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Nonequilibrium Modeling of Reactive Distillation: A Dusty Fluid
Model for Heterogeneously Catalyzed Processes
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We have developed a nonequilibrium model for heterogeneous catalytic distillation in which we
have explicitly taken into account simultaneous mass transfer and reaction inside the catalyst
particle. This was done by using a finite difference approximation of the dusty fluid model.
Calculations were done for a methyl tert-butyl ether (MTBE) column and a tert-amyl methyl
ether (TAME) column. It was found that there are hardly any differences between a pseudohomo-
geneous nonequilibrium model and a dusty fluid nonequilibrium model, for the TAME process.
The simulation results for the TAME process compare favorably with the experimental data of
Mohl et al. (Chem. Eng. Sci. 1999, 54, 1029). For the MTBE process the pseudohomogeneous
model predicts multiple steady states. However, the window of opportunity for multiple steady
states seems to disappear entirely using the dusty fluid model. The explanation for the
contrasting behavior of the TAME and MTBE processes has to do with the fact that the latter

is significantly more sensitive to increased mass-transfer resistances.

1. Introduction

In many ways, reactive distillation (RD) represents
an ideal chemical process, combining the key operations
of most chemical processes—reaction and separation—
in the same piece of equipment.? A reactive distillation
column usually is split into three sections: A reactive
section, in which the reactants are converted into
products, and where, by means of distillation, the
products are separated out of the reactive zone. The
tasks of the rectifying and stripping sections depend on
the boiling points of the reactants and products. If the
product is the lowest boiling component in the process,
the rectifying section is used for product purification and
reactant recycle and the stripping section is used mainly
for inert and byproduct removal as well as reactant
recycle. If the product is the highest boiling component,
the tasks of the rectifying and stripping sections are
switched. The column internals could be trays or pack-
ing. Packed RD columns could be filled with structured
sheet metal packing that has been treated to make the
surface catalytically active so as to promote the desired
chemical reactions.® A packed RD column could also be
equipped with porous catalytic packing, either in the
form of the traditional Raschig ring* or of the so-called
“teabag” or “sandwich” type in which porous catalyst
particles are confined within a wire mesh support.>~7

Mathematical models of several different levels of
complexity for reactive distillation operations have been
presented in the literature. The simpler models adopt
an equilibrium stage approach with an equilibrium
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reaction.8~1° Other equilibrium stage models incorporate
finite reaction rates into the equation system for stand-
ard equilibrium models for distillation columns.1*=18 The
more sophisticated nonequilibrium (NEQ) models take
account of both finite reaction rates and finite inter-
phase mass-transfer fluxes.#19-21

In conventional distillation operations it suffices to
take into consideration diffusion in the vapor and liquid
phases.??2 The mass-transfer modeling usually is done
using the rigorous Maxwell—Stefan theory.2® RD opera-
tions may be more complicated in that additional mass-
transfer resistances might need to be modeled. In
columns packed with coated sheet metal packings we
have diffusion to (and from) the active sheet metal
surface. In dumped-ring-type and teabag-type packings
the reaction takes place inside porous catalyst particles
and, to be completely rigorous, we should model diffu-
sion to and from the catalyst surface as well as diffusion
and reaction inside the catalyst particles. It is modeling
this latter type of heterogeneous catalytic distillation
operation with which we shall be concerned in this
paper.

Diffusion and reaction inside porous catalysts often
is modeled using simple effective diffusivity models of
the diffusion process and an effectiveness factor (a
function of the Thiele modulus) to represent the effect
of reaction.?* In a pair of papers Sundmacher and
Hoffmann2526 present a nonequilibrium model for het-
erogeneously catalyzed reactive distillation. For incor-
poration of the reaction rate, they have developed a
mathematical model to analyze the interaction of the
internal mass and heat transport with the microkinetics
of the heterogeneous reaction. The coupled balance
equations for transport and reaction are reduced to a
single differential equation, for which solutions, depend-
ing on a generalized Thiele modulus and an effective-
ness factor, are derived for three geometries. This
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Figure 1. Schematic representation of the unit cell for a
heterogeneous catalytic distillation model.

effectiveness factor is used in a pseudohomogeneous
reaction rate expression in the liquid-phase mass bal-
ances.

In this paper we will use a more rigorous theory of
diffusion (and reaction) inside porous catalysts: the
“dusty fluid model”.

2. Nonequilibrium Model

A detailed nonequilibrium cell model for a reactive
distillation column with homogeneous and pseudohomo-
geneous reactions has been described by Higler et al.2°
Here, we will present only the changes to the nonequi-
librium cell model equations required for a third phase—
the porous catalyst.

A schematic diagram of the unit cell for a vapor—
liquid-porous catalyst system is shown in Figure 1. It
is assumed that the bulk of both vapor and liquid phases
are ideally mixed and that the mass-transfer resistances
are located in films near the vapor/liquid and liquid/
solid interfaces. The liquid film at the vapor—Iliquid-
phase boundary will be denoted by the superscript “L”,
and the liquid film adjacent to the solid catalyst phase
will be denoted by a superscript “S”. To model mass
transfer in these films, the Maxwell—Stefan equations
are used. Thermodynamic equilibrium is assumed only
at the vapor/liquid interface. Mass transfer inside the
porous catalyst will be described with the so-called dusty
fluid model, discussed in a later section. We assume the
reaction takes place only in the catalyst phase. Thus,
the chemical reaction term disappears from the liquid-
phase balances. We also need to add a term for mass
transfer from the bulk liquid to the catalyst phase and
the liquid-phase mass balance becomes

Lk_Lk—l_NtL,k_NtS,k=0 (1)
There are no changes in the vapor-phase mass balance:
V= Vi tN =0 (2)

Here, L is the liquid molar flow from cell k and Vi is
the vapor flow rate from stage k. N | wx and N Y, LK are the
I|qU|d and vapor interphase mass-transfer rates. N

is the overall mass-transfer rate in the liquid f|Im
around the catalyst. For an equistoichiometric reaction

N « 1S zero. A term for the species fluxes appears in
the individual component balance for the liquid phase:

LiXix = Lg—1Xik-1 — N :_,k —N sk =0 3
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The vapor-phase mass balance for the nonequilibrium
cell remains unchanged:

Viik = VieYikrs + N i =0 (4)

yik and Xjx are the vapor and quuid mole fractions of
component i in cell k. N, ik and N & ik are the individual
component mass-transfer rates of component i in the
transfer films at the vapor/liquid interface and N } K is
the individual component mass-transfer rate of compo-
nent i in the transfer film around the catalyst; the latter
will only be zero if component i is not a reactant. The
liquid- and vapor-phase energy balances are not changed:

L Hg = L Hey — 6. =0 %)

VieHY = VieHiG + 60 =0 (6)
HL and HY are the liquid and vapor enthalpies and -
and ¢V are the liquid and vapor interphase energy-
transfer rates. Note that there is no entry for an energy-
transfer rate to the catalyst. This is due to the fact that
at steady state the energy transfer to the catalyst is
zero; otherwise, we would have accumulation of energy
inside the catalyst.

The mass-transfer rates between the vapor and liquid
phases are calculated using the Maxwell—-Stefan equa-
tions.z® The mass-transfer rates through the interface
have to be continuous:

N :_,k =N ?,/k (7)
The same is true for the energy-transfer rates:
= ®)

This last equation plays a very important role in
determining the actual mass-transfer rates. The Max-
well—Stefan equations by themselves are “floating
equations”. They relate the driving force for mass
transfer of a component to the friction of the other
species on that component. This is done in terms of
relative component velocities. These relative velocities
are “tied down” by eq 8, which is commonly referred to
as the “bootstrap” relation.327

For more details about the incorporation of the
Maxwell—Stefan equations into the nonequilibrium cell
model, see Higler et al.2°

The Maxwell-Stefan equations are also used for
description of mass transport in the liquid—solid mass-
transfer film. The cell indices have been dropped for
clarity.

X aﬂ:__cxiNIS_XINiS ©)
RT377 - Ct(Klla)

The mass-transfer coefficient, ;c:j,, has to be calculated
from an appropriate correlation for liquid/solid mass
transfer. Only ¢ — 1 of these equations are independent.
The mole fraction of the cth component follows from the

summation equation:
C
in =1 (20)
&
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In addition, the energy flux through the liquid film
around the catalyst is zero:

T &
ec=—h"a®—+ S$NFHI =0 (11)
m =

The major new problem we have to deal with in this
nonequilibrium model involves liquid-phase multi-
component mass transfer with reaction in the porous
catalyst. For this, there is, however, no complete
theory. Even for gases, for which there is a Kinetic
theory, there are complete and internally consistent
theories of multicomponent mass transfer in porous
media only for two cases. When the pore size is much
smaller than the mean free path length, there is the
Knudsen diffusion theory, and the kinetic theory applies
when the pore size is orders of magnitudes longer than
the mean free path length. However, for the intermedi-
ate regime there are substantial problems. The molec-
ular velocity distribution varies in a complicated way
over the cross section of the pore and additional
problems are posed by catalyst geometry and pore size
distribution.

We will, therefore, first describe the theory of gas-
phase multicomponent mass transfer in porous media
and subsequently discuss a modification of these equa-
tions suitable for liquid-phase systems.

2.1. Dusty Gas Model. Modeling multicomponent
mass transfer in porous media is complicated when the
mean free path length of the molecules is of the order
of magnitude of the pore diameter. The difficulties posed
by this intermediate case may be circumvented by a
method originally introduced by Maxwell?® and de-
veloped further by Mason and various co-workers.29-33
The original idea of Maxwell is as follows: “We may
suppose the action of the porous material to be similar
to that of a number of particles, fixed in space and
obstructing the motion of the particles of the moving
systems.”

In other words, he suggested that the porous material
itself be described as a supplementary “dust” species,
consisting of very large molecules that are kept motion-
less by some unspecified external force. The Chapman—
Enskog kinetic theory is then applied to the new pseudo
gas mixture, whereby the interaction between the dust
and gas molecules simulates the interaction between the
solid matrix and the gas species. In addition, one is no
longer faced with the problem of flux and composition
variations across a pore and problems related to catalyst
geometry.

The price we have to pay for this simplification is that
we “lose” certain physical features of the porous me-
dium. One of the more important issues is that we are
no longer dealing with channels of finite size corre-
sponding to the pores in the real medium. Thus, there
is no introduction of the viscous fluxes in the formal
development of the equations. These have to be added
empirically, although Mason et al. presented arguments
to justify the addition of diffusive and viscous fluxes.
In what follows, we will first derive the diffusive part
of the equations and subsequently deal with the viscous
fluxes.

For diffusion of an ideal gas mixture in “open space”

the “generalized Maxwell—-Stefan equations” (GMS)
are34

g Xi( ) ¢ — o
TR TR GRT

l C C
R T(ciFi — wi;Cij) + ;xixjoq'j v(In(T))
=y —— (12)
= ¢

The left-hand side of this equation represents the sum
of the driving forces. The first term represents the
driving force due to a chemical potential gradient vu;.
The second term represents a driving force due to a
pressure gradient vp. This term will be important only
if the volume fraction ¢; and mass fraction w; of
component i are not the same. The third term is the
driving force for forced diffusion. This may be the case
for charged particles in an electric field. The last term
represents thermal diffusion. In most cases encountered
in distillation, extraction, or gas absorption, the thermal
diffusion term is very much smaller than the other
terms and may safely be neglected. The right-hand side
of the equation represents the sum of the molecular
friction terms.

For an ideal gas the chemical potential gradient term
simplifies as follows:

Tty = VX (13)

In addition, the volume fraction and mole fractions will
be the same for each component:

b =X (14)

Furthermore, the concentration of the mixture may be
expressed in terms of pressure and temperature by
means of the ideal gas law:

=P
CTRT (15)

To obtain the dusty gas model equations, eq 12 is
applied to a pseudo mixture of ¢ + 1 species in which
the extra species represents the catalyst phase. The dust
species is subject to the following constraints:

1. The dust must be equally distributed in space:
VCet+1 = 0.

2. The dust is kept immobile by an unspecified
external force so that N¢+1 = 0.

3. The dust species consists of giant molecules whose
molar mass goes to infinity: Mgy — co.

The unspecified forces in item 2 prevent the porous
medium from moving because of pressure gradients in
the gas. This will be the force exerted by the catalyst
matrix to keep everything in place. Furthermore, for the
cases considered in this paper, there are no external
forces on the gaseous species, so that Fy = 0 for | from
ltoc.

When eq 12 is applied to the pseudo mixture of ¢ + 1
components, variables such as mole fractions and
concentrations will be those of the pseudo mixture,
including the dust molecules. In the subsequent deriva-
tion of the dusty gas model equations these variables
will be marked by a tilde to distinguish them from the
true quantities in the mixture. For the species concen-



trations, partial pressures and component fluxes, there
is no difference between the pseudo quantities and the
real quantities.

Applying eq 12 to the pseudo mixture, under the
above assumptions, lead to

o W W
di = vX; + B vp + B Cer1Fera
¢ %Ny = %\N; Xot1
= — - (16)
S b e N;

From hydrodynamic considerations it follows that the
force exerted by the gas on the porous medium is equal
to the physical pressure gradient of the gas over the
porous medium:

Cer1Fern = VP (17)

We need only relate the variables pertaining to the
pseudo mixture to those of the real gas. The complete
derivation is given by Jackson.3* The result is eq 18:

1 c xiNJ-D — xJ-NiD NP
—vp=y——— (18)
RT i= B D{

The “D” has been added as superscripts to emphasize
that these variables are the diffusive flux relations
associated with the dusty gas model. We also have
viscous fluxes that arise from movement of the mixture
as a whole. This is related to the flow of a pure
substance in a cylindrical tube and is described by the
standard Poiseuille flow problem. For a circular tube
of diameter d,, the contribution to the molar flux due
to viscous flow is

2
d,p dp

V———_
N™= 327R T dz

(19)

For a porous medium with a distribution of pore sizes,
we may rewrite this equation as®

Bop d
v_ __—~oF dp
N JRT dz (20)

This equation defines the permeability Bo. When all the
pore sizes are uniform and of diameter d,, the perme-
ability is given by

2
_dp

Bo=32

(21)
If we are dealing with a gas mixture instead of a pure
gas, and there is no diffusion of the species in the
mixture relative to the mixture as a whole, then the
total viscous flux for component i (in all directions) is
given by

vV XiBop
! nRT

(22)

The flux of component i is given by adding the diffusive
and convective fluxes:

N; =Ny + N (23)
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Equations 18, 22, and 23 may now be combined to give
the complete dusty gas model equations:

—VVppt————vvp=)Y)————  (24)
RT 7R TD A O f D;

Rearranging once more gives the working form of the
dusty gas model equations:

——ux+——1+ w=y——
RT RT D A D¢

2.2. Dusty Fluid Model. The “dusty fluid model” as
developed by Krishna and Wesselingh?’ is a modifica-
tion of the “dusty gas model” so as to be able to model
liquid-phase diffusion in porous media. First, all pres-
sure terms are replaced with concentrations by back-
substituting the ideal gas law (p = ¢{RT). Note that this
was done for convenience in the derivation of the “dusty
gas equations”. Equation 25 may be rewritten as

X XiBo i
vx; +—vp + vp = — (26)
p nD; = CtB?,j ¢,.Df

The first two terms in this equation correspond to the
isothermal chemical potential gradient for an ideal
mixture, which may be split up as follows:

y )
VX D IP = = Ve + VP (27)

For a nonideal mixture we have
X; X _ XiBy

— Vit +—V,; vp+—vVp =
rRT TRT nDe

1
c xiNj — xjNi N;
- (28)
ISR O ¢,Df

Equation 28 is expressed in terms of diffusion coef-
ficients and fluxes, rather than mass-transfer coef-
ficients and mass-transfer rates as is done for the liquid
and vapor film transfer equations. The mass-transfer
rates are obtained by multiplying the fluxes by the
interfacial area of the catalyst particles. This is not as
straightforward, as it looks, since depending on the
geometry of the catalyst, the cross-sectional area can
change along the diffusion path. In addition, one should
take the different geometries into account in the deriva-
tion of the discretized equations. This will be discussed
in detail below.

The dusty fluid model equations do not sum up to zero
(unlike the GMS equations) because of the pressure
term, leading to an extra equation for the pressure drop.
Summing up over the ¢ species gives

¢ N, 1 ( ¢BoR T ¢ X
—=- 1+ Z— vp  (29)
=1D¢ R T\ 1 &De

because
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c ¢ xjNi — xiNj
ZZ— =0 (30)
=S B

and the Gibbs—Duhem equation:

c G
— V. ; =0 31
£ RT T,pﬂl ( )

Not all of the above equations are independent. We can
choose either ¢ times eq 28 while discarding eq 29 or ¢
— 1 times eq 28 together with eq 29.

Because there can be no accumulation of mass in the
catalyst particle at steady state, the following equation
has to be satisfied:

C

M.N; = 0 (32)

This equation provides the “bootstrap” condition for the
dusty fluid equations.
The component fluxes will change due to reaction
oN; ¢

E = .ZvVi'mRm (33)

The total energy flux in a catalyst particle is zero
because at steady state there can be no accumulation
inside the catalyst. Therefore,

c

€€=q+YHN,=0 (34)

2.3. Boundary Conditions. The boundary conditions
at the outer surface of the catalyst are provided by the
mass balances around the catalyst particle. In addition,
the mass-transfer rates at the catalyst interface should
be continuous:

S _ C
NS =NG (35)

At the catalyst center, the temperature, pressure, and
composition have zero gradients:

X
P_qg IT_5 D
on 0; on 0; o 0 (36)

And the flux of species i is zero:

N;=0 (37)

This concludes the development of the dusty fluid model
for mass transfer in porous media.

2.4. Discretization and Geometry. When the dusty
fluid equations are discretized, the catalyst shape plays
an important role. For Raschig ring type packings, it is
possible to use a simple Cartesian coordinate system.
However, this approach is not recommended for teabag-
and sandwich-type packings, where smaller catalyst
particles can be used. First, however, the multidimen-
sional problem is simplified by replacing the gradient
terms by derivatives with respect to one direction
coordinate. In addition, because we prefer to deal with
mass-transfer rates, the fluxes are multiplied by the

Figure 2. Schematic representation of the grid for a catalyst
particle.

interfacial area. Equation 28 becomes

X; o, Vi Bolop S XiNi—XiN; N;
— x| —t—| == -
RT oz RT UD? 0z = Ct.D(ie,IaC CtDeiaC
(38)

Assuming that we are dealing with a catalyst particle
with radius z, this particle will be split up in a number
of finite volumes, as illustrated in Figure 2. Subse-
guently, the dusty fluid model equations are applied to
each finite volume individually. This has some conse-
guences for the differential terms and interfacial areas
in the above equation. For the differential term of an
arbitrary quantity X,

X — X
X _ 10X _ k™ Mt (39)
oz Logy L

where L is a characteristic length for diffusion in the
film under consideration.?3
For a planar film,

L =2z4—12,
For a cylindrical film,
L =rylIn(zy/zy)
For a spherical film,
L =zy(1 — z4/z,)
The cross-sectional area for cylindrical and spherical
catalysts depends on the location in the film as well.
This can be accounted for by relating the area ratio of

the catalyst area at location k to the outside catalyst
area. For the various geometries this ratio can be

represented by
Zd a
r,=|— (40)
: (ZC)

whereby a = 0 for a planar film, 1 for a cylindrical film,
and 2 for a spherical film.
The chemical potential gradient is approximated as

X; O

RT oy

¢l (X — Kid—1
= (ri,j)kf (41)

k =

in which
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X )T,P,xk,k¢j=1...c—l

L= (3”- + Xi( (42)

The central difference scheme will not be used here
because this has the tendency to generate zigzag
profiles. Using the above discretization scheme does not
give these problems but does introduce a numerical
diffusion term. A sufficiently large number of discreti-
zation points must be used to minimize the effect of this
term. For the pressure and temperature derivatives
central difference approximations will be used. Note
that, depending on the geometry, the discretization step
length varies per discretization point. Taking everything
into account, the discretized dusty fluid equations
become

¢t (X = K1

;(Fi,j)k

Y

i Bo \[Pk+1 — Pk Pk~ Px—1
==+ + =
RT .ol 2L, 2L, ,
¢ (XkNy — (X)iN; N
- (43)
= ¢ Pacr, c,Dfa’r,

The catalyst shape also influences the reaction equation.
In effect, eq 33 is a conservation equation, the expres-
sions for the different catalyst shapes may be derived
by writing a mass balance for a finite volume of the
catalyst,

nr

(N;@), — (N@)yyy = z VimRméVe (44)

m=1

where V. is the total catalyst volume available in the
contacting cell and ¢ is the volume fraction of the slice
of catalyst (see Figure 2) under consideration.

The fluxes may be replaced by mass-transfer rates,
taking into account the interfacial area ratio. The
volume fraction of the catalyst is obtained by taking the
volume fraction under consideration and divide by the
total catalyst volume. A general expression for the
volume fraction is given by

i —rh
rﬂ

c

€ — (45)

where 8 = 1 for a planar catalyst, f = 2 for a cylindrical
catalyst, and = 3 for a spherical catalyst. The resulting
discretized conservation equation then becomes

nr

(NTr) = (NFT)s = D vinRuaVe  (46)

m=1

The last equation to be discretized is the energy-
transfer equation. The energy-transfer rate equation
consists of a convective and a conductive contribution.
We shall assume that the catalyst matrix and the liquid
filling the pores have the same temperature profile. The
total conductive energy flux may then be written as

q=—(1—e)lc+/1"§ vT (47)
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Table 1. Variables Related to the Dusty Fluid Model
For the Bulk of Each Cell

catalyst mass-transfer rates N3, c
For Liquid Film S, nz Discretization Points
composition Xi k cng
temperatures Tk n3
Inside the Catalyst, ns Discretization Points
composition Xi k cny
temperatures Tk Na
catalyst mass-transfer rates Nick cNy
catalyst pressure p na4

Table 2. Equations Related to the Dusty Fluid Model
For Liquid Film S, n3 Discretization Points

Maxwell—Stefan equations eq9 (c—1)n3
summation equation eq 10 ns
energy-transfer equation eq 1l N3
For the Catalyst n4 Discretization Points

dusty fluid equations eq 28 c(ng — 1)
summation equation eq 10 ng—1
reaction equation eq 33 na(c — 1)
“bootstrap” equation eq 32 ng
energy-transfer equation eq 34 ng—1

boundary conditions egs 36 and 37 2c+2

The catalyst porosity and tortuosity are added here to
take into account the curved paths followed by the gas
in the catalyst. The discretized equation is then given

by
T~ T T —T
_ _ C L€ k+1 k k k—1
q= ((1 A + 4 r)( oL, T ) (48)

Combining the convective and conductive contributions
and multiplying by the interfacial area then gives

c c L€ Tk+1 - Tk Tk - kal
—a (r) @ —ei1~+1— +
T 2L

2Ly

C
NTH,; =0 (49)

&
3. Model System

A complete degree of freedom analysis for the non-
equilibrium cell model is given by Higler et al.2° Here,
only the additional variables and equations important
for the dusty gas model are discussed. The variables are
listed in Table 1. n3 is the number of discretization
points in the liquid film around the catalyst and n4 is
the number of discretization points inside the catalyst.
The total number of variables related to the dusty fluid
model equations is (¢ + (¢ + 1)ns + (2c + 2)ng). The
equations required for the dusty fluid model are given
in Table 2. For each cell, the number of equations is (c
+ (c + nz + (2c + 2)ng), which is the same as the
number of variables. There are, therefore, no degrees
of freedom in the dusty fluid model equations.

For a system of ¢ components, a column of ng non-
equilibrium stages, a reboiler and a condensor, n. cells
per nonequilibrium stage, using n; discretization points
in the liquid film, and ny discretization points in the
vapor film, using the above catalyst layout, the total
number of independent equations for this nonequilib-
rium cell model is ng(2c + 5 + n¢(7c + 5 + ny(2c + 1) +
ny(c + 1) + (¢ + 1)ng + (2¢ + 2)ny) + 4c + 8. The total
number of variables is just two more than this. Thus,
the number of degrees of freedom is 2. Possible speci-
fications for this model are discussed by Higler et al.?°
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The model requires data about the actual design. This
link between model and design has been discussed
extensively by Taylor et al.,3> who proposed an integra-
tion of a column design procedure with the model
equations. During the calculations, a column design is
designed based on the calculated liquid and vapor flows
and physical properties. For more details, see Taylor et
al.?> and Kooijman.3¢ At the very least, one is required
to specify only an internals type, although specification
of detailed designs also is a possibility.

4. Physical Properties

In the dusty fluid model there are several parameters
that need to be known so that a simulation can be
carried out.

4.1. Catalyst Properties. The following catalyst data
need to be known beforehand:

(1) specific catalyst area, aC;

(2) catalyst porosity, €C;

(3) catalyst tortuosity, 7%

(4) catalyst mean pore size, dp;

(5) catalyst thermal conductivity, AC.

The porosity and tortuosity are required for evalua-
tion of the catalyst diffusion coefficients. The mean pore
size is required for evaluation of the catalyst perme-
ability. The catalyst thermal conductivity is required
for calculation of the conductive contribution of the
catalyst matrix to heat transfer inside the catalyst
particles.

4.2. Thermodynamic Parameters. Inside the cata-
lyst, nonideal component behavior will be influenced by
the catalyst itself. For a consistent description one
should incorporate the effect of the catalyst into evalu-
ation of the chemical potential gradients. No suitable
model for this is available. For evaluation of the chemi-
cal potential gradients a conventional activity coefficient
model will be used.

4.3. Mass-Transfer Parameters. Estimation of the
mass-transfer coefficients and of the physical properties
for the vapor/liquid transport process is discussed at
length by Taylor and Krishna.?® For mass transfer from
the liquid bulk to the catalyst phase the correlations
due to van Krevelen and Krekels®” were used. These

are

LS L, L\12 L \13

K’. .

o= 1-8( ”) ( ¥ ) (50)
-Di'ja n-a 0 Di,j

Under the condition that

LuL
0.013 <2— <126 (51)
n-a

The binary pair Maxwell—Stefan diffusion coefficients
(D?J) are related to the free diffusion binary pair
Maxwell—Stefan diffusion coefficients by

B =D, (52)

where ¢ is the catalyst porosity and 7 is the catalyst
tortuosity. The catalyst porosity and tortuosity are
added here to take into account the tortuous paths
followed by the fluid in the catalyst.

Consider the case of very large pores where the effects
of the walls will be negligible. This assumption is valid

methanol feed: /__
liguid; 3 D
213.5 mol/s | | Rectification section
T=320K 2 sieve trays
p=11atm
Reactive section
Catalytic Raschig rings
0.7 m high
butenes feed: 8000 kg catalyst
vapour >
C4 =195 mols
#-C4 = 354 mols — | Sripping section
T=350K 3 sieve trays
p=11atm |

» B

bottoms flow

Figure 3. Schematic representation of a reactive distillation
column for MTBE production.

for the macroporous catalysts used by Sundmacher et
al.,* as it will be in most cases. In this case, one could
argue that we are basically dealing with a simple free
diffusion problem. The diffusion coefficients would be
the normal liquid-phase Maxwell—Stefan diffusion coef-
ficients, corrected by the catalyst tortuosity and porosity
as in eq 52. Berg and Harris®® and Sundmacher and
Hoffmann?® have used this approach but these authors
have ignored the last term on the right-hand side of eq
28. There is no available theory for the estimation of
D; for liquid diffusion inside porous particles. In the
calculations presented later in this paper we consider
two limiting cases: (a) one in which Df is large, in
which case the last term can be ignored (corresponding
to Berg—Harris and Sundmacher approaches), and (b)
one in which D is a factor 5 times smaller than the

smallest of the D;; values. Df is assumed to be the
same for all components.

Diffusion coefficients normally are concentration de-
pendent. Thus, they should be dependent on the con-
centration and the physical properties of the dust
species. Any such dependence is, however, neglected
here because of the absence of any reliable estimation
method.

5. Results and Discussion

5.1. MTBE Case Study. Our first case study involves
the reactive distillation process shown in Figure 3 and
is based on an example in Jacobs and Krishna.®® For
details about column internals see Higler et al.2! Higler
et al.?l have shown that there can be substantial
differences between the results of equilibrium and
nonequilibrium models for this process. In addition, it
was shown that even minor changes in the magnitude
of the mass-transfer coefficients can have a substantial
influence on the location of the multiple steady-state
region. Furthermore, Baur et al.*° show that there are
substantial differences between a full Maxwell—Stefan
description and an equal diffusivity model of mass
transfer. Both of those studies used a pseudohomoge-
neous model for the reaction.



Table 3. Base Values and Tested Ranges for Model
Parameters

base range
parameter value considered
catalyst thickness, m 0.5x%x 108 0.25x 1073
t01.0 x 1078
catalyst porosity 0.6 0.5-0.7
catalyst tortuosity 15 1-2

catalyst thermal conductivity, - 0.012- — 100A-

J-K1lm1l.g1
Pseudo Homogeneous

1r Knudsen Case A
- 0.95
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Figure 4. Steady-state conversion of isobutene in a MTBE column
as a function of the bottom product flow rate. Comparison of
pseudohomogeneous and dusty fluid models.

In this work we have used the dusty fluid model and
repeated the calculations described by Higler et al.®° and
Baur et al.*® The catalyst shape was assumed to be
planar. This may be a reasonable approximation for
Raschig rings, if they are not too thick. The outside
catalyst area was set to 600 m2/m3.26 Other property
values are summarized in Table 3.

Figure 4 shows the steady-state conversion of isobutene
as a function of the bottom product flow rate for the
pseudohomogeneous model and for the dusty fluid
model. Knudsen case A corresponds to a situation in
which the Knudsen diffusion coefficient in the dusty
fluid model is taken to be 2 orders of magnitude larger
than the average binary pair diffusion coefficient.
Knudsen case B represents the case for which the
Knudsen diffusion coefficient was taken to be one-fifth
of the lowest binary pair diffusion coefficient of the
mixture.

Two observations can be made immediately: First,
the multiple steady-state region has completely disap-
peared for the dusty fluid model, and second, the
Knudsen diffusion term has a substantial influence on
the results of the dusty fluid model simulations.

The first observation can be explained by the fact that
in the lower branch of the multiple steady-state region
in part of the reactive section the reverse reaction
(reaction of MTBE to methanol and isobutene) takes
place. Introduction of a mass-transfer resistance to
account for transport inside the catalyst reduces the
influence of this backward reaction. The introduction
of extra mass-transfer resistances also leads to the
observed drop in the maximum achievable conversion.
Furthermore, Knudsen case B includes an additional
resistance term due to Knudsen diffusion. Thus, the
model predicts an even lower maximum conversion than
that for Knudsen case A. One conclusion that can be
drawn from these findings is that equilibrium models
tend to exaggerate the phenomenon of multiple steady
states and the addition of mass-transfer resistances
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Figure 6. Conversion of isobutene as a function of the bottom
product flow rate for various catalyst thicknesses.

results in a much smaller realizable “window” for the
multiple steady states.

Figure 5 shows the mass-transfer rates in the catalyst
on stage 15 obtained with the dusty fluid model for both
Knudsen cases at a bottom product flow rate of 200 mol/
s. The situation shown in Figure 5 is representative for
all stages. In Knudsen case B, mass transfer inside the
catalyst only takes place in a small section close to the
catalyst outside surface (catalyst wall). For Knusden
case A, mass transfer takes place throughout the entire
catalyst particle. Because changes in the mass-transfer
rate correspond to the rate of reaction (see eq 33), it
follows that in Knudsen case B only part of the catalyst
is used for chemical conversion.

The values of the catalyst thickness, catalyst porosity,
and other parameters were all varied over the ranges
given in Table 3.

For Knudsen case A we found no significantly differ-
ent results for any of these parameter variations. For
Knudsen case B, the influence of the catalyst thickness
is substantial. Shown in Figure 6 is the steady-state
conversion of isobutene as a function of the bottom
product flow rate for various catalyst thicknessess. The
maximum achievable conversion is significantly lower
for the thicker catalyst. This is due to the fact that, for
Knudsen case B, the column operates in a diffusion-
limited regime.

Additional calculations were done in which the mass-
transfer resistances to and inside the catalyst were
neglected. This can be done by multiplying the outside
catalyst area by a very large number. These calculations
confirm our expectation that with removal of these
additional mass-transfer resistances the full nonequi-
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1-methyl-2-butene + methanol

Ta||Fa tert-amyl-methyl-ether

.

2-methyl-2-butene + methanol
Figure 7. Schematic representation of the reaction system.

librium dusty fluid model gave results that were the
same as those obtained with the pseudohomogeneous
model.

5.2. TAME Case Study. For our second case study
we will consider the reactive distillation process for tert-
amyl methyl ether (TAME). The reaction under consid-
eration is the acid-catalyzed formation of TAME from
2-methyl-1-butene, 2-methyl-2-butene, and methanol
using a heterogeneous catalyst. Extensive discussions
on the kinetics of the above reaction is given by Oost
and Hoffmann*! and Rihko and Krause.*? The reaction
system is depicted schematically in Figure 7.

TAME is formed out of the two pentene isomers, for
which we can write the following reaction equations:

M 1 @ramE

rn= kl(a K. 2) (53)
MeOH 1 Ayeon
2omoe 1 BramE

r,= kz(a - 2) (54)
MeOH 2 ApeoH

In addition, there is a rapid isomerization reaction
between the two pentene isomers:

1
= k3(a2MlB - EazMzs) (55)

The equilibrium constants for the above reactions are
given by Rihko et al. (1994):

K, = 1.057 x 10 exp{4273'5} (56)

K, =1.629 x 107 exp{3374'4} (57)
Ky 899.1

Ky = . = 0.648 exp{ = } (58)

Because of the rapid isomerization reaction, it is very
hard to determine the individual rate constants of the
first two reactions separately. Therefore, lumped reac-
tion kinetics has to be used. The overall reaction rate
of TAME is given by summation and rearrangement of
eqs 53 and 54:

BHvie 1 @ramE
= (k + szs)( K 2) (59)

a
MeOH 1 ApeoH

Thiel et al.*® give the following expression for the
forward reaction rate constant:

K, + KKy = (1 + Ky) x 2.576 exp{32.3 - 10764}

T
(60)

Table 4. Wilson Parameters for TAME System

aij, aj i,
component i component j J/mol J/mol
methanol 2-methyl-1-butene 9772.3 1376.5
methanol 2-methyl-2-butene 10147 968.81
methanol methyl tert-pentyl ether 4826.3 —177
methanol n-pentane 11749  1946.7
2-methyl-1-butene methyl tert-pentyl ether 487.8 —477.94
2-methyl-1-butene 2-methyl-2-butene —611.75 951.33
2-methyl-1-butene n-pentane 326.74 —194.18

2-methyl-2-butene methyl tert-pentyl ether —386.04 712.33

2-methyl-2-butene n-pentane 362.28  —265.49
methyl tert-pentyl n-pentane 11439 —447.84
ether
For the isomerization reaction we have
10861
ks = 1078 exp{32.6 -3 } 61)

Bravo et al.** suggested the presence of multiple
steady states in their pilot plant column for this process.
Conclusive experimental evidence of multiple steady
states in this process was described by Mohl et al.! In
the following section we will take the configuration
presented by Mohl et al. as a test case for our model.
We model a packed column with an inner diameter of
0.076 m, consisting of two sections. The top section is
0.5-m high and packed with catalytic Raschig rings. The
bottom section is 0.5-m high and packed with inert
(glass) Raschig rings. A feed is supplied between the
two sections. For more details about the column, see
Mohl et al.t

The column pressure was 0.25 MPa and the reflux
ratio 15. The feed consisted of methanol, the two
pentenes, and inert n-pentane. The feed rate was 4.17
x 1072 mol/s, with Xpmeon/Xcs= = 0.8 and Xcs—/(Xcs= +
Xn-cs) = 0.3 using the information given by Mohl et al.t
Sundmacher et al.*> suggest that the Wilson equation
should be used for describing nonideal liquid-phase
behavior. Parameters for this model are given in Table
4.

Simulations were done with three different models:
An equilibrium stage model with 12 stages and a stage
efficiency of 0.8, a nonequilibrium model in which the
reaction is assumed to be pseudohomogeneous, and a
nonequilibrium model incorporating the dusty fluid
model described here. For the nonequilibrium model,
the packed section is divided into a number of slices,
each considered to be a nonequilibrium cell. Calculations
with the pseudohomogeneous model and 40 slices gave
results that coincided with those obtained using only
10 slices; 10 slices were used in all subsequent calcula-
tions. It was further assumed that the column was
packed with 1.3 kg of packing and that the catalyst
activity was set to 1.2 equiv/kg.?

We have assumed the same catalyst geometry and
properties as those for the MTBE problem. In addition,
we have done calculations to determine the influence
of the various geometrical parameters. In no case was
there a significant influence of these parameters.

Three steady states were found for the base case
column configuration. For obtaining the multiple steady
states, a continuation method was used in which the
reboiler duty was the independent parameter. Figure 8
shows the temperature profiles obtained for the high-
and the low-production steady state, for the equilibrium
model, for the nonequilibrium model with a pseudohomo-
geneous reaction, and for the nonequilibrium model with
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Figure 8. Temperature profiles for high- and low-conversion

steady states in a TAME column for equilibrium (Eq), nonequi-
librium (NQ), and dusty fluid (DF) models.

a dusty fluid description of the catalyst. All three models
are largely in agreement with the calculated tempera-
ture profiles presented by Mohl et al.! and the differ-
ences between the models are minor. The same obser-
vation has been made by Sundmacher.*® For this
process, the overall conversion is not affected signifi-
cantly by the mass-transfer resistance inside the porous
catalyst.

5.3. Discussion. In the two case studies presented
above we have found apparently contradictory findings.
For the MTBE process, the differences between the
equilibrium, pseudohomogeneous nonequilibrium, and
dusty fluid nonequilibrium models are substantial. For
the TAME process, all models give more or less similar
results.

A reason for the difference must lie in the fact that
the MTBE process is relatively sensitive to mass-
transfer resistances, whereas the TAME process is not.
There may be two reasons for this. First, for the TAME
system, the entire catalytic section is used for the
production of TAME both in the high- and the low-
production steady states. In no case did we find con-
sumption of TAME.

Second, the TAME reaction rate is much lower than
that for the MTBE system. The forward reaction rate
constant for TAME is about an order of magnitude lower
than that for MTBE throughout the entire reactive
section. The production rate of TAME will, therefore,
be much less sensitive to changes in the mass-transfer
resistance.

For the MTBE process there are substantial differ-
ences between equilibrium and nonequilibrium mod-
els.?! In the equilibrium approach the reactive section
is described by only 7 stages, whereas 90 slices were
used in the nonequilibrium model calculations. The
approximation of the real concentration and tempera-
ture profiles is, in the equilibrium stage model, much
coarser than in the nonequilibrium model. The coarse
prediction could give rise to significant deviations for
systems with large temperature and concentration
gradients in combination with highly nonlinear interac-
tions between the reaction rates and the temperature
profiles.

In addition, caution should be exercised in the ap-
plication of efficiency factors for multiple steady-state
calculations. Mohl et al.* describe calculations done with
an equilibrium model, in which the value of the ef-
ficiency factor was fixed. However, one should keep in
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Figure 9. Murphree efficiency profiles for methanol and n-
pentane at high- and low-conversion steady states.

mind that the hydrodynamic conditions in the various
steady states may be quite different from each other,
and so may the efficiencies. Figure 9. shows the Mur-
phree efficiency profiles for methanol and n-pentane in
the TAME column that were back-calculated from the
results of the nonequilibrium dusty fluid model. As can
be seen, the differences between the efficiencies in the
high- and low-conversion steady states are quite con-
siderable. Similar results are found for other compo-
nents. The effect of the efficiencies on the overall
conversion in the TAME process is not very large
because the overall production rate is relatively insensi-
tive to mass-transfer resistances. However, this will not
always be the case.

6. Conclusions

We have described a nonequilibrium model for reac-
tive distillation in porous catalysts. Important features
of the model are the use of the Maxwell—Stefan theory
for the description of interphase mass transfer and the
use of the “dusty fluid model” for taking into account
multicomponent mass transfer and reaction inside the
porous catalyst.

The model was used to investigate the influence of
the additional mass-transfer resistances that arise in
and around the catalyst particles. Considerable differ-
ences between a nonequilibrium pseudohomogeneous
model and a nonequilibrium dusty fluid model were
found for the production of MTBE.

However, there were hardly any differences between
a pseudohomogeneous nonequilibrium model and a
dusty fluid nonequilibrium model for the production of
TAME. In the TAME process the overall production rate
does not depend on mass-transfer resistances (at least,
in the range of parameter values studied here). The
converse is true for the MTBE process. The rate of
consumption of MTBE is very much influenced by
additional mass-transfer resistances. This is in line with
the observations reported by Higler et al.2

It should be remembered that a nonequilibrium model
tries to describe a real column and, therefore, requires
information about the column design and its internal
configuration. This information is needed to calculate
mass-transfer coefficients, interfacial areas, and so on.
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The latter usually are obtained from semiempirical
correlations. The computed solution of the model equa-
tions, therefore, depends to some extent on the quality
of the correlations.

For the dusty fluid model, there are several model
parameters for which good estimation methods are
absent. First, there is a need for methods to estimate
diffusion coefficients inside the catalyst. Diffusion coef-
ficients can be concentration dependent and will, there-
fore, depend on the concentration and type of the
catalyst. Second, there are no methods for evaluating
nonideal thermodynamic behavior inside a catalyst.

Third, there is a need for correlations for the estima-
tion of mass- and heat-transfer coefficients from the
liquid bulk to the catalyst. This is particularly important
for the newest generations of structured catalytic pack-

ing.
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Notation

a = activity

a = interfacial area, m2

aC = catalyst surface area, m?

aij = thermodynamic interaction parameters, J-mol~*

Bo = permeability of porous medium, m?

¢ = number of components

¢i = molar concentration of component i, mol-m=3

¢ = total concentration, mol-m—3

d; = generalized driving force, m~!

dp = pore diameter, m

€ = energy-transfer rate, J-s71

e = energy flux inside the catalyst, J-m=2-s71

Bij; = Maxwell—Stefan diffusion coefficient, m?-s—*

Die = Knudsen diffusion coefficient of component i, m2-s~1

Fi = external force acting per mole on species i, N-mol~?

Hi = liquid-phase enthalpy, J-mol—!

H,’ = vapor-phase enthalpy, J-mol-!

H; = partial molar enthalpy of component i, J-mol~!

h = heat-transfer coefficient, J-K-1-:m~2.s71

K1, Kz, K3 = chemical equilibrium constants

ki, ko, ks = reaction rate constants, mol-m=3-s71

k'S = liquid/solid mass-transfer coefficient, m-s™!

Ly = liquid flow rate from cell k, mol-s~1

L = characteristic length for diffusion, m

M; = molar mass of species i, kg-mol~!

N; = molar flux of component i, mol-m=2-s~1

N; = mass-transfer rate of component i, mol-s—1

n. = number of cells

ns = number of stages

nr = number of reactions

n; = number of discretization points in liquid film at V/L
interface

n, = number of discretization points in vapor film at V/L
interface

n; = number of discretization points in liquid film at
catalyst interface

n, = number of discretization points in catalyst

p = pressure, Pa

g = conductive heat flux, J-m~2-s71

Rm = reaction rate of reaction m, mol-m=3-s1

R = gas constant, J-mol~1-K™1

r, = area ratio of mass-transfer film to catalyst surface area

ri, rp, r3 = reaction rate, mol-m=3.s71

T = temperature, K

ut = superficial liquid velocity, m-s=t

V; = molar volume, m3-mol—!

V\ = vapor flow rate from cell k, mol-s~?

Vc = catalyst volume in nonequilibrium cell, m3

X = arbitrary variable

Xikx = liquid mole fraction of component i in cell k

yik = vapor mole fraction of component i in cell k

Zo = distance from inner film surface to catalyst center, m
z. = distance from catalyst surface to catalyst center, m
zs = distance from outer film surface to catalyst center, m

Greek Letters

o = power in eq 40

a;j = multicomponent thermal diffusion factor

B = power in eq 45

I' = thermodynamic matrix

yi = activity coefficient of component i

0ij = Kronecker delta, 1 if i = j, otherwise 0

€ = catalyst porosity

ex = volume fraction of catalyst in transfer film under
consideration

n = dimensionless coordinate

1 = viscosity, Pa.s

kij = binary pair mass-transfer coefficient, m-s—!

A = thermal conductivity, J-K~1-m~1.s71

u' = chemical potential of component i, J-mol~!

vim = stoichiometric factor of component i in reaction m

o = liquid-phase density, kg-m=3

¢i = volume fraction of component i

T = catalyst tortuosity

wj = mass fraction of component i

Superscripts

~ = indicates pseudo quantity in dusty gas mixture

C = catalyst property or quantity

D = diffusive property

e = corrected for catalyst

L = liquid phase or liquid-transfer film at vapor/liquid
interface

S = liquid-transfer film at liquid/solid interface

V = vapor-transfer film

V = viscous (in eqs 19—23)

Subscripts

2M1B = 2-methyl-1-butene
2M2B = 2-methyl-2-butene
C5= = pentene

i = component number index

k = cell number index

| = alternative component index
MeOH = methanol

n-C5 = pentane

t = total

TAME = tert-amyl methyl ether

Vector Notation
v = gradient operator, m~1
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