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Metal-organic frameworks (MOFs) have crystal structures that exhibit unusual flexibility. An extreme example
is that of the “breathing MOF” MIL-53 that expands or shrinks to admit guest molecules like CO2 and water.
We present a powerful simulation tool to quickly calculate unit cell shape and size at 0 K for structures
loaded with adsorbates. The method can be applied to unit cell minimization of periodic systems such as
metal-organic frameworks and zeolites for vibrational analysis (IR spectra and mode analysis), force field
development, and computation of elastic constants at 0 K. The expressions for first- and second-derivatives
for rigid guest molecules that are missing in the literature are described in this paper. In addition, two case
studies about determination of the structure of IRMOF-1 at 0 K and about the influence of water on the
structure of MIL-53 showed that the simulation results correspond well with experimental results and other
computational results. Our analysis scheme has significant advantages over other schemes, and the IRMOF-1
case study shows how these methods could potentially fail.

Introduction

Adsorption and diffusion inside porous solids is an important
phenomenon for many practical applications, including purifica-
tion of gases and liquids, decolorizing sugar, chromatography,
membrane technology, and catalysis.1,2 The field of metal-organic
frameworks (MOFs) has undergone an impressive growth over
the past decade. Some 4,000 frameworks are currently known
to exist, and nearly 1000 new MOFs are reported each year.3

MOFs are nanoporous, molecule-based, hybrid materials built
from metal nodes and organic bridging ligands. MOFs have
good stability, high void volumes, and well-defined tailorable
cavities of uniform size.1,4-10 Developing simulation models for
MOFs represents a major challenge because MOFs are often
flexible and can shrink and swell upon adsorption as well as
change space group as a function of loading and temperature.11-15

Many models for nanoporous materials are presently available.16

Among these for zeolites are models of Demontis et al.,17

Nicholas et al.,18 Hill et al.,19,20 and the core-shell models.21-25

For metal-organic frameworks, the models are specific to
certain groups of structures. The first models were developed
for Iso-Reticular MOFs (IRMOFs) such as the models by
Greathouse and Allendorf,26,27 Dubbeldam et al.,28 Amirjalayer
et al.,29-31 and Han and Goddard.32 A model for the covalent
organic frameworks (COFs) was developed by Amirjalayer et
al.33 For a breathing structure, MIL-53, models were developed
by Salles et al.34 and Coombes et al.35 All of these MOF models
are largely based on generic force fields like CVFF,36 DRE-
IDING,37 UFF,38 or MM339 with missing parameters filled in
or refined using empirical fitting and/or quantum mechanical
approaches.

A crucial step in model development is to compare structural
properties to experiments and/or quantum mechanical computa-
tions. The latter has significant advantages because it provides
a theoretical sound and consistent basis for force field develop-
ment. For example, it eliminates experimental difficulties related
to the quality of the crystal sample. Classical and quantum
mechanical simulations can quickly and accurately be compared
in detail at 0 K. A first step in this process is the minimization
of the crystal structure. The quantum mechanical reference
values need to be computed only once, but for the classical
minimizations, we may want to minimize many times to refine
the potential parameters. We therefore require a reliable, fast,
and general method that guarantees accurate results. In this
paper, we describe and develop such a method. Molecular
mechanics minimizations are useful for comparing structures,
computing binding energies, harmonic analysis, fitting force
fields, initial state preparation, docking, and many other
purposes. They provide information that is complementary to
molecular dynamics (MD) and Monte Carlo (MC). Ensembles
of structures are useful for calculating thermodynamic averages
and estimating entropy, but the large number of structures makes
detailed microscopic analysis more difficult. Minimized struc-
tures represent the underlying configurations about which
fluctuations occur during dynamics. The potential energy surface
U of a (periodic) system can be Taylor-expanded around a
configuration x of the system

where h ) (∂U)/(∂x) is the gradient and H ) (∂2U)/(∂xR∂x�) is
usually referred to as the Hessian matrix. The superscript T
denotes the transpose of a vector or matrix. The Supporting
Information contains more information on classical molecular
force fields. The real potential energy surfaces of common force
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U(x + δx) ) U(x) + hTδx + 1
2

δxTH δx + ... (1)
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fields are rarely harmonic, but still the expansion is usually
truncated at the second order (i.e., harmonic analysis). This
assumes the energy surface is at least locally quadratic and can
iteratively be used to find the nearest local minimum. The steps
through the energy landscape can therefore not be too large. If
the potential energy surface truly was quadratic, a method like
Newton-Raphson would be able to find the minimum energy
configuration in a single step. At the minimum energy config-
uration, the first derivatives are zero, and all harmonic informa-
tion on the system is therefore described by the Hessian matrix.

The following sets of algorithms are commonly employed
for local energy minimization:40 methods which only use the
energy (e.g., simplex method41,42); methods which use the energy
and first derivatives (e.g., steepest descent, conjugate gradient,
and Snyman’s method43,44); methods which use the energy, first
derivatives, and approximate second derivatives (e.g., Quasi-
Newton method); methods which use the energy, first deriva-
tives, and exact second derivatives (e.g., Newton-Raphson);
and methods which use the energy, first derivatives, second
derivatives, and the eigenvalues and eigenvectors of the Hessian
matrix (e.g., mode-following technique,45 also known as Baker’s
minimization46). The conjugate gradient minimization is the most
commonly used technique. Whereas steepest descent takes a
step always based on the gradient, the conjugate gradient method
starts along the steepest descent direction, continues along this
direction until a minimum is reached, but then proceeds along
a perpendicular (or “conjugate”) direction.

The Newton-Raphson method uses not only the first deriva-
tives but also the Hessian matrix. At the cost of more memory
and computation, the algorithm becomes more reliable and has
an accelerated convergence (fewer steps are needed). In addition,
methods that use second derivatives lead to first derivatives that
can be lowered arbitrarily close to zero. The Newton-Raphson
algorithm tends to find stationary points that are of the same
curvature, i.e., the same number of negative eigenvalues of the
Hessian matrix as the Hessian at the starting point. The
eigenmode-following technique solves this limitation by shifting
some of the eigenvalues to change their sign and achieve the
desired curvature. Importantly, out of the discussed methods,
only the eigenmode-following technique guarantees that a true
minimum is found. Other methods should employ a check
afterward to determine whether the stationary point is a true
minimum.

In this work, we explore the eigenmode-following technique
for the minimization of unit cells of periodic structures such as
zeolites, metal-organic frameworks, clays, glasses, etc. It can
be applied to crystalline and non-crystalline systems as long as
a description for a unit cell is available. Finite systems are also
easily handled by using appropriate boundary conditions. We
allow for the possibility that the guest molecules are rigid,
whereas the host is flexible. As minimization variables, we chose
the Cartesian coordinates of the framework atoms, center of
mass positions, elements of the rotation matrices for rigid guest
molecules, and the elements of the strain matrix to allow the
cell to change size and shape. Cartesian coordinates can be
defined for all systems, and the energy potential, gradients, and
Hessians are usually calculated directly in Cartesian coordinates.
Instead of Cartesian coordinates, one can also choose redundant
or non-redundant internal coordinates.47-53 The matrix of second
derivatives contains second derivatives with respect to center
of mass position and rotation elements but also with respect to
strain. We derive expressions, not available in the published
literature, for these derivatives, following the procedure of
Lutsko.54 The use of analytical derivatives is preferred as they

are exact and can be calculated quickly. The resulting minimiza-
tion scheme is fast, reliable, and flexible.

The remainder of this paper is organized as follows. We start
by describing the system and the variables to minimize, the
mode-following technique, and the expressions for first and
second derivatives that are missing in the literature for common
classical force fields. We discuss two case studies on MOFs
focusing on the advantage of the mode-following technique and
show it gives the correct solution whereas other methods fail.
Throughout the paper, the Einstein summation convention is
used. Greek indices denote {x, y, z} for positions and {1, 2, 3}
for orientation. Graphics in this work were generated using
VMD55 and VTK.56,57

Mode-Following Minimization Technique for Rigid
Molecules

In order to not only optimize the position of the particles,
but also to allow the simulation cell to change shape and size,
a generalized Hessian matrix can be constructed that includes
variables of the cell.53,58 It is customary to choose the six
elements of the strain matrix as additional generalized
coordinates.24,25,58 In this work, we combine this approach with
a recently proposed matrix formulation for rigid bodies by
Chakrabarti and Wales.59

In crystallography, the crystal structure is defined by the unit
cell edge lengths a, b, and c, angles R, �, and γ, and fractional
coordinates of the atoms within the unit cell.60 Fractional
coordinates form an orthonormal dimensionless space. The
transformation from fractional space to real Cartesian space can
be carried out by the matrix H

with

The cell matrix H consists of the three column cell vectors a,
b, and c. The matrix H here conforms to the standard orientation:
a is oriented along the x axis and b is confined to the xy plane.
The inverse cell matrix H-1 consists of the three reciprocal
lattice vectors a*, b*, and c*61

where V ) |a · b × c| is the volume of the unit cell. We define
the reciprocal lattice vectors k by k ) 2π(k1a* + k2b* + k3c*)
with k1, k2, and k3 integers not all zero. The inverse cell matrix
H-1 transforms Cartesian coordinates r to fractional coordinates
s. With the chosen H, the scaled box has a length of 1. Usually,
the potentials of the force field are defined in real space;
therefore, it is convenient to store positions in Cartesian space.
Distance vectors rij are transformed to fractional space, periodic
boundary conditions are applied in fractional space, and the
distance vectors are transformed back to Cartesian space to
compute distances within the simulation box

H ) (a b cos(γ) c cos(�)
0 b sin(γ) c�
0 0 c√1 - cos2 � - �2 ) (2)

� ) cos R - cos γ cos �
sin γ

(3)

a* ) b × c
V

, b* ) c × a
V

, c* ) a × b
V

(4)
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where the “rint” function returns the rounded integer value of
its argument.

In the method that we will outline, we use a single
crystallographic unit cell. Each particle in the unit cell
interacts with all other particles in the unit cell but also with
all the images in the surrounding replica cells as shown in
Figure 1. The smallest perpendicular width of the simulation
cell has to be larger than twice the spherical cutoff in
Cartesian space. This requirement determines the number of
“replica” unit cells that needs to be constructed. As we will
soon see, the bottleneck in the method is the computation of
eigenvectors and values of the Hessian matrix. For example,
the asymmetric unit cell of R-quartz contains 2 atoms: oxygen
at fractional position (0.41360, 0.26760, 0.21410) and silicon
at (0.47010, 0.00000, 0.33333). The cell is described by a
) 4.913 Å, b ) 4.913 Å, c ) 5.4052 Å, R ) � ) 90°, and
c ) 120°. The space group is 152, and there are 9 atoms in
the full unit cell. If our force field uses a van der Waals
cutoff of 12 Å, then we need to use a sufficient number of
“replica” unit cells, e.g. 6 × 6 × 5, to allow for a correct
computation. Importantly, the computation of the Hessian
matrix is based on the 9 atoms in the unit cell [the
computation of eigenvalues and vectors of a n × n matrix is
expensive for large systems because it scales as (n3)].

Strain describes the deformation of a unit cell from some
reference state. The strain tensor η can be defined by54

where H0 is the reference value of H (H0 can be either stress-
free or stressed), HT is the transpose of H, and I is the identity
matrix. The six independent strain elements give the change in
positions and the cell matrix relative to the reference values,
assuming the origin is at (0,0,0)

Further details on strain, stress, and pressure are given in the
Supporting Information.

There are many molecular models for adsorbates that treat
the molecule as rigid. Among the many examples are water,62

benzene,63 and CO2.64 There are three basic approaches to
satisfying constraints: unconstrained coordinates (“internal
coordinates”), explicit constraint forces, and minimizing con-
straint forces implicitly by the technique of Lagrange multi-
pliers65,66 or projection methods.67-69 Recently, Chakrabarti and
Wales introduced a method based on the first approach.59 They
introduced a matrix formulation that is robust and efficient for
rigid-body geometry optimization. The six degrees of freedom
for a nonlinear rigid body can be defined as the center of mass

coordinates r ) (r1, r2, r3) and the three components of a vector
p ) (p1, p2, p3), which specifies both a rotation axis through
the center of mass and a magnitude of rotation θ ) (p1

2 + p2
2 +

p3
2)1/2. For the rotation vector p, the corresponding 3 × 3 rotation

matrix R can be expressed as (Rodrigues’ rotation formula)

where p̃ is the skew-symmetric matrix obtained from the unit
vector p̂

The product of the skew-symmetric matrix p̃ and any vector v
returns their cross product p̃v ) p × v. The derivatives of the
rotation matrix (∂2R)/(∂pR

2) and (∂2R)/(∂pR∂p�) are denoted by
RRR and RR� and given by Chakrabarti and Wales59 and for
convenience are also given in the Supporting Information. The
advantage of this scheme is that “all the rigid-body coordinate
information is stored in the space-fixed frame, and the deriva-
tives of the rotation matrix can all be programmed in general
using a fixed subroutine, which can be called to deal with
site-site isotropic potentials as well as single-site or site-site
anisotropic potentials”.59

One can differentiate the energy Taylor expansion eq 1 with
respect to δx, set the result to zero, and solve to obtain what is
known as the Newton-Raphson step70

sij ) H-1rij

sij′ ) sij - rint(sij)
rij′ ) Hsij′

(5)

η ) ( η1
1
2

η2
1
2

η3

1
2

η2 η4
1
2

η5

1
2

η3
1
2

η5 η6
) ) 1

2
[(H0

-1)T ·HT ·H ·H0
-1 - I]

(6)

r ) ηr0 (7)

H ) ηH0 (8)

Figure 1. Single unit cell of R-quartz is shown, containing 9 atoms.
We use periodic boundary conditions, and the atoms periodically repeat
around the central unit cell extending to infinity. In order to compute
van der Waals forces, the unit cell is explicitly surrounded by enough
replica cells to obey the minimum image convention. Here, for a cutoff
of 12 Å, we need to use 6 × 6 × 5 replica cells.

R ) I + p̃ sin θ + p̃2(1 - cos θ) (9)

p̃ ) 1
θ( 0 -p3 p2

p3 0 -p1

-p2 p1 0
) (10)

δx ) -H -1h (11)
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The Newton-Raphson step can also be expressed as a sum over
the eigenvectors ei (called local principle modes) and eigen-
values λi of the Hessian matrix

where ei
Th is the component of the gradient along the eigenmode

ei. For zero eigenvalues, the corresponding step component is
set to zero. A zero eigenvalue means that for a displacement in
the direction of the eigenvector the energy does not change,
while a positive and negative value mean an increase and
decrease in energy, respectively. Therefore, a true minimum
has all positive eigenvalues. A first-order saddle point has
exactly one negative eigenvalue. The Newton-Raphson steps
minimize along the eigenvectors with positive eigenvalues and
maximize along eigenvectors with negative eigenvalues. There-
fore, when the starting configuration is of the correct curvature
(the desired number of negative eigenvalues), the Newton-
Raphson step is a good one to take.

In general however, the step must be modified to obtain a
structure of the desired curvature.46 A simple but very powerful
modification is to use a shift parameter γ, which shifts the value
of the eigenvalues71

Simons et al.72 derived an equation to find the shift parameter

which can be solved by iteration. Note that besides minimization,
the method can also be used to find saddle points.46

Taking a big step leads to an increased likelihood of moving
out of the region where the Hessian was valid. Therefore, it
makes sense to set a maximum tolerance on the size of any
calculated δx and scale down δx accordingly if this maximum
is exceeded.72 The mode-following technique is also applicable
to minimizations of large quantum mechanical systems. Here,
the analytical evaluation of the Hessian might be computational
and memory demanding, but efficient parallel distributed data
algorithms have been developed.73

Mode-following techniques are available in many codes, e.g.,
GULP.24,25 Here, we extend the method to include rigid
adsorbates using the matrix-formulation of Chakrabarti and
Wales.59 In the next section, we provide the necessary expres-
sions for first and second derivatives.

Analytical Expressions for Strain Derivatives and
Generalized Hessian

If the coordinates of two rigid bodies are denoted I and J
and the sites within each rigid body by i and j, then for site-site
isotropic potentials the total energy is

where rij ) |ri
I - rj

J| is the distance between the position ri
I of

site i of rigid unit I and the position rj
J of site j of rigid unit J,

and fij is the pair potential between these sites. In general, the
superscript I denotes properties related to rigid unit I. Note that
in this work, van der Waals cutoffs are applied between sites
(in contrast to, for example, a molecular cutoff where all sites
of molecule I interact with molecule J when the center of mass
distance falls within the molecular cutoff). If 	 represents one
of the six generalized coordinates of rigid body I, then the first
derivative of the potential energy is

The potential derivative is given by

and we define f1 and f2 as59

The first derivatives are

where

is used. Here, rI is the position of the center of mass of rigid
unit I, RI is the rotation matrix of rigid unit I, and ri

0 is the
position of site i in the molecular body-fixed frame.

The strain derivative for atoms is

and the strain derivative for rigid units reads

where di
I ) ri

I - rI is the distance vector between site i and the
center of mass of rigid unit I. The last term in eq 24 can be
seen as a correction term for keeping the unit rigid.

δx ) -∑
i

(ei
Th)

λi
ei (12)

δx ) -∑
i

ei
Th

λi - γ
ei (13)

γ ) -∑
i

(ei
Th)2

γ - λi
(14)

U ) ∑
I<J

∑
i∈I

∑
j∈J

fij(rij) (15)

∂U
∂	

) ∑
J*I

∑
i∈I

∑
j∈J

f ij
′ (rij)

∂rij

∂	
(16)

f ij
′ )

dfij(rij)

drij
(17)

f1(rij) )
f ij

′ (rij)

rij
(18)

f2(rij) )
f 1

′(rij)

rij
(19)

∂rij

∂rI
) r̂ij (20)

∂rij

∂pR
I
) r̂ij ·

∂rij

∂pR
I
) r̂ij · (RR

I ri
0) (21)

rij ) (rI + RIri
0) - (rJ + RJrj

0) (22)

∂U
∂ηR�

) ∑
j*i

f1rij,Rrij,� (23)

∂U
∂ηR�

) ∑
J*I

∑
i∈I

∑
j∈J

[f1rij,Rrij,� - 1
2

f1(rij,Rdi,� + rij,�di,R)]
(24)
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The Ewald summation is the best way yet devised to
accurately compute the long-range interactions between
charges in nanoporous materials.74 It was developed by Ewald
to study ionic crystals.75 The Ewald scheme computes the
interactions with all other particles in the simulation cell and
with all of their images in an infinitely large array of periodic
cells (see the Supporting Information and refs 76-79 for
more details). We assume tinfoil boundary conditions (omit-
ting the surface term) and present only the results for the
Fourier term. The real part of the Ewald and the exclusion
term (to subtract pairs of charges to be excluded for the
charge-charge interaction) follow the pair potential formal-
ism. The analogues for f, f1, and f2 for the Fourier part of the
Ewald summation are

where qi
I is the charge of site i of rigid unit I, k ) |k|, and κ

is the screening parameter. Note that properties based on f2

require a double summation over rigid units.
The summation over wavevectors can then be written as

where ε0 is the dielectric constant of vacuum.
The first derivatives with respect to position and orientation

are given by

The strain derivative of the Fourier part of the Ewald summation
reads

where

Here, δR� is the Kronecker delta, equal to 1 if R ) � and 0
otherwise. The second derivatives for pairwise interactions
between all of the sites of the rigid units are given in ref 59.
Second derivatives of angle-dependent potentials (bend and
dihedral) are tedious to derive and implement but are given
in the freely available source of the Dynamo code70 and also
refs 80 and 81.

The Fourier expressions for center of mass and orienta-
tional second derivatives read

The atomic expression for the Hessian can be written out
explicitly as

and is similar to the expression given by Krishnan and
Balasubramanian.80 Note that the Hessian requires a double
summation over particles.

The derivatives of the energy with respect to strain and
center of mass position and of the energy with respect to
strain and orientation for pair potentials are given by

f ) 1

k2
e-k2/4κ2

{[ ∑
L,l∈L

ql
Lcos(k · rl

L)]2 + [ ∑
L,l∈L

ql
Lsin(k · rl

L)]2}

(25)

f1(I) )
2

k2
e-k2/4κ2

{-[ ∑
L,l∈L

ql
Lcos(k · rl

L)]qi
Isin(k · ri

I) +

[ ∑
L,l∈L

ql
Lsin(k · rl

L)]qi
Icos(k · ri

I)} (26)

f2(I) )
2

k2
e-k2/4κ2

{-[ ∑
L,l∈L

ql
Lcos(k · rl

L)]qi
Icos(k · ri

I) -

[ ∑
L,l∈L

ql
Lsin(k · rl

L)]qi
Isin(k · ri

I)} (27)

f2(I, J) ) 2

k2
e-k2/4κ2

{-qi
Icos(k · ri

I)qj
Jcos(k · rj

J) -

qi
Isin(k · ri

I)qj
Jsin(k · rj

J)} (28)

U ) 1
4πε0

2π
V ∑

k*0

f ) 1
2Vε0

∑
k*0

f (29)

∂U

∂ri,R
I

) 1
2Vε0

∑
k*0

f1(I)kR (30)

∂U

∂pi,R
I

) 1
2Vε0

∑
k*0

f1(I)(k ·RR
I ri

0) (31)

∂U
∂ηR�

) 1
2Vε0

∑
k*0

[-fΘR� - f1(I)
1
2

(dR
I k� + d�

I kR)]
(32)

ΘR� ) δR� - 2
kRk�

λ2
(33)

1

λ2
) 1

4R2
+ 1

k2
(34)

∂
2U

∂rR
I
∂r�

J
) 1

2Vε0
∑
k*0

kRk�[δIJf2(I) - f2(I, J)] (35)

∂
2U

∂rR
I
∂p�

J
) 1

2Vε0
∑
k*0

kR[δIJf2(I)(k ·R�
I ri

0) - f2(I, J)(k ·R�
Jrj

0)]

(36)

∂
2U

∂pR
I
∂p�

J
) 1

2Vε0
∑
k*0

{δIJ[f2(I)(k ·RR
I ri

0)(k ·R�
I ri

0) +

f1(I)(k ·RR�
I ri

0)] - f2(I, J)(k ·RR
I ri

0)(k ·R�
Jrj

0)}

(37)

∂
2U

∂riR∂rj�
)

1
Vε0

∑
k*0

e-k2/4κ2

k2
kRk�{-δij[( ∑

l)1

N

qlcos(k · rl))qjcos(k · rj) +

( ∑
l)1

N

qlsin(k · rl))qjsin(k · rj)] + [qicos(k · ri)qjcos(k · rj) +

qisin(k · ri)qjsin(k · rj)]}
(38)

∂U

∂ηR�∂rγ
I
) f2rij,Rrij,�rij,γ + f1(δRγrij,� + δ�γrij,R) +

1
2

[d�
JI(f2rij,γrij,R + f1δRγ) + dR

JI(f2rij,γrij,� + f1δ�γ)]

(39)
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∂U

∂ηR�∂pγ
I
) 1

2
[rij,� + d�

JI][f2(rij ·Rγ
I ri

0)rij,R + f1(Rγ
I ri

0)R] +

1
2

[rij,R + dR
JI][f2(rij ·Rγ

I ri
0)rij,� + f1(Rγ

I ri
0)�]

(40)

where dR
JI ) (dj,R

J - di,R
I ).

The Fourier expressions for center of mass and orientational
cross derivatives read

For pair potentials we find the strain-strain derivative is given
by

The first two terms in eq 43 correspond to the strain derivative
of the first term in eq 24, while the last two terms in eq 43
arise from the second term in eq 24. For atomic systems, eq 43
reduces to the familiar expression derived by Ray54,82

The strain-strain derivative for the Fourier part of the Ewald
summation is given by

where

The expression for the Ewald summation reduces for atoms
to the equation given by Van Workum et al.83

Strain-strain derivatives for the angle dependent potentials,
e.g., bend and torsion potentials, are derived by Van Workum
et al.84 Cross potentials, e.g., bend-torsion coupling, are easily
handled using the chain rule. More details on angle derivatives
and elimination of singularities are given in refs 85-87.

Figure 2. Size of the unit cell of IRMOF-1 predicted by the model of
Greathouse and Allendorf.27 MD data are taken from their work. Their
work predicts that the minimized structure is 26.0484 Å. However,
when we fit a spline through their 200-1000 K MD data, the
extrapolated value is 25.698 Å at 0 K. We find the inconsistent value
of 26.0484 Å is the value predicted by methods like conjugate gradient
and Newton-Raphson, while the correct value of 25.698 Å is given
by the mode-following minimization.

∂
2U

∂ηR�∂rγ
I
) 1

2Vε0
∑
k*0

{-δIJf1(I)ΘR�kγ - δIJ
1
2

f2(I)[di,R
I k� +

di,�
I kR]kγ + 1

2
f2(I, J)[dj,R

J k� + dj,�
J kR]kγ} (41)

∂
2U

∂ηR�∂pγ
I
) 1

2Vε0
∑
k*0

{-δIJf1(I)ΘR�(k ·Rγ
I ri

0) -

δIJ
1
2

f2(I)(k ·Rγ
I ri

0)[di,R
I k� + di,�

I kR]

- δIJf1(I)
1
2

[(Rγ
I ri

0)Rk� + (Rγ
I ri

0)�kR] +

1
2

f2(I, J)(k ·Rγ
I ri

0)[dj,R
J k� + dj,�

J kR]}

(42)

∂U
∂ηR�∂ηµν

)

1
2

f2[(rij,R + dR
JI)rij,�rij,µrij,ν + rij,R(rij,� + d�

JI)rij,µrij,ν]

+ 1
2

f1[δ�ν(rij,R + dR
JI)rij,µ + δRν(rij,� + d�

JI)rij,µ +

δ�µ(rij,R + dR
JI)rij,ν + δRµ(rij,� + d�

JI)rij,ν]

+ 1
4

f2[((rij,R + dR
JI)rij,� +

(rij,� + d�
JI)rij,R)(dµ

JIrij,ν + dν
JIrij,µ)]

+ 1
4

f1[δ�ν(rij,R + dR
JI)dµ

JI + δRν(rij,� + d�
JI)dµ

JI +

δ�µ(rij,R + dR
JI)dν

JI + δRµ(rij,� + d�
JI)dν

JI]
(43)

∂U
∂ηR�∂ηµν

) f2rij,Rrij,�rij,µrij,ν +

1
2

f1[δ�νrij,Rrij,µ + δRνrij,�rij,µ + δ�µrij,Rrij,ν + δRµrij,�rij,ν]

(44)

∂U
∂ηR�∂ηµν

)

1
2Vε0

∑
k*0

{fΩR�µν + 1
2

f1(I)[Θµν(di,R
I k� + di,�

I kR) +

ΘR�(di,µ
I kν + di,ν

I kµ)]

+ 1
4

f2(I)(di,R
I k� + di,�

I kR)(di,µ
I kν + di,ν

I kµ) -

1
4

f2(I, J)[di,R
I k� + di,�

I kR][dj,µ
J kν + dj,ν

J kµ]

+ 1
4

f1(I)[δ�ν(kRdi,µ
I ) + δRν(k�di,µ

I ) +

δ�µ(kRdi,ν
I ) + δRµ(k�di,ν

I )]
(45)

ΩR�µν ) ΘR�Θµν + (δRµδ�ν + δRνδ�µ) + 4
kRk�kµkν

k4

- 2
kRkνδ�µ + k�kνδRµ + k�kµδRν + kRkµδ�ν

λ2

- 1
2

(ΘRνδ�µ + Θ�νδRµ + Θ�µδRν + ΘRµδ�ν)

(46)

∂U
∂ηR�∂ηµν

) 1
2Vε0

∑
k*0

f ΩR�µν (47)
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Case Study 1: Determination of the Structure of
IRMOF-1 at 0 K

The first case study will show that mode-following minimiza-
tion is sometimes vital to ensure that the correct structure is
obtained at 0 K. The specific example we study here is one
oftheIRMOFcompoundsdevelopedbyYaghiandco-workers.4-6,8,88

In general, IRMOFs consist of zinc-oxygen complexes
connected by carboxylate-terminated linkers, forming a

regular, three-dimensional lattice of cubic cavities. The linker
molecules are, for example, 1,4-benzenedicarboxylate for
IRMOF-1 and biphenyldicarboxylate for IRMOF-10. In
IRMOF-1, the linkage of the zinc-oxygen complexes
alternates between linkers pointing outward and inward. This
results in a structure that contains two alternating cavities
of about 14.3 and 10.9 Å in diameter. The structure of
IRMOF-1 is known from crystallography: edge lengths are

Figure 3. IRMOF-1 structure at 0 K using the model of (a) this work and (b) Greathouse and Allendorf. The model presented in this work predicts
a unit cell edge length of 25.965 Å and space group Fm3mj (225), while the model of Greathouse and Allendorf predicts a unit cell edge length of
25.698 Å and space group Fm3mj (202). Note the distortion of the metal nodes in panel b. The minimization method for both models was a
mode-following technique that guarantees all eigenvalues of the Hessian are positive. A space group of P1 was used. Oxygens are shown in red,
zinc in silver, carbon in cyan, and hydrogen in white.

Figure 4. Minimization of MIL-53 systems at different water loadings: (a) no water, (b) one water molecule per unit cell, (c) two water molecules
per unit cell, and (d) a saddle point obtained by starting from (a) following the softest mode of the system. Here, for this transition state all gradients
are zero but there is a single negative eigenvalue. The method for (a), (b), and (c) was the mode-following minimization technique that guarantees
all eigenvalues of the generalized Hessian are positive. A space group of P1 was used. The viewpoint of all four panels is the same. The � angle
for panels a, b, and d is 90°, while for panel c, the � angle is 98.683°. Oxygens are shown in red, chromium in ochre, carbon in cyan, and hydrogen
in white.
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25.8849 Å at 213 K and the space group is Fm3mj (225).4

This prototypical IRMOF is difficult to minimize because of
the many soft modes in the system.

The model of Greathouse and Allendorf26 was one of the first
models for IRMOFs. The CVFF model36 was used for the linker
molecules, while the corners were simulated with nonbonded
potentials. Using this model, they showed that water attacks
the corners and slowly destroys the structure. Later, experimental
verification of this theoretical prediction followed.89 In ref 27,
they showed the minimization result for their model, but this
result was in discrepancy with their molecular dynamics results
(see Figure 2 and Figures 1 and 2 in ref 27). Clearly, the
extrapolation of the finite temperature to 0 K does not coincide
with the minimized structure given by Greathouse and Allendorf.
This contradiction was left unexplained in the paper.

Using their model, we first minimized the structure using
conjugate gradient and Newton-Raphson. Both methods give
a structure with 26.0484 Å edge lengths and cell angles of 90°.
These are also the values reported by Greathouse and Allendorf.
However, this structure has 32 negative eigenvalues. When we
apply the mode-following minimization, which slowly elimi-
nates the negative eigenvalues, we obtain a structure having
edge lengths of 25.698 Å, in agreement with the extrapolated
MD result. A movie that tracks the optimization process starting
from the experimental structure5 is provided as Supporting
Information. This structure is the true minimum for this model.
However, upon examination, one notices that the Zn4O units
are distorted and asymmetric, in disagreement with the experi-
mental structure (Figure 3b). (Note that the experimental
structure is obtained at higher temperature, but it seems
reasonable that the symmetry of the Zn4O units should be
maintained.) In addition, the linkers have rotated, and the space
group has changed from Fm3mj (225) to Fm3j (202). For this
model, the value for the bulk modulus at 0 K is 8.77 GPa, and
Young’s modules is 22.96 GPa. These values do not agree well
with published DFT results of a bulk modulus of 16.3 GPa and
Young’s modulus of 21.9 GPa (see ref 27 and references
therein).

In ref 28, we developed a similar model but calibrated the
parameters to reproduce the experimental unit cell size and
adsorption properties. Using this model, we previously predicted
that the IRMOFs possess negative thermal expansion coefficients
(a counterintuitive property that the structure contracts when
heated and expands when cooled). We recently developed and
used a refined model90 showing that the influence of framework
flexibility on diffusion of alkanes and benzene in IRMOF-1 is

Figure 5. Hydrogen bond distances between water-water and
water-host MIL-53 using the model of Salles et al.34

Figure 6. Mode-following minimization of MIL-53 using the model of Salles et al.34 with zero, one, and two water molecules per unit cell: (a)
number of negative eigenvalues, (b) convergence of energy, (c) convergence of maximum of the gradients on the particles (translation and rotational)
and cell, and (d) volume of unit cell.
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rather small. The changes in the model reflect a better
representation of the carboxylate group and are described in
the Supporting Information. Again for this model, we used the
mode-following minimization method to find the minimum
energy structure starting from the experimental structure.88 The
minimum is found in only six iterations, and for this model,
the Zn4O units retain their symmetry as shown in Figure 3a.
Because of the temperature difference (the experimental struc-
ture is for 258 K), the structure expands somewhat in size but
hardly in fractional positions (Supporting Information). For our
model, the predicted bulk modulus is 17.7 GPa and Young’s
modulus is 22.42 GPa, both of which are in excellent agreement
with the DFT values (16.3 and 21.9 GPa, respectively).

At the minimum energy configuration, we can analyze the
system by calculating the spectra (from the eigenvalues) and
normal modes (from the eigenmodes). The Hessian is mass-
weighted, the eigenvalues and eigenmodes are computed, and
the eigenmodes are unweighted afterward.70 In the Supporting
Information, we include a movie of the softest eigenmode of
the IRMOF-1 system with 10 water molecules adsorbed.
Eigenmodes are very helpful for providing insight into the
movement of the framework. Given the normal modes and
frequencies, one can compute dynamic and thermodynamic
properties. Normal mode calculations can be compared directly
with vibrational spectra, and the method is often used to adjust
potential energy function force constants.

Case Study 2: Influence of Water on the Structure of
MIL-53

Extreme examples of framework flexibility are the “breathing
MOFs”, with the MIL-53 structure as a prime example.11 Pore

breathing structures can expand or shrink to admit guest
molecules. MIL-53 is a three-dimensional MOF containing
unidirectional diamond-shaped channels. The open form of MIL-
53 (MIL-53lp) is obtained upon calcination of the as-synthesized
compound, while the adsorption of water at room temperature
leads to the closed, narrow-pore form (MIL-53np). Upon
heating, water adsorption is reversed, leading to a recovery of
the open form.11,12 The difference between the open and closed
form is striking. Although the bonded topology is unchanged,
some atomic positions change by more than 5 Å, and the unit
cell volume decreases by 30% upon going from the open to the
closed form.35

We used the model of Salles et al.34 with small modifications
(in the original model the C-H and hydroxyl distance was kept
fixed). For the water model, we used TIP5P-EW,62 a modified
version of the TIP5P model suitable for the Ewald summation.
The cutoff for the Lennard-Jones potential was 12 Å, and the
unit cell was surrounded by 3 × 5 × 5 “replica” unit cells.

In Figure 4, the minimized configurations are shown for zero,
one, and two water molecules per unit cell. These final
configurations were the lowest energy structures over 1000
minimizations with random starting positions for the water
molecules. The Supporting Information contains a movie of the
minimization process of MIL-53 with two water molecules per
unit cell. In agreement with experiments (and other simulations
using a different model35) the first water molecule only slightly
distorts the structure, but the second water molecule leads to a
closed form of MIL-53. Data are listed in Table S18 of the
Supporting Information.

The structure with two water molecules and the hydrogen
bonds between the water and the water-framework are shown

Figure 7. Cell properties of MIL-53 at 0 K: (a) unit cell edge length a, b, and c, (b) � angle, and (c) unit cell volume and simulation values for
the accessible pore volume, determined by He probe insertion technique of Talu and Myers.92 Simulations (open points) used the model of Salles
et al.34 Experimental data (filled symbols) are taken from ref 35.
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in Figure 5. The short distances, especially of the water with
the framework, and the amount of bonds indicate that the
hydrogen bonds are very strong in this system. The distance of
the oxygen of the water and the hydrogen of the framework
hydroxyl group is 1.71 Å, distance between the hydrogen of
the water and the oxygen of the carboxylate group of the
framework is 1.85 Å, and distance between the oxygen of the
water and the hydrogen of the neighboring water is 2.43 Å.
The typical length of a hydrogen bond in water is 1.97 Å.

The minimization process is shown in Figure 6 for the MIL-
53 with zero, one, or two water molecules per unit cell. The
initial configuration is the experimental crystal structure91 with
the water at random positions. The figures and minimization
movie show the result for the lowest energy. Initially, there are
many negative eigenvalues present, and the number increases
with the amount of water in the system. The number of
minimization steps therefore depends on the amount and initial
positions of the adsorbates. Slowly but steadily the number of
negative eigenvalues is reduced to zero, although it is possible
that the number increases before decreasing again. This usually
corresponds to a substantial structural change. As can be seen,
once zero eigenvalues have been reached, the convergence is
very fast. In this work, the stopping criteria has been that all of
the gradients on the particles and cell have to be smaller than
10-10 kJ/mol/Å. We also kept track of the volume during the
minimization. Initially, the gradients are high and volume
increases. This behavior increases with water content because
the water is placed randomly inside the structure. During
the minimization, the structure relaxes, and for zero or one water
molecule per unit cell, the volume stays close to the open pore
starting structure. However, when two water molecules are
optimized, the structure collapsed to the narrow pore structure.

The mode-following method can be used to minimize unit
cells, but it can also be used to search for saddle points. In Figure
4d, the result is shown for a saddle point search starting from
a minimized MIL-53 without water (Figure 4a) and following
the softest mode of the system. These soft modes often
correspond to large structural changes. If we compare the data
of Table S19 of the Supporting Information with Table S18 of
the Supporting Information, then this state can indeed be viewed
as one of the intermediate configurations when the MIL-53lp
changes to MIL-53np.

The minimization results are more quantitatively plotted in
Figure 7. For zero, one, and two water molecules per unit cell
of MIL-53, we show the cell dimensions, unit cell � angle, and
unit cell volume. The result for zero or one water molecule per
unit cell matches very well with the experimentally found open
structure MIL-53lp, while the result for two water molecules
per unit cell matches well with the experimentally found closed
structure MIL-53np. Both the Salles model34 and model of
Coombes35 seem to capture this effect almost quantitatively.

In order to further underline the significant structural changes
on water adsorption, we determined the accessible pore volume
using the helium probe insertion simulation technique of Talu
and Myers;92 this data is also plotted in Figure 7c. We note
that the structure at two molecules per unit cell of water adsorbed
is essentially inaccessible to other guest molecules. In the Figure
S4 of the Supporting Information we show that for future
simulations of adsorption in MIL-53 it is important to include
flexibility. The model of Salles et al. needs to be modified to
improve the reproduction of currently available experimental
data.

Conclusion

We have presented a powerful method to quickly calculate
and analyze the structure of ordered crystalline nanoporous
materials at 0 K. The mode-following minimization technique
was combined with a matrix formalism for rigid bodies, so that
rigid guest molecules are easily treated in a flexible host. The
necessary expressions were derived in this paper. The resulting
minimization method is fast, stable, and reliably convergent. It
is able to provide the correct solution, i.e., the desired number
of negative eigenvalues by construction, where other methods
can give the wrong solution. We have shown an example for
this failure when minimizing the metal-organic framework
IRMOF-1. Using mode-following minimization, the gradients
on the cell and particles can be lowered arbitrarily close to zero.
In the current work, the gradients on each of the particles and
cell matrix were lower than 10-10 kJ/mol/Å. The method can
be of great utility in force field development and to assess the
influence of adsorbates on the framework structure. The
methodology developed in this paper is applicable also to
determine the crystal structure of layered materials.93,94
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Louer, D.; Férey, G. J. Am. Chem. Soc. 2002, 124, 13519–13526.
(12) Devautour-Vinot, S.; Maurin, G.; Henn, F.; Serre, C.; Devic, T.;
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