H¢s/CH,, and C;Hgy/CH, selective separation
remain few.

In this study, we successfully construct a series of highly
porous covalent triazine frameworks (CTF-BIBs) by using 1,4-
bis(S-cyano-1H-benzimidazole-2-yl)benzene (BCBIB) as
building blocks. The longer molecular structure of BCBIB
can increase the Brunauer—Emmett—Teller (BET) surface area
of the obtained materials, and the N-rich building units provide
CO, aflinity sites. We investigated the effects of reaction
temperature on physical porosity and gas adsorption properties
of the obtained materials. Then, we carefully explored CO,
sorption ability and selective separation for CO,/N,, CO,/
CH,, C,H¢/CH,, and C;Hy/CH,. The highest uptake
performances for CO, (97.6 cm® g~') are observed for CTE-
BIB-1 at 273 K and 1 bar. Excitingly, the C;Hy/CH, selectivity
of CTF-BIB-1 is up to 386.6 (298 K, 1 bar) by ideal
adsorption solution theory (IAST), and it is the best separation
performance in industrial fixed bed adsorbers by transient
breakthrough simulations for equimolar CO,/C;Hg/C,Hy/
CH, mixture separation. This work demonstrates that the
incorporation of bisbenzimidazole in the frameworks of CTFs
will enhance the performance of gas adsorption for CO, and
separation for small hydrocarbons.

B EXPERIMENTAL SECTION

Synthesis of 1,4-Bis(5-cyano-1H-benzimidazole-2-yl)-
benzene (BCBIB). In a 250 mL round-bottom flask, a solution of
3,4-diaminobenzonitrile (3.73 g 28 mmol), 1,4-benzenedicarbox-
aldehyde (1.88 g, 14 mmol), and sodium hydrogen sulfite (4.20 g, 40
mmol) in N,N-dimethylacetamide (150 mL) was heated to 140 °C
and stirred for 24 h. After cooling down to RT, deionized water (300
mL) was added into the reaction mixture, and then the solid formed
was filtered off. Then, the product was washed with deionized water
and dried under vacuum at 100 °C for 24 h, and recrystallization with
dimethyl sulfoxide afforded BCBIB as a pale-yellow solid (yield, 3.52
g, 9.40 mmol, 69.8%). Elemental analysis (%): caled C, 73.32; H,
3.36; N, 23.32. Found: C, 73.88; H, 3.71; N, 23.83. '"H NMR (300
MHz, DMSO-dg, 8, ppm): 13.61 (s, 2H), 8.39 (s, 4H), 8.17 (s, 2H),

7.76 (s, 2H), 7.61 (dd, J; = 8.3 Hz, ], = 1.4 Hz, 2H). HRMS (ESI):
caled for C,,H;3Ng" ([M + H]*), 361.1196; found, 361.1196.

General Synthesis Procedure for CTF-BIBs. BCBIB (200 mg,
0.55 mmol) and anhydrous ZnCl, (605 mg, 4.44 mmol) were ground
well and transferred into an ampoule under inert N, atmosphere.
Then, the ampoule was sealed by pumping with a vacuum pump and
placed into a furnace. The ampoule was calcined at 500 (CTF-BIB-
1), 550 (CTE-BIB-2), or 600 °C (CTF-BIB-3) for 40 h with a
heating ramp of 1 °C min™". When the ampoule dropped to room
temperature, it was cautiously opened. The crude product was ground
well and used numerous deionized to wash. Next, the excess ZnCl,
was removed by stirring in 1 M HCI for 1 day. The resulting material
was washed repeatedly many times using deionized water and ethanol
and extracted by Soxhlet with tetrahydrofuran. In the end, the
obtained black solid was dried under vacuum at 120 °C for 12 h. For
comparison, CTF-BIB-tf was prepared in 1,2-dichloroethane solution
by using the triflic acid catalyzed method.**

B RESULTS AND DISCUSSION

Synthesis and Characterization of BCBIB. The
bisbenzimidazole-functionalized aromatic dicyano building
block BCBIB was synthesized with a good yield by the easy
direct oxidative coupling reaction of 1,4-benzenedicarboxalde-
hyde and 3,4-diaminobenzonitrile (Figure S1). The chemical
structure of BCBIB was approved by Fourier transform
infrared (FT-IR) (Figure S2), "H NMR (Figure S3), and high-
resolution mass spectrometry (HRMS) (Figure S4). In the FT-
IR spectra, the strong adsorption located at about 3301 cm™
can be assigned to the —NH of benzimidazole rings, and the
strong adsorption peak located at near 1620 cm™' (C=N) can
be ascribed to the skeleton stretching of benzimidazole rings.
At the same time, the characteristic absorption peaks near 2219
cm™! can correspond to —CN groups. Simultaneously, in the
"H NMR spectrum (Figure S3), the assignment of all protons
is determined by the chemical shift and integral values. Also, in
the HRMS spectrum, the molecular weight was precisely
measured, and its chemical formula was analyzed. Finally, the
thermogravimetric analysis (TGA) curve of BCBIB (Figure
SS, Supporting Information) prior to the polymerization shows
that the main weight loss starts near 450 °C, and then the
benzimidazole rings begin to decompose. The good thermal
stability of BCBIB ensures that the skeleton remains stable
under continuous heating at high polymerization temperature,
generally.

Synthesis and Characterization of CTF-BIBs. The
synthesis of bisbenzimidazole-functionalized CTFs (denoted
as CTF-BIBs) was carried out by using bisbenzimidazole
containing monomer BCBIB through ionothermal polymer-
ization, in which molten ZnCl, was used as the catalyst and
reaction solvent (Scheme 1). To investigate the effect of the
molar ratio of the ZnCl, to the monomer on the porosity
properties of materials, three CTF-BIBs were synthesized at
500 °C by using 5, 8, and 10 equiv ZnCl,. As shown in Figure
S6 and Table S1, a 1:8 ratio of BCBIB and ZnCl, is an ideal
condition for high surface areas and the highest porosity. Next,
to systematically survey the influence of the synthetic
temperature on porosity and gas adsorption, CTF-BIB-1-3
were prepared in a sealed ampule for 40 h at 500, 550, and 600
°C, respectively. It should be paid more attention that when
the sealed ampule was open, there were obviously positive
pressures. This phenomenon was principally ascribed to the
gas generated by the partial decomposition of the benzimida-
zole group at a high temperature.*
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Scheme 1. Synthesis Route and Idealized Structure of CTF-
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Figure 1. FT-IR spectra of the monomer BCBIB and CTF-BIB-1-3.

BCBIB at about 2219 cm™" almost totally disappeared after
ionothermal polymerization. Meanwhile, the characteristic
peaks for triazine rings appeared at 1570 and 1371 cm™' in
all CTF-BIBs.***” To obtain more detailed information about
the chemical structures of the CTF-BIBs, solid-state 3*C NMR
was carried out for all the materials (Figures S7-S9,
Supporting Information). The characteristic peak near 126
ppm can be assigned to aromatic carbons. Meanwhile, the
peaks around 152.8, 152.3, and 1542 ppm in CTF-BIB-1,
CTF-BIB-2, and CTF-BIB-3 correspond to NC(Ph)N in
benzimidazole units.””** However, there is no way to
distinguish the characteristic peak of carbon of triazine due
to the partial graphitization of frameworks.*"** Next, the
evolution of nitrogen functional groups during CTF-BIBs
formation is confirmed by X-ray photoelectron spectroscopy
(XPS). The binding energy of N 1s in CTF-BIBs was
deconvoluted into four different peaks (Figure S10, Supporting
Information): pyridinic N (398.13—398.30 eV), pyrrolic N
(399.90—400.10 eV), graphitic N (401.08—401.24 eV), and
oxidized N (402.47—402.60 ¢V).*>** The N 1s XPS spectra
for BCBIB contain two configurations with the signal at
398.66 and 400.22 eV. The former corresponds to non-
protonated pyridinic N, whereas binding energies at 400.22 eV
are attributed to protonated pyrrolic nitrogen (—C—NH—C—)
in the imidazole ring. After ionothermal polymerization, the
obtainable CTF-BIBs contain two new nitrogen configura-
tions, graphitic N and oxidized N. This may result from partial
decomposition of the imidazole ring during the high reaction
temperature, which is in great compliance with the FT-IR and
solid-state '*C NMR results as mentioned above. Therefore,
when the temperature reaches 600 °C, the material is
transformed into graphitized CTFs.

The crystalline nature of CTF-BIBs was confirmed by
powder X-ray diffraction (PXRD) analysis (Figure Sl11,
Supporting Information). The diffractograms show a broad
diffraction peak around 24.7°, which suggests a generally
amorphous structure. The morphologies of the samples were
observed by scanning electron microscopy (SEM). As shown
in Figures S12—S14 (Supporting Information), CTF-BIBs are
composed of different sizes and aggregated particles with
irregular shapes and rough surfaces. The transmission electron
microscopy (TEM) images of CTF-BIBs shown in Figures
S15—S17 (Supporting Information) demonstrate their dis-
ordered porous layered structure, which is identical to the
abovementioned PXRD results. The thermal stabilities of the
triazine frameworks play an important role in its applications,
which was characterized by TGA under N, atmosphere
(Figures S18—S20, Supporting Information). All CTF-BIBs
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Figure 2. (a) N, sorption isotherms for CTF-BIB-1 (black), CTF-BIB-2 (blue), and CTF-BIB-3 (red) at 77 K; (b) PSD curve of CTF-BIB-1
(black), CTF-BIB-2 (blue), and CTF-BIB-3 (red) from N, adsorption at 77 K using the NLDFT method.
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Table 1. Pore Characteristics of CTF-BIBs

CTE-BIBs
CTE-BIB-1
CTF-BIB-2
CTE-BIB-3

reaction conditions

500 °C/40 h
550 °C/40 h
600 °C/40 h

Sper” (m® g_l)
1636
1714
2088

Vmicb (Cm3 g_l) Viot” (Cm3 g_l) Vinicro/ Viot
0.63 0.96 0.66
0.68 0.99 0.69
0.86 1.10 0.78

“BET surface area. bMicropore volume calculated from N, adsorption isotherms using the t-plot method. “Total pore volume at P/P, = 0.99.
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Figure 3. (a) Gas sorption isotherms of CO, for CTF-BIBs measured at 273 and 298 K under 1 bar and (b) calculated isosteric heats of CO,

adsorption for CTF-BIBs.

Table 2. Sorption Results for Each CTF-BIB Including Sorption Capacities and Sorption Selectivities”

gas uptake (cm® g7, 1 bar)

selectivity (IAST)

CTE-BIBs CO, C3Hg C,Hg CH,

CTE-BIB-1 97.6/56.8 209.2/158.1 132.1/91.1 30.3/16.2
CTF-BIB-2 92.3/55.6 206.7/157.7 133.4/91.2 31.9/17.5
CTE-BIB-3 86.4/48.5 232.1/167.5 136.5/90.2 27.3/16.2

N, CO,/CH, CO,/N, CyHy/CH, C,H(/CH,
10.3/5.1 6.9 (6.8) 29.3 386.6 20.4
10.0/5.3 6.9 (7.3) 33.1 311.2 19.6
9.8/3.9 4.6 (4.7) 212 170.5 13.6

“C0,, C3Hg, C,Hg, and CH, sorption was measured at 273/298 K at 1 bar; CO,/CH, (0.5/0.5 and 0.05/0.95), CO,/N, (0.15/0.85), C;Hy/CH,
(0.5/0.5), and C,H¢/CH, (0.5/0.5) selectivities calculated by the IAST method at 298 K and 1 bar, respectively.

reveal high thermal stability, and the onset decomposition
temperature is around 450 °C. The slight weight mass loss
before 100 °C is attributed to the adsorption of gas and water
vapor within the framework structure, which is in accordance
with most of the reported POPs.** Inductively coupled plasma
(ICP) spectral analyses show 0.19, 0.12, and 0.20 wt % zinc
contents for CTF-BIB-1, CTF-BIB-2, and CTF-BIB-3,
respectively, which is a low and reasonable quantity of Zn
ions.**

Porosity Measurements. The porosity properties such as
the BET surface areas, pore volume, and pore size distribution
(PSD) of CTF-BIBs synthesized at different temperatures
were characterized by nitrogen adsorption measurements at 77
K. The corresponding N, adsorption and desorption isotherms
and PSDs of CTE-BIBs are shown in Figure 2. For CTF-BIBs,
the isotherms show rapid nitrogen increases in the low relative
pressure region (P/P, < 0.01), representing a typically
microporous structure. Meanwhile, the low-pressure hysteresis
loops are found for all triazine frameworks, indicating the
existence of the mesopores in these CTF-BIBs. According to
the IUPAC classification, the synthesized CTF-BIBs displayed
type I N, sorption isotherms with a type IV character.”” The
BET surface areas of CTF-BIB-1—3 are 1636, 1714, and 2088
m* g~!, respectively. The total pore volumes (V) of CTE-
BIB-1 to CTF-BIB-3 determined by using the single point
measurement of the N, adsorbed at P/P, = 0.99 are 0.96, 0.99,
and 1.10 cm® g7!, respectively. It is noteworthy that the BET
surface area and total pore volume of the obtained materials
increased gradually as the reaction temperature increased.
These can be ascribed to the fact that high temperature causes

26681

more defects derived from the decomposition of the
benzimidazole rings or triazine rings in the framework.>®**
The BET surface areas of synthesized CTF-BIBs are higher
than those reported for CTE-Bls (642—1549 m* g™'),*® which
may be attributed to the increased length of organic monomers
and the optimized synthesis conditions. The PSDs of CTF-
BIBs were calculated using the nonlocal density functional
theory (NLDFT) method (Figure 2b). These detailed pore
characteristics are summarized in Table 1. For CTF-BIBs, the
micropores are mainly concentrated in two peaks at 0.68 and
1.27 nm, whereas the small mesopores with a dominant pore
size are found at 2.5 nm, which reveal that CTF-BIBs have
both microporous and mesoporous features. CTF-BIB-tf was
prepared in 1,2-dichloroethane solution by using the triflic acid
catalyzed method. The porous properties of CTF-BIB-tf were
characterized by nitrogen adsorption measurements at 77 K
(Figure S21). Unfortunately, CTF-BIB-tf does not show any
N, uptakes.

Gas Adsorption Behaviors for CO, and Light Hydro-
carbons. The synthesized CTF-BIBs possess high surface
area, excellent physical—chemical stability, #-conjugated
triazine rings, as well as the CO,-philic benzimidazoles.
Considering these features, the CO, adsorption properties of
these CTE-BIBs have been investigated. The CO, adsorp-
tion—desorption isotherms at 273 and 298 K are displayed in
Figure 3a. The CO, uptake values are 97.6 cm® g~' (4.35 mmol
g™") for CTE-BIB-1, 92.3 cm® ¢! (4.12 mmol g™') for CTE-
BIB-2, and 86.4 cm® g™' (3.86 mmol g!) for CTF-BIB-3
under 1 bar at 273 K, whereas 56.8 cm® g™' (2.54 mmol g7'),
55.6 cm® ¢! (2.48 mmol g7'), and 48.5 cm® ¢! (2.17 mmol
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Figure S. N,, CO,, CH,, C,H,, and C;Hj sorption isotherms at 298 K and 1 bar by using the DSLF equation fitting [(a) CTF-BIB-1, (d) CTF-
BIB-2, (g) CTF-BIB-3]; the adsorption selectivities are calculated by IAST at 298 K and 1 bar [(b,c) CTF-BIB-1, (e,f) CTF-BIB-2, (h,i) CTF-

BIB-3].

g™') for CTF-BIB-1-3 at 298 K (Table 2). The CO, uptake
of CTF-BIB-1 (2.54 mmol g™') is higher than those of many
reported CTFs measured at 298 K and 1 bar, such as CTF-1
(1.41 mmol g™'),* l-CTFs (0.71-2.29 mmol g~"),>* CTE-
TBs (1.50—2.46 mmol g~* at 303 K),*! PHCTFs (1.23—1.57
mmol g7'),* and CTF-20-400 (2.09 mmol g™'),** even
compared with other kinds of benchmark materials, the zeolite
13X (3.5 mmol g™*)," polyethylenimine-modified conventional
silica (2.4 mmol g'),° and the commercially available BPL
carbon (2.08 mmol g™').>’ Interestingly, the CO, uptake
values of CTF-BIBs are also comparable to reported CTF-BIs
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with benzimidazole rings (1.67—2.73 mmol g~', at 303 K and
1.1 bar).*® It is worth noticing that the BET surface area of
CTEF-BIB-3 is higher than that of CTE-BIB-1, but the CO,
uptake values of CTF-BIB-3 are lower.

This phenomenon demonstrates the CO, uptake values is
not only corresponding to the BET surface areas. The reason
can be ascribed to the fact that high reaction temperature leads
to partial decomposition or fragmentation of benzimidazole
and triazine rings in CTF-BIBs, lowering the affinity between
framework and CO, molecules. Elemental analysis measure-
ments and N/C molar ratios also confirmed this fact (Table
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Figure 6. Transient breakthrough simulation data for the equimolar 4-component CO,/CH,/C,H/C;H; mixture at 100 kPa and 298 K of CTF-
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S2). The nitrogen contents of CTF-BIBs significantly decrease
with increasing reaction temperature, where CTF-BIB-3 is far
less than the theoretical values. Meanwhile, the N/C molar
ratios of CTF-BIB-1, CTF-BIB-2, and CTF-BIB-3 are 15.7,
12.1, and 11.5%, respectively, which are lower than theoretical
values (27.3%). The isosteric heat (Q,) values of CO,
adsorption can reflect the interaction strength between the
frameworks and CO,, which are calculated by using the virial
equation to fit the CO, adsorption isotherms at 273 and 298 K
(Figures 3b and S22). The Q, values of CTF-BIB-1, CTF-
BIB-2, and CTF-BIB-3 at zero coverage are 35.2, 34.7, and
32.5 kJ mol™’, respectively, suggesting relatively strong CO,-
network interactions. The adsorption enthalpies of CTF-BIB-1
and CTEF-BIB-2 are quite similar, which can be attributed to
their almost similar pore volume and BET surface area. The Q,,
values of CTF-BIBs are higher than those of most porous
solid-state adsorbents, such as CTF-1 (27.5 kJ mol™),*’ BILPs
(26.7-28.8 k] mol™!),>>*** PAF-1 (15.6 kJ mol™')**
activated carbons (e.g, BPL 25.7 k] mol™', A10 21.6 kJ
mol ™!, Maxsorb 16.2 k] mol™!),>> and APOPs (26.6—33.3 k]
mol™).%° The high Q, value of CTF-BIBs can be attributed to
the micropore structure effect, as well as rich CO, affinity
positions.

To further evaluate storage capacity of small hydrocarbons
(C1-C3), the single component adsorption isotherms of CH,,
C,H¢, and C;Hg are measured at 273 and 298 K under 1 bar,
respectively (Figure 4a—c). As expected, CTF-BIB-1, CTF-
BIB-2, and CTF-BIB-3 display similar adsorption isotherms.
The rapidly improved amounts of small hydrocarbons (C1—
C3) were adsorbed at low relative pressures; it was followed by
the progressive increase of their adsorption with the applied
pressure, eventually leveling off. The adsorption capacities of
all CTF-BIBs are summarized in Table 2. All the porous CTF-
BIBs possess higher C;Hg and C,Hg uptakes than that of CH,
because of the presence of small mesopores in the frameworks.
Among all CTF-BIBs, CTF-BIB-3 has the highest C;Hj,
(232.1/167.5 em® g') and C,Hg (136.5/90.2 cm® ¢')
adsorption capacity at 273/298 K, outperforming that of
some previously reported porous materials such as JLU-Liu-18
(138/116 cm® g for Cy;H; and 128/92 cm® g™ for C,Hy at
273/298 K),'® ZnP-CTF-400 (112 cm® g™' for C;Hg and 70
cm® g™! for C,Hg at 298 K),”” and MEM-202a (151.4 cm® g™
for CyHg and 94.3 cm® ¢! for C,H, at 293 K).*® The same
method is used to calculate the isosteric heat (Q,) values of
small (C1-C3) hydrocarbon adsorption by using the virial
equation to fit the adsorption isotherms at 273 and 298 K
(Figures $23—S25). The Q,, values of C;Hg, C,H,, and CH,
for CTE-BIB-1 at zero coverage are 37.6, 30.7, and 20.5 kJ
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mol™'; for CTE-BIB-2, they are 37.2, 34.2, and 20.4 kJ mol™/;
and for CTF-BIB-3, they are 39.0, 27.8, and 17.4 k] mol™},
respectively. The quantitative relation of Q, values for small
hydrocarbon is C;Hg > CH, and C,Hs > CH,, revealing that
CTE-BIBs possess extremely promising prospect for highly
selective adsorption separation of C;Hg and C,Hg over CH,.

Gas Separation Behaviors. Considering the high CO,
adsorption properties and great binding affinity of CTF-BIB
materials, the adsorption selectivities of CO,/CH, (0.5/0.5
and 0.05/0.95) and CO,/N, (0.15/0.85) were further
evaluated by IAST. The models are built very well (R* >
0.999) to fit the experimental single-component isotherms at
298 K and 1 bar through the dual-site Langmuir—Freundlich
(DSLF) equation (Figure S5). Then, we used the fitting
parameters to predict polycomponent adsorption by IAST
(listed in Table S3). All calculation results are shown in Table
2. The selectivities of CO, over CH, (0.5/0.5 and 0.05/0.95)
for CTE-BIB-1 according to the experimental data are 6.9 and
6.8; for CTF-BIB-2, they are 6.9 and 7.3; and for CTF-BIB-3,
they are 4.6 and 4.7, respectively, which are comparable or only
slightly lower than those of CTF-DCBT (10.3 at equimolar
and 298 K),"® JLU-SOFI-R (3.9 at equimolar and 298 K),*’
BILP-11 to 13 (6.6—7.6 at a ratio of 0.05/0.95 and 298 K),60
PIN-1 to 2 (5 at equimolar and 298 K),%" and CTF-DCN-500
(5 at equimolar and 298 K).”* The CO,/N, adsorption
selectivity for CTF-BIB-1, CTF-BIB-2, and CTF-BIB-3 are
29.3, 33.1, and 21.2, respectively, which are comparable to
recent work, such as fl-CTF350 (23),° PIN-1 (31),°' CTE-
DCN-500 (37),° and ALP-1 to 4 (26—35).°® These results
illustrate that bisbenzimidazole-functionalized CTF-BIBs are
promising candidates for CO, capture and separation.

The present separation of hydrocarbons is one of the
important industrial applications. To achieve this aim, the
selectivity of equimolar mixtures C,H4,/CH,, and C;Hy/CH,
for CTF-BIBs was calculated by IAST (Figure 5). The
obtained values of selectivities of C,Hy over CH, for CTEF-
BIB-1, CTF-BIB-2, and CTF-BIB-3 are 20.4, 19.6, and 13.6,
respectively. On the basis of the high selectivities of CTE-
BIBs, the separation of C,H, from natural gas becomes highly
probable. The obtained values of the selectivities of C;Hg over
CH, for CTF-BIB-1, CTF-BIB-2, and CTF-BIB-3 are 386.6,
311.2, and 170.5, respectively. The C;Hg/CH, selectivity of
CTFE-BIB-1 is much higher than CTF-BIB-3. This can be
ascribed to the higher N content and the more complete
framework structure of CTF-BIB-1, which enhance the host—
guest interaction. The very high C;Hg/CH, selectivity of CTE-
BIB-1 is significantly higher than PAF-40-Mn (246),"” NAC-
800 (203.6),°* UTSA-35a (80),°° Zr-BDC (168.7),%° and Zr-
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1,4-NDC (247.1).°° The reason for the high C,Hg/CH,
selectivity is that ultrahigh C;Hg adsorption and excellent
affinity, compared to those of CH,. These results reveal that
the obtained CTE-BIBs have good potential applications for
CO, capture and sorption separation of small hydrocarbons.

Breakthrough Simulation Properties. The separation
performance of industrial fixed bed adsorbents is determined
not merely by the adsorption selectivities of porous materials
but also by their uptake capacity. For an appropriate evaluation
of the combined effects of adsorption selectivity and uptake
capacity of CTF-BIBs, transient breakthrough simulations
were carried out for equimolar CO,/C;Hy/C,Hs/CH,
mixtures operating at a total pressure of 100 kPa and 298 K
(Figure 6), using the methodology described in earlier
publications.””~"° It could be observed that the breakthrough
times sequence is C;Hg > C,Hy > CO, > CH,, which is
decided by the hierarchy of adsorption strengths. The
breakthrough times for CTF-BIB-1 are higher than others,
and CTF-BIB-1 has the best separation performance. These
results are consistent with selectivities by IAST calculations. It
is also worth noting that there is a time interval in the
breakthroughs, and it appears that CTF-BIBs are suitable for
purifying natural gas by separating each of the four component
gas mixtures in a nearly pure form.

B CONCLUSIONS

In conclusion, we have successfully synthesized a series of
highly porous covalent triazine frameworks (CTF-BIBs) by
using 1,4-bis(S-cyano-1H-benzimidazole-2-yl)benzene
(BCBIB) as building blocks. We also investigated the effects
of reaction temperature on physical porosity and gas
adsorption properties of the obtained materials. The BET
surface areas of CTF-BIBs are high up to 2088 m?> g~".
Meanwhile, these CTF-BIBs exhibit extraordinary CO, and
small hydrocarbon (C1—C3) sorption ability, and excellent
selective separation for CO,/N,, CO,/CH,, C,H,/CH,, and
C;Hg/CH,. In particular, the CO, uptake capacity of CTF-
BIB-1 is up to 97.6 cm® g ' (4.35 mmol g ') at 273 K and 56.8
cm® g7' (2.54 mmol g7') at 298 K under 1 bar, and the high
C;Hg/CH, selectivity is 386.6 at 298 K and 1 bar. Meanwhile,
CTF-BIB-1 displays excellent separation performance in
industrial fixed bed adsorbers by transient breakthrough
simulations for equimolar CO,/C;Hg/C,Hy/CH, mixture
separation. Because of their high gas uptake capacity and
adsorption selectivity, CTF-BIBs show promising application
prospect in CO, capture and adsorptive separation of small
hydrocarbon applications.
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Materials and methods. All chemicals were purchased from commercial sources and
used without further purification. BCBIB was synthesized in our laboratory listed in
Figure S1 (ESI). Fourier transform infrared (FT-IR) spectra were collected on a
Bruker IFS-66-V/S FT-IR spectrometer in the region of 4004000 cm'. '"H NMR
spectra were recorded on a Varian Mercury spectrometer operating at frequency of
300 MHz. The solid state '*C CP/MAS NMR spectra were recorded on a Bruker
AVANCE III 400 MHz NMR spectrometer. Mass spectra were recorded on the Bruker
Agilent1290 MicrOTOF Q II. Powder wide-angle X-ray diffraction (PXRD) was
carried out on a Rigaku D/max-2500 X-ray diffractometer using Cu Ko radiation,
operated at 40 kV and 200 mA with the 26 ranged from 4 to 70° and a scan speed of
6° min'. Thermal gravimetric analyses (TGA) were carried out on a TGA Q500
thermogravimetric analyzer in nitrogen at a heating rate of 10 °C min™. Inductively
coupled plasma (ICP) analysis was performed on a PerkinElmer Optima 3300DV
spectrometer. Elemental analyses (C, H, and N) were performed with a Vario MICRO
(Elementar, Germany). Scanning electron microscopy (SEM) images were recorded
on a JSM-6700 M scanning electron microscope operating at 10 kV. Transmission
electron microscopy (TEM) images were taken on a TECNAI F20 with an
acceleration voltage of 200 kV. The Micromeritics ASAP 2020 instrument was used to
evaluate the adsorption properties of N, CO, with the samples degassed at 120 °C for
12 h before testing under high vacuum. The CH4, C,Hs, and Cs;Hg adsorption
isotherms were performed using with a Micromeritics ASAP 2020 instrument at 273
and 298 K.
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Figure S1. Synthetic scheme of BCBIB.
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Figure S2. FT-IR spectra of BCBIB and corresponding reactants (KBr pellets).
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Figure S3. '"H-NMR spectrum of BCBIB.
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Figure S5. TGA curve of BCBIB under N; atmosphere in the range of 30 °C to

800 °C at a heating rate of 10 °C min™".
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Figure S6. N, adsorption/desorption isotherms of CTF-BIB-500 synthesized by
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desorption, respectively. The addition of 8 eq. ZnCl, facilitates higher surface areas.
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Figure S7. °C CP-MAS solid state NMR of CTF-BIB-1.
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Figure S8. °C CP-MAS solid state NMR of CTF-BIB-2.
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Figure S9. °C CP-MAS solid state NMR of CTF-BIB-3.
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Figure S10. high-resolution signal of N 1s of BCBIB (a), CTF-BIB-1 (b),

CTF-BIB-2 (c), and CTF-BIB-3 (d).
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Figure S11. Powder X-ray diffraction (PXRD) patterns of CTF-BIB-1, CTF-BIB-2,

CTF-BIB-3.
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Figure S12. SEM pictures of CTF-BIB-1 (a, b).
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Figure S13. SEM pictures of CTF-BIB-2 (a, b).
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Figure S14. SEM pictures of CTF-BIB-3 (a, b).

Figure S15. TEM pictures of CTF-BIB-1 (a, b).
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Figure S16. TEM pictures of CTF-BIB-2 (a, b).
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Figure S17. TEM pictures of CTF-IB-3 (a, b).
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Figure S18. TGA curve of CTF-BIB-1 under N, atmosphere in the range of 30 °C to

800 °C at a heating rate of 10 °C min™.
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800 °C at a heating rate of 10 °C min™".
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nonlinear curves fitting of C;Hg; (d) calculated with virial method.
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Prediction of adsorption of binary mixture by IAST theory
The measured experimental data is excess loadings (¢“) of the pure components N,
CO,, CH4, CoHg and Cs;Hg for CTF-BIB-1, CTF-BIB-2 and CTF-BIB-3, which

should be converted to absolute loadings (g) firstly.

Here Z is the compressibility factor. The Peng-Robinson equation was used to
estimate the value of compressibility factor to obtain the absolute loading, while the
measure pore volume is also necessary.

The dual-site Langmuir-Freundlich equation' is used for fitting the isotherm data at

298 K.

Here p is the pressure of the bulk gas at equilibrium with the adsorbed phase (kPa), ¢
is the adsorbed amount per mass of adsorbent (mol kg), gm and gm, are the
saturation capacities of sites 1 and 2 (mol kg™), b, and b, are the affinity coefficients
of sites 1 and 2 (1/kPa), n; and n, are the deviations from an ideal homogeneous
surface.

The selectivity of preferential adsorption of component 1 over component 2 in a

mixture containing 1 and 2, perhaps in the presence of other components too, can be

formally defined as
5— 41/
P1/P2

¢1 and g, are the absolute component loadings of the adsorbed phase in the mixture.
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These component loadings are also termed the uptake capacities. We calculate the
values of ql and g2 using the Ideal Adsorbed Solution Theory (IAST)? of Myers and

Prausnitz.

Table S1 Porosity data of CTF-BIBs synthesized with different ZnCl, equivalent at

500 °C

Molar ratio of
Sper’ (M’ g") Vil (em’ g1) Vi (em® &) Viniero/ Vit

BCBIB/ZnCl,
1:5 865 0.20 0.47 0.43
1:8 1636 0.63 0.96 0.66
1:10 1141 0.11 0.62 0.18

*Sger is the BET specific surface area. b Viicro 18 the pore volume determined by N,
adsorption isotherm using t-plot method. © Vi, is the total pore volume determined by

using the adsorption branch of N, isotherm at P/P, = 0.99.

Table S2 Elemental Analysis of CTF-BIBs

CTF-BIBs C®%) H(%) N(%) N/CMolar Ratio (%)
CTF-BIB-1 7335 313 12.96 15.7
CTF-BIB-2 7476 3.069  10.59 12.1
CTF-BIB-3 7750 3779  10.41 11.5

Cale. CpH 2Ny 7332 336 23.32 27.3




Table S3 The refined parameters for the Dual-site Langmuir-Freundlich equations fit

for the pure isotherms of N, CO,, CHy4, C,Hg and C;Hg for CTF-BIB-1, CTF-BIB-2

and CTF-BIB-3 at 298 K.

CTF-BIBs Gas G b, 1/n, Gm2 b, 1/ R’
N, 0.02175 0.09066  0.43229 540738 3.28372E-4 1.01124  0.99984
CO, 0.38055 0.0896 1.01593  9.77842 0.0039 0.92788  0.99999
CTF-BIB-1  CH, 3.13064  0.00149 1.05727  0.31454 0.01717  0.92191  0.99991
CHy  0.52344  0.15112  0.92971  10.12339  0.01202 0.82326  0.99999
CsHg  7.16567  4.10859E-5  1.5811  9.94893 0.11507 0.61526  0.99999
N, 1.96171  6.19585E-4  1.06606  0.17162 0.00964 0.7534  0.99966
CO, 0.60237  0.07796  0.93403  12.88239  0.00257 0.91677  0.99999
CTF-BIB-2  CH, 3.90236  0.00264 094569  0.01669 0.00368 1.73561  0.99988
C,Hy  9.10187  0.00849  0.90521  0.89835 0.14807  0.82142  0.99999
CHg  7.92959  2.89646E-4 122644  9.01312 0.12832  0.63411  0.99998
N, 0.91669  1.21459E-7 2.66347  68.36308 3.19397E-5  0.84018  0.99977
C0, 9.52149  0.000247  0.99747  0.26534 0.06558 1.07857  0.99999
CTF-BIB-3  CH, 4.07905 0.00178 1.02022  0.00325 0.37776 1.71779  0.99992
CHy  1.02966  0.07836  0.90496  8.31068 0.00463 1.0537  0.99999
CHy  9.97364  1.17751E-4 142645  9.16197 0.08575 0.74195  0.99999




Transient breakthrough of mixtures in fixed bed adsorbers

The performance of industrial fixed bed adsorbers is dictated by a combination of
adsorption selectivity and uptake capacity. Transient breakthrough simulations were
carried out for equimolar CO,/C;Hg/C,H¢/CH4 mixtures operating at a total pressure
of 100 kPa and 298 K, using the methodology described in earlier publications. For
the breakthrough simulations, the following parameter values were used: length of
packed bed, L = 0.3 m; voidage of packed bed, e= 0.4; superficial gas velocity at inlet,
u=0.04 m/s. The transient breakthrough simulation results are presented in terms of a
dimensionless time as the x-axis, 7, defined by dividing the actual time, ¢, by the
characteristic time, % The y-axis is the dimensionless gas concentration at the

outlet of the fixed bed adsorber, ci/cj.

Notation

b Langmuir-Freundlich constant, pa~

¢ molar concentration of species i in the gas phase, mol m™
cio molar concentration of species 7 at inlet to adsorber, mol m>
pi partial pressure of species i in mixture, Pa

q component molar loading of species i, mol kg™

Gsat saturation loading, mol kg'1

L length of packed bed adsorber, m

R gas constant, 8.314 J mol” K™!

t time, s



T absolute temperature, K

1

u superficial gas velocity in packed bed, m s’
Greek letters

e voidage of packed bed, dimensionless

v Freundlich exponent, dimensionless

T time, dimensionless

p framework density, kg m>
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