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Finding the energy minima of systems with constraints is a challenging problem. We develop a
minimization method based on the projection operator technique to enforce distance and angle
constraints in minimization and reaction-path dynamics. The application of the projection operator
alone does not maintain the constraints, i.e., they are slightly violated. Therefore, we use the
SHAKE-methodology to enforce the constraints after each minimization step. We have extended
6 -SHAKE for bend angles and introduce ¢ -SHAKE and y -SHAKE to constrain dihedral and
out-of-plane angles, respectively. Two case studies are presented: (1) A mode analysis of
united-atom n-butane with various internal degrees of freedom kept frozen and (2) the minimization
of chromene at a fixed approach toward the catalytic site of a (salen)Mn. The obtained information
on energetics can be used to explain why specific enantioselectivity is observed. Previous
minimization methods work for the free molecular case, but fail when molecules are tightly

confined. © 2010 American Institute of Physics. [doi:10.1063/1.3429610]

I. INTRODUCTION

There are three basic types of calculations performed
with classical atomistic models: Monte Carlo (MC) simula-
tions, molecular dynamics (MD) simulations, and energy
minimizations [sometimes referred to as molecular mechan-
ics (MM)]. MC simulations use stochastic methods to probe
configuration space; MD simulations solve the Newton equa-
tions of motion; and energy minimizations find local and/or
global energy minima for a molecular system. In many sys-
tems, we have to reckon with constraints. For example, it is
common to use rigid bodies to describe small gas molecules
in which the interatomic distances are fixed. Formally, we
have to distinguish between holonomic and nonholonomic
constraints.! Holonomic systems have constraints that can be
expressed as an equation relating the particle coordinates of
the type f(r;,r;,rs,...,1)=0, where r; is the vector of Car-
tesian coordinates of particles. A constraint that cannot be
expressed in this form is a nonholonomic constraint. Com-
mon holonomic constraints are rigid bodies and fixed bond
lengths and bend and dihedral angles.

In mechanics, a constraint algorithm is a method of sat-
isfying constraints for bodies that obey Newton’s equations
of motion. The main difficulties are that the coordinates are
not all independent and the forces of the constraints are not
known in advance. There are three basic approaches to sat-
isfying constraints: (1) Formulating the problem in terms of
unconstrained internal or generalized coordinates, (2) intro-
ducing explicit constraint forces such as harmonic potentials,
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and (3) determining the coordinate adjustments necessary to
satisfy the constraints, e.g., by the technique of Lagrangian
multipliers. The first solution is to define new generalized
coordinates that are unconstrained; this can be applied, for
example, to keep small molecules rigid. Instead of constrain-
ing the intramolecular distances, one can redefine the prob-
lem in internal coordinates: The center of mass and elements
of the rotation matrix.>> The second approach is often
termed “soft” constraints. Soft constraints can be viewed as
additional energy penalty functions, usually harmonic in
functional form. A serious disadvantage is that the force con-
stants need to be sufficiently large to satisfy the constraints,
leading to numerical problems. The third approach is to solve
the “hard” constraints to determine the coordinate adjust-
ments necessary to satisfy the constraints. In the Lagrangian
approach of undetermined multipliers, one variable (the La-
grangian multiplier) is added to the system for each con-
straint. By determining the value of the Lagrangian multipli-
ers one can then compute the forces induced by the
constraints. In computer simulations, many algorithms focus
on procedures to estimate Lagrangian multipliers numeri-
cally. It is possible to find the Lagrangian multipliers analyti-
cally in some cases.

MC methods® are readily adapted to constraints. One
simply uses MC moves that leave the constraints satisfied.
For example, for rigid molecules, one uses translation and
rotation of the molecule, which leaves the internal structure
intact. In terms of the three ways of handling the constraints,
one can say that MC is most suited to the first type of solu-
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tion, i.e., to define the MC move in terms of generalized
coordinates. MC will not be discussed further and we will
focus on MD and energy minimization.

Constraints are often incorporated in MD simulations. In
MD simulations,”™® successive configurations of the system
are generated by integrating Newton’s laws of motion, which
yields a trajectory that describes the positions, velocities, and
accelerations of the particles as they vary with time. The
numerical scheme is rendered difficult by the small time step
required for the numerical integration of fast motions in the
system. It is therefore common to treat selected degrees of
freedom as rigid, e.g., methyl groups, water, and CO,. Ryc-
kaert ef al.’ used the Lagrangian multiplier approach to de-
velop the SHAKE algorithm for applying bond-stretch con-
straints in MD. SHAKE is designed to be used in combination
with the basic Verlet integration scheme. To avoid the com-
putational drawbacks of the basic Verlet scheme, Andersen'®
used instead the velocity-Verlet algorithm and named the re-
sulting algorithm RATTLE. To impose total rigidity of the wa-
ter molecule, one can use triangulation (i.e., impose an addi-
tional length constraint on the H-H distance). However, a
better approach is to use 6-sHAKE,"" which allows for the
explicit treatment of angular constraints. There are no physi-
cal reasons to restrict torsional or out-of-plane motion in
MD. Constraining them can seriously alter the dynamics of
the original, unconstrained system. Nevertheless, the ability
to constrain dihedral angles can be useful in simulations in
which one needs to assess the behavior of a molecule as a
function of conformation.

In minimization and reaction-path dynamics, it is
useful to use such distance and angle constraints, for ex-
ample, to study the approach of a molecule toward a catalytic
site. Hard constraints in minimization can be solved by (1) a
Lagrangian approach or (2) projection methods."*'* In the
Lagrangian approach, one variable (the Lagrangian multi-
plier) is added to the system for each constraint, and one then
searches for a stationary point in this extended system of
equations. Projection methods involve the division of the
search space into the null space and range space of the Jaco-
bian of the constraints at each point of the search. The opti-
mization then consists of minimization in the null space (i.e.,
parallel to the constraints). The target function to be opti-
mized is still the original energy expression. The projection
method is found to be superior in performance.15 It is more
stable and robust than Lagrangian methods and avoids the
mixing of reaction coordinate and constraint modes that oc-
curs easily in Lagrangian methods. The starting geometry
and the geometry at every succeeding iteration must be “fea-
sible,” i.e., they must satisfy the constraints. Even if the start-
ing configuration satisfies the constraints, the nonlinear char-
acter of the constraints means that the application of the
projection operator will not maintain the feasibility of the
iterates. Lu er al."* provided a method to maintain feasibility
of the bond distance and bond angle constraints: For the
bond distance, one of the atoms is displaced in the direction
of the force until the constraint is satisfied, and to fulfill bond
angle constraints, the two terminal atoms are displaced such
that there are no changes in the bond distances.

In this work, we derive constraint expressions for use in

7,12,13
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SHAKE, RATTLE, energy minimization methods, and mode
analysis. The remainder of this paper is organized as follows.
We start with a brief introduction to the SHAKE methodology
and the existing SHAKE methods for distance constraints and
bend angle constraints. The latter is referred to in the litera-
ture as f-SHAKE. We then introduce methods for constraining
dihedral and out-of-plane angles, which we refer to as
¢-SHAKE and Y-SHAKE, respectively. We also briefly discuss
the RATTLE methodology in which the basic Verlet integra-
tion scheme is replaced by the velocity Verlet scheme. The
SHAKE/RATTLE-constraint methodology can be used twofold:
One can use these equations in MD, but here we specifically
apply it to keep constraints satisfied during minimization. In
Sec. IV, we describe the mode-following minimization and
projection. The projection will not maintain the feasibility.
We use an idea similar to Lu ef al."* to restore it but replace
their feasibility algorithm with more general SHAKE-type
methods. SHAKE algorithms leave the center of mass and
angular momentum unchanged. The method is reliable and
flexible. Mode-following minimization methods use the first
and second derivatives of the potentials. The latter, the Hes-
sian matrix, is the central entity in mode analysis. The Hes-
sian matrix is mass weighted, and we show how to project
constraints such as bond, bend, dihedral, and out-of-plane
angles from the mass-weighted Hessian matrix. We conclude
with two case studies. We investigate united-atom n-butane
with various constraints on the internal structure and com-
pare the analytical solution of the frequencies to very low
temperature MD simulation using RATTLE. The second case
study concerns two real world examples: (a) The minimiza-
tion of chromene at a fixed distance, bend angle, and dihe-
dral angle toward a (salen)Mn catalyst and (b) the minimi-
zation of chromene at a fixed distance, bend angle, and
dihedral angle toward a (salen)Mn strut in a periodic frame-
work.

Il. SHAKE METHODOLOGY

Before presenting our ¢-SHAKE and y-SHAKE method,
we briefly introduce the SHAKE and #-SHAKE methodology
following the presentation of Gonnet et al."' The Verlet inte-
gration for time integration can be modified to enforce n,
constraints using Lagrange’s method of undetermined multi-
pliers,

n

rl(z+At) — fEHA’) + 2 )\khi,ka (1)
k=1
where
- aal (Ar)? @
Bk ﬂrf»’) m;

1

is the weighted constraint gradient of o} on r;, At is the
integration time step, ff”m) is the unconstrained particle po-
sition at time 7+ At¢, m; is the mass of atom i, and A, are the
Lagrangian multipliers. The constraint equation for distance

constraints between atom a and b is
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o= el ¥ P -d2=0, k=1,....n, (3)

where d, is the fixed bond distance of constraint k and ry,
and r;;, denote the positions of atoms a and b, associated
with constraint k. Substitution of Eq. (1) into Eq. (3) leads to

ne 2
o) = 4,) ot 2 Nhy, - (f;ct)b +2> thb,l) -di. (4
=1 =1

In SHAKE, the constraints are treated as decoupled,

Ec) If'”a + Ny — (rkb+)\khkbk)| —di~ (5)

The kth constraint equation for A\, can be solved using New-
ton’s method,

[0y
_ _a | ©
do/ INg N=00=1,. . n,

The general outline of the iterative SHAKE method is shown
in Algorithm 1.
Algorithm 1: r* -SHAKE: 0'k=r,%‘ab—d,%=0

for k=1,...,n. do
) 2 2
. (?o'k ( 1) o (t) (t) (At)
ka= or® m
ka k.a k.a
(1) 2 2
_doy (A 2 t>)(At)
k’b_&r(t) mkb - My p
kb ks ,
end for
Repeat
for k=1,...,n. do
o__ %%

(= _
IO IN |\ =0,1=1... .,

|r(s 1 _ (s—1)|2_d2

2(1’<Y v rkbl)) (hy,—hy,)

(s) (s=1) _y (s)
e LT

(s) (s=1) _y (s)
LTy — A hy,
end for
O.(S)
. k
until max;,—5 <e.
2d;,

First, the weighted constraint gradients are computed. These
are the constraint gradients before the integration step. After
integrating the unconstrained equations of motion, all atoms
involved in constraints are moved along the direction of
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(a) (b) (©

FIG. 1. The bend angle 6 (a) defined by the angle formed by atoms a-b-c
and the dihedral angle ¢ defined by the angle between the planes formed by
atoms a-b-c and b-c-d. A positive dihedral angle (b) and a negative dihedral
angle (c) are shown.

these constraint gradients until the constraints are satisfied.
This iterative process is denoted by the superscript (s) indi-
cating the current step and (s—1) indicating the result of the
previous step. The procedure is terminated when the stop-
ping criteria are satisfied, i.e., when constraints are suffi-
ciently close to zero denoted by a relative tolerance € on the
order of e=~107° or 1077. Because the constraints are satis-
fied at the initial configuration and the solution of the previ-
ous integration step is in the vicinity of the current solution,
one can safely use Newton’s method to solve for the fixed
point. In principle, Newton’s method has quadratic conver-
gence. However, since the constraints are treated as if they
were independent, the algorithm converges linearly, i.e., de-
spite the fact that updating one constraint slightly degrades
the results already obtained for the other constraints, conver-
gence is achieved.'® Many variants of SHAKE are proposed,
among them are SETTLE,'’ GRADIENT SHAKE," Nivm,'’
LINCS,”  QSHAKE,”! GSHAKE,”” GNIMM,” M-SHAKE,”*
WIGGLE,” P-SHAKE,?® P-LINCS,”’ MILC-SHAKE,”® # -SHAKE,'
and MILCH-SHAKE.” These algorithms differ mostly in the
tradeoff between convergence and computational cost and in
applicability to, e.g., linear and/or cyclic molecules. Note
that the conventional SHAKE algorithm for bond distances
uses 7. In the Supplementary Material, we also have listed
the r -SHAKE expressions.30 This shows that the r>-form is
slightly more convenient and computationally less expen-
sive.

Before discussion of SHAKE for angles, the symbols used
in the mathematical expressions are described. Let - denote
the dot product, X denote the crossproduct, and ry ,, ¥y . Tt
and r; ; denote the positions of atoms a, b, c, and d, respec-
tively, associated with constraint k. For notational conve-
nience, we will drop the subscript k, where it is implicitly
understood that the constraints should be solved iteratively
according to Algorithm 1. Let the vector directed from atom
a toward atom b be denoted by r,,=r,-r,, F,,=r,,/1,, de-
notes the unit vector, r,,=|r,|=\ry, r., and h,,=h,~h,.
To develop the algorithms to keep bend angles, torsion
angles, and out-of-plane angles fixed, one can apply the same
methodology as Algorithm 1. We will need expressions for
the constraint gradients h and the constraint gradient
Jo, k/ &)\k

Gonnet ez al."! developed the 6 -SHAKE algorithm, which
we here will name cos® @ -SHAKE because it is defined in
terms of cos” . The bend angle between atoms a, b, and ¢
(Fig. 1) is defined as
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0= cos_l(rbu : rbc). (7)

Tbalbe

The constraint for angles can be defined in various ways,
e.g.,

o =cos? O, —cos> O,=0, (8)

where 6, is the fixed bend angle. To obtain the constraint
gradient do/d\;, Gonnet et al.*® substituted Iy, =Ty, + Ny,
and r,,.=r;.+M\h,, into Egs. (7) and (8), took the derivative
with respect to A, and subsequently set A=0 because the
particle positions are updated in each step and the multipliers
are therefore reset to their original values of zero. This is
called linearization in Ryckaert et al’ and eliminates all
terms linear in \; in o} and all terms quadratic in \; in both
gy, and doy/ (9)\k.26 The result after setting A=0 is

doy (ry, - hy) + (ry. - hy)
—=2cos 0

INg Tbalbe
r,,-h I - hy,
_ (( ba > ba) " ( bc > bL))COS 0:| (9)
Tba Tpe

and the Cartesian derivatives of cos? 6 are

cos 6f,, — T,
V cos? 0,,.(a) =—2 cos g——Le——be (10)
T'ba
V cos? O,.(b) == (V cos? O,,.(a) + V cos? B,,.(c)),
(11)

cos Of . — T,

V cos? 6,.(c)=—2 cos 0 (12)

T'he

Of course, the constraint for angles can be defined in other
ways,

o=0,.-60,=0, (13)

o=cos 0, —cos 6,=0. (14)

The first constraint type [Eq. (13)] is here named 6 -SHAKE.
The gradient of 6. in Cartesian coordinates is the Wilson
vector for valence angle bending,31

cos Of,, — ¥y,

Vé(a) = : (15)
Tpa SN 6
Vo) == (VOu(a) + VOu.(c)), (16)
OF, —F
V() = COS—W (17)
rpe Sin 6
dop 1 ((rba -hy,)  (rp, - hbc))
— == 5 + 3 cos 6
I\, sin 6 Tha The
-hy,.) + -h
B (rpe - hye) + (1) - hy,y) } (18)
Tbalbe
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(@ (b) (©)

FIG. 2. The definition of the Wilson-type out-of-plane bend angle y. A
positive Wilson angle (a) and a negative Wilson angle (b) are shown along
with an alternative definition using the out-of-plane distance (c).

To avoid the division by sin #, which can cause numerical
problems when §— 180°, one can instead use the gradient of
cos 6, an algorithm which we denote cos 6 -SHAKE,

Of,, — ),
V cos 0(a)=—M, (19)
Tba

V cos 6(b) =—(V cos 6,,.(a) + V cos 0,,.(c)), (20)

cos Of,. — T,
V cos 6(c) = — ——2—ba, (21)

The

oy (1 hye) + (rp - hy)

N Tpalbe
r,, - h r,.-h
_ (( ba 5 ba) 4 ( bc 5 bC))COS 0. (22)
Tba Tpe

The relation between 6 -SHAKE, cos @ -SHAKE, and
cos® 6 -SHAKE is given by simple chain rules,

L) i e L2, (3)
2
dCOST(f(x)) —_2 cos(f(x))sin(f(x))%(x). (24)

In this work, we follow the procedure of Gonnet et al."!
to derive the equations for dihedral angles (Fig. 1) and
Wilson-type out-of-plane bending angles (Fig. 2). The dihe-
dral angle between atoms r,, r,, r., and r; is given by

¢= COS_1< (rab X rbc) ) (rbc X rcd))

|rab X rbcHrbc X rcd|

_ (rab X rbc) ) (rbc X rcd)

. . (25)
sin Gabc Sin Bbcd
We write the constraint equation as
o= ¢ - . (26)

Note that, unlike the bend angle, the sign of the torsion angle
is important. A constraint equation using cos ¢ does not dis-
criminate between —¢ and +¢. This could lead to difficulties
when constraining the dihedral angle to a value close to zero.
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The gradient of ¢,;,.; in Cartesian coordinates is the Wilson
vector for torsion,31

J. Chem. Phys. 133, 034114 (2010)

¢ ~ Ve €OS ¢bcd Ty X Iy
Sin Gy

Vep(c)= "2

Tpelde SIN Ppeq

coS O T X Fpye

Fop X By Fpe SIN B0 SiN O (29)
Vd)(a) - a.—z" (27) be abc abc
Vyp SIN Gabc
Fge X T
Vld) = - — (30)
b X T'ge SIN” Oy
Vpe — Fyp COS be Lab r, .
V(b) = ; - ‘ sin o st;n & < We substitute r,,=r,,+Ah,,, r,.=r,.+\h,., and r,
belab abe abe =r . +\h,, into Egs. (25) and (26), take the derivative with
. A respect to \, and subsequently set A=0. After some tedious
08 Opeg Fae X Tep (28) algebra, we arrive at the ¢ -SHAKE expression for the dihe-
Tpe SIN Gy SIN Oy dral angle case,
|
d_(T _ 1 (rab X rbc) : (rcd X hbc + hcd X rbc) + (rbc X rcd) ) (rbc X hab + hbc X rab)
d\ sin ¢ |rub X rbcHrbc X rcd|

(ry, X 1y) - (rp X hyy+hy X 1,,)

(rbc X rcd) ) (rcd X hbc‘ + hcd X rbc)

- |rab X rbc|2

We name the algorithm ¢ -SHAKE. Alternatives are o
=cos ¢p—cos ¢, (cos ¢ -SHAKE) and o=cos’> ¢p—cos® ¢,
(cos? ¢ -SHAKE). The expressions are easily derived by using
Eqgs. (23) and (24) and are given in the Supplementary Ma-
terial as Algorithms S9 and S10, respectively.30

Finally, the Wilson angle (also called “wag”-angle or
“inversion bend”) is addressed. This angle involves an atom
b bonded to atoms a, ¢, and d and is the angle between one of
the bonds and the plane defined by the other two bonds. The
angle is not uniquely defined and depends on the order of the
atoms,

Iy X Fp,

){1 — Sin—l(u . fba) , (32)
sin 6,4
Fp, X T

X = sin-‘<—”.“ - rb) (33)
S 0ahd
rp X ), .

Xd = Sin_l( b. b . rbd> . (34)
sin 6,

It is therefore customary to use the averaged Wilson angle,

|rbc X l'cdl :

sh(. (31)

s
x="—"""—". (35)
3
The Wilson angle constraint is
O=X— Xo- (36)

The gradients at the positions of atoms a, b, ¢, and d are
given by

1 I,y X £p,
V)((a)=—<—bd b _ ¢, tan X“)
3rpa \ cos x“ sin 6,
1 Ty X Fp, tan x? #
— - f
37y, cos X/ sin 6,,, sin® 6,,,

. 1 Fpa X By
—Fpe cOS O,p,) | + T
3rpa L cos x° sin 0,4

tan }°
) (rba — Iy COS 0abd):| 5 (37)
S 0abd

1 ( Py X Fpy ) C)
———— _f,.tan ¥

Y% =—
x(e) 3rpe \cos x° sin 6,4

fba X fbd tan Xa

1
3rpe | COS X sin Oy Sin® B,y

(fbc

| { £y, X £y

- fhd cos 6 bd) + .
¢ 3rpe| cos x? sin 6,
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tan y*

- 38
sin? 6, (38)

(fbc - IA'ba cos Habc):| )

1 r,. X F
V)((d) - _( Ipe Ipy

—— 2 — —fy, tan %)
3rpg\ cos x? sin 0,

fbc X fba tan XC

1 #
P . - Tpq
3rpal cos ¢ sin 0,,; sin® 0,4

Tpe X Tpq

1
—1,, cos 0 +— ————
ba “bd)} 3rbd{ cos x“ sin 6,y

J. Chem. Phys. 133, 034114 (2010)

- .ta?_)(“(f_bd_ £y cOS Ocpg) | (39)
sin” 6,4
Vx(b) == (Vx(a) + Vx(c) + Vx(d)). (40)

We substitute r,,=r,,+Ah,,, r,.=rp.+\h,., and r,,
=r,,+M\h,, into Egs. (32)—(36), take the derivative with re-
spect to A, and subsequently set A=0. Again, after some
tedious algebra, we arrive at the y -SHAKE expression for the
Wilson angle,

d\ 3| cos x*

Fhal'belpa S0 Oppg

Tpe - hbc

do 1 1 (hba (rpe X 14) + 1, (1 Xy +hyy X rbc))

2
| hb | hb Cpg- hhd Ccos 0‘bd
— tan X{ S ‘

s 2
ba "pe ha s chd

2
Tpe T'pa

Tpq Ny )
R

o8 b4 ( Cpg hye+ 1y hhd) ]

=
Sin” O,pq Thel'bd

1 (hbc (g X Tpg) + Tpe - (0 X g+ hy, X1rp)

)

COS Xc Ybalbel'ba Sin@abd
2
¢ o Toe e by o, hy, €08t O Tpg g Ty, By, COS Oy [ Tpg - Npg + 13-y,
—tan x 2 2 2 t .2 P) 2 2 TSl o
rbc rbd rba Sin abd rbd rba sin abd rbdrba

+cosA/"'

Thalbel'ba SN Oy,

1 (hbd' (Tpy X Tpe) + T4 (T Xy +hy X 1,)

)

2
Cpq-hyy 14, hy, 1, hy cost 6y,
—tan Xd > + + +

2 2 -2
Tpd Tpa Tpe S

The expressions for sin y -SHAKE (o=sin y—sin y,) and
sin? y -SHAKE (o=sin’ y—sin? y,) follow from

LIV _ costron L2, (42)
)
dsmT(f(x)) =2 cos(f(x))sin(f(x))%(x) (43)

and are given in the Supplementary Material as Algorithms
S12 and S13, respectively.30 All versions discriminate be-
tween —y and y, even close to 0°, but for structures close to
X0=90°, x -SHAKE could be preferable.

(& (e 7F

FIG. 3. A common definition of the improper dihedral angle ¢: The angle
between the planes formed by atoms “a-c-d” and “c-d-b.” (a) A positive
improper dihedral angle. (b) A negative improper dihedral angle. Note that
an exchange of atoms “c” and “d” leads to a change in sign, but not in
magnitude. (c) A second definition of the improper dihedral angle. Here, an
exchange of terminal atoms “b” and “d” leads to a change in magnitude.

T'ba Tpe

2 2

rba'hba+rbc'hbc> COs 0abc<rbc'hba+rba'hbc>:| (41)

-—
sin 0abc Tbal'be

The improper torsion is an alternative for the out-of-
plane angle (Fig. 3). Improper torsions are often used to keep
sp? atoms planar and sp® atoms in a tetrahedral geometry. It
is termed “improper torsion” because it simply treats the four
atoms as if they were bonded in the same way as in a true
torsional angle. Note that there are several definitions in use.
A possible definition is to define the dihedral in terms of the
angle between the planes a-c-d and b-c-d. A second defini-
tion uses c¢ as the central atom and uses the planes between
a-b-c and b-c-d. For improper torsions, an exchange of ter-
minal atoms leads to a change in magnitude and/or sign of
the angle, and the improper torsion needs to be symmetrized
by adding additional improper torsions and rescaling the
force constant (as done for the Wilson angle definition).
Apart from these issues, the SHAKE expressions for improper
dihedrals are identical to those for regular dihedrals.

lll. CONSTRAINTS IN MD

Ryckaert et al.’ introduced the “method of undetermined
parameters” to ensure that the constraints are satisfied at each
time step without introducing an additional numerical error

Downloaded 20 Jul 2010 to 146.50.208.232. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



034114-7 Distance and angular holonomic constraints

in the trajectory. The resulting SHAKE algorithm was intro-
duced for bond constraints in combination with the Verlet
integration scheme and later generalized to handle general
forms of holonomic constraints.*> To overcome the short-
comings of the basic Verlet algorithm, Andersen developed
the velocity-Verlet version of SHAKE, named RATTLE."’ Un-
like the basic Verlet scheme, the velocity Verlet scheme up-
dates both the positions and the velocities at each time step
and therefore involves two stages [see Supplementary Mate-
rial Algorithm S14 (Ref. 30)]. For general constraints, the
two stages of the velocity Verlet algorithm are modified to
satisfy the constraints as shown below. '

e Iteratively modify the positions r; after stage 1,

(s=1) _ (A0 %

rE” =T, 5 ' V.ow, (44)
‘ o) O_(s—l)
o= ‘ (45)

Vi = 2 :
At 1

(@) Sicn— (Vo)™ Vo
km;

e Jteratively modify the velocities v; after stage 2,

) Ar
v =y - 2L Sy (46)

27”’![

(s-1)
2 2, vi Vo
s o= Zientt TR 47
Y 1 R (“47)
2ienk;|vi(rk|

The Lagrangian multiplier A,(¢) can be estimated from

M) = 2 Y (48)

and is used to evaluate the stress and virial contribution.'®

Note that the velocity part has a different associated La-
grangian multiplier, and as a result, it is possible that both the
positions and the velocities satisfy the constraints. The
RATTLE algorithm is symplectic and time reversible when
carried to convergence.

The modification of the positions after stage 1 can alter-
natively be performed using SHAKE/Newton’s method in a
straightforward manner. It is also possible to perform both
stages in a SHAKE-like fashion, e.g., a constraint procedure
can be constructed for the velocity Verlet algorithm that re-
quires only one evaluation of the constraint forces.®

IV. CONSTRAINTS IN MINIMIZATION

Efficient techniques have been developed for geometry
optimization of a wide range of ab initio wave functions.* In
self-consistent field calculations the wave function is gradu-
ally refined until consistency is achieved. Convergence is
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considerably improved by methods like direct inversion of
the iterative subspace.37 Constraints in quantum optimization
are usually achieved by conversion to internal coordinates™
or in Cartesian coordinates by Lagrangian multipliers and/or
soft-constraints (penalty functions).””*’ Fixed atoms can
simply be eliminated from the optimization space when Car-
tesian coordinates are used. Likewise, using internal coordi-
nate bond distances, bend and dihedral constraints can be
eliminated from the optimization space. However, when us-
ing internal coordinates it is not obvious how to apply Car-
tesian constraints. Vice versa, imposing fixed bond distance,
bend and dihedral angles are also not straightforward in Car-
tesian space because such constraints are complicated non-
linear functions of the Cartesian positions. However, projec-
tion methods can be used.'*'**' There are comparison
studies between internal and Cartesian coordinates.** From a
view point of flexibility, the Cartesian coordinates allow the
most generic and versatile set of constraints. We use the ex-
act Hessian and therefore Cartesian coordinates are expected
to have similar convergence as internal coordinates.*’ More-
over, internal coordinates are more difficult to combine with
structural periodicity.44_46

The most commonly applied minimization techniques
for classical molecular systems are steepest descent (SD),
conjugate gradient (CG), and Newton’s methods."” The clas-
sical systems we focus on are periodic structures with hun-
dreds to thousands of atoms. The resulting energy landscape
is often complicated and jagged. In previous work® we found
that methods such as CG, in principle, converge, but the
solution was not a true minimum (it was a saddle point). The
CG structure of the unit cell can be dramatically different
from the (correct) zero Kelvin solution, e.g., for the
IRMOF-1 metal-organic framework (MOF).?

Our aim is to develop a minimization technique appli-
cable to adsorbates in tight periodic confinement where arbi-
trary constraints can be defined such as (a) fixed Cartesian
positions, (b) fixed Cartesian distances between chosen pairs
of atoms, (c) angle constraints between any three atoms, (d)
dihedral constraints between any four atoms, and (e) out-of-
plane constraints between any three atoms connected to a
central atom. The algorithm is required to converge reliably
and rapidly under the most difficult of numerical circum-
stances, and most importantly, we require that the obtained
structure is a true minimum. Only the mode-following mini-
mization technique can guarantee correct results. We com-
bine this technique with constraints.

In this work, we focus on mode following, also known
as Baker’s minimization.”*® The method uses the gradients,
the Hessian matrix, as well as the eigenvectors and eigenval-
ues of the Hessian matrix. The potential energy surface U of
a (periodic) system can be Taylor expanded around a con-
figuration x of the system,

Ux+6x)=U(x)+ g dx + %5XTH5X + e, (49)
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where g=(dU/ dx) is the gradient and H=7U/ 0x0xp is Te-
ferred to as the Hessian matrix. One can differentiate Eq.
(49) with respect to Jx, set the result to zero, and solve to
obtain what is known as the Newton—Raphson step,49

Sx=-Hg. (50)

The Newton—Raphson step can also be expressed as a sum
over the eigenvectors A; (called local principle modes) and
eigenvalues ¢; of the Hessian matrix,

a;

T
PO SRCY: N 51)

where AiTg is the component of the gradient along the eigen-
mode A;. For zero eigenvalues, the corresponding step com-
ponent is set to zero. A zero eigenvalue means that for a
displacement in the direction of the eigenvector, the energy
does not change, while positive and negative values mean an
increase and decrease in energy, respectively. A true mini-
mum has all positive eigenvalues, and a first order saddle
point has exactly one negative eigenvalue. The Newton—
Raphson steps minimize along the eigenvectors with positive
eigenvalues and maximize along eigenvectors with negative
eigenvalues. Therefore, when the starting configuration is of
the correct curvature (the desired number of negative eigen-
values), the Newton—Raphson step is a good one to take.

In general, however, the step must be modified to obtain
a structure of the desired curvature.*® A simple but very pow-
erful modification is to use a shift parameter vy, which shifts
the value of the eigenvalues according to the following
expression:50

AT
x=—> DB A (52)
i A=Y

Simons er al.’' derived an equation to find the shift param-
eter v,

Alg)?
o3 Big) (53)

b
i Y-q

which can be solved by iteration. Note that besides minimi-
zation, the method can also be used to find saddle points.48

The set of 3N Cartesian coordinates is redundant. Only
3N-6 coordinates are needed to describe the geometry of N
atoms. It is important to prevent rotational and translational
motions during minimization. The Eckart conditions provide
a way of doing this. The full 3N X 3N Hessian in Cartesian
coordinates is treated by first projecting out vectors corre-
sponding to translations and infinitesimal rotations con-
structed using49
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1 00
010
00 1
1 00
Te 010 ,
00 1
1 00
010
00
(54)
0 i1~ ¢ _(yl_cy)
—(z1-c) 0 Xp—Cy
yi—=¢y  —(x—cy 0
0 n-c.  —(n-c)
I T R
2=y, —(x-c) 0
0 e 2,
—(ay=c,) 0 XN~ Cx
YN—Cy - (xy=cy) 0

where ¢=(1/N)=Mr; is the center of the system.

The translational constraints 7 and rotational constraints
R form a set e;,i=1---6. The unit vectors e; must be or-
thogonal to each other. A Gram—Schmidt orthogonalization
can be carried out, and the vectors can be subsequently nor-
malized. The orthogonal projector on the set e; (i

=1,...,m) can be written as
P=T-2 elel), (55)
i=1

where 7 is the identity matrix. The matrix P of size 3N
X 3N can be used as a projection operator on first and second
derivatives,

g, :'Pg, (56)

H'=PHP. (57)

Lu and Truhlar'*'* showed how to project out the bond dis-
tances and bend angles. The expressions given by Lu and
Truhlar for bond distance and bend angles in Cartesian coor-
dinates are the Cartesian gradients (Wilson vectors). Simi-
larly, we use the same projection method for projecting out
dihedral and out-of-plane angles. The set of projection vec-
tors e; is
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where N,, N, Ny, and N, are normalization factors. Each
vector in the set e; corresponds to a particular constraint.
The outline of the minimization process is shown in Al-
gorithm 2.
Algorithm 2: Mode-following minimization with constraints
ox=0
Repeat
X— X+ 0X
SHAKE all constraints
Compute energy, gradient, and Hessian
Project gradient and Hessian
Diagonalize Hessian to get eigenvalues and eigenvectors
Remove modes with zero eigenvalues from the optimiza-
tion
Compute step vector ox from the shifted eigenvalues, the
gradient,
and the eigenvectors
until every gradient<< e and all eigenvalues positive

Note that in our scheme it is allowed that the unit cell
changes size and shape. In that case the state vector X con-
tains in addition to the Cartesian coordinates of the atoms
also six elements that represent the strain on the unit cell. >4

One could also just project the gradients and use SD
and/or CG. However, we have mentioned the downside of
these methods. The projection of Lu and Truhlar was com-

bined with a quasi-Newton method [Broyden-Fletcher-

Goldfarb-Shanno (BGFS)]."* Also here, the projected gradi-
ents are used (to construct the approximate projected inverse
Hessian). For classical models the energy, gradients, and
Hessian matrix are relatively cheap to compute, and we use
the exact (projected) Hessian matrix (computed at each itera-
tion).

Control of the step length is very impor“[ant.52 If the Hes-
sian has small eigenvalues, the step may become very large
and overshoot the minimum.* To achieve convergence we
used a progressively smaller step length close to convergence
based on the root mean square of the gradient,

. 2?:18;'2 7
step length=min| 0.3, —— | |, (59)

n

where 7 is an convergence parameter. At each iteration, if
the norm of X is greater than the step length, then &x is
scaled back to the step length. For optimization without con-
straints an 7 value of 0 (no scaling) works well. Common
fixed step values are 0.3 for minimization and 0.1 for saddle-
point searches. For most minimizations with constraints we
used =1, while for the hardest cases we encountered 7
=1.2 was sufficient. The downside of a higher 7 value is a
slower convergence, but using this we were always able to
lower the gradients on all atoms to values smaller than
10° kJ/mol A while maintaining the constraints exactly
(within a specified tolerance; in this work we used a relative
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tolerance of 107%). Note that in our algorithm no line
searches are necessary.

V. CONSTRAINTS AND NORMAL MODE ANALYSIS

Normal mode analysis (NMA) has become one of the
standard techniques in the study of the dynamics of mol-
ecules. It is the study of motions of small amplitudes in
harmonic potential wells by analytical means. Here, small
means small enough that the harmonic approximation holds.
Usually this means that harmonic vibrational analysis can
provide a very good description of the system at low tem-
perature. A NMA contains all time scales. However, disad-
vantages include limited motion around a single stable con-
formation and lack of anharmonic features that are small but
sometimes important. Despite these obvious limitations,
NMA has found widespread use.

The equation of motion of a molecule in a harmonic well
is given by

d?(8x)
dr?

=-"H X, (60)

where M is a diagonal matrix that contains the masses of the
atoms.**>®  Substitution of the general solution X
=A cos(wt+ ¢) into the equation results in

HA = o’MA. (61)

In order to remove the dependence on the mass matrix on the
right side, one can rearrange the equation as

(M—I/ZHM—I/Z)(MI/ZA) — wZ(Ml/ZA)’ (62)
and denoting the new quantities with new symbols we have
H'A"=aA’. (63)

Here, H'=M"">HM~"? is the mass-weighted Hessian ma-
trix, A’=M"2A is the eigenvector of the mass-weighted
Hessian matrix and needs to be unmass weighted for normal
modes A=M""2A", and a=w?.

The removal of translation and rotational modes can now
be done using

T =M"?T, (64)

R'=M"R, (65)

where ¢=(1/Z;m;)=Vm;r; in R’ is the center of mass of the
system.*

We will show in this paper (case study I) that the con-
straints (e.g., bond, bend, dihedral, out of plane) can be prop-
erly removed by using

e/ =M. (66)

The set e of Eq. (58) is modified with a factor M~!/2,

The mass-weighted Hessian is projected using e’ to re-
move the translation, rotation, and constraints. The harmonic
frequencies v are then related to the eigenvalues of the pro-
jected and mass-weighted Hessian by

J. Chem. Phys. 133, 034114 (2010)

L) (67)

The normal mode i is given by A;=A]/ \r’%. The eigenvec-
tors give the direction and relative amplitude of each atomic
displacement. The value A,/ q; is an arbitrary amplitude for
displacement along normal mode i. If atoms are undergoing
thermal fluctuations along each mode, the standard deviation
of each atom is given by setting A;=\2kzT/m,,, where m,, is
the atomic mass of atom n.** For the generation of the
trajectory of normal mode i using N frames, the following
expression applies:

2ksT/M

&x,(1) = A;sin2m/N) 1=0,...,N.  (68)

l

The magnitude of the motion depends on temperature and is
inversely proportional to its frequency. The largest contribu-
tion to the atomic displacement comes from the lowest fre-
quency normal modes, whereas for high-frequency eigenvec-
tors, only a few atoms contribute. Note that this description
breaks down for motions with zero frequency.

VI. CASE STUDY I: MODE ANALYSIS OF UNITED-
ATOM n-BUTANE

A class of molecules that has been very successfully
modeled are alkanes. There are models that use explicit hy-
drogens, but even the so-called united-atom description
works very well for some purposes. United-atom models
combine the carbon and hydrogen atoms of the methyl or
methylene together into single interaction centers. A disad-
vantage of this grouping is that the force constants are now
effective parameters and bear no real connection to, e.g., the
infrared spectra. However, due to its simplicity, we have cho-
sen n-butane to illustrate the effect of constraints on the
mode analysis. The n-butane molecule is constructed from
four united atoms: CH;-CH,-CH,-CH;. The stretch
potential force constants are taken from Nath et al.™ U,
=%k(r—r0)2 with k/kz=96500 K and ry=1.54 A. The bend
and torsion potentials are taken from the TRAPPE force
field: U,y=1k(6-6))* with k/kz=62500 K and 6=114°,
and Ug=po+p;(1+cos ¢)+p,(1-2 cos ¢)+p3(1+3 cos ¢)
with py/kp=0 K, p;/kp=355.03 K, p,/kp=—68.19 K, and
p3/kp=791.32 K. There are three bond, two bend, and one
dihedral interactions.

Minimization of the n-butane molecule reveals two local
minima for the dihedral at =63.4511747° and a global mini-
mum at 180°. In Table I, we compare the frequencies of the
minima to cases in which the dihedral angle is fixed, the
dihedral and bend angles are fixed, the dihedral angle and the
central bond are fixed, and the dihedral angle and all bonds
are fixed, respectively. In general, the torsional modes are the
lowest in frequency, and the stretch modes are the highest in
frequency. Except the dihedral mode, the global minimum
(¢=180°) has no normal modes that change the dihedral
angle (all four atoms are planar). Therefore, when the dihe-
dral angle is kept fixed, the dihedral mode is removed, and
all others remain the same. This is no longer true for the
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TABLE I. Frequencies in cm™

J. Chem. Phys. 133, 034114 (2010)

of united-atom n-butane in two minimum energy configurations: ¢=180° (global minimum) and ¢$=63.451 174 7° (local

minimum). The unconstrained n-butane is compared to constraint cases where the dihedral angle is fixed, the dihedral and bend angles are fixed, the dihedral
angle and the central bond are fixed, and the dihedral angle and all bonds are fixed, respectively.

Free Fixed ¢ Fixed ¢, 6,, 6, Fixed ¢, rp, Fixed ¢, rup, Tpes Tea

¢=180° $=63.45° ¢=180° $=63.45° ¢=180° $=63.45° ¢=180° $=63.45° ¢=180° $=63.45°
1 153.323 150.744
2 288.622 296.864 288.622 227.648 324.355 248.761
3 291.723 417.291 291.723 417.291 344.522 364.867 291.723 417.291 291.723 256.002
4 558.233 545.498 558.233 520.318 558.233 514.495 558.233 544.542 419.147 473.853
5 635.758 633.899 635.758 633.899 639.200 621.218 689.814 633.899
6 692.391 649.398 692.391 649.385

second local minimum where the dihedral angle movement
is mixed with other movements. Constraining the dihedral
changes several modes.

The frequencies here are obtained from the mass-
weighted Hessian matrix, and when constraints are involved,
the Hessian matrix is corrected using Eq. (66). In Fig. 4, we
show the spectra of united-atom n-butane, analytically com-
puted from the Hessian matrix compared to very low tem-
perature (=1 K) MD. The trajectories were generated in the
NVE ensemble (constant number of particles N, constant vol-
ume V, and constant energy E) using a time step of 0.1 fs.
The MD spectra were computed using the Fourier transform
of the velocity autocorrelation function. Two cases of
n-butane were examined: The global minimum at ¢=180°

Butane at 1K: no constraints ¢=63.451°
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and a local minimum at ¢=63.4511747°. The spectra of the
molecule were computed using no constraints and compared
to those computed by constraining the torsion angle and all
three bonds (the bend angles are free). The analytical solu-
tion (Table I) matches the low temperature MD very well.
Note that due to the constraints, some modes vanish, and the
whole spectrum is generally affected. The case of the global
minimum shows higher symmetry as indicated by the pres-
ence of some zero amplitude modes in the MD spectrum. As
can be seen in Fig. 4, a slightly modified mass of one of the
CH; groups can be used to break the symmetry, and the
modes become visible (the mass modification was kept small
enough to have very similar frequencies).

Butane at 1K: constraint 0=63.451°, ryp, e, g
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FIG. 4. Mode analysis of united-atom n-butane: Analytical solution compared to very low temperature (=1 K) MD (red). Two cases are shown: A global
minimum with a dihedral angle ¢=180° and a local minimum at ¢»=63.4511747°. The vertical black lines are the analytical solutions. Some amplitudes in
the ¢p=180° case are zero due to symmetry reasons. A second spectrum (green) shows these modes by making one of the two CH; groups heavier by 0.5 a.u.,
which breaks the symmetry.
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C1 - oxo ligand distance =2 A
C1 - oxo ligand - Mn bend = 122°
C1 - oxo ligand - Mn - O dihedral = -130.7755°

FIG. 5. The chromene-(salen)Mn complex showing the constrained dis-
tance, bend angle, and dihedral angle in red. Picture made with CHEMDRAW
(Ref. 72).

Vil. CASE STUDY II: MINIMIZATION OF CHROMENE
APPROACH TO (SALEN)MN WITH CONSTRAINED
DISTANCE, BEND ANGLE, AND DIHEDRAL ANGLE

In catalysis, insight into chirality transfer from catalyst
to reactant can be gained by performing constrained minimi-
zations of the reactant-catalyst complex. Because the mecha-
nism of asymmetric induction for epoxidation of olefins by
(salen)Mn catalysts is thought to involve steric interactions
between the olefin and the catalyst, the direction of olefin
approach has been studied using a combination of MM mini-
mizations and  hybrid quantum  mechanics/MM
calculations.”® In the MM minimizations, the geometry was
constrained to be similar to the expected transition state
structure since the transition state determines the enantiose-
lectivity of the reaction. In this work, we perform a similarly
constrained minimization of a chromene-(salen)Mn complex
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(Fig. 5). The bond forming between the oxo ligand of the
(salen)Mn and the C1 carbon of the reactant was constrained
t0 2.0 A, and the bend angle defined by the Mn atom, the oxo
ligand, and the C1 carbon was fixed at 122°, as done in the
earlier study.56 In previous reports,j(”57 the reactant approach
dihedral angle was defined by the midpoint of the O atoms in
the salen ligand, the Mn atom, the oxo ligand, and the C1
carbon. We use this definition for the approach angle except
that in practice, the constrained dihedral angle uses one of
the O atoms in the salen ligand instead of the midpoint of the
two O atoms (see Fig. 5). The approach angle as defined in
previous work can be calculated after minimization.

The generic force field DREIDING (Ref. 58) was used but
modified as described in Ref. 59 to accurately model the
chromene-(salen)Mn complex. To perform the constrained
minimization of the chromene-(salen)Mn complex, the r?
-SHAKE, cos? 6 -SHAKE, and ¢ -SHAKE algorithms were em-
ployed for the distance, bend angle, and dihedral angle con-
straints, respectively. Figure 6 shows the energy, maximum
force, number of negative eigenvalues, and the shifting pa-
rameter and lowest eigenvalue as a function of the minimi-
zation iteration. The energy decreased exponentially, reach-
ing a plateau after approximately 200 iterations. The number
of negative eigenvalues remained at 6 for most of the first
200 iterations and quickly fell to zero after that. The lack of
negative eigenvalues in the final minimized structure con-
firmed that a true minimum had been found. While the maxi-
mum force also decreased quickly after 200 iterations, it pla-
teaued around 1 kJ/mol A before finally falling to meet the
convergence criterion of 107° kJ/mol A in the last 50 itera-
tion steps. The shifting parameters y are computed with Eq.

Max. force [kJ/mol/A]
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FIG. 6. Tracking the minimization process of the chromene-(salen)Mn complex: (a) The energy, (b) maximum gradient, (c) number of negative eigenvalues,
and (d) the shifting parameter y and lowest eigenvalue in the system as a function of the minimization iteration.
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FIG. 7. Tracking the minimization process of the chromene-(salen)Mn framework: (a) The energy, (b) maximum gradient, (c) number of negative eigenvalues,
and (d) the shifting parameter y and lowest eigenvalue in the system as a function of the minimization iteration.

(53). It is the force that pushes the eigenvalues to all positive
values. The shifting parameter is always lower than the low-
est eigenvalue and approaches zero at convergence.48 A
movie that tracks the optimization process is provided as
Supplementary Material accompanying this publication [see
Ref. 30]. All movies were made with VMD (Ref. 60) as a
front-end to POVRAY,61 and mencoder® to convert rendered
pictures to a movie.’

All constraints were satisfied exactly (to within a pre-
defined tolerance): The constrained distance was 2.0 A, the
constrained angle was 122°, and the constrained dihedral was
—130.7755°, translating to an approach angle of —177.59°.
The modes corresponding to the constraints were removed,
and this led to three zero eigenvalues for the bond, bend, and
torsion constraints, respectively. These three zero eigenval-
ues are in addition to the six zero eigenvalues due the trans-
lation and rotation of the molecular system as a whole. Dur-
ing the minimization, the translational and rotational modes
and constraints were removed from the Hessian matrix and
the gradient.

MOFs are nanoporous, molecule-based hybrid materials
built from metal nodes and organic bridging ligands. MOFs
have good stability, high void volumes, and well-defined tai-
lorable cavities of uniform size.®>”® The recent microporous
MOF compound | that features chiral (salen)Mn struts is
highly effective as an asymmetric catalyst for olefin
epoxidation.ﬂ The enantiomeric excess rivals that of the free
molecular analog, and the framework confinement enhances
catalyst stability, imparts substrate size selectivity, and per-
mits catalyst separation and reuse. The unit cell of frame-
work | has edge lengths of a=15.1376 A, b=15.2092 A,

and ¢=26.3 A, and cell angles a=73.271°, B=77.508°, and
v=82.596°. A single unit cell contains 284 atoms. We used a
2X2 X2 system with periodic boundary conditions. The
charge-charge interaction was computed using the Ewald
summation (relative precision 1078 = @=0.261417, k
={10,10,17}). To perform the constrained minimization of
the chromene in 1, the 2 -SHAKE, cos® # -SHAKE, and o)
-SHAKE algorithms were employed for the distance, bend
angle, and dihedral angle constraints, respectively. The
framework was kept fixed except for the chromene and two
salen struts (the structure is catenated). These two struts
comprise 177 framework atoms. The fixed atoms take no part
in the Hessian matrix and gradient vector. They simply act as
an external field. Here, there are three zero eigenvalues cor-
responding to the bond, bend, and torsion constraints, respec-
tively. There are no additional zero eigenvalues because the
framework is kept fixed.

Figure 7 shows the details of the minimization proce-
dure. The energy rapidly approaches a plateau value while
the forces are still around 1 kJ/mol A. It takes additional
iterations to bring the maximum force to the desired stopping
criterion of 107 kJ/mol A. Initially, the number of negative
eigenvalues is much higher than for the free molecular case.
This is due to the much more jagged and complicated energy
landscape. The shifting values are shown in comparison to
the lowest eigenvalue. This lowest eigenvalue is usually
negative, and the shifting value is always lower than that
value but approaches zero at convergence. By that time, the
lowest eigenvalue has been changed to a positive value, and
a true minimum is reached. A movie that tracks the optimi-
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zation process of the chromene in 1 is provided as Supple-
mentary Material accompanying this publication [see Ref.
30].

From Figs. 6 and 7, the following picture emerges. First,
the energy can usually be lowered dramatically starting from
an initial configuration. The number of negative eigenvalues
remains substantial. After the energy has been lowered suf-
ficiently, the process of negative eigenvalue removal really
starts. In this region, the energy and forces can be lowered,
but also an increase is possible. The largest negative eigen-
value is closer to zero, and this domain is characterized by
large structural changes (a small eigenvalue/frequency means
a large displacement). When all negative eigenvalues have
been pushed toward positive eigenvalues, the algorithm be-
haves like Newton—Raphson, i.e., a fast decrease in the
forces and rapid convergence.

The higher the confinement, the more difficult the mini-
mization becomes. In fact, the minimization in 1 fails when
soft constraints are used with very high force constants.
However, for lower values of the force constants, the con-
straints are significantly violated. In contrast, the presented
algorithm using hard constraints by mode-following minimi-
zation and projection of the Hessian matrix and gradients is
very stable.

VIIl. CONCLUSIONS

This paper presents a reliable and stable algorithm to
minimize complex systems with hard constraints. The mini-
mization algorithm is the mode-following minimization us-
ing the projector mechanism. The constraint modes, and op-
tionally the translational and rotational modes, are removed
from the Hessian and gradient. The feasibility of the con-
straints is restored after each step using the SHAKE method-
ology. We have derived the necessary SHAKE expressions for
dihedral and out-of-plane angles. For mode analysis, the con-
straints need to be projected from the Hessian matrix while
taking the mass-weighting into account. We showed how to
modify the mass-weighted Hessian for bond, bend, dihedral,
and out-of-plane constraints. The analytical mode analysis of
united-atom n-butane was compared to very low temperature
MD and found to be in excellent agreement. We applied the
minimization algorithm on two real world examples: (a) The
minimization of chromene at a fixed distance, bend angle,
and dihedral angle toward a (salen)Mn catalyst, and (b) the
minimization of chromene at a fixed distance, bend angle,
and dihedral angle toward a (salen)Mn strut in a periodic
framework. Minimization in strong confinement is a difficult
problem, but the described minimization algorithm remained
very reliable in contrast to using soft constraints.
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