Modeling of Diffusion in Zeolites

Frerich J. Keil
Techmical University of Hamburg-Harburg, Chair of Chemical Reaction Engineermy.
Eissendorter Str. 38, D-21071 Hamburg. Germany
E-mail: kerli'tu-harburyg de

Rajamani Krishna
University of Amsterdam, Department of Chemical Engineening,
Nieuwe Achtergracht 166, NL-1018 WV Amsterdam, The Netherlands

Marc-Olivier Coppens
Delft University of Technology. Department of Chemical Technology.,
Juhanalaan 136, NL-2628 BL Delft. The Netherlands

Abstract

Diffusion of adsorbed molecules in zeolites plays an important role in the use of zeolites as
adsorbents in separation processes and in shape-selective catalysis. Computational chemistry
is in a stage where diffusion phenomena, even for multicomponent diffusion, can be treated at
a level of high accuracy. The present review presents most of the results on diffusion in
zeolites obtained by classical Molecular Dynamics, dynamic Monte-Carlo approaches,
Transition-State Theory, and the Maxwell-Stefan approach. Reactive and non-reactive
conditions are considered.
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1. INTRODUCTION

Zeolites consist of crystalline three-dimensionally connected SiQO; and AlQ, tetrahedra,
which enclose cavities containing exchangeable cations and water molecules. The cations
compensate the negative charges of the AlO,™ units. The water molecules can be reversibly
removed without a change of the framework structure. Zeolites occur in nature as minerals.
Already in 1925 Weigel and Steinhoff /1/ discovered that not only water but also small
molecules can be sorbed into the cavities of these crystals, while larger ones are excluded. This
selective sorption behavior ("molecular sieving") could be explained as the crystal structures
became known. The openings of zeolites revealed free diameters between 3 and 10 A, which is
of the same order of magnitude as the gas collision cross-section of small molecules. Barrer
12, 3/ synthesized many zeolites and employed them as selective sorbents. In the years up to
about 1960 many synthetic zeolites were discovered, and in 1950 Weisz and Frilette /4, 5/
reported that zeolites are active catalysts in the cracking of hydrocarbons. They can be
selective with respect to the shape of the reactant molecules in reactions. This discovery
introduces the field of shape-selective catalysis which is a combination of catalysis with the
molecular sieve effect. Shape selectivity effects can occur, if the sizes and shapes of reactants,
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of products, of transition states or of reaction intermediates are similar to the dimensions of the
pores and cavities of the zeolite. The selectivity of a heterogeneously catalyzed reaction
depends, therefore, on the pore width and pore architecture. As maximizing the selectivities of
the desired products is one of the most important tasks in catalysis, zeolites offer a unique
opportunity of controlling reaction selectivities via the pore structure. Many zeolites have been
synthesized and characterized so far /6-9/. Owing to their crystalline structure, zeolites possess
discrete pore sizes, in contrast to amorphous porous solids like silica gel and activated
charcoal. The well-defined pore dimensions of zeolites arc determined by the number of SiOy”
or AlOy tetrahedra in the ring which circumscribes the pore. If the tetrahedra are arranged in
an ideally circular and planar manner, the maximum possible free diameter results. In most
cases, the shapes of the pore openings deviate from the ideal geometry. One should keep in
mind that neither the crystal structure nor the molecules are really rigid. The pore sizes enlarge
with increasing temperature due to larger molecular vibrations. The "pore diameter” is a
dynamic and not a static value.

_ As the atoms and molecules within the zeolite pores are always in close contact with the
force field of the adsorbent, a new type of diffusion mechanism, the so-called "configurational
diffusion” occurs /10/. The close contact with walls around the diffusing molecules leads to a
diffusing process which is comparable to surface diffusion, whereby the surface surrounds the
molecules. This particular diffusion mechanism has attracted researchers since the sixties. A
variety of experimental methods, like uptake measurements, Wicke-Kallenbach cells, pulsed
field gradient NMR (PFG NMR), quasielastic neutron scattering (QUENS), Fourier Transform
Infrared Spectroscopy (FTIR) and positron emission profiling (PEP) were employed for the
investigation of diffusion and reaction in zeolites. Reviews on these. expenmental methods are
e.g. given by Kirger and Ruthven /11/, Rees /12/, Post /13/, Chen et al. ‘Nnal, Keil 15/,
Stallmach and Kirger /49/. A very comprehensive review of recent experimental methods for
the characten'zation of zeolites was presented by Karge ct al. /16/. Parallel to experimental
investigations modeling of diffusion processes in zeolites was carried out. At the beginning
the conventional concepts of diffusion processes in catalyst pellets were extended to zeolites.
In the eighties Molecular Dynamics (MD) and Monte Carlo (MC) approaches were
introduced into zeolite modeling. Additionally, transition-state theory (TST), energy function
minimization and quantum chemical calculations were employed. The first calculations were
quite simple but over time they became more and more sophisticated. In the beginning only
atoms like argon or xenon in zeolites were considered. The lattices were treated as being rigid.
Later on diffusivities of aromatics, n-alkanes and water in flexible lattices were calculated.
Diffusion coefficients play a key role in the design of catalytic reactions and separation
processes. Under equilibrium conditions, self-diffusivity is defined by Einstein's relation:

M w

Duy = g lm
whereby d represents the dimensionality of the movement, r(f) and r(0) the position of a
particle at time 7 and ¢ = 0, respectiveley. Experimental methods, including sorption, gravimetric
measurements and Zero-Length Chromatography (ZLC), lead to transport diffusivities, Dr,
which are determined in the presence of a concentration gradient under transient conditions.
For a mixture, the diffusivities obtained are Maxwell-Stefan diffusivities. For a single
component, the sorbate flux N is proportional to the concentration gradient VC, i.e., Fick's
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first law holds:
N=-D,VC (1.2)

While the transport and self-diffusivities are the same at zero coverage, if the diffusion
mechanism is the same (exceptions see Brandani et al. /17/), at higher occupancies or loadings
& transport and self-diffusivity are in general different. A phenomenological expression,
known as the "Darken equation”, but actually a result from the theories of Maxwell and
Stefan, was proposed to relate both diffusivities (Darken /18/, Barrer and Jost /19/):

D, =D,(3Inf/8InC), (13)

where f'is the sorbate fugacity, which can be replaced by the pressure for an ideal gas, C is the
intra-crystalline concentration, and T is the temperature. A difficulty arises from the fact that
the corrected diffusivity, D,, but not the self-diffusivity appears in this equation. Like the self-
diffusivity, it is related to the mobility of the molecules. In the limit of infinite dilution. D, =
Dr, so that the self-diffusivity and the transport diffusivity can be calculated from each other.
This is useful both for experiments and for computational techniques. In situations where the
corrected diffusivity is independent of occupancy, the equation can also be used at higher
occupancies.

The discrepancy between diffusivities obtained using different experimental methods
explains in part the large effort put in numerical studies of diffusion in zeolites. Even so,
diffusion in zeolites remains only partially understood. Therefore, another reason for the
increasing use of numerical methods is to obtain a better understanding of diffusion in zeolites,
and how the diffusion of single components and mixtures depends on various parameters, in
particular the structure of the zeolite, the geometric structure of molecules and the operating
conditions.

With the advent of ever faster computers, microscopic methods, in particular molecular
dynamics (MD), have become more and more popular. In MD, successive configurations of the
system are generated by integrating Newton's laws of motion. The result is a trajectory that
specifies how the positions and velocities of the particles in the system vary with time.
Molecular dynamics is now successfully applied to obtain quantitative results for the diffusion
of single components and recently also mixtures in certain zeolites. However, such methods
are not yet suitable for more complex materials and large diffusing molecules. Diffusion in
zeolites is indeed in most cases an activated process, i.e. of the "hopping” type. Molecules
with sizes close the the size of the micropores spend a long time close to certain sites
corresponding to a potential well. A molecule adsorbed on a site vibrates and its energy
fluctuates until it reaches a high enough value to surmount the energy barrier needed to move
out of the energy well to another site. In the many cases where this scenario occurs, the
motion of the molecules is close to a discontinuous site-to-site hopping, rather than a continuous
movement. Such a hopping picture of diffusion in zeolites, similar to that for defect diffusion
in solids, was already introduced by Barrer in 1941 /20/. The integration of Newton's second
equation of motion has to be performed in small time steps, typically of the order of a few
femtoseconds. As a result, only short simulation times are feasible, typicaily of the the order of
a few nanoseconds. This may be enough to obtain important quantitative information for the
situations where the zeolite is purely siliceous. Sorbate molecules must traverse about one unit
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cell for a reliable calculation of the self-diffusivity. As soon as the zeolite contains not only Si
but also Al and associated counter-ions to compensate for the negative charge, or other strong
adsorption sites, MD becomes prohibitively slow. Molecules cannot probe a representative
part of the pore space within times accessible to even the largest supercomputers. This can be
illustrated by a simple calculation given by Theodorou et al. /21/. On a Cray Y-MP super-
computer the computational requirement of MD for simulating 1 ps of real motion of a simple
sorbate molecule (e.g., benzene) in a rigid model of a zeolite lattice (e.g., silicalite), using
pretabulated potential energy fields for the sites and partial charges, is around 30 CPU
seconds. Assume that the self-diffusivity is around 10" m%s. In order to obtain a reliable
estimate of D,y from MD, one should let the sorbate molecules move for sufficient time to
sample all local regions of the zeolite framework. For this to happen, the translational
displacement of molecules must be commensurate with the zeolite unit cell parameters, that is,
around 2 nm. This will lead for an equilibrium MD simulation to a computing time of at least:

t=(r*}/(6D,, )= (2nm) /{5- (10" m’s™'))~ 670ns
This figure corresponds to 5600 h of Cray Y-MP computing time.

Using integration timc steps needed to simulate the movement associated to weak
adsorption sites, molecules would spend a very large number of time steps around the
aluminium or other strong adsorption sites, which are usually randomly distributed over the
zeolite. Molccules should move along a representative number of weak and strong adsorption
sites to simulate diffusion, and sufficient realizations need to be simulated. In any case, the
simulations need to be long enough to observe a cross-over from a necessarily deterministic
trajectory at short distances to an apparently diffusive motion over longer distances /22, 23/.
The equations are very stiff, with large differences in characteristic time steps.

Techniques to simulate diffusion and reaction in zeolites not accessible to MD yet employ a
mechanism that is intrinsically discontinuous to filter vibrations and separately treat fast and
slow movements to simulate the hopping. These methods are dynamic Monte-Carlo (DMC)
simulations and Transition-State Theory (TST). Both DMC and TST can be related to a
Markovian master equation, which describes the evolution over time of the system, through
jumps between "states” or configurations in phase space:

dF, 1dt =3 (.~ W,P,) (1.4)
where P; is the probability for a system to be in a certain configuration j, and Wj is the
transition probability per unit time to move from a state or configurationj to i. These states can
be associated to sites in a diffusion problem. The detailed derivation of this equation from first
principles is given by Binder /24, 25/. It is similar to the derivation of rate equations in the
framework of TST for gas phase reactions /26, 29/. For the mathematical derivation with the
explicit equations see e.g. Gelten et al. /27/ and van Kampen /28/. The transition probabilities
W, correspond to reaction rate constants that transform configuration j into i and vice versa. In
the master equation, the first term (see Eq. 1.4) in the right hand side expresses how P,
increases, because reactions or hops can bring the system from some configuration j into
configuration i. The second term expresses how P; decreases because reactions or hops can
change the system from j to another configuration i. One has to sum over all possible
configurations j. The transition probabilities can be obtained from quantum chemical
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calculations and/or from transition-state theory. A limitation of the DMC approach arises
when the reaction types in a model can be partitioned into two classes with vastly different
reaction rates, e.g. when diffusion is simulated together with chemical reactions. Diffusion is
often much faster than the chemical reactions, so that most of the computing time is consumed
for simulating diffusion. Extremely large amounts of computer time are required to simulate a
reasonable number of chemical reactions. This is a similar problem as was mentioned for
molecular dynamics simulations. Ways out are to allow a fixed number of diffusion steps
after each reaction /30/, or to relax the configuration to equilibrium after each reaction /31,
32/. Hybrid models in which the treatment of diffusion is separated from the MC method /33,
34/ are also in use. Only a number of highly mobile particles is stored, but not their positions.
The probability that an immobile particle finds a mobile species at relevant sites is calculated.
These probabilities are then accounted for in the pattern matching for the source patterns of
the reactions. These approaches are less expensive than treating diffusion correctly. There are,
of course, drawbacks like assuming uniform distribution of adsorbates, even if sites are
topologically disconnected /34/.

Besides the molecular approaches, the Maxwell-Stefan equations, although developed for
highly diluted gases, could be extended to model surface diffusion and diffusion in zeolites
for multicomponent systems. This is a macroscopic approach, which can be used in conjunction
with the previous micro- and mesoscopic techniques.

The present review focusses on the modeling of diffusion and reaction in zeolites by

- Molecular Dynamics (MD)

- Dynamic Monte-Carlo (MC)

- Transition-State Theory (TST)
Maxwell-Stetan approach.

Some remarks on adsorption will also be made, although we have chosen to limit ourselves
mostly to diffusion in this review.

A few reviews on these subjects have been published previously /11, 14, 15, 21, 35-38/.

2. MOLECULAR DYNAMICS SIMULATIONS

In this section a short introduction into the molecular dynamics (MD) approach will be given
followed by a survey of calculation results obtained for the diffusivities of some atoms and
molecules in various zeolites.

2.1 Molecular Dynamics

Molecular dynamics starts with the selection of a model system consisting of atoms and/or
molecules. Successive configurations of the system are generated by integrating Newton's laws
of motion. The result is a trajectory that specifies how the positions and velocities of the
particles vary with time. The standard MD approach is a classical and not a quantum mechanical
method to study the dynamics of the system. The molecular dynamics technique solves the
classical equations of motion of N molecules interacting through a potential V. The classical
Hamiltonian, which is equivalent to the system's total energy, kinetic plus potential energy,
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can be written as:

H(p,r)= Z—p, +¥(r, @.1)
=]
where p, is the momentum of particle i and ¥ is the effective potential. The Hamiltonian is a
function of 6N variables, 3N particle momenta and 3N particle positions. By means of
Hamilton's equations one obtains from eq. 2.1 the equations of motion:

R oH oV
m——— == 2.2
b= =5t @22)
. OH p
r=—=—%L 2.3
R @3)

Substituting the second derivative of r, into eq. 2.2 gives Newton's second law:
mf, =f; 24)

The dynamics of a system is obtained by integrating either egs. 2.2 and 2.3 or eq. 2.4. For
high-accuracy solutions predictor-corrector algorithms can be employed to solve egs. 2.2 and
2.3. Alternatively, the second-order differential equation 2.4 can be solved directly. For this
problem Verlet methods are preferably used. The starting point for the Verlet algorithm is a
Taylor series expansion about r(¢):

dr 1 d*r
r(t+Af)—l'(t)+:17At ;—dt—At O(Al ) (25)
re-ar)= r(t)—% Ar+ lfl{—rm +o(ar) (2.6)

Adding cqs. 2.5 and 2.6 results in:

vt + Ar)=2r(0)-e(r - A)+ %_\1’ i)

The eq. 2.7 is known as Verlet's algorithm. It enables us to advance the position of the
molecules without calculating their velocitics. One can derive the velocity from knowledge of
the trajectory, using

r(e + A1) - e — ar) = 2v(0)As + O(ar) (2.8)
v(t)= rle+ At?,;tr([ - + O(At:) (2.9)

The velocities are used to compute the kinetic energies and, thereby, the instantaneous
temperature. Before the Verlet algorithm can be implemented, the forces must be calculated.
The forces are used subsequently to calculate the accelerations:

at)=—=— 2.10

0=-25-2 (2.10)
There exist efficient techniques to speed up the evaluation of both short-range and long-

range forces, such that the computing time scales as N. There are various improvements of the
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standard Verlet algorithm. Details may be found in the books mentioned below. Calculating
the forces requires interaction potentials. The potential energy can be split up into terms which
depend on the coordinates of individual interaction sites, pairs of interactions sites, triplets
etc. If ry, ry, .... ry represent the coordinates of all interaction sites in the system and
neglecting any external fields, the potential energy can be written as:

)= ZZV (r.r; )+ZZ ZV(,, 8 A T @.11)

i=l p>l i=l ol k>joi

¥ accounts for two-body interactions and ¥; for three-body interactions. Higher terms are not
given here. In most cases it is assumed that only two-body interactions are important. Two-
body interactions make indeed the most significant contribution to particle interactions. There
are a broad variety of pairwise potentials for atoms and simple molecules. A commonly used
potential energy expression that represents systems with dispersive interactions quite well is
the Lennard-Jones 12-6 potential:

v, = Zvjiu[ )u-[ﬁ)‘ @12)

i=l j>l r, 'l

where ois the collision diameter (separation for which the energy is zero) and the well depth &
The Lennard-Jones potential is characterized by an attractive part that varies as r® and a
repulsive part that varies as #'2. There are no sound theoretical reasons in favour of the
repulsive r'2. Therefore, instead of this term often an exponential term (Buckingham potential)
is employed. There are various modifications of this exponential term. The parameters o and ¢
are for self-interactions. Cross-interaction parameters are found by e.g. the Lorentz-Berthelot
mixing rules:

O = (aw + a.bb)/z (2.13)

b = (€t )’ 2.14)

In order to reduce the computing time, a potential cutoff (about 10-15A) is employed to
limit the number of interaction sites that must be summed over. Molecular species require
additional potential expressions for the intramolecular bond potentials, angle bending
potentials, out-of-plane bending potentials and torsional potentials. There are also effective
pairwise potentials for molecules available. Molecular mechanic potentials like AMBER,
CHARMM, MM3, CFF93 and KFF can be employed. Computing the energy from these
potentials requires an extraodinary increase in computational time compared with using a
simple intermolecular potential. Of course, one can get quite accurate results with these
potentials. Long-range contributions to the potential energy in a system with boundary
conditions are calculated by the so-called Ewald summation or altemnative approaches like the
reaction field or the particle-particle and particle-mesh (PPPM) methods.

A commonly used simplification of the calculation of intramolecular potentials is to consider
groups of atoms as single interaction sites. For example the CH3 or CH; units of an alkane
chain can be "lumped” into one interaction group described by one single pair of effective
Lennard-Jones parameters. This approach is called "united atom approximation”. The
advantage is that the number of interaction sites to sum over is consnderably reduced. The
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atoms comprising the zeolite framework are generally represented as Lennard-Jones spheres.

The MD algorithm can be summarized as follows:

- Define the system: number and type of atoms and molecules, their masses and their
intramolecular and/or interaction potentials

- Define the initial (¢ = 0) positions and velocities; the velocities can be found for a desired
temperature 7 by means of an instantaneous temperature at time ¢, 7(¢):

kT() = i%z(’) (2.15)
=] ’s

where N is the number of degrees of freedom (3N). The desired temperature T is adjusted
to T{¢) by scaling with /T/T ©.

- Define a time step, At, for the integration and choose a maximum simulation time. Too small
time steps lead to a trajectory that covers only a small portion of the phase space; too large
time steps lead to instabilities in the integration algorithm owing to high overlaps between
atoms. In general the time step is set to a few femtoseconds, in some cases even less.

- Calculate the forces between the species at ¢ =0 and start the integration by means of the
Verlet algorithm. This step is repeated until the end of simulation time is reached.

- Compute the averages of measured quantities, e.g., the self-diffusivity by the Einstein
relation (eq. 1.1).

For reasons of computing time, the number of particles is limited to at most a few thousand,
and. In order to avoid surface effects when simulating bulk systems, periodic boundary
conditions are commonly used, which mimic the presence of an infinite bulk surrounding the
N-particle model system. The volume containing the N particles is treated as the primitive cell
of an infinite periodic lattice of identical cells. A given particle interacts with all other
particles in this infinite periodic system. The statistical mechanical ensemble generated by the
usual MD simulations is the microcanonical or NVE ensemble, where the number of particles,
volume, and total energy are constant, but it is possible to simulate a canonical or NVT
ensemble, where a thermal reservoir is added to the system, or the isobaric-isothermal
ensemble (NPT), where pressure and temperature are held constant.

Molecular dynamics can also be applied to non-equilibrium systems. Non-equilibrium
molecular dynamics algorithms (NEMD) were already developed in the seventies. and
improved lateron. NEMD involves simulating a system at steady state away from equilibrium,
where the steady state is attained through the application of an external field. The ratio of the
field-induced current to the field itself yiclds the transport coefficient of interest. The
theoretical basis of many NEMD algorithms is underpinned by linear and non-linear response
theory /39/.

There are some introductory books on MD. An overview of many molecular simulation
methods is given by Leach /40/, Allen and Tildesley /41/, Frenkel and Smit /42/, Sadus and
Rowley /44/ and Field /45/. Molecular dynamics methods are described in the books by Haile
146/, Rapaport /47/ and Haberlandt et al. /48/.
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2.2 Molecular dynamics simulations of atoms and spherical molecules

The first molecular dvnamics (MD) calculations were on noble gases (mainly Ar, Kr, Xe)
and spherical molecules like CHy, CF; and less frequently SFs. They were modeled as soft
spheres interacting between them and with the zeolite framework via Lennard-Jones 6-12
potential functions (see eq. 2.12). If polarization interactions are accounted' for, eq. 2.12 is
written as:

V= iz[ ' :] (2.16)

s=l g>1 y

where 4; =45,0," ; B, =4£,0; and ryis the distance between interacting centers i and j.

Parameter sets were derived from various sources /50-59/. If cations were present in the
framework, quite often a shifted-force potential was employed /41/. Schrimpf et al. /59/ also
included induced dipole-dipole interactions. Recently, Jaramillo and Auerbach /60/ developed
and validated a new force field for cations in zeolites, which explicitly distinguishes Si and Al
atoms, as well as different types of oxygens in the framework. The new force field gives
excellent agreement with experimental data on cation positions, site occupancies and
vibrational frequencies. Henson et al. /61/ derived a new force field for the modeling of
interactions between aromatics and siliceous zeolites by fitting to calorimetric data on the
sorption of benzene in siliceous faujasite. Nicholson et al. /62/ reviewed the construction of a
potential function for the interaction of non-polar probes with silicalite and with AIPO,-5, and
analyzed the contributions arising from the different terms. The study revealed that carefully
tuned 12-6 potentials can be used as input to adsorption simulations in the type of zeolites
considered here. However, in some cases it appears advisable to include all atoms, rather than
oxygen only, and not to place any reliance on transferability of the parameters obtained. June
et al. /63/ derived potential parameters from thermodynamical investigations on alkanes in
silicalite. The coefficients By in eq. 2.16 were calculated via the Slater-Kirkwood formula /76/

2 K
B, = Seaam @.17)

(a/n‘,)’% +(a/n¢%

The short-range repulsion coefficient, 4;, is obtained as:

4, /B e +r°) (2.18)

where «, is the atomic polarizability of atomic species i, e the charge of an electron, a, the
Bohr radius (0.52918 A), r’ represents the van der Waals radius of atom i, and . is an
effective number of electrons in an atom (approximatcly equivalent to the number of electrons
in the outer shell). The sum of the van der Waals radii of a pair (i. j) is equivalent to the
minimum distance of the Lennard Jones potential:

o =1+ = 0,2 =1.122460,. (2.19)

The atomic parameters were taken from the literaturc except the van der Waals radius of the
zeolite oxygen atoms, which was adjusted to yield the experimental Henry's constant for
methane in silicalite at one temperature.
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Many MD simulations were carried out for xenon /59, 64-74/. Jost et al. /75/ investigated
the diffusion of xenon-methane mixtures. Pickett et al. /65/ used a constant temperature
algorithm (rather than NVE) and with different Lennard-Jones potential parameters, they
obained results for the diffusivities that are in good agreement with the simulations of June et
al. /64/ and with the PFG NMR measurements of Heink et al. /77/. Pickett et al. /65/ calculated
the diffusivities for Xe in silicalite. Silicalite is the aluminum-free and therefore cation-free
variant of ZSM-5. The symmetry group of silicalite is Pnma with cell parameters a =20.07 A,
b=19.92 A, and ¢=13.42 A. The three-dimensional channel network consists of two types of
channels: straight channels parallel to the y-direction and zigzag (sinusoidal) channels with
main component along the x-direction plus an oscillating component parallel to the z-
direction. These two kinds of channels are connected to each other at intersections which
enable displacements in z-direction. The channels have a slightly elliptical cross section of 5.3
x5.6A? (straight channels) or 5.1 x 5.5 A? (zigzag channels). The intersections are elongated
cavities up to 9 A in diameter. One crystallographic cell contains 288 atoms, in fact 96 Si and
192 O atoms. Silicalite shows a reversible phase transition at about 340 K to monoclinic
symmetry (P2;/nl1 space group). The space group symbolism is, e.g., explained in the book
by Hall /79/. Picket et al. /65/ assumed a rigid zeolite framework, and a Lennard-Jones 6-12
potential was used to describe interactions between Xe and zeolite oxygen atoms. As the
bulky and rather polarizable oxygen atoms cover the Si atoms, and in other cases also the Al
atoms, only Xe-oxygen interactions were taken into account in the potential. A number of 32
Xe atoms were distributed randomly over 8 unit cells of silicalite at the beginning of the
simulations which were run over 300 ps with time steps of 10-12 fs at temperatures from 77K
to 450 K. At 77K the Xe atoms were mostly trapped at the adsorption sites. From an Arrhenius
plot, the activation barrier to diffusion was found to be 5.5 ki/mol. The xenon loadings were
gradually increased up to 16 atoms per unit cell. Infinite dilution was simulated by eliminating
the guest-guest interactions without reducing the number of particles in the box. At 298K, the
diffusion coefficient was found to be 1.86 - 10° m%s (77 K: 3 - 10™"! m%s; 450 K: 3.25 - 10
m?/s). The experimental value obtained by PFG NMR /77/ for 298 K was 4 - 10® m%s. An
increase of the loading leads to increased Xe-Xe interactions and collisions. Therefore, the
diffusivity decreases with increasing loading. Separate diffusion coefficients for the x, y, and z
directions are of particular interest in zeolite systems. The calculated diffusion coefficients at

298 K and 4 atoms per unit cell, D, =1.26-10°m?s, D, = 4.03-10™ m%/s (straight channel),

D, =0.28-10" m?/s, suggest that diffusion is fastest along the straight channel and slower

along the sinusoidal channels. Diffusion along the z-direction requires the alternating motion
of atoms between straight and sinusoidal channels. The small value of D. shows that only
occasional transitions of atoms from one channel system to the other occur.

June et al. /64/ investigated the dynamics of Xe in silicalite as well. Xenon was represented
as a Lennard-Jones sphere. The zeolite lattice was assumed rigid. All of the potential
parameters were taken from the literature. The polarizability (see eq. 2.17) of the oxygen
atoms was taken from Kiselev /66/. The effective number of electrons (n, = 7(0),5(C),0.9(H))
and an optimal van der Waals radius of oxygen (1.575 A) were taken from a previous paper
by June et al./63/. MD runs were executed for 200, 300 and 400 K. Each total simulation time
was over | ns. The diffusion coefficients decreased with increasing Xe loading (see Fig. 1). At
the highest temperature this effect was very pronounced, but weaker at 300K, and at 200K a
weak maximum was observed in the predicted self-diffusivity. The authors explain this effect
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Fig. 1 Computed self-diffusivites of xenon in silicalite at 200K, 300K, 400K as a
function of loading /64

in some detail. At low temperature and low occupancy, a significant portion of the sorbate
molccules will be "trapped” in individual channel scgments, and, consequently, only those
atoms or molecules possessing translational energies in excess of the potential barriers will be
able to move freely between channel segments. As the concentration of sorbate molecules
increases, intermolecular collisions act to push a sorbate molecule from a channel interior past
the intersection and into an adjacent channel segment. Collisions between sorbate molecules
occupying the same channel segment have two effects: the first is an exchange of energy
during a collision, and the second is a reduction of the mean free path for motion along the
axis of the channel. The first of these effects leads to an increase in the rate of barrier
crossings between channel segments, whereas the second effect leads to a decrease. The
degree to which the first or the second effect dominates depends, at constant temperature, on
sorbate occupancy. Increasing the occupancy of sorbate molecules also makes the density
distribution less diffuse. As temperature was lowered, sorbate molecules. were found to
preferentially populate the sinusoidal channels over the straight channels, because the former
are energetically more favorable. Xenon did not frequent the channel intersections at any of
the temperatures investigated. In the paper several three-dimensional contour plots of particle
density distribution are presented.

Yashonath and Banyopadhyay /81/ calculated the diffusivities of simple Lennard-Jones
particles in silicalite as a function of the adsorbate diameter. The diffusion coefficient
exhibited a peak when the diameter of the adsorbate approached the channel diameter. This
"ring effect” was also observed for many other cases. MD calculations were performed in a
microcanonical ensemble (NVE) on 32 unit cells (4 x 4 x 2) of silicalite for the rigid
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framework model, whereas 8 unit cells (2 x 2 x 2) were used for the flexible framework model.
The number of adsorbate molecules were 26 and 16 for rigid and flexible frameworks
respectively. All calculations were carried out at a temperature of about 300 K for a
concentration of one adsorbate per channel. A MD time step of 10 fs and 1 f5 for fixed and
flexible framework simulations respectively yielded excellent energy conservation.
Equilibration was performed for about 100 ps. This was followed by runs of 400 ps duration
during which period the diffusivities were calculated. The harmonic potentials for the zeolite
framework interactions were taken from Demontis et al. /82/:

V(r)= -;—k(r _r} (2.20)

Higher-order terms can be included. The constant k can be derived from spectroscopic data
and r, from structural data. The "ring effect" persisted when framework flexibility was included.
The c=values for the sorbent-sorbent interactions were varied between 1.5 A and 4.5 A. The
diffusivities for the flexible framework turned out to be about 30—50% greater than for the
rigid framework. Bandyopadhyay and Yashonath /83/ could confimm that the "ring effect”
appears to be independent of the host zeolite and of the topological features of the zeolite
micropores. The additional simulations were done for the VPI-5 zeolite which is an alumino-
phosphate molecular sieve, the channel system of which comprises a straight 18-ring pore
parallel to the z-axis, with a free diameter of 13 x 21 A. The system temperature was taken to be
620 K. As the sorbate diameter approached that of the window, again a peak in the diffusivity
could be observed. The "ring effect” or “superdiffusivity effect” (sometimes also called
"levitation") can be explained by the fact that the radial force acting on a sorbate molecule is
nearly zero when the size of the sorbate molecule is close to the diameter of the channel. The
sorbate is "floating" through the channel. Yashonath and his coworkers /67, 69, 70, 71, 73/
investigated systematically the diffusion coefficients, rates of intercage diffusion and ratcs of
cage passings of monoatomic spherical sorbates in NaY zeolites, the framework of which
consists of cuboctahedral sodalite cages or Fcages. made up of cight 6-membered and six 4-
membered rings, that are linked by 6-membered rings of oxygen atoms. This leads to the
formation of a three-dimensional net of large cavitics tetrahedrally connected by windows of
12 oxygen atoms. Structures and substructures of zeolites were described by van Koningsveld
/84/. In their simulations. Yashonath and his coworkers used a Si/Al ratio of 3 and the charge
balancing Na" cations fully occupied the SI and SII cation sites of the structure. Initially each
supercage was occupied by one Xenon atom. The temperature was assumed to be 364 K. The
Lennard-Jones potential parameters were taken from Kiselev and Du /55/. The authors detected
that the potential to be surmounted for crossing the 12-ring window is a function of distance
from the window center /67/. The potential minimum of -12 kJ/mol was observed 1.6 A from
the center of the 12-ring. A potential barrier of less than 1 kJ/mol was calculated to cross from
one cage to another. The average time that a Xenon atom spends within a given cage was
calculated to be 9.9 ps at 376 K /68/. The investigation of the trajectories of the diffusing
atoms showed that the atoms move mostly closer to the wall than to the center. Increasing the
loading to 2 or 3 atoms per supercage led to a partial dimerization of the xenon atoms /69-71/.
About 15 % of the xenon atoms diffuse as dimers at a concentration of one xenon atom per
supercage /62/. This figure increased at higher loadings. As expected, at higher temperatures
the atoms were more evenly distributed over the supercages. Yashonath and Santikary /73, 85/
performed similar calculations for argon in NaCaA. The pore system of A-type zeolites is a
cubic array of nearly spherical o-cages having a diameter of about 12 A, interconnected
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through 8-membered oxygen windows with diameters of about 4.3 A when not blocked by a
cation. The Si/Al ratio determines the diffusivity to a large extent. A Si/Al ratio of 2 was
taken for the simulations. The Na* and Ca®* cations did not occupy sites in the 8-ring
windows, which connect to a-cages. A counter-intuitive observation was made: although the
8-rings in zeolite A are far smaller than the 12-rings in zeolite Y, the diffusion of the argon
atoms was faster than xenon diffusion in zeolite Y. This anomalous result could be explained
by the "ring effect".

Extensive investigations on diffusion in zeolites were executed for methane. Various
relationships between the diffusivities and temperature, occupancy, rigid or flexible frame-
works, presence of ions etc. were investigated. The groups of Yashonath, Demontis and
Haberlandt published most of the MD papers on this subject. The simulation results were
compared with PFG NMR and in some cases with quasi-elastic neutron scattering (QUENS)
results. To sum up, it can be stated that the diffusivities obtained from MD simulations and
PFG NMR or QUENS measurements agree quite well. In the subsequent paragraphs details of
the recalts will be given.

Demontisetal. /52, 53, 86/ investigated the diffusion of CH, in silicalite. Demontis et al. /52/
adopted a harmonic model potential proposed in a previous paper on anhydrous natrolite and
zeolite A. The model assumes that the potentials for Si-O and O-O interactions are
represented by quadratic functions of the displacement from a given equilibrium bond distance
/87, 88/. No other possible contacts are included, the initial topology of the framework bonds
is retained during the MD simulations, and only first neighbors are considered as interacting
atoms. Although this model is rather crude, it can reproduce the effects of the vibrations of the
framework upon the diffusion of methane. As for the methane molecules, they were
represented by soft spherical particles, mainly because attention was focused on the general
features of the diffusion, so that a model as simple as possible allowing long simulation runs
was desirable. The time step used in MD runs was 1 fs. This small value was chosen in order to
ensure a good energy conservation, in view of the need for very long trajectories. The
fluctuations of total energy were less than 0.1 %. Four MD simulations 200 ps long were
performed. First the ability of the harmonic model to reproduce the most relevant structural
and dynamical properties of silicalite was tested. For this purpose silicalite with empty
channels was simulated. The second run was for the full system with 24 CH; molecules at a
temperature of 298.1 K. The third run was with a monoclinic cell at 302.6 K as a consequence
of the results of the second run. The last run was carried out with a fixed framework for
comparison of the results with the flexible framework. Methane-methane interactions were
represented by a 20-6 Lennard-Jones potential between the centers of the molecules, derived
by Matthews and Smith /89/ from experimental data. The minimum falls at 3.88 A, and is
-0.431 kcal/mol deep. Methane-framework interactions were described according to Ruthven
and Derrah /50/. The potential was slightly modified: as no cations are present in silicalite, the
polarization term was dropped. The potentials were:

Veu,-cu, =1.0992:10" . r° - 2.09835-10°r° (2:21)
Ven,-0 =2.28- 10°- 77 -1.33.10° - . 2.22)

The usual minimum image convention was used, and the equations of motion were integrated
by means of a modified Verlet algorithm. The diffusivities were calculated According to the
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Einstein formula (eq. 1.1). The results of the MD simulation of the bare silicalite assuming a
Pnma space group yielded mean values of the calculated coordinates in good agreement with
the experimental ones, the standard deviation being 0.008 A. The calculated diffusion
coefficient was in very good agreement with a value found from NMR measurements by Caro et
al. /90/. The simulated diffusivity was D =6.58 - 10? mzls, which corresponds very well with
the experimental value of 6.5 - 10° m%s. For the fixed framework the diffusivity was
approximately 20 % smaller (D = 5.41 - 10° m%s). The components of the diffusivities were
(values of the fixed framework in brackets): D, =3.59 - 10° m¥s (4.93 - 10° m¥s); D,=149.
10” m¥s (9.66 - 10° m?s) (straight channel); D. = 1.22 - 10® m%s (1.64 - 10° m%s). The
authors argued that the CH, molecules float unhindered along the straight channel. The radial
distribution functions revealed that the methane molecules move preferentially close to the
axes of the channels. In the sinusoidal channel, the oscillating zeolite framework acts to tighten
up the diameter of the channels. The result is a reduced diffusivity. The methane-methane
radial distribution function exhibited a maximum at 3.75 A, a distance slightly smaller than
the minimum of the CH,-CH, potential function. This maximum could reflect frequent
collisions as well as permanent or transient methane dimers or clusters. A detailed analysis
gave convincing hints that dimers and even clusters of three or four atoms occured. In a
subsequent paper Demontis et al. /53/ investigated the temperature dependance of the
diffusivity of CH, in silicalite. The potentials were adopted from the previous paper /52/.
Three methane molecules per channel intersection were included in the MD system, i.e. 12
molecules per unit cell, 600 particles altogether. Simulations were executed for temperatures
of 446, 290, 221 and 167 K. When the logarithms of the diffusivities were plotted against 1/T
the characteristic Arrhenius behavior could be observed, suggesting that diffusion is an
activated process. The activation energy was 2 kJ/mol, the corresponding experimental value
is 4 ki/mol /11/. The components of the diffusivities were close to measured values. A
comparison of the diffusion coefficients obtained from fixed and vibrating framework
simulations showed no regular trend, possibly because of statistical errors, but in any case
they were similar, contrary to the results from the simulations of cation-free zeolite A. The
activation energies and the radial distribution functions for the rigid and flexible framework
were also similar, but by considering the velocity autocorrelation functions /41, 42/, relevant
differences were detected. When methane molecules collide with the walls, backscattering can
occur, resulting in negative velocity correlations. The effect of the rigid framework on the
velocity relaxation is to cause a little shortening of the crossover time and to enhance the
region of negative and positive correlation. Since the self-diffusion coefficient is proportional
to the time integral of the velocity correlation function, the diffusion coefficients are quite
similar for a fixed and a vibrating framework. Lattice vibrations enhance the number of binary
collisions for temperatures higher than room temperaturc while multiple collisions arc
inhibited. On the contrary, in fixed framework simulations an exaggerated number of multiple
collisions take place. To sum up, the energy exchange due to the vibrations of the framework
in silicalite gives rise to significant effects on the motion of sorbate molecules. One should
keep in mind that these considerations are for 12 CH, molecules per unit cell. Demontis et al.
{91/ extended their investigations to the case of high dilution. In this case the influence of the
vibrating framework on the diffusion mechanism of small molecules is not as dramatic as in
the case of twelve molecules per unit cell. In the absence of collisions between sorbed
particles, the diffusion is controlled by the interactions and collisions with channe! walls, and
the motion along the straight channels maintains on the average the initial direction. This
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effect yields positive but oscillating velocity autocorrelation functions of unusual form.

June et al. /64/ performed simulations of the diffusive properties of CH, in silicalite for
various temperatures and loadings. The computational details were the same as for the
simulation of xenon diffusivities. At 200 K the diffusivity was nearly ind'ependent of the
loading, but at higher temperatures the diffusion coefficient decreased with increasing
occupation. The values of the diffusion coefficients were in good agreement with
experimental results /92/, except at 200 K, where the simulations gave two times higher values
than the measurements, June et al. /64/ also calculated the rotational diffusivity. As a result of
sorbate-sorbate collisions, which act to decorrelate the molecular orientation, the rotational
diffusivity was found to increase with concentration.

Bandyopadhyay and Yashonath /93/ also extended their calculations on xenon. The zeolite
framework was assumed to be rigid. The zeolite-methane dispersive interaction term was
taken from Bezus et al. /51/, and for the repulsive part the force on a pair of atoms was set to
zero at the sum of their van der Waals radii. The time step was 10 fs for a total run time of 600
ps. They calculated the rate of diffusion from one a-cage to another to be 1.9 - 10" per sorbate
atom per second in NaY zeolite and 24.3 - 10 per sorbate atom per second in NaCaA zeolite.
Again, the "ring effect" was observed: methane diffuses faster through the zeolite with the
smaller pores. The faster diffusion in zeolite A persists at higher temperatures, but was far
less pronounced. This is caused by the larger amount of centralized diffusion at higher
temperatures. For this case both zeolites present a potential well to centralized diffusion
whereas at low temperatures diffusion close to the wall dominates, and this mode of diffusion
presents a potential barrier for the NaY and a well for the NaCaA zeolite.

Fritzsche et al. /57, 58, 94, 95, 97/, Jost et al. /96/ and Haberlandt /98/ published papers on
diffusion of CH,, Xe and C,Hg in NaCaA and its cation-free analogue ZK4. In paper /58/ a
fixed zeolite lattice was assumed, and the thermal equilibrium of the diffusing molecules was
maintained by renormalizing the particle velocities after each step. This reduces the computing
time compared to e.g. a Nosé-Hoover thermostat /42/, but is thermodynamically not completely
correct. The authors detected that the diffusing molecules are able to thermalize their own
kinetic energy to a Boltzmann distribution at any point within the zeolite lattice. This means
that the energy exchange between the zeolite and the sorbent is almost negligible. In a
subsequent paper /57/ the first four moments of the particle displacement profiles were
calculated by MD simulations and compared with expressions derived from the solution of
the diffusion equation. The n-th moment of the distribution curve of molecular displacement
is defined by the relation

(|r - r,,|") = _ﬂr -r| P(r.r,,t)dr . (2.23)

Solving the diffusion equation for an infinite system, the probability density of finding a
particular particle at time £ at position r. if it has been at position r=r, at time =0, is found
to be

(r-v)

3 P
Plr,r,.t)=(4Dr) "2 exp| ——21 |, 2.24
(ea,00)= (4200) e\p[ - ] .29

where D is the diffusivity. Substituting eq. 2.24 in eq. 2.23 gives the following first four

85

Brought to you by | Universiteit van Amsterdam - UVA Universiteitsbibliotheek SZ
Authenticated | 146.50.144.11
Download Date | 10/18/12 6:51 AM



Vol. 16, No. 2, 2000 Modeling Diffusion in Zeolites

moments:
(r-r))=4JDt/x (2.25)
(r-cl)=60r (2.26)
3\ 32 3/
(l' -} ) =T (Dey? .27)
(r-r. ') =60(Dr)'. (2.28)

These four moments can only coincide with the ones calculated from MD simulations if the
distribution is indeed given by eq. 2.24. A comparison of the diffusivities derived from the
four moments may serve as a test of the validity of the diffusion equation on intracrystalline
zeolitic diffusion. Diffusivities calculated in this way at 300 K for mean occupation numbers of
1, 3 and 7 CH, molecules per cavity in ZK4 coincided after 30-60 ps molecular propagation.
One has to conclude that for times larger than 30-60 ps molecular propagation is already
described by distributions of the form of eq. 2.24, indicating that a kind of hydrodynamical
stage has been reached. Diffusivities in ZKA were calculated as a function of concentration
and for two sets of potential parameters o; labeled A and B /94, 97, 98/. Set A was based on
o~values taken from Bezus et al. /51/, Kiselev and Du /55/ and Goodbody et al. /56/, set B
from Ruthven and Derrah /50/, Demontis et al. /91/ and Cohen de Lara et al. /99/. Set A
simulates slightly larger windows in zeolites than set B. Set B has a slightly larger value of
Ocy,.o and a smaller value of £, , than set A. The authors computed for both sets

isopotential surfaces of the center plane of an a-cage. These tumed out to be quite similar.
The center of a cage is a region of high potential energy and, therefore, nearly free of methane
molecules at low or medium CH, concentrations. Set A gave a potential minimum in the plane
of the 8-ring window, whereas set B predicted a smaller minimum near the inlet of the window,
and the plane of the window corresponded to a saddle point. A methane loading of 1-7
molecules per cage was assumed. The MD runs were performed with a time step size of 5 fs
over 0.75 ns. The residence time of a methane molecule in a cage was investigated by
trajectory studies (see Fig. 2). With increased loading an increasing fraction of methane
molecules that cross into a neighboring cage jump directly back into the cage from which they
started (see Fig. 2b). This phenomenon occurred more often with decreasing temperature. The
residence time in a cage was calculated to be 5-10 ps. At low concentrations it is difficult to
“find" a window (see Fig. 2a). The more frequent intracavity collisions at higher loading lead
to more passes through the window. On the other hand, the methane molecules will be more
often knocked back into the cage where they came from. The diffusivities depend, as expected,
on the parameter sets. Set A predicts a decrease of the diffusivity as loading increases, while
set B predicts the opposite. Fritzsche et al. /95/ investigated the influence of extraframework
cations Na* and Ca’* in zeolite A. The windows were free from cations. The cations were
situated near the hexagonal faces of the sodalite units in zeolite A. The parameter sets A and B
were taken as in ZK4, augmented by a polarization term, which gives the inter-action energy
of the induced dipole with the electric field while the dipole-dipole interaction of the induced
dipoles of the guest molecules was considered to be a second order correction as well as a
back-polarization effect. The aim of this investigation was to show the strong influence of the
induction energy on diffusion of a small neutral molecule in a zeolite. The simple model
proposed by Ruthven and Derrah /50/ was used to get effective cation diameters and effective
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Fig. 2 Trajectories of methane within a-cages of ZK4 for a) low and b) high loadings
s’
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charges of -0.25¢ on cach oxygen. The other lattice atoms were treated as uncharged. The
computational effort was much larger for NaCaA compared to ZKA, as much longer
trajectories (up to 5-10 ns) were necessary to evaluate the small diffusivities which were found
to be up to two orders of magnitude smaller than in ZK4. This was confirmed experimentally
by Heink et al. /77, 100/. Parameter set A gave by far better results than set B. Increased
Joading leads to increase in the self-diffusivity at high loading (8 methane molecules).
Between 6 and 7 CH, molecules per cage showed a shallow minimum in the diffusivity for set
A. In Fig. 3 isopotential contour maps of NaCaA for the sets A and B are presented.

Catlow et al. /103, 104/ performed MD simulations of methane diffusion in silicalite in
flexibie zeolite frameworks based on a potential developed by Vessal et al. /105/. The
parameters of this potential were derived by fitting to reproduce the static structural and elastic
properties of a-quartz. The CHy-CH, interaction potentials were taken from Kiselev et al. /66/
with methane treated as a flexible polyatomic molecule. The time steps in the simulations were
1 fs over 120 ps. The diffusion coefficient increased by a factor of 3 with increase of
concentration from 1 to 2 methane molecules per cell, in contrast to experiments and other
simulations. At lower temperatures the methane molecules occupied preferably the centers of
the straight channels, whereas at higher temperatures also the zigzag channels were occupied.

Nicholas et al. /106/ investigated methane diffusion i silicalite, based on an MM2 /40/ force
field. A simulation box of 27 unit cells was used, into which up to 216 methane molecules
were placed. The zeolite lattice and the methane molecules were assumed to be rigid. Unlike
other investigations, intermolecular interactions from the zeolite silicon atoms were included.
Additionally, an electrostatic term was included in the potential energy. The calculated
diffusivities at a temperature of 300 K were in good agreement with measurements, and
showed a decrease with increasing concentration from 4 to 16 molecules per unit cell.

Nowak et al. /107/ found for short simulation time scales that methane is trapped inside
pockets of the straight channel system of EU-1 zeolites, which have a unidimensional pore
system with side pockets perpendicular to the main channel system.

As expected, the interaction potentials and their parameters play a dominant role for the
quality of the simulation results. Ermoshin and Engel /108/ developed a new potential energy
surface for methane in silicalite using a general approach to determine the molecule-
framework interaction. Estimations based on general physical principles to describe inter-
molecular forces were presented. The developed potential was then used in MD calculations
of diffusion coefficients and the heat of adsorption for methane adsorbed in silicalite. The
potential energy of a spherical methane molecule being located at the coordinate origin and
interacting with the atoms (i) of the zeolite framework at positions r; can be written as a sum
of electrostatic, Vg, inductive, ¥}, dispersive, ¥p, and repulsive, Vp, interactions:

V=Ve+V,+V,+V,. (2.29)
The electrostatic term is expressed in a multipole expansion (see e.g. /109/). Because of the
spherical symmetry of CH,, ¥V is set equal to zero, V¢ =0. The inductive interaction is given
by:

V,=-05aFE, (2.30)
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NaCaA, Set A

NaCaA, SetB

Fig. 3 Potential contour maps inside an a-cage of NaCaA zeolite for potential parameter
a) set A and b) set B /97/.
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where E is the electrostatic field vector at the position of the molecular center of mass and &
is the static polarizability of the molecule. The polarizability of CH, is 2.593 A® /92/. The
polarizabilities of the framework atoms can be estimated with the help of the screening
constants method /76/. The electrical field is a vector sum of fields originating from the ions:

E=-Yq -1 231
A

Here |r)| is the distance between the molecular center of mass and the ion i, and q, is the
respective charge. The dispersion interaction term is given by:

¥p=—2.Cr™, (2.32)

where the van der Waals dipole-dipole coefficient was estimated via the Slater-Kirkwood
combination rule /76/ (compare with eq. 2.17):

C = 3 acq,
2 (a'/n)’lé+(a,./n,)y3

Here a; (@) is the static polarizability of the ion i (molecule), and n; (n) i$ the number of
valence electrons. The use of the number of valence electrons in eq. 2.33 in general
overestimates the dispersion coefficient. Therefore, one should use effective values for this
quantity /110/. For methane a ng, =5.797 was chosen. Eq. 2.33 can be transformed to the

(2.33)

Lennard-Jones expression /76/ if the diamagnetic susceptibility is expressed via ¢, and n;, e.8.
in atomic units (a.u.):

Zi=na;l4c, (2.34)
where c is the velocity of light. The repulsion energy is given as

Ve=).Br ", (2.35)

where the coefficients B, are calculated at the equilibrium distances between a framework atom
(i) and the CH, molecule through the derivatives of ¥ with respect to the intermolecular
distance |r,| =r;:
)3 d|E
B.=05(R+R)C,— (R ‘;f)‘ ofE] Bl

d’; lr-k«R‘ ) (2‘36)

where r = R + R; is the sum of the van der Waals radii of CH, and the ion i. The authors
demonstrate that the induction energy can be neglected such that the second term in eq. 2.36
can be dropped. How to get the proper van der Waals radii, polarizabilities, ionic charges,
valence electrons and Lennard-Jones parameters is demonstrated in the paper /108/. To test the
potential, MD calculations were executed for a rigid and a flexible silicalite lattice. The
influence of framework vibrations on the calculated quantities was investigated using the ab
initio generalized valence force field (GVFF) model of the framework potential /111/. An MD
box of 3456 framework atoms arranged in the zeolite structure (2 x 2 x 3 unit cells) was
employed. The cutoff distance for the shifted potentials /41/ was taken as Rey = 19 A. The
integration time step was 2 fs. During the first 20 ps the system was equilibrated at 300 K by
scaling the velocities with a relaxation constant of 0.4 ps/112/. The positions of the methane
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molecules were stored every fifth step during the 50 ps propagation, and the final positions
and velocities were taken as initial conditions for a new run. An average of 16 uncorrelated
runs was used in the calculation of the diffusion coefficients. The heat of adsorption H s was
calculated as:

H,, =(V)-RT, (237

where RT=0.596 kcal/mol at T=300K, and {}) is an ensemblc avcraged potential energy of
the methane-framework interaction. The following results were obtained for the self-
diffusivity D = 1/3 (D\c + D, + D..): D[A*/ps] = 1.0 £ 0.2 (rigid framework), D[A*/ps] = 1.4
0.25 (flexible framework), D[A/ps] =1.3+0.55 (expt. /92/, extrapolated to zero loading); Hos
[kcal/mol] = —-4.69 (rigid framework); H,y [kcalmol] = —4.76 (flexible framework); Huu
[kcal/mol] = —4.8 (expt. /113/). The authors stressed that the heat of adsorption provides a
more sensitive measure for the quality of molecule-zeolite potentials than the diffusion
coefficient.

The groups of Haberlandt /98, 115, 118/ and Bell /116/ published investigations on transport
in zeolites in the presence of macroscopic transfer fluxes. Maginn et al. /116/ simulated
methane in ZSM-5 in a rigid lattice. All interactions were described by Lennard-Jones
potentials. The potential parameters were taken from Kiselev /66/. Two different non-
equilibrium molecular dynamics (NEMD) techniques were developed. The first approach was
called gradient relaxation molecular dynamics (GRMD). In this technique, a concentration
gradient is set up within the zeolite simulation cell and the equations of motign are integrated
using the same constant kinetic energy algorithm as is used in equilibrium molecular
dynamics calculations. By monitoring the relaxation of the concentration gradient as a function
of time and fitting this relaxation to the appropriate continuum solution of the diffusion
equation, a transport diffusivity is obtained (see eq. 1.3). The GRMD method is an attempt to
mimic as closely as possible the transient conditions prevailing in a macroscopic measurement,
such as an uptake rate experiment. The method relies on Fick's first law to define the transport
diffusivity (see eq. 1.2). The GRMD simulation corresponds to the following continuum one-

dimensional diffusion problem
2
% D,é—f (2.38)
ot oy

with boundary conditions

@l =‘ch =0 (2.39)
Floo W,

and initial condition (2.40)
c(y:.0)=f(y)-

Here, ¢ is time, c(y,?) the concentration as a function of position and time, L is half the length
of the parent simulation box in the y-direction, and f{y) is the initial concentration profile. The
GRMD method is computationally intensive, because a large number of molecules must be
tracked to obtain continuum-like behavior. To overcome this difficulty, a second technique,
referred to as the "color field" NEMD method, was developed. In this technique the response
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of the system to a perturbing field is measured and related to the corrected diffusivity (see
also eq. 1.3), D,, through the application of linear response theory. The corrected diffusivity is
given by

‘=— e ZZ(V () v,(0)). 2.41)

=] s=)

For comparison the self-diffusivity is presented:

Dy =35 Idt Z(v (0)-v,(1"). (2.42)
in)
where N is the number of sorbate molecules and v, is the velocity of sorbate molecule i. By
comparing eq. 2.41 with eq. 2.42, it can be seen that the corrected ditfusivity, D, is a collective
property that depends on the total flux of all sorbate molecules. D, on the other hand.
depends only on the autocorrelation of individual molecule velocities. D and D, are related
via the thermodynamic correction factor, eq. 1.3:

Inf .
D.=D. ( Ty )r (2.43)

Nonequilibrium molecular dynamics has been used to predict transport properties for a wide
variety of systems. A review of NEMD techniques is given by Allen and Tildesley /41/,
Cummings and Evans /117/ and Sadus /43/. A color conductivity algorithm analogous to the
one used to calculate binary diffusivities in liquid systems can be applied to zeolites as well.
The color field NEMD method allows for an arbitrarily small external field to be used. Fig. 4
presents the transport diffusivities of methane in silicalite as calculated by the color field

15,07
12,51

10,01

D, (10% cm¥s™)
N
bk

o 5 10 15
Molecules per unit cell

Fig. 4 Transport diffusivities of methane in silicalite as a function of loading at 300K.
The line was calculated by the Darken model. The points correspond to color field
NEMD results /116/.
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NEMD method. For comparison, the results of the Darken model are shown. The Darken
correlation was calculated by making the approximation that D,(c) = D, (0). As can be seen
from Fig. 4 only at high loadings there are somewhat larger deviations between the two
approaches. In Fig. 5, the self-diffusivities computed from equilibrium MD simulations are
compared to the comrected diffusivities obtained from color field NEMD simulations. The
corrected diffusivities remain nearly constant with increasing concentration, whereas the self-
diffusivity decreases, Fritzsche et al. /115/ compared the different diffusivities of methane in
silicalite.

e } I corrected diffusivities

:‘.:é {{ {}

1,04 )

D, (10 cm¥s™
&

[o)

E 0
0.5 ] self-diffusivities ¢ &
0 1 R % o

0 5 10 15
Molecules per unit cell

Fig. 5 Corrected diffusivities obtained from color field NEMD simulations, and self-
diffusivities from equilibrium MD simulations /116/.

Using MD, Tepper et al. /119/ recently studied tracer diffusion of methane in the
unidirectional channels of AIPQ;-5, which has straight nonconnected pores. To model
methane, a Lennard-Jones potential was used. Dynamics runs were carried out in the
canonical ensemble at a temperature of 300 K. The pores were filled to a density of 0.7
molecules per unit cell. A 50 ns production run was carried out after equilibration, and the
mean square displacement of the particles was calculated for correlation times up to 30 ns.
Next, a simple Monte-Carlo hop-and-cross model was introduced to mimic the MD
simulations. The increased computational speed of the simplified model allowed for an in-
depth investigation of system size effects. These effects turned out to be of great importance
and hence very large system sizes were needed to eliminate the influence of periodic
boundaries on the longer time scales. Since these large sizes are not easily accessible by
normal molecular dynamics simulations, the simplified model proved to be of great use. An
important result is that after elimination of system size effects, the motion of guest molecules
is not strictly single file in nature. Although infrequent, crossing events may occur, and lead to
a normal diffusive regime on large timescales. On short timescales, intermediate behavior was
found, where the mean square displacement is proportional to %, while at a time of about 7
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ns, a crossover to normal diffusion was found. These findings are in contrast with the
experimental observation of single-file diffusion reported by Kukla et al. /122/ in 1996 using
PFG NMR. The authors argue that this might be explained with pore blockages. This was
confirmed by other PFG NMR /123/ and QUENS /124/ studies which detected normal
diffusion on their time scales.

Sholl 7120/ introduced MD methods that allow to study metastable adsorbed clusters at
arbitrary temperatures. Diffusion and dissociation kinetics of clusters of SF, and CF; in
AlIPO,-5 pores were simulated by this approach. These simulations confirm the observation of
previous transition-state theory calculcations that the single-file diffusion of SF, and CF; in
AlIPQ,-5 is controlled not only by the motion of single adsorbed molecules, but also by
dynamical events involving the concerted motion of multiplc molecules. The mechanism that
allows concerted cluster ditfusion in AIPO;-5 pores, namely the existence of a mismatch
between the ideal adsorbate-adsorbate spacing and the pore's lattice spacing, is quite general.
This observation suggests that concerted cluster diffusion and dissociation events could
influence molecular diffusivities in a wide range of microporous materials with uni-
dimensional pores. Therefore, it is important for the description of single file diffusion to
include the formation and dissociation of clusters. As was pointed out by Sholl and Fichthormn
in a previous paper /125/, concerted diffusion of molccular clusters can indeed be the
dominant diffusion mechanism for molecular transport in these systems. One significant
implication of this result is that single-particle models of single file diffusion cannot
accurately describe particle mobilities during single-file diffusion.

Sholl and Fichthorn/126/ provided a general classification of the types of diffusion possibie
for multicomponent adsorbate mixtures in one-dimensional pores. The diffusion of mixtures
of Ne and CF; in AIPO4-5 pores was examined as an example of "dual-mode diffusion”.
"Dual-mode diffusion" means that the smaller (larger) species performs normal (single-file)
diffusion, so that the long term behavior of tracer particles of the two species is very different.
The usual criterion used to distinguish between normal and single-file diffusion is the scaling
of the mean-square displacement with time. During normal diffusion in a one-dimensional

pore the dependence (xz(t)> =2Dt can be observed where D is the tracer diffusivity. By

contrast, if adsorbates are unable to pass one another in a pore, their mean square displacement
is given by (¥*())=2Fr"*. This type of diffusion is called single-file diffusion, and F is

referred to as the single-file mobility. However, Keffer et al. /127/ showed that if adsorbates
can pass one another infrequently, this criterion yields ambiguous results, even though as

t—> o, (x2 (t)) o ¢, Particle transport is this regime is said to occur by transitional diffusion.

This case can be considered as a special case of normal diffusion. The alternative procedure
for distinguishing between normal and single-file motion, namely to compare the particle
sizes to the nominal pore diameter, can also lead to incorrect results /127/. Sholl and Fichthomn
/126/ have shown that related criteria which use a slightly refined description of the pore
structure and essentially approximate adsorbate particles as hard spheres can correctly account
the diffusion modes of all of the species and mixtures studied in their paper. Hahn and Kirger
/128/ discussed the results of Sholl and Fichthorn /125/, and gave indications that infinite
dilution tracer diffusivities, D;4, and the single-file mobility, F, are related as follows:

94 .
Brought to you by | Universiteit van Amsterdam - UVA Universiteitsbibliotheek SZ
Authenticated | 146.50.144.11
Download Date | 10/18/12 6:51 AM



Frerich J. Keil et al. Reviews in Chemical Engineering

F*¢*
o*(1-6)
where o is the nominal diameter of the sorbate and & is the pore occupancy relative to a
perfect one-dimensional arrangement of sorbates. Sholl and Fichthorn discuss this point in a
subsequent paper /129/. Hahn and Kirger /130/ investigated deviations from ideal single-file
behavior in zeolite host-guest systems with a one-dimensional channel structure. Deviations
from ideal single-file behavior, i.e., from proportionality between the mean square displacement
and the square root of the observation time, occur as soon as the finite length of the single-file
system must be taken into consideration and the rate of mutual passages of the particles
within the single-file system cannot be considered to be negligibly small anymore.

D,=x (2.44)

Schuring et al. /333/ carried out MD simulations of self-diffusion of linear and branched
alkanes in mordenite and ZSM-22, amongst other zeolites. The diffusivities are strongly
dependent on occupancy, but no single-file behavior was observed under any circumstance.
They proposed the following mechanism to explain this observation: the activation barriers
are too low for the individual molecules to really move in hops. No passings were observed,
and the length of the simulation box did not seem to have an influence on the results.
Therefore, a collective, resonant ditfusion mechanism seems o occur, as is indicated by the
chainlength dependency of the diffusivity and the activation energy. Such a mechanism was
also proposed by Runnebaum and Maginn /136/ for diffusion along the straight pores of
ZSM-5. Simulations by Sholl and Fichthorn /125, 334/ also indicated that collective motions
of loosely bound clusters of adsorbates can play an important role, although the diffusion
process was still considered to be activated by these researchers and single-file behavior was
observed. Alkane-alkane collisions dominate the motion at high loadings. The barriers for
diffusion of iso-butane and 2-methyl pentane in the large-pore mordenite are only 4.7 and 6.3
kJ/mol respectively, as opposed to a value around 30 kJ/mol in ZSM-5 and ZSM-22, which
have tighter pores. In mordenite, the difference in diffusivity between iso-butane and n-butane
is only a factor of 2, while it is three orders of magnitude in ZSM-5 and ZSM-22.

Recent simulations of diffusion in uni-dimensional pores often employ a hierarchical
combination of molecular dynamics and dynamic Monte-Carlo to study long time scales.
More results on this topic and on single-file diffusion in general can be found in Section 3.2.

Webster etal. /131/ investigated the effective catalytic pore sizes of zeolites, and discuss the
apparent increase in effective catalytic channel intersection size with increasing temperature.
Their approach presents an a priori description of relative pore sizes and can be used to
investigate and describe numerous catalytic and adsorbent systems. Quantum chemical
calculations (ZINDO) have been used for this purpose. The authors criticize the usage of van
der Waals radii of oxygen or the oxide ion radius to calculate a window size for the large
channel of HZSM-5 (or their Lennard-Jones corrected radii), since the values do not produce
a pore of the necessary dimensions to allow for the passage of large aromatic molecules.

Gaub et al. /121/ determined explicitly the propagator of the motion which is closely related
to the density autocorrelation function known as the van Hove function. This is done for the
diffusion of methane in zeolites (ZK4, silicalite). Fourier transform in space of the van Hove
function yields the intermediate scattering function, the decay of which is used to determine
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the self-diffusion coefficient. Fourier transform in time yields the dynamic structure factor
which can be compared with quasi-elastic neutron scattering results.

2.3 Molecular dynamics simulations of more complex molecules and mixtures

Many MD simulations are directed towards alkanes /132-137, 141, 145/, and a few towards
alkenes and alkynes. Dumont and Bougeard /132/ simulated the diffusion of ethane, ethene,
ethyne (acetylene) and propane in silicalites. The silicalite framework was held rigid, but the
hydrocarbons were modeled as flexible molecules. The potential parameters could reproduce
infrared spectra. The simulations showed that the molecules move along the center of the
channels, while the channel intersections are avoided. The diffusivities obtained were 0.59 -10°®
m?/s and 0.19 - 10® m¥s for ethyne and propane, respectively. A comparison of diffusivities of
ethane (bent), ethene (flat), and ethyne in the zigzag channel revealed that ethane diffuses the
slowest, ethene approximately 30 % faster, and ethyne three times as fast. In the straight
channel, both ethene and ethyne diffuse about three times faster than ethane. This result is in
accordance with the relative cross-sectional area of the three hydrocarbons. The authors
obtained a diffusivity of 1.29 - 10® m¥s for ethene. Nicholas et al. /133/ calculated diffusivities
for a concentration of 4 and 12 propane molecules per silicalite unit cell, and obtained values

0f 0.12- 10* m%s and 5 - 10™" m%s, respectively. These values are far below those computed
by other researchers.

Diffusion of long-chain hydrocarbons (Cs-Cao) was investigated by June etal. /134/, Maginn
et al. /135/, Runnebaum and Maginn /136/ and Webb et al. /137/. Extensive experimental
investigations of the molecular dynamics of n-octane in ZSM-5 using solid-state NMR CH
NMR) and QUENS were executed by Stepanov et al. /138/. June et al. /134/ calculated self-
diffusivities for butane and hexane in silicalite, which were found to be monotonically
decreasing function of sorbate loading. The anisotropy in the predicted diffusion tensor was
similar to that found in smaller molecules such as methane. Two long-timescale dynamical
processes detected during the simulations were the interchange of sorbate molecules between
the straight and sinusoidal channels and the conformational isomerization of sorbate molecules
about non-terminal carbon-carbon bonds. Both processes have time constants of the order of
100 ps. The longest among these time constants is associated with the interchange of
molecules between the two channel systems and can exceed 500 ps for hexane. Such long-
time relaxation phenomena require extremely long simulations to safely probe the dynamical
behavior of hexane or longer alkanes in silicalite. Webb et al. /137/ obtained diffusion constants
and activation energies for diffusion, E,, for linear and branched alkanes inside the zeolites
TON, EUO and MFI via molecular dynamics simulations. Molecules with carbon numbers in
the range n="7-30 were studied in the dilute limit. TON contains a system of one-dimensional
uninterrupted channels with small periodic undulations in the walls. The channels run in the
[001] direction so only the D, component of the diffusion tensor is applicable for molecules in
TON. EUO has as system of one-dimensional channels as well. These run in the [100]
direction with a corresponding diffusion constant D.. The channels in EUO differ from TON
because their walls are periodically interrupted by 12-member rings on alternating sides of the
channel. These windows open onto pockets in the wall that are large enough for segments of
linear or branched alkanes to enter. Diffusion in the pocket direction, however, is not possible.
MFI has two channel systems that run in the [100] and [010] directions (D and D,). This
zeolite differs from TON and EUO because the channel systems intersect. The intersections
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are such that a path is created allowing diffusion in the third dimension as well (D). The
alkane molecules were simulated using a united atom approach in which the CH, groups are
treated as single particles. Intramolecular interaction between particles, or united atoms, were
represented by bonded and nonbonded forces. Bonded forces were of three types: constraint
forces which keep intramolecular nearest neighbors at a fixed bond distance, bending forces
arising from a term like

k 3
7 (0)=7(6-4) (2.45)
which maintain the equilibrium angle, 4, between successive bonds, and torsional forces from

V.(9)= Z a,cos'(g). (2.46)

Nonbonded forces were described by Lennard-Jones potentials. The interaction parameters
were taken from Siepman et al. /139/ with torsional potentials from Jorgensen et al./140/. The
zeolite lattice was held rigid throughout the simulations, and the Lennard-Jones potential was
used for interaction between the CH, groups and the zeolite. Simulations were done in the
temperature range between 300 and 900 K, and all were in the dilute limit. Since the zeolite
was static and the molecules did not interact with one another, a Langevin equation employing
adamping term and a random noise term was used to thermostat the alkanes. The time constant
for the thermostat was 7= 1 ps. The bond lengths were kept constant using the RATTLE
algorithm /41, 43/. Linear alkanes diffused the fastest in TON, and this was attributed to the
absence of any channel features which pose a significant hindrance to diffusion, that is
minimal lattice effects. In dilute gas, alkane diffusion scales as 1/an. The length of the smallest
molccule studicd was already greater than the unit cell length of TON in the channel directions.
Therefore, the whole length of the unit cell is experienced by even the smallest molecule. In
Fig. 6 data for the mean square displacement (MSD) are shown for carbon numbers 2= 10, 16

3 T b T T T
200.0 |~ N :
n-C,, a
n-C,,
7\' 1000
v
» n-Cy 4
0 1 1 : : 1 1 : ! :
0 1.0 20 3.0 4.0 5.0
Time (ns)

Fig. 6 Mean square displacements (x°) in EUO at T'= 600 K as a function of time for n-
alkanes (=10, 16, 30). The value of the unit cell parameter in the diffusion
channel direction is indicated on the y-axis /137/.
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and 30. The plots demonstrate the desired linearity for computing a reliable slope and,
therefore, diffusivity. The value of the squared lattice parameter in the direction of diffusion is
indicated on the y-axis. From this it can be seen that both Ciy and C,, molecules move, on
average, approximately the length of the unit cell within the duration of the MSD calculation.
For linear alkanes, diffusion in EUO was the slowest among the three zeolites studied. In
EUOQ there are large pockets off the diffusional channels that strongly influence linear alkane
transport. Analysis of molecular trajectories demonstrated that diffusion in EUO occurs by
molecules hopping from pocket to pocket. The first observed effect of this lattice feature is an
overall decrease in diffusion relative to the other zeolites. The D-component dropped faster
than a 1/n scaling. The authors explained this observation in terms of a lattice effect. Longer
molecules are able to have both ends of the chain in a side pocket so diffusion can occur only
when both ends come out of their pockes for a coordinated jump. As » increases so does the
floppiness of the alkane molecule. That is, the motion at opposite ends of the chain is
increasingly decorrelated, so the frequency of coordinated jumps is lowered. Monomethyl-
branched alkanes diffuse slower than their linear counterparts, as expected Branched
molecules are bulkier, so that they interact more often with the channel walls. The anisotropy
in the channel structure for MFI showed up in the data with regard to both magnitude and
dependence on n. In connection with the n-alkanes some data from Heink et al. /77/ (see also
Rees /12/) should be mentioned. As can be seen from Fig. 7, in all three zeolites, the self-
diffusivity decreases with increasing chain length. This tendency was also experimentally
observed by other authors, ¢.g., Cavalcante et al. /152/. The latter stress that the experimental
evidence does not support the existence of a window effect for n-paraffins (Cs-Cyo), as
suggested by Gorring /153/.
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Fig. 7 Chain-length dependence of the self-diffusivities of n-alkanes in NaX, ZSM-5 and
NaCaA at 298K for a loading of one molecule per 24 (Si + Al) atoms /12/.
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Corma et al. /141/ carried out atomistic MD simulations to calculate the diffusion of n-
heptane and 2-methyl-hexane in purely silicious ITQ-1 which is a from of MCM-22, whose
IZA code is MWW. This structure contains two independent pore systems formed by inter-
connected sinusoidal 10-member ring pores with a 4-5.5 A diameter, and an independent 12-
member ring system formed by large cages of 18.2x 7.1 A connected between them and with
external surface through 10-member ring windows. The general purpose DL-POLY-2.0 parallel
code /142/ was used throughout this study. The system comprised a 2 x 2 x 2 macrocell of
ITQ-1 (1728 atoms) and 12 molecules of the C7 paraffin (276 atoms) located inside the macro-
cell. Two different simulations were executed: one with 12 molecules of n-heptane and the
other one with 12 molecules of 2-methyl-hexane as the diffusing hydrocarbon. In each
simulation, six molecules have been placed in the 10-member ring sinusoidal system and six
molecules in the 12-member ring supercage void system. Time steps of 1 fs and an
equilibration temperature of 450 K have been used in all the simulations. During the
equilibration stage 20 ps runs were performed to ensure that the energy was stationary, and
thereafter the simulations were additionally extended over 200 ps within the NVE ensemble.
History files were saved every 1 ps, and from these, data analysis of the diffusion process was
carried out. Explicit dynamical treatment of all the atoms of the system — 2004 in total — was
included in the simulation. The DL-POLY code in its fully parallellized implementation was
run on the 512 PE CRAY-T3D MPP computer at the EPCC (Edinburgh Parallel Computing
Centre). The present simulations were run on 64 processors. The computer time used to
complete all the simulations was 200 x 64 h. Four types of interatomic potentials were needed
to mode] the system:

Vmal = V:eolue + V hydrocarb + th—hc + V:eolue-lnc . (247)

The potential for the framework, ¥-ome, Was originally derived by Catlow et al. /143/ and is
essentially a Born model potential comprising three-body interactions, short-range terms, and
long-range Coulomb intcractions. The potential for the sorbates, Viydrocars» Was taken from Oie
et al. /144 and comprises two-(bond), three-(anglc), and four-body (dihedral) interactions
together with Coulomb terms. The Fhese and Vipmese potentials were taken from /143,.
Diffusion of 2-methyl-hexane through the 10-member ring sinusoidal systems presents serious
steric restrictions, which make the molecules stick to the minimum energy locations of the
channels. A slightly different picture appears for the branched alkane in the larger cavities in
which, although extensive local motion is still the dominant feature, the larger void spaces
together with the presence of some larger mobilities indicated that the process was activated
and, therefore, larger mobilities can be expected at higher temperatures. The linear n-heptane
showed a very different picture with respect to the branched isomer regarding diffusion
through the simusoidal 10-member ring channel, the former diffusing without any steric
restriction.

It is useful to present the main results of Stepanov et al. /138/ on NMR and QUENS
investigations of n-octane in ZSM-5. The authors drew the following conclusions from their
measurements. The peculiarity of the dynamic behavior of n-octane adsorbed in ZSM-3
depends on the loading. Upon exposure under vacuum of a ZSM-5 sample at room
temperature to the vapor of n-octane, corresponding to a loading of 1.8 molecules per unit
cell, the adsorption of this linear alkane occurs exclusively inside the straight channels of the
zeolite lattice. N-octane molecules located in the straight channels of the zeolite diffuse
essentially along the direction of the straight channels with a diffusion coefficient D=12-10"
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m’/s at 300 K. In the course of translational motion along the straight channels, some coupled
rotational or librational motions of all CH, (n=2,3) groups of the hydrocarbon skeleton in the
molecule take place, which may correspond to the fast interconversions between trans and
gauche conformations in the adsorbed alkane molecule. This "rotational” motion is reflected in
the 2H NMR spectra as fast rotations of the separate methylene and methyl groups
simultaneously around two and three C-C bonds. Upon heating at 373 K for 1 h, n-octane
molecules formerly located in the straight channels become redistributed over the straight and
zigzag channels. Subsequent translational motion of n-octane consists of two independent
modes of motion. One of them represents the movement along the tortuous zigzag channel.
Another mode of translational motion represents the movement along the straight channels.
This movement of the molecule is disturbed by collisions with the other molecules located
mainly in the zigzag channels and in part at the channel intersections. For loadings equal to or
higher than 3.5 molecules per unit cell the molecules showed isotropic reorientation inside the
zeolite channel system, which may arise from collisions of the molecules at the channel
intersections, thereby changing the direction of their translational motion.

Hemandez and Catlow /145/ reported MD simulations of n-butane and n-hexane in silicalite.
The framework was kept rigid. With regard to the adsorbate molecules, the authors have
adopted a version of the Rijckaert-Bellemans model /154/. In this model both the CH; and
CH; groups are represented as united atoms or beads, each one of the appropriate mass, i.e. 14
or 15 g/mol respectively. Directly bonded beads were maintained at a distance of 1.53 A from
each other through the use of constraints, which were imposed using Andersen's RATTLE
algorithm. The diffusion of n-butane turned out to be slightly faster than that of n-hexane
under similar conditions of temperature and loading. A general conclusion that could be
drawn from the simulations was the observation that variations in the temperature have
stronger effects than variations in the loading. The distribution of the dihedral angle in n-
butane remains almost unaffected when the loading is varied from 2 to 8 molecules per unit
cell, while it was seen to change drastically as the temperature was varied.

Diffusion of aromatics, especially benzene, was also simulated. Nowak /156/ carried out
one of the first calculations of benzene and toluene in silicalite and theta-1, which has a uni-
dimensional medium-sized pore window surrounded by 10-member rings. Only the straight
channel of silicalite was considered. Both the zeolite framework and the aromatics were held
rigid during the simulations. Activation energies for diffusion were calculated from differences
in energy on the potential ways. Demontis et al. /157/ modelcd the diffusion of benzene in
zeolite NaY. A rigid framework was assumed. Benzene-benzene interactions were described
with a Buckingham potential. Benzene-zeolite interactions were modeled by a short-range
Lennard-Jones term and a long-range electrostatic term. Sixteen benzene molecules were
simulated in a unit cell of zeolite Y. The diffusivities were calculated for 300 K. The MD
simulations were initiated with benzene exclusively atop SII cations. In the subsequent
simulation, the benzene molecules migrated to occupy window sites. This is in agreement
with neutron diffraction studies of sorption location as a function of loading. Bull et al. /158/
performed MD simulations for one molecule of benzene adsorbed in a single unit cell of
faujasite. The zeolite framework was flexible. The potential parameters were taken from the
Cf91 force field from MSI(Molecular Simulations). Simulations were performed for diffusion
at 298, 350, 400 and 450 K. An integration time step of 1 fs was employed. The total simulation
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time was 25 ps. The agreement between the calculated diffusivities and 2H NMR
measurements was good.

Nakazaki et al. /155/ carried out MD simulations based on Dreiding force fields of benzene,
toluene and xylene in ZSM-5. The results were visualized by means of computer graphics.
The energy level of p-xylene entering the pores of ZSM-5 with the methyl group in front was
the lowest among the molecules studied in all positions of the pore channels. The interaction
of the methyl groups of the aromatics with the pore walls of ZSM-5 was fairly large.

Over the last few years some examples of MD calculations of binary mixtures were
published. Jost et al. /96/ simulated the diffusion of mixtures of methane and xenon in silicalite.
A rigid framework was used. For the interactions a 6-12 Lennard-Jones potential was used,
and Methane was modeled by a simple spherical potential. A Verlet algorithm with a time
step of 10 fs was applied. Each run contained a thermalization part of 10 000 steps (100 ps)
and an evaluation part of 500 000 steps (5 ns). The MD box contained 128 guest molecules,
equivalent to 16 unit cells for a loading of 8 molecules per unit cell. All simulations were
carried out for a temperature of T=300K. At first it was demonstrated for the pure substances
that methane diffuses much faster than xenon in silicalite. This is due to the mass ratio
xenon/methane and to the different Lennard-Jones parameters, especially the different &
parameters of the LJ interactions Xe~O and CH;~O. In the mixtures xenon atoms obstruct
diffusion more strongly than methane molecules. Having the same total amount of guest
molecules in different mixtures the diffusion coefficient decreases with increasing fraction of
xenon. The diffusion coefficients of methane and xenon are nearly the same for high xenon
loadings, while for high methane loadings the xenon diffusion coefficients are much smaller
than the methane diffusion coefficients. The reason for the very strong influence of the slower
xenon atoms on the faster methane molecules is found in the topology of the channel system.
The diameter of the channels is too small to allow a passing of the particles within the same
channel. Therefore, the xenon atoms barricade the channels for the methane molecules. With
increasing xenon fraction in the mixture more and more channels get blocked, and, from eight
or nine xenon atoms per unit cell on, nearly all channels are occupied by xenon atoms and the
methane molecules can only move within a cage of nearest xenon neighbors. Therefore, the
methane molecules can no longer diffuse faster than the xenon atoms, they only rattle within
the cages. Jost et al. /148/ compared MD simulations for the system methane/xenon in silicalite
with PFG NMR measurements. The MD simulations were executed as in ref. /96/. The
experimental results were in good agreement with the simulations. The diffusion coefficients
for methane are a bit lower than the simulated values, but they were already within the error
bars. The xenon diffusivity is nearly unaffected by the composition of the mixture. Xenon was
not mcasurable at room temperature. At T= 152 K, the xenon diffusion could be measured.
The measured absolute values of the xenon diffusivities were higher than the ones from
simulations (up to twice the value).

Grillo and de Agudelo /150/ studied the relationship between structure and catalytic
performance of Pt-HMOR model catalysts towards the n-butane hydroisomerization reaction
employing a combination of simulation strategies. The procedure combined Monte Carlo
(MC), MD and energy minimization techniques (EM). It was evidenced that the pore structure
of mordenite not only affects the size and location of Pt particles, but also provides molecular
sieve properties for the intermediates and products to be formed selectively in the reactions.
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Gergidis and Theodorou /149/ studied the transport of n-butane-methane mixtures in the
zeolite silicalite. Long MD simulations (up to 20 ns) for the calculation of diffusion tensor
components for both species over a wide range of loadings (0 — 14 molecules per unit cell) and
compositions were carried out. Self-diffusivities were seen to decrease monotonically with
loading of either species. Raising the loading of n-butane from 2 to 9 molecules per unit cell
caused the diffusivity of methane to drop by a factor of 60. The spatial distribution of
molecules of the two co-adsorbed species showed that, at high occupancies, n-butane
molecules force methanes to partially abandon straight channels and occupy the intersection
regions. At high methane concentrations, n-butane molecules are forced to preferentially
populate the gauche conformation. At high loadings, anomalous diffusion was detected for
both species. Anomalous effects were more pronounced for methane than n-butane in all three
directions, but most strongly in the z-direction. The distribution of sorbate-sorbate and
sorbate-zeolite interaction energies showed a clear occupancy dependence. Increasing the
loading from 4 methane and 4 n-butane to 4 methane and 7 n-butane molecules per unit cell,
total interaction energies shifted to more attractive energies. Methane was modeled as a
spherical molecule. For n-butane, bond lengths were assumed to be rigid and constrained to a
length of 1.53 A. Bond and torsion angles were allowed to fluctuate under the influence of
potentials. The zeolite framework was rigid. Chitra and Yashonath /159/ have reported MD
simulations for binary mixtures of Lennard-Jones spheres having identical masses but
different diameters in the zeolite NaY. Their study showed that the larger sorbate would
diffuse faster than the smaller sorbate. This is possible when the sorbate diameter approaches
the diameter of the window ("ring effect"). A direct comparison between MD simulations and
self-diffusivities from PFG NMR for a binary mixture of CH;—CF; was made by Snurr and
Kirger /160/. The reported self-diffusivities from simulations were in good agreement with
experimental measurements. The authors observed that the diffusivities for both components,
at constant total loading, decreased as the fraction of the larger and less mobile CF, increased.

Sastre et al. /146/ simulated diffusion of o/p-xylene inside the siliceous zeolite CIT-1,
which contains channels formed by rings containing 12 and 10 Si atoms. The dimensions of
these two channel systems are sufficient to cause substantial differences in the diffusion of
para-xylene and ortho-xylene. Ortho-xylene trajectory plots showed diffusion through the 12-
membered ring channels of CIT-1 only, the higher loading making the diffusivity decrease
due to increasing intermolecular interactions. Para-xylene trajectory plots showed that
diffusion through both 12-membered and 10-membered ring channels of CIT is possible. The
effect of also using the 10-membered ring channels made the loading in the 12-membered
ring channels decrease, and the smaller size of the p-xylene made its mobility higher with
respect to the larger ortho-isomer. The results showed higher diffusion coefficients for the p-
xylene compared to the o-xylene, and a decreasing diffusivity as the loading increases. A
somewhat more complex picture appears in the mixture, where both o-xylene and p-xylene
are allowed to diffuse simultancously in the framework. The corresponding MD simulations
reveal a reduction in the diffusivity of the slower isomer (o-xylene) and an increase in the
diffusivity of the isomer whosc diffusivity is higher (p-xylene), those results being in
agreement with recent experiments.

Sastre et al. /147/ performed MD studies of the diffusion of a mixture of benzene and
propylene, for the cumene synthesis process in purely siliccous MCM-22 (MWW). The
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diffusion processes in each channel system of MWW at 650 K were studied independently.
The authors found that in order to obtain quantitative or semiquantitative diffusion
coefTicients, the framework should be optimized. The optimization was done using the BFGS
technique /161/, and the result was used as input for a 25 ps equilibration stage of the zeolite +
sorbate system. After this period, runs of 200 ps with a time step of 1 fs were carried out
within the NVE microcanonical ensemble at 650 K. The MD simulations were carried out
using the general purpose DL-POLY-2-0 code. Trajectories of the diffusing molecules were
calculated. Fig. 8 shows, e.g., the trajectory of an individual propylene molecule, which allows
us to see in more detail the large part of the structure explored by a molecule in the 200 ps run.
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Fig. 8 Trajectory of an individual propylene molecule diffusing through the supercages
of MCM-22 /147/.

The simulations showed that benzene diffused slowly in both of the two pore systems which is
due to the small size of the 10-membered ring openings of the sinusoidal systems and to the
location of the 10-membered ring windows in the supercages that are perpendicular to the
direction of motion. On the other hand, the mean square displacement plots also show a large
diffusivity for propylene in both channel systems and especially in the supercage system. The
trajectory analysis for benzene showed little motion around the energy minima in the 10-
membered ring sinusoidal channels and an intercage diffusion in the supercage system. In the
case of propylene, the diffusion occurs throughout both channels in all their extension.

Demontis et al. /151/ carried out computer simulations of the dissociation — recombination
reaction of diatomic molecules in silicalite and ZK4. The guest-host dynamical coupling at
the level of the recombination reactions of photodissociated radical species and diffusion of
diatomic molecules in two topologically different zeolites were investigated. In particular,
two factors ruled the mechanism of the reactive and diffusive phenomena: lattice dynamics,
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acting as an effective heat bath for the sorbed molecules, and the effects of two different
crystal structures. Greater recombination percentages in ZK4, in particular for the larger
atoms, result from the more effective confinement compared to the more "open" silicalite
structure. The cage structure of ZK4, characterized by narrow windows with a diameter
comparable to the dimensions of the guest species determined its ability to hold the photo-
dissociated radicals inside the same a-cage, in particular for the larger iodine atoms.

3. DYNAMIC MONTE-CARLO SIMULATIONS

3.1 Introduction

The Monte-Carlo method, called this way by Metropolis after the casino town in Monaco,
was developed near the end of World War II by von Neumann, Ulam /164/ and Metropolis
/165, 166/ as part of the Manhattan project at Los Alamos. While a similar method of sampling
had been used by statisticians before, the novelty was the realization that deterministic
problems could be treated as well, by mapping the original problem to a probabilistic
equivalent one. With the availability of computers, Monte-Carlo methods became increasingly
used in mathematical analysis and to solve many-body problems /41, 42/.

The simulation of diffusion in zeolites is a statistical mechanical problem: we are intcrested
in a macroscopic result, to be derived from microscopic information. In this and many other
problems in statistical mechanics, we need to find moments of distributions, and in particular
"ensemble averages”. which are averages over particular configurations or ensembles in phase
space /167, 168/. By a weighted sampling, stressing those states and steps that are the most
important, the moments can be calculated in an efficient way. Such steps will in general be
unphysical. which means that they need not be the real moves made by the molecules. To
allow unphysical moves is one of the most important advantages of Monte-Carlo simulations
over molecular dynamics in dynamic problems that contain many bottlenecks, such as the
diffusion in zeolites.

This section reviews dynamic Monte-Carlo studies of diffuston on lattice models of zeolites.
The adjective dvnamic indicates that the trajectory of molecules and properties over time are
studied, in order to derive the diffusivity. Other types of Monte-Carlo, like Grand-Canonical
Monte-Carlo (GCMC) and Configurational-Bias Grand- Canonical Monte-Carlo (CBMC)/169,
170, 42/, are extensively used to investigate adsorption in zeolites, and will not be discussed
here /36, 38/. In dynamic Monte-Carlo simulations of diffusion, the pore space through which
molecules diffuse is simplified to a lattice, consisting of a grid of coarse-grained adsorption
sites, which are connected by bonds. Molecules occupy a certain fraction & of the sites, and are
assumed to hop from site to site, normally along bonds connecting neighboring sites. Their
movement is therefore described by the set of master equations for each site, eq. (1.4). A large
enough number of molecular trajectories is followed, and statistics for quantitities of interest
are collected after the system has equilibrated. If the lattice contains random features, which
in the case of zeolites would be a result of a distribution of adsorption strengths, simulations
need to be repeated for a sufficiently large number of randomly generated lattice realizations.
Diffusivities and other properties are then calculated based on ensemble averaged statistics.

Before discussing the aéplication of Monte-Carlo simulations to diffusion in zeolites, it is
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important to review various dynamic Monte-Carlo algorithms and the definition of Monte-
Carlo time. 1t is useful to note that dynamic Monte-Carlo of diffusion on lattice models of
zeolites is mathematically equivalent to that of defects in crystals and of chemisorbed adatoms
over crystal surfaces; only the lattice topology and the simulation conditions of interest differ.
Because of this similitude, a lot can be leamnt from results obtained in these areas.

Many simulations, especially the earlier ones, did not sufficiently account for the effect of
the jump time distribution. Its importance was noted by several authors, including Scogin
/171/, Nelson et al. /172/ and Fichthom and Weinberg /173/: molecules should not all be
moved at the same time during the simulations, one after the other, or according to some other
fixed scheme, as this is not only unrealistic but may also lead to long-time errors. It is better to
think in terms of events /171/, which are Poisson-distributed in time /172/. Such an approach
was also used by Coppens et al. in their Monte-Carlo simulations of self-diffusion and
transport diffusion in zeolites /174-176/. A list of events, e.g., only hops in the simple case of
one-component diffusion, is scheduled at the beginning of the simulation. Jump times are
randomly drawn from an exponential distribution with average time equal to the adsorption
time 7on a site before a jump is attempted, ;= Az, ~ - rln(u), with u € (0, 1) a uniform random
deviate. The average rmay be a constant, depend on the type of site (weak, strong) or even
differ from site to site. For n molecules, there are n events (attempted hops) scheduled at
times f,= As;. These events are ordered according to increasing time #;. At the time ¢,, indicated
by the head of the list, say molecuie m, this molecule is temporarily removed from the list and
the first event is executed. A new event is scheduled for molecule m (whether its jump or
other event was successful or not); the list is updated by including its new event, keeping the
list ordered; after which the process starts all over again.

This problem has been studied in detail by the group of Jansen and Lukkien, who compared
different Monte-Carlo algorithms to solve the master equation, eq. (1.4), and applied these
methods to the general situation ot multi-component diffusion and reaction on surfaces /177-
180/. The first reaction method or discrete event simulation /181, 177/, which was found to be
the most generally applicable one, is similar to the just described method. When hopping
probabilities are time independent, good results are also obtained with the often used random
selection method, where sites and possible jumps are randomly selected at each Monte-Carlo
time step. One Monte-Carlo step corresponds to one trial per lattice site on average. This is in
effect a time-discretized solution method for the master equation. However, the last method
leads us to another important problem of Monte-Carlo simulations, and one that has often been
cited as a disadvantage of the method: the definition of Monte-Carlo time. When does the
evolution of the system during a Monte-Carlo simulation correspond to real-time evolution?
Older dynamic Monte-Carlo methods usually pick a site, then pick a reaction or diffusion
jump at that site, which is executed with some probability /182/. There is no definiton of time
in such a description. This problem was discussed by Fichthomn and Weinberg /173/, who
introduced a varzable-step size method, with the assumption that the time when an event (a
reaction or change in configuration) occurs is Poisson distributed. Reaction probabilities are
replaced by rate constants. If time is incremented using a deterministic average step size,
equal to the expectation value of the next event, errors may be introduced, especially for non-
equilibrium processes /179, 180/, since temporal fluctuations are neglected. An adaptation of
the variable-step size method was suggested by Lukkien et al. /179/. The method is more
complex, but may be the method of choice for large models.
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With an event-oriented approach and knowledge of the times needed for each microscopic
event, problems can be avoided, as the clock is advanced every time an event occurs, and the
event list is updated. If the microscopic events are unknown, some reference time needs to be
defined, e.g., the average time for an attempted hop, and all the other times should be referred
to this time. In this case, Monte-Carlo time advances only proportionally with real time. This
is also the case with the random selection method.

Which method is to be prefered, depends on the problem: a variable-step size method is the
best general method when the rate constants do not change over time; otherwise, the first
reaction method should be used. If computer memory is an issue or if only a few trials need to
be performed per reaction, the random selection method may be the method of choice. Even
more efficient is the combination of different methods in one simulation, when there are
different types of jumps or reactions /179/. The time of the next event for each of the groups
is determined and an event out of the group with the smallest time is selected; if an event
occurs, new times are determined for each group.

In this context, the recent work by Huitema and van der Eerden /183/ is of interest; they
estimated the physical time per Monte-Carlo step by requiring equality between the self-
diffusion coefficients measured by dynamic Monte-Carlo and by molecular dynamics. This is
done by comparing velocity auto-correlation functions. Based on results with liquid Lennard-
Jones systems, they found that processes with rate-determining steps at time scales smaller
than 1 ps may show deviations between MC and MD, but when the time scales are larger than
about 1 ps and the length scales larger than 0.40 pm, they can be simulated with Monte-Carlo.
Although it is not evident that this can be directly translated to diffusion in zeolites, these
orders of magnitude give some confidence in the applicability of dynamic Monte-Carlo.

3.2 Diffusion in zeolites

Alter this mathematical background, we can now focus on the applications. As mentioned
carlier, a lot on diffusion in zeolites can already be leamt from the many studies of diffusion
of adatoms on surfaces and of defects in crystals. There also exists a large body of literature
on general random walks on regular lattices, usually specifically discussing diffusion at low
occupancies d— 0, where diffusion can be treated as an uncorrclated random walk /184-189/.
In those situations, exact or approximate solutions of the master equations can be found.
When the occupancy & is higher and sites cannot be multiply occupied, the problem is more
complex, because the molecules influence each other. Any attempt to hop to an already
occupied site will fail. Molecules therefore have a higher probability to retrace their path and
reoccupy recently vacated sites. This leads to negative correlations in the molecular trajectories
and to deviations of the diffusivity from mean-field results, in which correlations are neglected.
Mean-field behavior is one where the only effect of forbidden hops is to reduce the diffusivity
by a factor resulting from the average, instead of the local occupancy. As a result, it is only
correct in the limit of an infinite connectivity, where the probability to hop to a neighboring
site may well be approximated by the average. For lattices with one type of site, the mean-
field self-diffusivity drops in a linear way with &:

D, =D,(1-6), G.1)
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where Dy is the diffusivity in the limit of zero occupancy /19, 20/. More complex results can be
derived for lattices with different types of sites. The smaller the connectivity of the sites, the
larger the expected deviations from mean-field theory, because the local environment is not
representative for the global average. This effect is very important for zeolites, in which the
pore network is often poorly connected. An extreme case is a one-dimensional chain of sites,
where correlations become infinitely long-range, leading to a deviation from Einstein's law of
diffusion, <~(t)> ~ ¢, and replacing it by <r’(t)> ~ ¢'’. Some examples of this anomalous
diffusion, called single-file diffusion, were already discussed in Section 2 and more will
follow at the end of this section. For motion on other regular, non-fractal lattices, Einstein's
law for self-diffusion is still valid, yet short-range correlations exist.

Assessing these correlations is important for the study of diffusion in zeolites, in which we
are interested in the dependence of diffusivity on loading or occupancy. A large body of
information can be drawn from the literature on defect diffusion in metals and alloys: two
limits, the already mentioned occupancy & close to 0, and also &close to 1, have received
special attention. The first corresponds to the diffusion of a low concentration of interstices,
and the second to the diffusion of a low concentration of vacancies. Analytical results can be
obtained for #— 1, because the environment is constant, and are expressed as a correction to
mean-field called the correlation factor:

f=DID,=DID,(1-6) (3.2)

/190/. More information on the calculation of the correlation factor in this limit can be found in
various books on defect diffusion /191-193/. This limit is useful for comparison with Monte-
Carlo simulations.

Since diffusion on lattices with a finite occupancy and a finite connectivity is a true many-
body problem, accurate (semi-)analytical solutions are difficult to obtain, and Monte-Carlo
simulations are needed. It should nevertheless be mentioned that diagramatic relations for the
occupancy and particle correlation functions were derived and applied to a cubic lattice by
Fedders and Sankey /194-196/, and a second-order approximation for the diffusivity was
derived by Tahir-Kheli and Elliott /247/. In general, however, Monte-Carlo methods should be
used. These become more and more feasible with the advent of ever faster computers. As was
noticed early on, the Monte-Carlo method is highly flexible, allowing for different conditions
at different sites, depending on their local environment. For example, the hopping frequency
of a molecule from its present site to a neighboring vacant site may depend on the presence of
other neighboring occupied sites, which may influence the depth of the potential energy well
in which the molecule resides /197/. The hopping frequency is proportional to exp(-AE/KT),
AFE being the energy difference between the site and the transition-state leading to a neighbor.
Attractive and repulsive interactions between the diffusing atoms can thus easily be accounted
for, and lead to cooperative effects, which increase with increasing concentration. Murch and
Thom /197/ quantitatively showed that, when compared with non-interacting atoms, attraction
between solute atoms retards diffusion (because molecules are restrained), whereas repulsion
can considerably enhance it (because molecules are expelled) (see Fig. 9). In the latter case,
the diffusivity may increase with concentration and show a maximum. A special situation
around #= 0.5 occurs when an ordered phase is formed.
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Fig. 9 The composition dependence of the normalized diffusion coefficient D* at various
values of T /197/.

Clearly, similar results should hold for diffusion in zeolites. The pioneering Monte-Carlo
and analytical studies by Reed and Ehrlich /198/ on surfaces are equally interesting. They
studied the connection between surface diffusion of chemisorbed gases and atomic jump rates
at arbitrary occupancy. In an ideal Langmuir layer, i.e., in the absence of interactions between
the adatoms, the surface diffusivity in the presence of a concentration gradient is simply given
by D(8) = 770) A* at all coverages, where D1(4) is the surface diffusivity at occupancy 8, /{0)
is the rate of atom jumps, and A is the jump distance. For interacting adatoms, a thermo-
dynamic correction is needed, because the diffusion really occurs under the influence of a
gradient of chemical potential, not concentration, and the effective jump rate /{4 may be a
complex function of 4. The resulting equation is formally identical to the "Darken" equation,
€q. (1.3), where /{6 plays the role of the corrected diffusivity D¢. Knowledge of the thermo-
dynamics, as characterized by the adsorption isotherm or by the concentration fluctuations, is
therefore very important in deriving the transport diffusivity. A similar model as the one used
by Murch and Thorn /197/ was employed to study diffusion on a lattice in the presence of
nearest-neighbor attractive or repulsive interactions. Using a mean-field approximation
(quasi-chemical approximation), analytical expressions for the diffusivity, the effective jump
rate and the thermodynamic factor could be derived. In particular, for repulsive interactions,
the correlation factor f [in the terminology of vacancy diffusion, viz. eq. (3.2)] strongly
decreases with coverage, and the thermodynamic factor is largest around &= 0.5, where the
deviations from a non-interacting lattice gas are largest. The surface diffusivity versus coverage
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Fig. 10 Coverage dependence of the diffusivity in the quasi-chemical approximation
1198/,

graph shows a maximum at high coverages as well (see Fig. 10). The case of attractive inter-
actions is very similar, except that a decrease and minima are observed. The quality of the
approximation and the effects of interactions beyond nearest neighbors were studied with
Monte-Carlo simulations, using different Morse potentials. Interesting behavior is observed
when the interactions between nearest neighbors are repulsive and those between second-
nearest neighbors are attractive. In this case, an ordered phase is formed, leading to a sudden
increase of the diffusivity around &= 0.4-0.5 as a result of a peak in the thermo-dynamic
factor, after which the diffusivity remains more or less constant, because of an increased jump
rate. Such results could easily be understood based on the Monte-Carlo simulations, which
showed the energetically favored c(2x2) ordering with altemating occupied and vacant sites
(see Fig. 11). Under such conditions, the time-correlation formalism for diffusion does not
hold /199/.
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Fig. 11  Coverage dependence of the diffusivity, obtained from the product of the
thermodynamic factor and the jump rate /199/.
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One of the implications of the just summarized work for understanding diffusion in
zeolites, is that the thermodynamics of adsorption are of the greatest importance. Although we
have chosen to focus ourselves on diffusion in this review, adsorption studies are essential in
simulating diffusion. Where and in which configuration the molecules preferentially adsorb,
how they interact, whether segregation effects occur, provides the input for the computational
techniques to study diffusion and reaction.

A detailed MC study of diffusion on an fecc lattice was conducted by Kehr et al. /200/, who
also derived a correlated-jump model with a gencral waiting time distribution. They showed
that strong correlations exist between two consecutive jumps. There is a marked influence on
the waiting time, i.e.. the time spent on a site/184/, especially on the time to jump backward to
a site it has just vacated. Only correlations between two consecutive steps were accounted for,
which was sufficient to describe diffusion on an fec lattice, where each site has 12 neighbors.

Diffusion in lattice gas models has been reviewed by Kehr and Binder /201/. While a lot
can be leamnt from the methodology developed in solid state physics, care should be exercised
when transferring these results to zeolites. Indeed, the lattices considered there are usually
better connected than those representing the coarse-grained pore space of zeolites. Diffusion
of defects is typically studied on the relevant cubic, fcc and bee atomic lattices, which are
well-connected. The connectivity of the zeolite pore space is often lower. In ZSM-5, e.g., there
are sites in the channels connecting neighboring pore intersections. Channel sites therefore
have a connectivity of only 2. Four channels meet in each of these intersections, so that the
connectivity of sites in those intersections is 4 or possibly more, depending on the number of
sites in an intersection. ZSM-5 with one site per intersection has an average connectivity of
8/3 ~ 2.67, much less than the 6 for a normal cubic lattice, 12 for an fcc lattice or even 4 for a
square lattice or diamond lattice. The importance of such topological effects has recently been
studied using dynamic Monte-Carlo simulations. Poor connectivity leads to more significant
restrictions on the motion of molecules compared to well-connected lattices. This is of interest
to the application of zeolites as sorbents, catalysts and catalyst supports, as it may also
influence effective reaction rates of diffusion controlled processes. It is therefore important to
study the effect of the lattice topology on the results. Coppens et al. /174/ found that the
diffusivity in silicalite decreases more significantly with loading than would be expected from
cither a cubic or a square lattice model (Fig. 12). A time-correlation formalism, similar to the
one used for vacancy diffusion in solids, was used to predict the deviations from mean-field
theory, and led to a concentration independent renormalized correlation function:

C'(n)/C, =1-expf-(n-1)/n.}} (3.3)
where C'(n) expresses the correlation of the first step, ry - rp, with the displacement after n
steps, Fy-I1:

Cl(n)= ((rl _ro).(rn - >,

In-xf
and C, is the limit of this function for n—> co. It can be shown that the diffusivity:
D=fD,=2(C,+1)D,, 34
where f is the correlation factor introduced earlier. Correlations decay as a stretched
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Fig. 12 Self-diffusivities in various lattices, as a function of occupancy. The results are
normalized with respect to D,, the diffusivity in the limit of zero coverage /174/,

exponential function of the number of steps n taken by a molecule, where the exponent y is
representative for the lattice, e.g., y=10.9 for a cubic lattice and 0.55 for silicalite. The lower
the value, the stronger the correlations and the deviation from mean-field. While only two
consecutive steps are significantly correlated on an fec lattice /200/, 7 steps are needed to
decorrelate the motion for more than 90 % on a ZSM-5 silicalite lattice (Fig. 13).
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Fig. 13  Renormalized displacement-time correlation functions for the ZSM-5/silicalite
lattice /174/.
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Similar care should be exercised when applying two-dimensional models. Diffusion on
lattice models of surfaces is the two-dimensional "equivalent” of diffusion in zeolites, so that
developments in this field are relevant to zeolites. The methods used to study diffusion are
similar, and two-dimensional square lattices have been used in early simulations of diffusion,
adsorption and reaction in zeolites. Differences in connectivity may lead to considerable
differences in the way diffusion (and diffusion controlled processes) depend on occupancy.
however.

Broadly speaking, dynamic Monte-Carlo simulations on lattice gas models are applied to
two categories of problems. A first group of problems. that has received considerable attention,
is the study of the influence of different lattice parameters on the diffusivity, such as the
topology of the pore network, the occupancy, the number of sites in a zeolite channel inter-
section, and the distribution and type of adsorption sites. Flexible Monte-Carlo techniques are
particularly suited for this. Both self-diffusion (in the absence of a concentration gradient) and
transport diffusion (in the presence of a concentration gradient) have been studied, with or
without reactions. Usually, the simulations are quite general, although, especially for reaction
problems, applications to particular systems have been considered, and special care to the
lattice topology has been paid in more recent papers. Parameters are typically found by fitting
to macroscopic results or from separate adsorption and/or kinetic experiments. A second
group of problems concerns specific molecule-zeolite systems, for which an appropriate,
detailed model is set up, which is coarse-grained to study the long-range diffusion properties.
Several of these studies will be described under the header "transition-state theory” (Section
4), because the main issue in these methods is the derivation of fundamental (corrected)
transition rates which are then substituted into a simple dynamic Monte-Carlo simulation,
usually at infinite dilution. The groups of Auerbach and Metiu also developed analytical
methods to be used in parallel with Monte-Carlo simulations, and their work will be discussed
under the present header. Note that both types of studies are of interest, the second type for
practical applications, the first type to see which parameters really matter, which level of
detail is needed, and which parameters need to be tuned to arrive at a particular behavior.

Lattice models to study diffusion in zeolites were used as early as the works by Barrer and
Jost /19, 20/, and Riekert /202/. A concentration independent "Fickian" or transport diffusivity
is predicted on the basis of these models, using a mean-field approximation, as described
earlier. Many experiments do not support this result. Palekar and Rajadhyaksha /203, 204/
therefore simulated diffusion and adsorption in one-dimensional pores in an attempt to find the
concentration dependence of the transport diffusivity. They performed Monte-Carlo simulations
on a line of equidistant sites, in which they assume that a molecule with two occupied
neighbors cannot move, that it will move randomly to the left or to the right when either one
of the neighbors is vacant, and that it will certainly move to the vacant site in case there is a
single vacant neighbor. The latter assumption is uncommon. A Markov process formulation of
this problem was given by Patwardhan /205/. Their simulations predict an increase in diffusivity
with sorbate concentration, Dr = Dy/(1-8). This is indeed experimentally found for certain
systems in which diffusing molecules do not hinder each other, so that the self-diffusivity is
concentration independent, yet it is not general.

The relationship between the binary diffusivities and single-component diffusivities was
also investigated by the same group /204, 206/. They found that the sorption of the species
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with the higher diffusivity is slowed down as a result of the presence of the species with the
lower diffusivity. The latter, however, can become faster than when it is sorbing alone, due to
the contribution of the cross term. At a given composition of the sorbate phase, all the
diffusivities decrease with a decrease in diffusivity of the slower component.

While useful for one-dimensional pores, extrapolation of such results to three-dimensional
zeolites is not warranted. It is indeed known that the diffusion behavior in a one-dimensional
channel is qualitatively different from diffusion in higher dimensional systems. In particular,
anomalous single-file diffusion can occur. Using the same one-dimensional model, Pitale and
Rajadhyaksha /207/ indeed found a non-constant tracer diffusivity at fixed sorbate
concentration.

Simulations on higher dimensional lattices are therefore needed. Of special interest is
whether continuum models can be used and how the diffusivity depends on various lattice
parameters. Theodorou and Wei /208/ simulated diffusion and reaction of two components
with the same diffusivity on a two-dimensional lattice. This work is further discussed in the
subsection on diffusion and reaction in zeolites. Amongst other things, they found that
continuum models are inaccurate at higher loadings as a result of site blocking. More extensive
Monte-Carlo simulations of tracer and transport diffusion on a two-dimensional lattice were
carried out by Aust et al. /209/, Dahlke and Emig /210/ and Frank et al. /211/ who studied both
single components and binary mixtures. There are no interactions between molecules. Each
cage can contain a maximum number of molecules. This number was found to have a great
impact on the results as is seen in Figure 14 and 15 /209/. The cages are activated at random,
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Fig. 14 Concentration dependence of transport diffusion coefficient; one molecule per
cage and event allowed to jump, no passing in windows, A: max 1 particle; *: max
2 particles/cage /209/.
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Fig. 15 Concentration dependence of corrected diffusion coefficient; 1 molecule per cage
and event pemnitted to jump, no passing in windows, A: max 1 particle per cage; *:
max 2 particles per cage.

but each of them only once during a single Monte-Carlo step. Different hopping models were
implemented, but a (more accurate) Poisson distribution of event times was not accounted for.
Binary diffusion was also simulated by Nelson and Wei /212/. These authors report qualitative
agreement with experiments, but the results are especially useful to investigate the dependence
of the results on model assumptions. At the same time, this means that a good understanding
of the microscopic behavior is essential to make appropriate assumptions in the mesoscopic
Monte-Carlo simulations. For example, Aust et al. /209/ report a diffusivity increase with
loading under the assumption that a molecule will jump when there is at least one vacant
neighbor; when the assumption is modified so that a molecule will not move if it attempts to
move to an occupied neighbor, a concentration independent diffusivity is found.

More surface Monte-Carlo simulations of multi-component diffusion were carried out by
Van den Broeke et al. /213/, using a Langmuir and a repulsive sorbate-sorbate interaction model.
The modeling and assumptions are similar to those in the work of Aust et al. /209/, but the
main objective was to verify the applicability of a surface diffusion mode! in terms of the
Maxwell-Stefan equations for zeolites, as discussed in Section 5 of this review. Simple
Langmuir adsorption models led to results consistent with a number of experiments. Monte-
Carlo simulations of the counter-diffusion of a binary mixture clearly indicated that this
process is not symmetrical. Transient uptake of binary and ternary mixtures showed that the
properties of the fast moving species are the most affected by the presence of other sorbates,
while the uptake behavior of the slowest moving component is similar to single-component
uptake.
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Faux et al. /214/ studied the effect of a directional bias in the diffusion on a square lattice.
In zig-zagged pore networks like the one of ZSM-5, nonspherical sorbate molecules may
indeed prefer to hop forward or backward instead of making a 90° turn. This directional bias
can lead to considerable anisotropy of the self-diffusivity, but the effects decrease with
concentration.

Rajadhyaksha et al. /215/ found deviations from Einstein's relation for self-diffusion on a
square lattice at high loadings, for a vacancy concentration close to zero. Diffusion seemed to
be anomalous, similar to the single-file diffusion observed in one-dimensional pores. These
results have been contradicted by other authors /209, 213/ and may be a result of the relatively
short time of the Monte-Carlo simulations, since moves of the tracer are extremely rare in this
limit and the assumption that time is proportional to the number of jumps made by the tracer
is not warranted.

First steps toward the study of self-diffusion on more detailed lattice models of zeolites
were made by Van Tassel et al. /216/ and Keffer et al. /127/, who did not only consider cage-
to-cage hopping, but also intra-cage motion (Fig. 16). Several molecules can occupy several
sites within a single cage. The energetics of the motion between sites of the "sublattice”
representing a cage can be very different from the energetics of intra-cage motion, as
indicated by transition-state theory and molecular dynamics. An analytical model, exact at
low loading and approximate at higher loadings. was also derived (Fig. 17). Keffer et al. /127/
studied the percolation properties of such more complex lattices, with different types of bond-
blockers, and found regular percolation theory and the effective medium approximation to be
quite easy to generalize.

The previous papers considered lattices with equivalent sites, occupied by interacting or
non-interacting molecules. Coppens et al. /174, 176/ studied the effect of a distribution of
weak and strong adsorption sites on self-diffusion and transport diffusion on lattice models of
zeolites. Apart from a cubic lattice, a realistic model for the pore network of ZSM-5 was used
as a test example, since it was shown earlier /174/ that the connectivity of the network plays
an important role (Fig. 18). The influence was studied of the fraction of strong adsorption sites,
the relative strengths of strong and weak sites, z/7,, the number of sites per zeolite cage or
pore intersection, and the ratio of intra- to extra-cage hopping probabilities. A mean-field
theory was also presented, showing good agreement at sufficiently low occupancies, high
enough connectivity, and a sufficiently homogenecous site strength distribution. Because of
correlation effects, qualitative discrepancies may occur in other cases. Experimentally observed
trends of the dependency of diffusivity on loading could be reproduced. Strong adsorption
sites become occupied or are "titrated” first when increasing the loading, so that the self-
diffusivity may increase with occupancy, opening up more tortuous paths along weaker
adsorption sites to other molecules, herewith facilitating their motion. A maximum occurs,
because at even higher occupancies, the constrictions imposed on the molecular motion start
to dominate, leading to a decrease in diffusivity (Figs. 19, 20). Such behavior was also found
experimentally /11/. An important conclusion of the work on transport diffusion is that a
small fraction of strong adsorption sites leads to a sharp increase of the transport diffusivity
already at small loading. Further loading has little effect on the diffusivity.
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Fig. 16  a) A lattice of adsorption sites (circles) composed of connected octahedral sub-
lattices. Solid lines represent possible hops within each sublattice (site hops) and
dotted lines represent possible leaps between neighboring sublattices (window
hops). b) The hops on the lattice which have a component in the x-direction, taken
to be the direction of hop 1 (a window hop). Odd numbered hops have a
component in the positive x-direction and even numbered hops have a component
in the negative x-direction 216/,

Bhide and Yashonath /217/ studied the effects of the spatial distribution (plain, square,
clustered or chessboard) and acid strength distribution of adsorption sites on self-diffusion on
a two-dimensional lattice. Also sorbate-sorbate interactions and hop length (single hops,
double hops) were varied. Again, experimental trends of diffusivity versus occupancy could
be qualitatively reproduced by changing these parameters.
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Fig. 18  Lattice representation of the unit cell for the ZSM-5 pore space: 2¢ Fsites in the

channel intersections, which can be weak or strong, and 4 weak asites in the
channels /175/.
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function of the total loading & /175/.
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Fig. 20  Self-diffusivity in ZSM-5 with 1 site per cage, as predicted by Monte-Carlo
simulations, z/5,. = 100 /175/.

Also very recently, Gladden et al. /218/ developed a kinetic Monte-Carlo code to study
binary diffusion and adsorption on realistic representations of coarse-grained zeolite networks.
The necessary parameters can be found from 2H NMR experiments, and/or molecular dynamics
and grand-canonical Monte-Carlo (GCMC). An example was shown for ethane-ethene binary
adsorption on silicalite. Experiments at one temperature were used to find the missing
parameters needed to successfully predict the sorption behavior at another temperature.
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As mentioned earlier, a somewhat different approach was taken by Auerbach and co-
workers, who studied a particular model system in more detail in an attempt to improve our
understanding of diffusion in zeolites. In a series of papers, Auerbach, Metiu et al. /219-228/
conducted a systematic study of benzene tracer diffusion in Na-Y and Na-X zeolites. They
performed systematic dynamic Monte-Carlo simulations and developed increasingly
comprehensive analytical and semi-analytical theories. Benzene diffusion in the synthetic,
cationic faujasite Na-Y is a typical example of a practical system to which MD cannot be
applied, because the molecules are trapped at strong binding sites for most of the time.
Nucleophilic benzene molecules hop from one site to another, so that dynamic Monte-Carlo is
the method of choice to investigate the long-range mobility. There are two types of sites in
Na-Y (Si:Al=2) (Fig. 21). The first type consists of "Sy sites” in cages, where benzene binds
toa Na" ion coordinated to a zeolite 6-ring. Hops between such sites lead to arandomization of
the benzene plane orientation, but not to (translational) diffusion. Cages are tetrahedrally
connected; in between there are 12-ring windows, which represent the second type of sites,
the so-called "W -sites". The Sy, sites are the strongest ones. Since it is a nucleophile, benzene
diffusion in Na-Y can be represented by a succession of jumps in between the two kinds of
sites; W-W, W-S;; and S;-W moves need to be considered. Molecular dynamics simulations as
well as spin-relaxation NMR are only able to probe the intra-cage S;~Sy motion, and not the
cage-to-cage motion which is responsible for the long-range diffusion that is experimentally
measured using, typically, PFG-NMR /227/.

Fig. 21 Benzene molecules in NaY /226/.

The dynamic Monte-Carlo simulations of this group are in principal similar to the ones
discussed earlier, but with the important difference that they are much more detailed and
quantitative. In particular, the fundamental parameters, the jump activation energies, are
determined and serve as input for the Monte-Carlo simulations or analytical expressions for
the diffusivity. To represent the zeolite-benzene potential energy surface, an average
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tetrahedral (T)-site approximation with partial charges was employed and the potential
parameters were determined /219/. The location of the two types of binding sites and their
energies were calculated: —75 kJ/mol for the Sy binding energy and —50 kJ/mol for the weaker
W window sites. It is interesting to go over the methodology used by this group as it is quite
general, so that much can be translated, in principal, to other systems. Unfortunately, the
study and behavior of other less symmetrical systems (e.g., benzene in silicalite), may well be
more complicated in practice, because of the large number of sites and jumps (there are, e.g.,
27 potential minima for benzene in silicalite /229/). For more details, including values for the
parameters, we refer to the orginal papers.

Auerbach, Metiu et al. first studied diffusion of a single benzene molecule, i.e., benzene in
Na-Y atinfinite dilution/219/. The variable-step size Monte-Carlo method was used to estimate
the self-diffusivity and activation energy over the 100 to 500 K temperature range. The
activation energies of the jumps were found from a minimum energy path method. This
method consists in locating the transition state by following a minimum energy path,
calculated using a constrained optimization approach, from one site to another. Both the S;-Sy
and the S~ hops occur according to a “cartwheel” mechanism, in which benzene remains
roughly orthogonal to intermediate 4-rings (Fig. 22). The W-W hopping process, bypassing
the cage sites, gains in importance at higher benzene loadings, e.g., about 4 per supercage,
and is somewhat analogous to interstitial diffusion in solids.

The principal idea behind the method of Auerbach et al. is to reduce the site-to-site diffusion
problem to a simpler cage-to-cage diffusion probiem, for which only the cage-to-cage hopping
rate needs to be determined (Fig. 23). Such a hierarchical approach makes the diffusion
process easier to understand and characterize, and enables much quicker calculations of
diffusivities (~N instead of ~N?). Hierarchical methods are typically used when the jump rates
are determined by transition-state theory (see Section 4). Auerbach and Metiu /221/ derived
the following expression for the self-diffusivity at infinite dilution:

D =%ku:, (3.5)

where the hopping length ¢ is approximately equal to the cage-to-cage distance, or better the
root mean square cage-to-cage hopping length, and the hopping frequency k can be expressed
in terms of fundamental site-to-site hops. This expression is the same as the well-known one
for a simple cubic lattice, despite the different lattice topology. The cage residence time is
found to decay exponentially, so that cage-to-cage hopping is indeed a first-order process. A
first approximation in terms of the hopping rate from S to W sites was refined in later work
to include W-W hops /223/:

k=ks, L (1/2)3[1+ (T = kg, o (172)3 1+ ki Ty, )- (3.6)

This is an exact solution of the master equation. When a(T) lies between 0 and 1, the factor
3[1+(T)] counts the number of allowed target sites for cage-to-cage motion. For o(T) » 1,
benzene mobility is more like interstitial diffusion, and the rate is controlled by }/-W hops and
the probability of W site occupancy, following a move from Sy to W to start the #-W hops.
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Auerbach et al. /220/ also studied diffusion in Na-X to investigate the influence of the Si:Al
composition ratio on the results (Fig. 24). Since the Si:Al ratio of Na-X is about 1, the number
of Na* ions is larger than in Na-Y, so that a lower benzene mobility is expected. While an
increase of the Si:Al ratio in Na-Y indeed leads to the expected increase in mobility /222/, the
opposite is seen for Na-X: room temperature benzene mobilities increase by nearly two orders
of magnitude and the activation energy for benzene in Na-Y is half that for benzene in Na-X.
?H NMR and binding site, energy and hopping path calculations, as described above for Na-Y
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Fig.23  Tetrahedral connectivity of supercages in the NaY unit cell. Balls represent
supercage "sites” and sticks represent cage-to-cage jumps /226/.

Fig.24  Sorption sites and jumps for benzene in a) NaY and b) NaX /228/.
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clarify this seeming paradox: new, to benzene accessible Sy sites, are indeed created, but they
lie close to the windows. Because of this, attractive interactions from Sy sites overlap with
those from adjacent Sy sites, which reduces the activation energy by splitting the large S;~W

energy barrier up into two smaller barriers Sy{close)-Sy; and Sy~W. As a result benzene is
more mobile in Na-X than in Na-Y (Fig. 25).

S,(a)

Fig. 25 a) One-dimensional harmonic model of adjacent Sy sites in NaY, parametrized as
V,(x) = 0.5k*,V, =0.5k(x—d)*; b) Na-Y model of adjacent Sy sites applied to
NaX, which adds the S site parametrized as ¥, = 0.5k(x - ad)’ /220/.

The previous results were at infinite dilution. At higher benzene occupancy, &, some stable
sites are blocked and intracage molecule-molecule interactions modify adsorption and
activation energies, leading to correlations. These correlations complicate the benzene motion,
preventing the derivation of a rigorous analytical solution in closed form. For the benzene in
Na-Y system, an analytical mean field approximation nevertheless turns out to give surprisingly
good results, as Saravanan and Auerbach showed /224, 225/. The diffusivity can still be written
in the same form as at infinite solution, eq. (3.5), but the mean supercage residence time 1/k is
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now a non-trivial function of the occupancy. The mean-field approximation consists in
assuming that instantaneous occupancies in neighboring supercages are identical. In deriving
the analytical expression for the diffusivity, it was also assumed that the occupancy of a site is
either 0 or 1 (vacant or blocked site). The cage-to-cage hopping frequency can then be written
as a product of a transmission factor & (assumed to be 1/2, because all cages are identical on
average, and this is a mean-field approximation); the probability of occupying a W-site, Py;
and the total rate of leaving a W site, ky:

k=xP,k, 6.7
in which it is quite straightforward to show that
B, =Yl+k W5,

where the equilibrium coefficient
K,=<mn, >/< ng > (5.9)

is the ratio of the averages of the fluctuating numbers of molcecules populating the W and the
Sy sites respectively. Much less straightforward is the calculation of those averages. This can
be done more easily in the grand canonical (constant uVT) ensemble, because of an analogy
with a fermion gas consisting of two classes of fermions with different energies. This
corresponds to the two types of sites. The population of the energy levels is well-known for
such a system, and so is K,,. The link with the canonical ensemble (constant NVT), which is
needed here and for which an expression for K, can also be derived, is complex and can only
be done numerically. A leading order approximation can be derived analytically, however,
and, after a lot of algebra, yields two expressions for K,,, depending on whether the number
of molecules is larger or smaller than the number of Sy sites. The numerical results as well as
the Monte-Carlo simulations are useful to have a better idea about the quality of the
approximation, which was found to be excelient away from &= 2/3. An estimate for the
average window residence time <zy>= l/kw can be made under the mean-field approximation,
MFA, assuming either full occupancy of neighboring supercages (for N > Ngy) or all empty
window sites except for the one under consideration, for N < Ngy. In summary, a quite simple
result follows for N<Ngy and an infinite volume (8< 2/3):

k(6)= /2020236y o s, )+ L5, - (3.9)

In this approximation, the factor 2/(2-36) is the only difference with eq. (3.6), valid at infinite
dilution. For N> Ng; (8> 2/3), all Sy sites are blocked in the approximation, and the result is:

k(6)=30-6)3e-2)6k,., . (3.10)

This site blocking model predicts that the diffusivity D(&) = (1/6)k( Aa’ is highest at £~ 0.82,
corresponding to approximately four Sy sites and one W site blocked per supercage.
Quantitative agreement was found with Monte-Carlo simulations, using fundamental rate
coefficients calculated at infinite dilution /225, 226/ (Fig. 26). It is seen in these simulations
that the intercage jump length, a, slightly but gradually increases with loading, and is not
constant as is assumed in the mean-field approximation, because molecules enter and exit
cages through different W sites. The agreement between diffusivities calculated using MC and
the mean-field approximation is almost perfect for loadings smaller than 2/3, but increases
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Fig.26  Diffusion coefficients versus loading for 300 and 400 K calculated by the three
methods explained in the text /226/.

roughly linearly to about 25-30 % at higher loadings (Fig. 27). Calculation of the correlation
factor f=D/D, (eq. 3.4) shows this discrepancy in a different way.
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Fig.27  Percent error between MFA and MFD diffusion coefficients calculated as
(Dyupaz = Dusp)! Diesp -100% 12261
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Because there was quite some deviation between the calculated and the experimentally
measured diffusivities, the theory for benzene diffusion in Na-Y and Na-X was further refined
to include nearest neighbor adsorbate-adsorbate interactions /227, 228/. Now, qualitative
agreement with PFG-NMR was found (decrease with loading) and disagreement with tracer
ZLC (increase with loading) (Fig. 28). An Ising lattice of binding sites was used as a
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Fig. 28 Benzene diffusivities in NaY as a function of loading /227/.

representation of the system. The Hamiltonian contains the site free energies and the coupling
between nearest neighbor sites S;-Sy and S~ (the W sites are too far from each other to
interact significantly). By varying the fundamental energy scales, the system is seen to exhibit
four of the five loading dependencies of self-diffusion reported by Kirger and Pfeifer /11,
306/ (see also Fig. 68). The adsorbate-adsorbate interactions modify the jump activation
energies. These modifications are calculated using a simple parabolic jump model: the
minimum energy hopping path connecting adjacent sorption sites is characterized by
intersecting parabolas. This model is most accurate when the spatial paths of the jumping
molecules are not drastically changed by sorbate-sorbate interactions, although the energies
can change. An analytical mean-field theory can then be derived, based on calculations of the
probability of occuying a site and the rate of leaving it. Monte-Carlo simulations of these
parameters can also be performed. The loading dependence of the diffusivity is mostly
controlled by these parameters. The mean-field theory is very quick and predicts the
activation energy fairly well. At low to moderate couplings, diffusivities can also be calculated
using the theory, but deviations from the Monte-Carlo simulated values are important at
stronger couplings. The diffusivity can either be calculated directly from the mean-square
displacements found from Monte-Carlo simulations (MSD) or from Monte-Carlo simulations
of the hopping rates and the use of the mean-ficld approximation discussed earlier. Making
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the coupling more negative leads to a shift of the position of the maximum diffusivity from
high loading to low loading to infinite dilution. The mean-field approximation works very well
at low loadings, because the cage-to-cage motion is essentially uncorrelated. At higher loadings,
stronger deviations are seen, which are attributed to phase transitions from a low to a high
density of adsorbed benzene, similar to the vapor-liquid equilibrium of bulk benzene. For
strong coupling, the diffusion moves from super-critical to sub-critical. Significant correlations
exist, because the distribution of molecules is very inhomogeneous ("evaporation” along
cluster boundaries). In this region, the simulated self-diffusivity is almost constant over a
wide range of occupancies.

Experimental measurements of benzene diffusion in Na-Y and Na-X exhibit a remarkably
gentle dependence on occupancy, for low to moderate loadings, and the benzene molecule can
easily rotate within a cage, hereby removing auto-correlations in its motion. This may explain
the success of Saravanan and Auerbach's analytical approximation. For many other systems,
the dependence is much more pronounced /11/, and mean-field approximations have to be
used with caution, especially when the connectivity is low and there is a clear distribution of
adsorption strengths, leading to more strongly correlated motion /175/.

Jousse et al. /230, 231/ studied the diffusion of trans-2-betene as a function of loading in
silicalite-2, the all-silica member of the MEL family, a three-dimensional zeolite with straight
5.3 x 5.4 A channels that run along perpendicular directions and are connected by two types
of intersections: small more or less spherical ones, and elongated ones, looking like channels
in the z-direction (Fig. 29). The diffusion of trans-2-butene as well as of other butene isomers
could be simulated at low loading using molecular dynamics or kinetic Monte-Carlo, the latter
despite the fact that the energy barriers are rather small /230/. At higher loadings, the
diffusivity decreases with increased loading as a result of slightly attractive intermolecular
interactions for each of the isomers, except for trans-2-butene, where a more complex
behavior is seen: the diffusivity as a function of loading is not monotonic but goes through a
maximum at about 2 molecules per unit cell (Fig. 30). This could be interpreted as a result of
repulsive interactions at low loadings, and attractive interactions at higher loadings. To study
the effect of intermolecular interactions present at higher loadings, kinetic Monte-Carlo

Fig.29  Pore structure of MEL /23()/.
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Fig.30  Self-diffusivity as a function of loading for trans-2-betene in silicalite-2 (MEL
family) /230/.

simulations were performed and a semi-analytical theory for the hopping rates was proposed
/231/. Molecular dynamics is not so appropriate for this purpose, because only quantities
averaged over many configurations are observed. Molecular dynamics shows that there are
three types of sites for this system — large intersections, small intersections and channel sites —,
but it suffices to consider hops between the intersections, where siting is preferred. The small
intersections are elongated and can contain several molecules, while the larger intersection
can only contain one. The maximum number of molecules per site can be evaluated from MD.
Rate constants k,, for hopping from any site i to any site j can then be calculated. The energy
barriers to cross from one site to another are written as a function of two parameters, which
depend on the intermolecular interaction energies. A simple model in terms of hops between
spherical, symmetric sites is unable to simulate the observed diffusion behavior, because the
larger intersection sites are channel-like and therefore asymmetric. At higher loadings,
packing of molecules inside the channels needs to be accounted for. The interaction energy
between two molecules in a large intersection depends on whether the molecules lie next to
each othcr or whether there is another molecule in between. If this effect is accounted for, the
maximum in the diffusivity as a function of loading is obscrved from the hopping simulations.

An important advantage of the method by Auerbach and co-workers is the level of
quantitative detail that can be obtained for a specific molecule-zeolite system. Others
performed Monte-Carlo simulations for more general systems, to gain a better understanding
about the parameters that influence the way in which the diffusivity depends on occupancy.

A special situation occurs when the intracrystalline pore space consists of parallel or one-
dimensional pores, such as is the case for, e.g., ZSM-12,-22, -23, -48, and for AIPOs-5,-8,-11,
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L, Omega, EU-1 and VPI-5. Large enough molecules may not be able to pass each other
anymore, so that the molecular propagation may become strongly correlated over long
distances and Einstein's relation for self-diffusion, <r’(s)> ~ t no longer holds. This has been
called single-file diffusion /316/. Early work modeled movement in one-dimensional zeolites
assuming a hopping model, where molecules hop from site to site along a line; molecules
cannot hop to already occupied sites. Based on this, it can be shown that <A(f)>=2 F r'?,
where F is called the mobility factor. The mean square displacement is proportional to the
square root of time rather than to time itself /317, 194-196, 318-322/. Such anomalous
diffusion is also observed on self-similar fractals, diffusion in random media with traps, and
in various fields /323-326/.

Recently, computational studies of single-file diffusion in zeolites have become a hot topic,
as direct and unambiguous experimental evidence has been difficult to obtain. PFG-NMR and
QUENS studies with methane in AIPO,;-5 showed ordinary diffusion according to some
/123,124/, but single-file behavior according to others /122, 327/ (see also Section 2.2). To
this date, there seems to be no unambiguous and uncontested experimental proof for single-
file diffusion, possibly due to different time scales (varying from ns to 0.1 s) and sample
details in different investigations. An indication of single-file diffusion for methane in VPI-5
has also been suggested on the basis of smaller diffusivities than for ZSM-5, which has much
narrower pores /328/, in contrast with some of the observations for AIPO4-5, which also has
narrower pores /329/.

In recent years, detailed numerical simulations have been carried out to explain if and when
single-file diffusion occurs, and how it could be observed. Several examples were already
discussed in Section 2.2. Modeling of diffusion in one-dimensional pores sometimes employs
a combination of MC and MD techniques, and the reader is therefore also referred to Section
2.2 for more details. If molecules have a nonzero probability to pass each other, single-file
diffusion may be observed on short time scales, but is absent over longer times, so that the
diffusion becomes ordinary again. When two or more molecules can occupy a site, they can
also pass each other more easily and anomalous diffusion is only observed at short times
1330/.

MD simulations (see, €.g., /321/ and Section 2.2) show <rz(t)> ~ 12 after an initial ballistic
phase, i.e., when a significant number of mutual encounters between molecules have occurred.
Crystallite boundaries, however, appear to influence diffusion of a single-file system, as it
stops being anomalous under the condition of fast particle exchange at the ends /128/. Under
these conditions, the previous expressions indicate a time of tracer exchange proportional to
the third power of sample length for long channels /331/, in contrast to previous Monte-Carlo
simulations /332/ on channels of length 25-75 1, in which an exponent of 3.3-3.4 was found.

Tepper et al. /119/ studied methane diffusion in AIPO,-5, and found anomalous diffusion at
short times and a system-size independent cross-over at long times, which are inaccessible to
MD. A simple "hop-and-cross" model was able to reproduce the MD results rather accurately
and study the phenomena more in depth over very long times. The "cross” involves an
interchange of the molecule with its neighbor, when it attempts to move to a site occupied by
this neighbor. The closest approximation of the MD results was found for a very low crossing
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probability, peross = 0.0008. Even such a small value has a profound influence on the results.
At a time of 7 ns, a crossover from anomalous diffusion with an exponent of 0.64 (not 0.5,
due to infrequent crossing events) to normal diffusion (exponent 1) was observed. Based on
their results, the authors disagree with the experiments of Kukla et al. /122/, which may have
been influenced by channel blockages caused by imperfections and impurities. The results
agree with the experiments of Nivarthi et al. /123/ and Jobic et al. /124/.

Several results obtained by MD indicate the importance of collective or resonant motions of
molecular clusters; some authors observed single-file behavior /125, 334/, some not /333/.
This was discussed in more detail in Section 2.2. Sholl and co-workers have performed
hierarchical simulations of adsorbed molecules in AIPO,-5 that allow to study the rare
adsorbate passages and close the gap between the atomic scale and the macroscale /120, 335,
336/. Kinetic Monte-Carlo simulations on a lattice gas model can be used, because it was
shown by free energy calculations that not only the diffusion of isolated molecules but also
the passing of molecules in a pore are activated processes. The free energy barriers for
adsorbate passage are entirely due to entropic effects when the adsorbate-adsorbate
interactions are hard wall potentials, but contain an energetic component when they are of the
Lennard-Jones type. The order of magnitude of the energetic contribution is essential, as
single-file diffusion will occur when it is much larger than k7. In the kinetic Monte-Carlo
simulations, the effects of adsorbate passage were modeled as neighboring particle exchanges.

Recent work by Sholl and Lee indicates that concerted cluster diffusion can play an
important role at higher loadings /336/. A hierarchical method was used to include atomic-
scale information in coarse-grained kinetic Monte-Carlo simulations on microsecond time
scales. Building upon the observations of Sholl and Fichthom that show the significant
influence of concerted cluster diffusion /125, 126/, molecular dynamics simulations of CF,
clusters in AIPO;-5 and of Xe clusters in AIPO;-31 were carried out, to characterize the
diffusion and dissociation mechanisms and rates of these clusters as a function of temperature
and cluster size /335, 336/. The information from these simulations was then used to obtain
parameters for the kinetic Monte-Carlo simulations. In these simulations, clusters are
represented by their size and center of mass, and particles making up a cluster are equidistant
and do not have to lie on a lattice. The clusters can dissociate and coalesce. Such simulations
enable to accurately account for the detailed effects of clusters on time scales difficult or as
yet impossible to access by MD. It was found that as much as 70 % of the total single-file
mobility could be attributed to concerted cluster motions, so that formulas like eq. (2.44)
underestimate single-file mobilities.

Okino et al. /337/ argue that more detailed modeling while introducing minimal complexity
is necessary, because any realistic channel will have a variety of defects that may lead to
deviations from the ¢'? dependence. A hierarchical approach was therefore advocated by these
researchers as well, although the challenge remains the proper linking between the different
levels. In order to develop such an approach and gain better understanding of single-file
diffusion when single-site hops dominate the diffusion, a deterministic model describing jumps
between configurations was proposed. This model is similar to the model of Tsikoyiannis and
Wei /237/ discussed further on, but with a corrected definition for the conditional hopping
probabilities. In a second-order approximation to the complex problem of A species in a
length-N pore, configurations are described in terms of all possible (M + 1)°(V - 1) doublets,
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more in particular all pairs of adjacent sites. This allows to include the most important
correlations for large systems. The doublet approximation does not directly assume the absence
of any correlations between non-neighboring sites, but it does assume that such correlations are
the result of correlations between neighboring sites. Better all::lproximations can be obtained by
considering triplets, and so on. A full model with all (Af+ 1)" variables can only be solved for
very short pores /338/. The doublet approximation could capture the anomalous single-file
diffusion behavior even for very long pores, and the results were in agreement with the full
model results by Rddenbeck et al. /338/ for short pores. Reactions and further correlations can
easily be incorporated.

It is clear from this review that the results are very sensitive to the model details. Additional
experimentation on more systems, together with more extensive simulations will be necessary
to find a consensus on the actual diffusion behavior for a broader range of one-dimensional
zeolites and nanoporous materials.

3.3 Monte-Carlo simulations of diffusion and reaction in zeolites

There are not many publications on the modelling of diffusion and reaction in zeolites,
using other than a continuum approach. Continuum models are a good approximation when
there are no long-range correlations present in the system and the diffusion and reaction
phenomena can effectively be decoupled. This means that diffusivities measured in the
absence of reaction are used in macroscopic differential equations describing diffusion and
reaction in a catalyst pellet. Close to a percolation threshold, when molecules with sizes close
to the pore size are diffusing, or for intrinsically very fast reactions, there is a need for more
detailed network models that account for the correct topology of the pore network /232, 233/.
For zeolites, one or all of these situations may occur, so that it should at least be verified
whether diffusion and reaction can be decoupled, using network models.

With present day supercomputers, microscopic molecular dynamics simulations are not
suitable because the necessary simulation times on the order of microseconds or more are
prohibitively long. Somewhat less detailed mesoscopic Monte-Carlo simulations, on the other
hand, are a good alternative, and this is the statistical mechanical method that has been most
commonly used to study diffusion and reaction in zeolites. Considerable progress has been
made, as some successes have been booked in studying industrially important processes,
including xylene isomerization, alkylation of toluene, and methanol to olefines (MTO).

Continuum models may help usto get a first qualitative idea about the solution of a problem,
but many simplifying approximations need to be made, which are unnecessary in Monte-Carlo
simulations. These approximations make the solutions less accurate, and sometimes even
make them qualitatively incorrect, in particular when correlations are important. It is only in
recent years, with the advent of faster computers, that three-dimensional Monte-Carlo
simulations are performed more routinely. Most authors have used small simplified two-
dimensional grids, nevertheless obtaining qualitatively useful results and sometimes
remarkably good agreement with experiments.

Theodorou and Wei /208/ developed a Monte-Carlo approach to investigate an isomerization
reaction and the effect of catalyst deactivation by pore blocking. A two-dimensional, square
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grid was used as a simplified model for the ZSM-5 pore space. The para-selectivity in the
isomerization of xylene, e.g., is strongly influenced by catalyst modifications, such as those
resulting from coking, which blocks some of the pores, leading to retardation of intra-
crystalline transport and potential diffusion limitations. The simulations allowed to quantify
these effects, by studying the influence of random blocking of pore entrances or of pores in
the bulk (Figs. 31, 32). The authors found that bulk pore blocking led to a much sharper,
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Fig. 31 Effect of bulk blocking of pores on diffusivity /208/.
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Fig. 32 Effects of border blocking on diffusivity /208/.
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convex decrease than pore entrance (surface) blocking, for which the diffusivity-blockage
curve is concave. This can be rationalised by noting that, as long as not too many pores at the
external surface are blocked, molecules can migrate to a free entrance and reach the interior,
after which they move more freely than if the pores in the bulk were blocked. The effects of
loading were also studied. assuming equal activity of all sites. Higher occupancies lead to
more retardation, as discussed earlier. Comparison with a continuum model showed that the
decrease of the effectiveness factor with occupancy is well described by such a model for
occupancies lower than about 50 % (Fig. 33). At higher occupancies, the continuum, mean-
field approximation underestimates the effectiveness factor, as calculated from Monte-Carlo
simulations. Especially noteworthy is the incomplete occupancy and the non-zero limit of the
effectiveness factor at maximum loading, because of the nonuniform distribution of catalytic
activity and the finiteness of the grid (Fig. 34).

These results were extended by Mo and Wei /234/, who used percolation theory and an
effective medium approximation (EMA) to study the effect of random pore blocking on the
effective diffusivity. Sundaresan and Hall /235/ incorporated the effect of nonidealities arising
from interactions between sorbed molecules as well: molecules may be more likely to jump to
a neighboring vacant site if some of its other neighbors are occupied. These repulsive
interactions are similar to those included in the surface diffusion studies of Murch/197/ and of
Reed and Ehrlich /198, 199/. The activation energy for migration of a molecule is
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Fig. 33 Variation of effectiveness factor with global occupancy (comparison between
Monte Carlo and continuum approaches) /208/.
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Fig. 34  Monte Carlo model: number of particles in a grid as a function of collision
frequency /208/.

proportionally reduced by the interaction with molecules occuping an adjacent site; a different
repulsive interaction energy is used depending on whether the pore in between these sites is
open or blocked (e.g., because of coking). Based on the lattice gas model, they derived a
continuum model for large crystals and not too severe internal pore blocking alone. Such a
model can only be used when the pore blocking is sufficiently below the percolation
threshold. Moreover, pairs of sites are treated independently, i.e., the quasi-chemical
approximation is made, to enable a continuum description without having to resort to Monte-
Carlo simulations. The results will not be discussed in detail, as we are limiting ourselves to
Monte-Carlo simulations in this review, but one of the important conclusions from the
simulations was that the efiect of pore blocking is more pronounced in the presence of
repulsive lateral interactions between sorbate molecules. As experiments of toluene alkylation
in blocked ZSM-5 suggest such strong effects, this may mean that interactions indeed
constitute an important factor.

Pore blocking or pore size reduction also has an influence on the ion exchange in zeolite A,
as shown by Ruthven /236/ in Monte-Carlo simulations on a three-dimensional cubic grid.
Tsikoyiannis and Wei /237/ developed a model for diffusion and reaction in zeolites using a
cubic grid with one type of site, using the same assumptions as Theodorou and Wei /208/, but
in continuous time. A Markovian formalism was developed, which allows to derive
approximate solutions to the master equation describing diffusion and reaction in the zeolite.
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In the absence of intermolecular interactions, the transient uptake or transport diffusivity is
found to be independent on occupancy. The significant effect of attractive or repulsive
intermolecular interactions on multi-component diffusion was studied as well.

Xylene isomerization in ZSM-5, again using a two-dimensional lattice, was considered by
Frank et al. /211, 238/, and by Wang et al. /239, 240/, who also studied the alkylation of
alcohols. Frank et al. tuned the hopping ratios of ortho-, meta and para-xylene to measure their
effect on the reaction path. This enabled them to get an idea of the ratios of hopping rates
needed to match the experimental observations: they found that a ratio o:m:p of 1:1:10 of
diffusion coefficients led to a better correspondence with experiments than the often assumed
ratio 1:1:1000 (Figs 33, 36). Since there is a debate on this ratio, simulations can give better
insights into its effect. To convert Monte-Carlo time steps into real time, the average adsorption
time on a site was approximated by a harmonic oscillator of which the frequency is chosen
such that the oscillator's energy equals the activation energy. Wang et al. /239, 240/ obtained
remarkably good correspondence of simulated conversions and selectivities with experiments,
when using experimentally determined parameters for the diffusivities, adsorption constants
and the intrinsic reaction rate constants (Fig. 37). In view of the known problems in measuring
diffusivities, the limitations in using single-component diffusivities only, and the use of a
small two-dimensional grid, it would be interesting to study whether the excellent agreement
is a coincidence or whether the reaction results are not very sensitive to some parameters.
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ARSI N
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Fig.35  Reaction path of isomerization of xylenes: Ppo.xyicne: Pom-vtene: Pop-yione = 1:1:10
211/,
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Fig. 37 Dependence of the selectivity of meta-xylene upon the Thiele modulus for ortho-
xylene isomerization. (O) continuous model; (®) experimental; (O) cit. /239/.
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Ethylation and disproportionation of ethylbenzene on ZSM-5 was studied by Klemm et al.
1241/ to explain experiments and to provide suggestions to enhance para-selectivity.
Comparison with experimental results taught that para-selectivity could be mainly attributed
to product shape selectivity (i.e., products with a bulky structure cannot diffuse out quickly
enough) rather than transition state shape selectivity (i.e., products are not formed at all),
while the opposite holds for the disproportionation reaction. A continuum and a Monte-Carlo
approach led to similar results (Fig. 38). The advantage of the Monte-Carlo approach is once
again the ease with which parameters can be tuned and their effects simulated. It is an
attractive method to understand the nature of structure selectivity.

Caution is needed with the interpretation of all these simulations, however, since it was
observed in pure diffusion experiments and simulations that the diffusivities are very
dependent on the pore network topology, so that results obtained with two-dimensional grids
may not be generally valid.

Trout et al. /242/ used the true topology of the coarse-grained pore network of ZSM-5 to
study its percolation transition, as well as the influence of the constraints on diffusion and
isomerization at arbitrary loading (Fig. 39). In their model, there is one site per intersection
and per channel in between two neighboring intersections. Sites are weak or strong. A
reaction can occur on the strong sites. The diffusivity decreases more sharply with occupancy
than on a square lattice, because of the reduced connectivity of the lattice. The reaction rate is
higher when the occupancy is lower, as this reduces the fraction of blocked reaction sites.
When all sites are assumed to be equal, they showed that there is an optimal fraction of
reaction sites as a result of the subtle trade-off between the availability of enough reaction
sites, on the one hand, and a decreased diffusivity and effectiveness at higher fractions of
reaction sites, on the other (Fig. 40).

Recently, Hinderer and Keil /243/, and Keil et al. /244/ used a three-dimensional network
with a fine grid to simulate the conversion of methanol into olefines (MTQ) in a ZSM-5
catalyst; their Monte-Carlo approach enables to include complex chemical reaction networks
between a large number of components, and does not assume the knowledge of the single
component diffusivities. The latter is important, because even the single component diffusivities
are not available in the temperature range of interest. The network is not simply a coarse-
grained network containing bonds between sites. Instead, the complete crystallite space is
divided by a fine cubic grid (Fig. 41). Each cube can be one of four different latticc elements:
rigid zeolite framework, free intracrystalline pore space, active site or window site. A molecule
can occupy any vacant element in the pore space or an active site. Sorbate-sorbate interactions
are accounted for. During one Monte-Carlo step, each molecule is chosen in a random
scquence, and a random direction is chosen. If the movement in that direction is possible, the
molecule moves until it collides with another molecule or with the rigid zeolite framework.
When molecules cross a window., they have to surmount a potential barrier. A Lennard-Jones
potential is commonly used to describe the interactions: the sensitivity of the Lennard-Jones
length constants o turns out to be very high, leading to a tenfold increase in diffusivity when
o is reduced by only 10 %. The accuracy of the method was checked by comparison with MD
and available experimental data for some test diffusion cases, and was found to be
satisfactory. Simulations were then carried out for the MTO synthesis, using a simplified
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Fig.39  Lattice model of ZSM-5 /242/,
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Fig. 40  Effects of the strength and fraction of reaction sites on the dynamics of diffusion
and reaction when 33.33 % of the weakly adsorbed sites are occupied. The graph
shows times for the product to reach 90 % of the steady-state concentration /242/.
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Fig. 41 Movements of molecules during MC calculations /243/.

reaction scheme with 6 or 7 reactions, and reaction probabilities specified to approximate
experimentally determined product distributions. Keil et al. /244/ did not only consider the
zeolite particles, but complete composite catalyst particles consisting of small catalytically
active zeolite particles embedded in an inert, amorphous matrix. Such particles have become
of increasing industrial importance in recent years as they offer several advantages related to
reducing deactivation and attrition, amongst others. Both the multi-component zeolite diffusion
and the molecular, Knudsen and surface diffusion through the matrix were accounted for in
their model, which enabled them to obtain the composition of the reaction mixture as a
function of MC steps, as well as the effectiveness factors as a function of particle size and
zeolite fraction (Fig. 42).

3.4 Conclusion

Even with the advent of more powerful computers, it is expected that dynamic Monte-Carlo
methods will continue to play a prominent role in the field of diffusion and reaction in
zeolites. Among the many advantages are its flexibility, speed and ability to efficiently probe
the configuration space, by allowing non-physical moves. Important is also the simplicity of
the method and the possibility to hierarchically combine it with more detailed, microscopic
methods. The basic parameters in the mesoscopic Monte-Carlo technique can also be found
from detailed experiments.

First-principle-based dynamic Monte-Carlo methods, in which parameters are calculated by
ab initio quantum chemical methods and interactions between neighboring adsorbates can be
included, are already applied to simulate catalytic kinetics on surfaces /245/ and thin film
growth /246/. Truly ab initio calculations on zeolites are even more complex, but could possibly
be performed through such hierarchical methods. In such a method, microscopic simulations,
such as molecular dynamics or dynamically corrected transition-state theory, and quantum-
chemical calculations to calculate the elementary kinetic parameters, form the input to a
mesoscopic Monte-Carlo method. While this has not yet been done to date, the databases that
are currently built make this not inconceivable in the near future.
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Fig.42  Number of olefin and paraffin molecules within a lattice of 4096 intersections
1244/,

4. TRANSITION-STATE THEORY

4.1 Introduction

Transition-state theory (TST) is very useful to characterize the sluggish, activated motion of
tightly fitting molecules in zeolites. In these cases, the motion can be accurately described by
a succession of hops between sites, which are coarse-grained potential energy minima. Once
these sites have been localized, knowledge of the jump or transition rates between them allows
to calculate the diffusivity using the dynamic Monte-Carlo method or, if possible, an analytical
technique. Long molecular dynamics calculations can be avoided, as the kinetic problem is
converted into an equilibrium problem. Only short, local molecular dynamics may be required
to correct the transition rates for multi-step transitions or recrossings of the transition state.

As already stated in Section 1. transition-state theory (TST) and dynamic Monte-Carlo
(MC) can be related to a master equation. The derivation of the master equation (ME) starts
with a phase space density » and a probability P, of finding the system in configuration j. For
the derivation of the master equation, we need to express how P, changes with time. This
leads, by means of the Liouville equation, to a relation between dPy/dt and the Hamiltonian of
the system /23, 24/. Finally, one obtains an equation of the form of eq. 1.4.

Substitution of the Boltzmann distribution for the phase space density leads to the well-
known expressions for the transition probabilities:

W, =(kyT/h)Z%12, LY

in which T is the absolute temperature, kj is the Boltzmann constant, 4 is the Planck constant,
and Z* and Z are the partition functions for the transition state between i and j and for the
initial configuration j respectively /42/. The transition probabilities #; can a|so be written as
rates k,, when the probabilities P, are probabilities of occupancy. Transition-state theory (TST)

is concerned with calculating the transition probabilities or rates k;"". As is clear from eq.
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(4.1), calculation of these rates is only based on the equilibrium phase space distribution of
the system at the initial states and at the transition states or hypersurfaces separating states. It
is assumed that molecules are coupled to a heat bath: while residing near a potential minimum
(initial state) or at a saddle point of the potential energy hypersurface (transition state), energy
is distributed uniformly over all their degrees of freedom as determined by the canonical
ensemble density function. The final state does not appear in the equation for the rate. The
theory assumes that molecules approaching the transition state with sufficient kinetic energy to
cross this barrier between initial and final state will always cross it /163/. In reality, this need
not be so: if the molecule fails to thermalize in the destination state, it will recross into either
the initial reactant state or quickly cross to a second product state. Corrections for dynamical
recrossings or multistate transition events may therefore be necessary, as we will see furtheron
in simulations of diffusion in zeolites. To allow for such events, jump rates needs to be
corrected, using a transmission coefficient:

ST
k; = K “2)

The transmission coefficients «;; are found from short molecular dynamics simulations (MD).
Once the transition rates are known, the master equation can be solved either analytically or
by a dynamic Monte-Carlo simulation, as discussed in Section 3.

We shall now discuss the application of TST to diffusion in zeolites. This subject has also
been reviewed by Theodorou et al./21/, Bell et al. /36/ and Bates and van Santen /38/.

4.2 Diffusion in zeolites

The first application of TST to diffusion in zeolites was by Sargent and Whitford in 1971
1248/, who used it to calculate the diffusivity of CQ; in zeolite 5A, which has a cubic pore
network. However, the errors in the diffusivities were very large, probably due to the neglect of
the preferred molecular orientation for the linear CO,; molecule when crossing the transition
state. A TST-study by Bétemps and Jutard /249/ of the diffusion of Ar in 5A led to poor
estimates as well; this time, the errors could be attributed to uncertainties in the location of the
Na® ions.

In 1972, Ruthven and Derrah /250/ derived a transition-state theory to compute the
diffusivity of the approximately spherical molecules CH, and CF; in the same zeolite 5A.
Diffusion in this system can be modeled by a cavity-to-cavity motion, easily amenable to a
transition-state theorv. The 8-membered oxygen windows between the cavities form transition
barriers that molecules have to pass in order to move from one cavity to another. They do this
at a transition rate &. Since the cavities form a cubic array, the diffusivity at infinite dilution
can simply be estimated by 1/6 £ a*, where a is the lattice constant, see also eg. (3.5) (Ruthven
and Derrah actually used an alternative derivation using a flux expression with the transport
diffusivity, linked to the self-diffusivity by the Darken equation). Excellent agreement with
sorption experiments was found, under the condition that a high degree of rotational freedom
is associated to CF; in the transition state, yet not to CH,. This leads to different partition
functions for the transition state configurations of these molecules, and therefore to different
transition rates, eq. (1.4).

Despite the agreement with sorption uptake experiments, the results are at odds with PFG
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NMR experiments, which are likely to be more accurate, according to Kirger et al. /251/.
These investigators derived a slightly different, yet similar expression for the self-diffusivity,
based on eq. (4.1), and an adsorption isotherm. The latter relates the partition function in the
cavities to the partition function in the gas phase, which is useful to avoid the calculation of the
former and use an experimental isotherm. At low loadings, the isotherm corresponds to Henry's
law, making the diffusivity inversely proportional to Henry's constant K = K; - exp(Vo/ksT).
The only assumptions necessary for calculating diffusivities in the given model are now the
changes in the degrees of freedom when comparing free molecules in the gas phase with
molecules in the transition state between neighboring cavities. This allows to calculate the
ratio of partition functions:

z412¢=2,22 12,2, Z 4.3)

int“ w rot g.int“ g trans ™ g rot
from which the prefactor of the diffusivity, Dg, follows:
D,=a*/(hK,)Z%1Z". 4.4)

Note that a transmission factor A= 1 was chosen, which may not be valid anymore at higher
loadings. These partition functions refer to internal degrees of freedom (Zi, Zgin = 1),
translation in the gas phase (Z, ;ans), tWo-dimensional vibration in a window (Z,,) and rotation
(Zro1, Zgror)- Contrarily to Ruthven and Derrah, Kirger et al. /251/ find it more likely that the
windows do not impose significant restrictions to the molecular rotation of spherical molecules
(Zro/Zg ror=1). They applied this TST expression to diffusion of methane and ethane in zeolite
NaCaA zeolite, obtaining good agreement with PFG-NMR measurements.

The transition-state theory of many other molecule-zeolite systems is in principal the same,
but its application is more complex. What simplified the treatment for zeolite A was the high
degree of symmetry of its lattice, leading to only one type of site and one type of transition
state. June et al. /252/ made the first TST study of diffusion in a zeolite with several types of
sites and jump rates between sites, namely silicalite. Because a high number of degrees of
freedom of the diffusing molecule complicates the problem (there are up to 3N-6 vibrational
degrees of freedom for an N-atom molecule), diffusion of Lennard-Jones spheres, represented
by Xe and SFs, with only 3 translational degrees of freedom was studied. Twelve sites per
unit cell, and 3 different types of adsorption sites were found: one in each straight channel
section, one in each sinusoidal (zig-zag) channel section, and one in each intersection.
Although there are actually several energy minima in a channel, the barrier between them is
too small (< k3T) to consider them separately, so that they can be combined to form a
macrostate. By locating the saddle points of the potential energy surface the transition states
can be located; for Xe there are 6 topologically distinct transition paths between
(macro)states, while for the larger SF, there are only 3 (Fig. 43). It turns out that for Xe (but
not for SF,) not only the obvious transitions between topologically neighboring sites are
possible, but also direct transitions from straight channels to sinusoidal channels can occur,
although these are less probable (their jump frequency is lower). For the larger SFs, the
volume of the intersection sites is larger and the volume of the channel (macro)states smaller.
The influence of temperature is interesting, as the occupancy of the sites, P; or &, is strongly
temperature dependent: at higher temperatures, more uniformization is seen. A larger molecule
like SF¢ will prefer to occupy the more spacious although energetically less favorable
Intersection sites, because of entropic effects. In any case, equilibrium occupancies should be
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Fig. 43  Special layout and connectivity of the xenon sorption states located around the
silicalite channel intersection. The figure is a view of 1/4 unit cell down the [001]
crystallographic axis /252/.

such that the condition of detailed balance or microscopic reversibility is satisfied:
_ 15T
kP =k;"P, «.5)

in which k™" is the transition rate from site j to site i (note that another common notation for
this rate is k,_,"'). The transition rates are calculated as before, from the ratio of the NVT
(canonical ensemble) configurational integrals over the transition hypersurface Sj; and the
(macro)state volume ¥

kP =(k,T/h)Z%1Z = (k,T[27)"* L d"'x exp[-v/k,T)/ Ld"x expl-v/k,T] (4.6)
For a nice overview on how to compute the rates, see Theodorou et al. /21/.

The work by June et al. illustrates the possibilities offered by TST with different levels of
complexity. It is the first work to include a dynamical correction factor &; and a successful
comparison with molecular dynamics was made for the Xe-silicalite system. The latter is very
important, since the molecular dynamics are up to 2 orders of magnitude slower, especially at
lower temperatures, and could not even be completed within a reasonable amount of time for
the slower SF; diffusion, showing the importance and success of dynamically corrected TST.

Dynamical corrections were calculated using the formalism of Voter and Doll for multistate
systems with many degrees of freedom /253/, based on a theory first presented by Chandler
/254/. This theory only assumes that the time scale for thermalization after a barrier crossing
is separated from the time scale between barrier crossings. It is the latter time scale that is
especially large, making molecular dynamics often prohibitively long. Within the framework
of dynamically corrected TST, molecular dynamics only need to be performed over the time
scales needed for thermalization, to study whether, after a short time ¢, a molecule starting in
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state i will end up in state j, return to i or move on to a state j' beyond j (multiple crossings
when no thermalization in the intermediate state is possible).

In the case of Xe-silicalite, an additional comparison was made between results obtained
using a rigid and an animated (flexible) lattice, where all the silicalite atoms are allowed to
relax during the sorbate motion. Monte-Carlo simulations were used to calculate the self-
diffusivities at infinite dilution, based on the calculated jump rates. Simulations using a
flexible lattice led to lower, but not much lower, values of the diffusivity: a 40 % decrease
was found at 100 K. The dynamical corrections suggest that the weak coupling of a small
sorbate molecule such as Xe with the lattice enhances recrossings of the transition state.
These effects are expected to become more important for larger molecules, as is also
suggested from simulations of benzene in silicalite /255/. Diffusion is anisotropic in silicalite,
and the temperature dependence of the anisotropy of SF¢ diffusion could be revealed. The
anisotropy is increased by multistate jumps between adjacent straight channel sites, bypassing
intersections. Such jumps become more frequent at higher temperatures.

Snurr et al. /255/ studied the activated diffusion of benzene in silicalite, which introduces a
next level of complexity: the diffusing sorbate is not spherically symmetrical anymore, so that
its orientation matters. The result is that therc are not three, but six degrees of freedom,
including three translational and three orientational degrees of freedom. A potential energy map
for benzene diffusion in silicalite was calculated by Nowak et al. /256/, showing the variation
in potential cnergy of a benzene molecule as it moves along the center of a silicalite channel
(Auerbach et al. /219/ used a similar approach for Na-Y,, ¢f supra). TST for this system has
also been used by Schréder and Sauer /257/, starting with a minimum-energy path calculation
of the motion of benzene through the straight channels of silicalite; the sinusoidal channels
were neglected in this simulation. While simpler, such minimum-energy path calculations have
the serious drawback that the paths through the channels are not unique and that a molecule
stepping along one path may abruptly switch to another one. This is for example the case for
benzene in silicalite, so that a minimum-energy path calculation may not be satisfactory.
Snurr et al. /255/ conducted an exhaustive search for all the minima (sites) and saddle points
(transition states) of the six-dimensional potential energy hypersurface. They found 27 unique
minima and 100 unique transition states in the asymmetric unit of silicalite (one-eighth of a
unit cell). The diffusion paths in six dimensions were constructed using Fukui's intrinsic
reaction coordinate approach /258/, which consists of determining pairs of gradient-following
paths from each saddle point, until two minima, corresponding to the microstates, are reached.
The transition rates associated to paths connecting minima were then calculated, approximating
the transition states by hyperplanes perpendicular to the paths, and the potential energies by
quadratic approximation functions (harmonic approximation) /259/. A rigid silicalite frame-
work was assumed. To facilitate the calculations, based on the values for the rates, minima
could be grouped into microstates and macrostates. This is somewhat similar to the lumping
of components in kinetic studies of complex chemical processes. Within a macrostate, the
motion between sites is much quicker than in between sites belonging to different macro-
states, so that equilibrium may be assumed within each macrostate, and only the jumps
between macrostates need to be considered in the dynamic Monte-Carlo simulations used to
estimate the diffusivity. Note that this is again quite similar to the findings of Auerbach et al.
/222, 223/ for benzene in'Na-Y, although the number of states is much smaller in the latter
case. The macrostates found for benzene in silicalite correspond to intersection, sinusoidal
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(zig-zag) and straight channel adsorption sites, just like for Xe and SFs. Benzene molecules
are found to spend most of their time in the channel intersections, and to move mainly in the
direction of the straight channels and less, but significantly, in the direction of the sinusoidal
channels. Jumps between macrostates are strongly temperature dependent, while jumps between
microstates within a macrostate are not. The latter correspond to small displacements or fast
rotations of a molecule. While all these results corroborate experimental findings, the TST-
predicted orientationally averaged diffusivities themselves (1.1x107'2 m¥s at 300 K) are 1-2
orders of magnitude below the experimentally reported values. The activation energy is too
large and the preexponential factor appears to be slightly underestimated (Fig. 44). This is
probably a result of the assumption of a rigid lattice. June et al. /252/ showed that including
the flexibility of the lattice plays an important role for tight fitting molecules. The presence of
a large molecule may change the breathing motions of the silicalite structure. A similar
discrepancy is found for diffusion through polymers, where including the network flexibility
is essential to match experimental results /260/.
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Fig. 44  Comparison between TST predictions and experimental results for the self-
diffusivity of benzene in silicalite at low loadings /255/.

The diffusion of Xe in Na-Y was simulated by Moseli, Schrimpf and Brickmann, who
employed both MD and TST /261-263/. They considered only cage-to-cage motion in their TST
calculations, because the intra-cage motion is much more rapid. The novelty was a detailed
consideration of the dynamical corrections to the transition rate, in order to separately determine
a local transmission coefficient and the probability for the continuation of a jump event. A
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higher number of barrier crossings per jump was observed with increasing temperature. The
effect of dynamical corrections remained small, however, except at higher temperatures where
they led to an increase of the diffusivity by approximately 30 % at 210 K, the highest
temperature considered. Little influence on the activation encrgy was observed. Agreement
with conventional MD was excellent.

Maginn et al. /264, 265/ took a hierarchical approach to simulate diffusion of long n-alkanes
(up to Cap) in silicalite. Their method combines Brownian motion theory (BD) with transition-
state theory (TST). Diffusivities of such long molecules could not be obtained by molecular
dynamics, because the molecules move too slowly, or traditional transition-state theory,
because the number of degrees of freedom is so high. Coarse-graining is applied to reduce the
effective dimensionality of the system and minimize the necessary computer resources. A
coarse-grained representation of the zeolite is obtained by defining straight channel (S), zigzag
(2) and intersection (I) regions. The alkane chain is coarse-grained by representing it by the
projected coordinates X; and X; of the ends, together with the "macrostate” in which the
molecule resides and which is either intersection-terminated or channel-terminated. The macro-
state is represented as a sequence of I, Zi (zig), Za (zag) or S; the channel segments can be
traversed either upward or downward (+ or --). An example is [Zi'IS], which means the tail
lies in a straight line segment, the head in a zig-segment, and the molecule crosses the inter-
section in between them. It can move through an intermediate macrostate [Zi'I] (here, only X,
is needed to characterize it) to reach a macrostate [Zi'], when the molecule lies completely
within a zig-segment of a zig-zag channel (Fig. 45). The dynamics are now characterized by a

a) S b) S
S S| S S
1\’, 1
TX’

Fig. 45 Positions of a molecule in a zig-zag channel /265/.

succession of intra-macrostate movements and transitions between macrostates. The former
occur when a molecule crosses an intersection and are calculated using Brownian dynamics,
the latter are calculated by TST. Configurational integrals (partition functions) need to be
evaluated for the different macrostates, using configurational-biased MC (CBMC). This allows
to calculate the potential of mean force felt by a molecule in this macrostate, as a function of
the projected end positions. The most probable configuration of a molecule is discovered from
such calculations, and it is found that chains prefer to reside largely in extended conformations.
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The transition rate constants between two macrostates are calculated in the usual way,
described earlier, but a transition from a channel- to an intersection-terminated rate is followed
by a placement of the end X, using a conditional probability that X, lies on the dividing
surface in between the two states. The motion of a molecule within a macrostate is tracked by
integrating a two-particle (channel-terminated) or one-particle (intersection-terminated)
Langevin equation, in which the friction factors are assumed to be sums of factors
proportional to the contour lengths in each state. Short-time MD calculations are used to
calculate correlation functions for a chain in a macrostate and match the corresponding
correlation function based on the BD calculations. This allows to adjust the magnitude of the
mobility matrix, without having to perform MD on many systems. The fitting calculations
show that friction scales linearly with chain length for chains longer than Cs. The motion is a
combination of gliding of one or both ends (BD) and jumping of one end (TST). Using this
hierarchical method, the computation time is virtually independent of chain length for long-
chain alkanes. From the calculations, it was found that long-chain alkane molecules favor the
straight channels, along which diffusion is fastest, and that the self-diffusivity at infinite
dilution declines as a function of alkane chain length until about Cs-C,o, after which it levels
off. The same trend was seen in macroscopic ZLC experiments, although the predictions were
much higher (Fig. 46). There was relatively good agreement with MD and available
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Fig. 46  Self-diffusivities as a function of chain length /265/.

experimental microscopic NMR and QENS values, however, so that this discrepancy may be
due to the as yet unclear differences between some results obtained using these two
experimental methods. Activation energies for short alkanes are constant and consistent with
experiments, while there is a sudden jump between Cg and C,o. This may be rationalized as
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follows. Chains longer than Cy always span at least an intersection region, so that a different
diffusion mechanism with a conformational change having a higher activation energy is in
operation. Diffusion anisotropy is also more significant for longer-chain alkanes, because of
an increase in conformational memory, and decreases with temperature. At low temperatures,
long chains prefer to stay in low energy conformations aligned along the straight channels,
but at higher temperatures, they move out of these dips to probe all the available pore space.
Finally, comparing the importance of Brownian motion and macrostate transition, it was
observed that diffusion is almost always controlled by the transitions, especially at higher
temperatures, because frictional resistance to motion within a macrostate is low. At lower
temperatures (300 K in the simulations), there could be a critical chain length ~Cyy above
which friction dominates, which would imply that the diffusivity again decreases with chain
length from this length on. Below the critical length, the transition rates control the total rate
and are quite insensitive to chain length. The paper by Maginn et al. /265/ was discussed in
some detail here, as it is illustrative for a general hierarchical methodology, employing a
combination of different techniques (here BD, TST and short-time MD). Such hierarchical
approaches are likely to become more important in the future for the simulation of complex
diffusion and reaction problems in zeolites, as is apparent from this review.

Smit et al. /266/ studied diffusion of branched alkanes in silicalite and noticed a clear
difference with the behavior of linear alkanes. A linear alkane can move relatively freely
through all channels, with a preference for the straight channels for long alkanes, as we have
just discussed. The head of a branched alkane, on the other hand, tends to prefer an inter-
section between a straight and a zig-zag channel. Its diffusion is an activated process, which
can be described as hops between intersections. The case of 2-methyl hexane is discussed in
more detail. Based on the techniques developed by Bennett /267/ and Chandler /254/, the
transition rate is calculated as the product of the probability of finding a molecule at the top of
a barrier, and the rate to move from this top to another valley or intersection in this case /42/.
Like, e.g., in June et al. /252/ and Snurr et al. /255/, several free energy barriers per channel
were found, although the dominating barrier is the one to move out of an intersection through
a channel and into another intersection, so this was the one preserved to calculate the
diffusivity at infinite dilution from TST. The free energy along the reaction coordinate was
calculated using configuration-biased Monte-Carlo (CBMC). Dynamic corrections to account
for barrier recrossings were not included and the lattice was assumed to be rigid, but both
effects could in principle be included using the method discussed earlier.

As part of a series of papers by Auerbach and co-workers on the detailed study of benzene
diffusion in Na-Y, several of which are reviewed in Section 3.2 on dynamic Monte-Carlo,
Jousse and Auerbach /268, 269/ used dynamically corrected TST. The incentive for such a
study was that the prefactors for the rates were kept constant at some reasonable value in the
MC simulations, while recent experiments reveal that their role may be more important than
previously anticipated. An unusually broad difference in values between the intra-cage S-Sy
and the extra-cage S;-# hops was found by NMR. The fact that benzene is a non-spherical
molecule poses special problems to the application of TST, as was discussed by Snurr et al.
1255/, who studied benzene diffusion in silicalite. The number of distinct types of sites and
paths to consider in the case of Na-Y is much smaller, however, so that Jousse and Auerbach
were able to perform both (approximate) TST and exact flux correlation function rate
calculations. Because rapid thermalization of benzene is possible, dynamical recrossings and
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multisite jumps are expected to only play a minor role. The TST result also depends on the
choice of the dividing surface, however, and the dynamical factor is therefore expected to
essentially correct for the error in locating this surface. Locating the dividing plane is
especially difficult for W-W jumps, because its size is very much reduced by the W-Sy
dividing planes. This is confirmed by the results: the TST estimates are very close to the
"exact" dynamically corrected results for Sy~Sy, W-Sy and S~ jumps, but not for the W-I¥
jumps, where TST was found to lead to qualitatively wrong results. because the corresponding
minimum energy path is unstable and crosses the onc for the S;-Sy jump (Fig. 47). Most

O Su \ 14

‘e N 4
W-W /A dividing surface

dividing surface

Sll
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Su'Su

dividing surface

Fig. 47  Sketch of the projection on a plane containing two S;; and two W sites of the
dividing surfaces between the Sj; and W sites. The dividing surface used to
calculate the W— W rate constant is indicated with dashed lines /268/.

moves out of the dividing surface end up in an Sy sitc. Entropy cffects disfavor W-1¥ moves,
so that the minimum energy path is very localized. At infinite dilution, but not at finite
loading where IW-J¥ jumps become more likely due to Sy blocking, the benzene cage-to-cage
rate is dominated by the S~} jumps, the rate of which was calculated. This work shows that
when a good initial guess of the dividing surface can be made, TST estimates the rate
constants quite well, but corrections are needed otherwise. When trajectories can relax to
several different product sites, TST cannot give an accurate site-to-site rate, only the total rate
out of a site. The large difference in prefactors could not be fully accounted for, probably due
to the negligence of the internal motions of benzene as well as the lattice vibrations, which are
therefore expected to play a major role.

Tunca and Ford /270/ obtained fundamental rate constants for adsorbate motion at nonzero
loadings using multidimensional TST. More specifically, the authors focussed on systems
where the adsorption of a molecule is not highly localized in a single site, but rather distributed
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throughout an uncorrugated cage. A theory was developed in which high-dimensional TST
integrals are approximated using exact lower-dimensional information. The evaluation of the
resulting integrals is performed with an importance sampling method involving the insertion
of a single molecule, thus improving the statistical quality of the results. The theory was
applied to the motion of CH4 and Xe in ZK4. The results showed that hopping rates increase
with loading in the cage, which is consisting with experimental trends.

4.3 Conclusions

To simulate diffusion in zeolites there are, as yet, fewer applications of transition-state
theory than there are of dynamic Monte-Carlo and molecular dynamics. One reason is the need
to accurately determine the potential energy surface, and, in particular, the saddle points
corresponding to the transition states. Dynamical corrections to the TST rate constants are
frequently necessary. The application of TST is especially difficult for zeolites with a complex
unit cell and molecules with a large number of degrees of freedom, although hierarchical
methods may help to simplify such problems.

While direct molecular dynamics simulations are now more frequently applied, they are too
slow for complex systems. A combination of TST, MD and MC may be the solution to such
problems. Also, new, promising theories have appeared in recent years to calculate the
transition or hopping rates, such as the multidimensional TST of Tunca and Ford /270/ and the
method by Dellago et al. /313/. Also the "hyper-MD" method of Voter /314/, already applied
to diffusion on surfaces, can be cited in this context.

5 MAXWELL-STEFAN THEORY
5.1 Introduction

Besides the molecular simulation methods, the (macroscopic) Maxwell-Stefan approach
could be extended to surface diffusion phenomena in porous media. Before developing a
general theory for zeolite diffusion, a brief review of the Maxwell-Stefan theory for diffusion
within a fluid phase will be presented, for which the diffusion theories are well developed
(Krishna and Wesselingh /272/, Taylor and Krishna /312/).

As this scction contains several frequently used symbols, a scparate list of notations is
included at the end.

5.2 Diffusion of a binary mixture

Consider diffusion within a binary fluid mixture made up of components 1 and 2. The
molar diffusion flux of component 1, with respect to the molar average mixture velocity u, Jj.
expressed as moles per square meter per second. can be related to the composition (mole
fraction) gradient of component 1, Vi, using Fick’s law:

J, =¢,(u, ~u)=—¢,D,Vx, (3.0

In eq. (5.1) D2 represents the Fick diffusivity and ¢, is the total molar concentration of the
mixture. The corresponding relation for component 2 in the mixture is
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J, = c:(u: - u) =-c,D,Vx,. (5:2)

Only one of the diffusion fluxes is independent because these diffusion fluxes sum to zero
J,+3,=0 (5.3)

and there is only one independent composition gradient because the mole fractions sum to
unity and the mole fraction gradients sum to zero:

X +x,=1; Vx, +Vx, =0. (5.4)
The molar flux N; with respect to a laboratory fixed co-ordinate reference frame is given by
N, =cu, =cxu, =J,+x(N,+N,) =—¢,D,,Vx; + x,(N, +N,) (5.5)

There is only one Fick diffusivity Dy characterising the binary mixture, which is equal for
both components. For a binary mixture exhibiting strong thermodynamic non-ideality the Fick
diffusivity D), is a strong function of the composition. This behaviour is illustrated in Fig. 48a
for diffusion in a mixture of methanol (1) and n-hexane (2) at a temperature T=313.15K
/271/. We note that the Fick diffusivity Dy, reduces sharply as the composition approaches a
mole fraction of about 0.5. The reason for the “strange™ behaviour of Dy, with composition
can be explained when we consider the non-ideal solution thermodynamics and adopt a more
fundamental choice of the driving force for diffusion.

[ Liquid mixture: Methanol(1) -n hexane (2); T=313.15K |

Vignes interpolation formula

W F ... .. e P12 - ! :
g L ) e retrssrcennaa,, L_‘ :
= i S i
= s
~ 10k "6 r
@ X E L
O‘(‘\j E Dy, g
.‘?:; L Experimental data: g 0.1 E
02., (a) Clark and Rowley o L (b)
=] (1986) =
E 1 -I 1 L 1 L 1 1 L 1 1 J '.- -I 1 L L ' L 1 1 1 1 I ]
e 0 02 04 06 08 1 0 02 04 06 08 1
x4, mole fraction of methanol X4, mole fraction of methanol

Fig.48  (a) Experimental data for the Fick and Maxwell-Stefan diffusivity for the system
methanol - n-hexane. Data from Clark and Rowley /271/. (b) The thermodynamic
factor calculated for the methanol —n-hexane mixture using the NRTL model.
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The proper driving force for diffusion is the gradient of the chemical potential and the more
fundamental way to set up the constitutive relations for binary diffusion is to adopt the
Maxwell-Stefan diffusion formulation /272/. In this theory we recognise that to affect relative
motion between the species 1 and 2 in a fluid mixture we must exert a force on each species.
This “driving” force is the chemical potential gradient, V, 4, determined at constant

temperature (7) and pressure (p) conditions. This force is balanced by friction between the
diffusing species 1 and 2 in the binary mixture. The friction experienced by species 1 is
proportional to the differences in the velocities of diffusion of species 1 and 2, (u, —u, ), and
to the concentration of species 2, which can be taken to be the mole fraction x;. The force
balance on the species 1 takes the form:

RT
~Vipth =50 ~u,) (5.6)
Dll
The term (RT /D,;) on the right hand side of eq. (5.6) may be interpreted to be the drag
coefficient. With this definition, the Maxwell-Stefan diffusivity ), has the units [m?s™] and
the physical significance of an inverse drag coefficient.

Multiplying both sides of eq. (5.6) by x; and introducing the molar fluxes N; (cf. eq. (5.5)) we
obtain

X, Xx.N,-xN, <
oy ot 5.7
RT 4T D, 61
Equation (5.7) can be re-written in terms of the diffusion flux J,:
X <
J,=N,-x(N,+N,) =¢,(u,-u)= —c,D:(R—'TV,..p/II) (5.9

Comparing Fick’s law, eq. (5.1), with eq. (5.8) shows that the basic difference between the
Fick and Maxwell-Stefan formulations lies in the choice of the driving force for diffusion. For
calculation purposes it is convenient to introduce the activity coefficient 1 and express this in
the driving force on the right hand side of eq. (5.8) in terms of the composition gradient:

‘%Vr.pﬂl =/Vx; I'=x Cln(g‘/l.-\,) G.9)
where 7 is the thermodynamic correction factor portraying the non-ideal behaviour. For highly
non-ideal mixtures the thermodynamic factor /is usually a strong functioni of the mixture
composition. For the system methanol (1) — n-hexane (2), the calculation of the thermo-dynamic
factor /”is shown in Fig. 48 b. Comparison of the Figures 48 a and b shows that the strange
behaviour of the Fick Dy, is entirely to be ascribed to the strong composition dependence of
I Comparing eqs (5.1), (5.8) and (5.9) we can inter-relate the Fick and Maxwell-Stefan
diffusivities as follows

D, =D,I" (5.10)

Calculation of the Maxwell-Stefan diffusivity Dy, for the system methanol ~ n-hexane using
eq. (5.8) shows that Py, is much less dependent on composition than the Fick Dy2; compare
the circles (D);) and squares (D;3) in Fig. 48 a. The dotted line in Fig. 48 a represents a
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logarithmic interpolation formula between the infinite dilution values of the diffusivities:
B, =(BE) (BY) ™ (5.102)
Eq. (5.10a) is due to Vignes /273/.

The example illustrated by methanol — n-hexane underlines the importance of using the
proper driving forces to describe diffusion in non-ideal mixtures. The Fick diffusivity is a
conglomerate of two separate concepts: drag effects and thermodynamic non-ideality effects.
For gaseous mixtures at low to moderate pressures and for thermodynamically ideal liquid
mixtures, the thermodynamic factor /= 1 and, therefore, the Fick and Maxwell-Stefan
diffusivities are identical to each other. Furthermore, for thermodynamically ideal mixtures
D, (= Dy;) is independent of composition x;.

5.3 Generalisation to multicomponent mixtures

The Maxwell-Stefan relations (5.7) can be extended for a mixture containing # components
by adding the various frictional contributions as follows

X; xN —-xN
—Lv L s ; i=12,.n 5.11
TR AT Z ¢,b; Z cD G-

P ,-|

The second equality holds irrespective of the reference velocity frame u chosen for the diffusion
process. It is convenient to formulate eq. (5.11) in matrix notation by defining the matrices:
(i)(n-1) x (n-1) dimensional square matrix of thermodynamic factors [/] defined by

& Alnfrx,).

-—v,,u, > LVx; =y . ij=12...n-1 (5.12)

7=l
(i1) (n-1) x(n-1) dimensional square matrix of drag coefficients B, (remember that the
Maxwell-Stefan diffusivities have the significance of inverse drag coefficients)

X 1 1 -
B,=—-+) =L, x| ———1 i.j=12..n-1 5.13
D ‘-l uu-/) [D D J .I ( -’)

(iii) (n-1) dimensional column matrix of diffusion fluxes:
J =cfu,-u} i=12.n-1 (5.14)

With the above definitions, eq. (5.11) can be cast into a form that is the (#-1) dimensional
matrix analogue of eq. (5.8)

@ == [B]'[7)%x) (5.15)

It is common to define a matrix of Fick diffusivities [D] as (#-1) dimcuisional ‘matrix analogue
of eq. (5.1):

@) = —¢,[D)vx) (5.16)
and therefore we note the following matrix generalisation of eq. (10):

(D1=[8]"[7] (.17)
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For the general multicomponent mixture it is difficult to ascribe simple physical
interpretations to the elements of the Fick matrix [D]. While the diagonal elements of [D] are
positive definite, the off-diagonal elements can be of either sign.

5.4 The Maxwell-Stefan theory for diffusion in zeolites; points of departure from fluid
phase diffusion

When applying the above set of equations for describing diffusion within a zeolite, there are
several points where we depart from the conventional treatment of bulk fluid phase diffusion.
(i) Firstly, when we consider movement of species within a zeolite structure, it is important
to realise that we are talking about movement of sorbed species. Diffusion and sorption
processes within zeolites are closely inter-twined.

(ii) Secondly, when describing the diffusion of a mixture of n species within a zeolite, the
*“zeolite matrix™ is treated as an additional (pseudo), (n + 1)th component, in the mixture. So,
when we speak, say, about diffusion of benzene (component 1) within silicalite we are in fact
considering diffusion in a binary mixture made up of benzene (component 1) and silicalite
(pseudo-component 2).

(iii) The third point concemns the concentration measures. Commonly used concentration
measures for sorption are: (1) mol of sorbate (diffusant) per kg of zeolite, ¢,, and (2) molecules
of sorbate per unit cell of zeolite, &. Corresponding to these two concentration measures we
could define the molar flux N, in two different ways. The first alternative is in terms of moles
of sorbate diffusing per square meter per second:

N, =pmu; i=12,.n-1, (5.18)

where p is the zeolite matrix density expressed in kg per m’. The zeolite matrix density serves
as an analogue to the total mixture concentration used in eq. (5.1). The second alternative is to
define N, in terms of molecules transported per square meter per second

N, =zp@u,; i=12..n-1, (5.19)

in which case p is the zeolite matrix density expressed as unit cells per m’®. Without loss of
generality we proceed further with the choice of @ as the concentration measure; relations in
terms ¢, can be written down in an analogous manner.

(iv) The fourth point of departure from bulk fluid phase diffusion concems the choice of the
reference frame for defining the diffusion fluxes J,. In almost all standard treatments of
diffusion in zeolites /11, 274/, the reference velocity frame is facitly chosen as one which
moves with respect to the zeolite matrix, taken to be the (2 + 1)th component. The diffusion
fluxes are therefore defined as

J,=p0u,-u,,); i=12,..n (5:20)

In most applications of interest to chemical engineers the zeolite matrix can be considered to
be stationary, i.e.

u, =0 (5.21)

Equation (5.21) implies that molar flux N, equals the diffusion flux J:
J, =N, = pBu, .- - (5.22)
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(v) The fifth point concemns the choice of a composition measure analogous to the mole

fraction for bulk fluid phases. The obvious choice is the fractional occupancy 4 of the sorbate
within the zeolite matrix, defined as

6=6,160,=qlq,; i=12,.n (5.23)
where E,, and g, are the saturation loadings.

5.5 Diffusion of a single component in a zeolite

Let us first consider the simple case of diffusion of a single component (1) within a zeolite
(considered to be pseudo-species 2). Fick’s first law is usually written in the following form:

N, =-pDVé, (5.24)
or in terms of the occupancy gradients
N, =-p6,DV4, (5.25)

Equation (5.24), or (5.25) defines the Fick diffusivity D;. Note that we use only one subscript
(1) in order to distinguish the single component diffusivity within a zeolite from the bulk fluid
phase diffusivity D); in a binary mixture (cf. Eq. (5.1)). The Fick diffusivity D is also called
the transport diffusivity in the zeolite literature /11, 274/.

The Maxwell-Stefan formulation of single component diffusion, analogous to eq. (5.8), is
(9
~POuLB| 2= Vr bt (5.26)

where £ is the chemical potential of the sorbed species 1. Assuming equilibrium between the
sorbed species and the bulk fluid phase we have the following relationship for the chemical
potential 24

=4 +RTIn(f;) (5.27)

where 44’ is the chemical potential in the chosen standard state and f; is the fugacity. For not
too high system pressures thc component partial pressure, pg, can be used in place of the
component fugacity. fj, i.e., fi = p1. The chemical potential gradicnts may be expressed in
terms of the gmdients of the occupancy. V¢4, in a manner analogous to eq. (5.9):

dvu=Lrve, r=gcnn

(5.28)
RT 4 ),

where /"is the thermodynamic correction factor. The Fick and Maxwell-Stefan diffusivities
are therefore inter-related:

D,=Pr: b= % (5.29)

In the zeolite diffusion literature the Maxwell-Stefan diffusivity P, is also called the
“corrected” diffusivity and the thermodynamic cormrection factor /~ is called the Darken
correction factor /275, 11, 274/, compare with eq. (1.3).
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Consider the sorption data for benzene in silicalite-1 /276/ at a temperature T = 343 K: cf.
Fig. 49 a. The experimental data are reasonably well represented by the Langmuir isotherm

0[ = Qﬂlblpl ; al - blpl (5'30)
1+5,p, 1+ blpl
where the saturation capacity & is four molecules per unit cell of silicalite and the Langmuir
constant b; = 6x10™ Pa”. The thermodynamic correction factor can be determined from eq.
(5.28)
r = l = 1
1-6,/6, 1-§

(5.31)

Figure 49 b shows the variation of the thermodynamic factor with molecular loading. Notice
the sharp increase in /" as the & approaches the saturation capacity, G (=4). For bulk fluid
phase diffusion (cf. Fig. 48) we had noted that the Fick diffusivity parallels the trend of /- The
same situation holds for the Fick diffusivity data for benzene in silicalite-1 measured by Shah
et al. /277/. As seen in Fig. 49 ¢ D, increases sharply as & approaches the saturation capacity,
@y (= 4). The Maxwell-Stefan diffusivity P, displays a much smaller variation with sorbate
loading; see the square symbols in Fig. 49 c.

For adsorption of benzene, p-xylene, n-hexane and iso-butane in silicalite several
experimental studies have shown that the isotherm exhibits inflection behaviour /276-281/.
The inflection in the isotherm is due to the preferential location of molecules at certain sites in
the silicalite structure. There is some direct experimental evidence using FT-Raman
spectroscopy to show the preferential siting of p-xylene at the channel intersections within the
silicalite structure /282/. Broadly speaking, we can identify two distinct adsorption sites: (1)
Site A, which represents the intersections between the straight channels and the zig-zag
channels, and (2) Site B, which represents the channel interiors; see Fig. 50. The inflection
behaviour is caused because these molecules prefer to occupy the intersections (Site A).
However, at a loading, &, of 4 molecules per unit cell (corresponding to 0.6935 mol’kg of
silicalite) the intersections are all fully occupied. To obtain loadings higher than 4, these
molecules must seck residence in the channel interiors, which is energetically more demanding.
This leads to an inflection in the isotherm. Figure 51a shows the 1sotherm data for benzene in
silicalite-1 at T=303 K; the inflcction at @= 4 molecules per unit cell is evident.

The dual-site Langnwir (DSL) model:

O - emt..lbl. lpl + e\al IJI’I.Bpl - (e\.u. lhl..l +9nn.llbl_.'l)pl + (G)«u. { + eml..’l)bl. ibl.Bpl:
L+b,py 1+b5p, L+(b . +b)p + by bap)

(3.30)

provides a good description for systems showing isotherm inflection /281, 283, 284/; sce Fig.
51a. The thermodynamic factor can be determined by analytic differentiation of eq. (5.32); the
result is
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Straight
»§ channel

Intersections

Fig. 50  Sorption sites within silicalite.

- [1+(b|,; +b,5)p, +b, b, nplz]z
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1+ (b, +5,5)P, + 5,5, 55; (O b1 + Orarsb8 )+ Crar s + Os) 26,5511 | P

(O b+ 080 )P, + (s + 6 b7 |[(Bu 4 8) + 28,0, 5p)

This correction factor shows two extrema: a maximum at the inflection polnt &, 4 =4 and
a minimum at a loading . < & < Gy (= Ciya + ). This behaviour is illustrated for
adsorption of benzene on silicalite at temperatures of 303 K; see Fig. 51b. Since the Fick
diffusivity is proportional to the thermodynamic factor, it can be expected to also exhibit two
extrema. This is indeed verified by the experimental data of Shah et al. /277/; see Fig. 51c.

Vlugt et al. /285/ used Configurational-Bias Monte Carlo (CBMC) techniques to determine
the sorption isotherms of linear and 2-methyl alkanes in silicalite-1 at 300 K; these isotherms
are shown in Fig. 52. It is interesting to note that all branched alkanes exhibit an inflection at
@aa = 4. Linear alkanes with six or more C atoms also show inflection behaviour. The
thermodynamic correction factors, calculated from eq. (5.33), for the linear and branched
alkanes are shown in Fig. 53. Since the Fick diffusivity D, is expected to follow the trend in /~
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10 (a) linear alkanes at 300 K C 10r (b) 2-methyl alkanes at 300 K c
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Fig. 52 (a) Pure component isotherms for linear alkanes in silicalite-1 at 300 K. The
isotherms were calculated using Configurational-Bias Monte Carlo techniques by
Vlugt et al. /285/. (b) Pure component isotherms for 2-methyl alkanes in silicalite-
1 at 300 K. The isotherms were calculated using Configurational-Bias Monte
Carlo techniques by Vlugt et al. /285/.

(a) linear alkanes at 300 K (b) 2-methyl alkanes at 300 K
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Fig. 53 (a) Thermodynamic factor for linear alkanes in silicalite-1 at 300K calculated
using the Dual-site Langmuir (DSL) model, eq. (5.32) from the isotherms shown
in Fig. 52 (). (b) Thermodynamic factor for 2-methyl alkanes in silicalite-1 at 300
K calculated using the Dual-site Langmuir (DSL) model, eq. (5.33) from the
isotherms shown in Fig. 52(b).
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we would expect to see striking differences between the occupancy dependency of the Fick
diffusivities of say n-hexane and its isomer 2-methyl pentane as a function of the molecular
loading. It would be most illuminating to obtain experimental confirmation of this prediction.

A three-site model for sorption of aromatics on ZSM-5 has been proposed by Rudzinski et
al. /278/ in order to account for two inflection points observed under certain temperature
conditions. The consequences for diffusion can be expected to be interesting but there is no
experimental evidence in the literature.

5.6 The Maxwell-Stefan diffusivity

Mechanistically, the Maxwell-Stefan diffusivity D, may be related to the displacement of
the adsorbed molecular species, 4, and the jump frequency, v which in general can be
expected to be dependent on the total coverage /209, 198, 199, 202, 280/.

b, = %ﬂ’ v (5.34)
where z represent the number of nearest neighbour sites. The jump frequency v can be
expected to decrease with occupancy. If we assume that a molecule can migrate from one site
to another only when the receiving site is vacant /275, 202/, the chance that this will occur
will be a function of the fraction of unoccupied sites. A general form of the Maxwell-Stefan
diffusion equation is therefore

D, =D (0)f(1-6,), (5.35)

where D, (0) represents the Maxwell-Stefan diffusivity in the limit of zero loading and
f(1-8)) is some function of the fraction of unoccupied sites.

The simplest model for the dependence of the Maxwell-Stefan diffusivity Py with
occupancy is that it is independent of molecular loading within the zeolite.

D, = b,(0). (5.36)

This is indeed found to be true in several cases /11/. As illustration of this behaviour see Fig.
54 a for diffusion of n-heptane in 5A (data from Ruthven and Doetsch /287/). However, in
other cases Dy decreases with increasing loading within the zeolite; see data in Fig. 54 b for
diffusion of n-heptane in 13X (data from Ruthven and Doetsch/287/). It appears that increased
occupancy leads to a hindering effect. The experimental data of Ruthven and Doetsch /287/
for n-heptane in 13X appears to follow a simple relationship

8,

b, = D,(O)(l— J =D,0)(1-6), (537)

sar

where we have taken &, =4 molecules per unit cage. Figure 55 compares eq. (5.37) with the
experimental data of Ruthven and Doetsch /287/. we see that the agreement is very good. The
value of the exponent 8 can perhaps be interpreted as the number of nearest neighbour sites.
The exponent in eq. (5.37) will therefore dependent on the particular molecule and the
specified zeolite structure.
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(a) n-heptane in 5A zeolite (b) n-heptane in 13X zeolite
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Fig. 54  (a) Maxwell-Stefan diffusivity data for n-heptane in 5A zeolite as a function of
molecular loading. Data from Ruthven and Doetsch /287/. (a) Maxwell-Stefan
diffusivity data for n-heptane in 13X zeolite as a function of molecular loading.
Data from Ruthven and Doetsch /287/.
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Fig. 55  Re-plotting of the data in Fig. 54 (b) for Maxwell-Stefan diffusivity for n-heptane
in 13X zeolite in order to test the validity of the model proposed in eq. (5.37).

Diffusion within a zeolite structure is an activated process and this is evidenced by the fact
that the Maxwell-Stefan diffusivity follows an Arthenius temperature dependence. Figure 56
shows some experimental data to demonstrate the validity of the Arrhenius dependence.
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Fig. 56  Arrhenius plot for the Maxwell-Stefan diffusivity. Various data sources cited in
the review by Ruthven and Post /315/.

5.7 Diffusion of multicomponent mixtures within a zeolite

In order to extend the analysis to two or more components diffusing within a zeolite, we
draw inspiration from the Maxwell-Stefan equations (5.11), developed for bulk fluid
mixtures. In writing the appropriate equations for diffusion of n components within a zeolite
we treat the zeolite itself as species (n + 1) and consider the fractional occupancies to be the
analogue of the mole fractions. So, eq. (5.11) modifies to

ON,-6N, 4. N,
-p==V, u = ot i=12,...n. 5.38
p o= Z oon, to.p.y TH (538)

sar ™ s,a+l

Since the occupancy of the zeolite structure is undefined, it is conventional to define
Maxwell-Stefan diffusivities of species i in the zeolite, D, as /272/

b, =—2 f;;"', i=12.n (5.39)

nxl

and with this definition eq. (5.38) is modified to
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) *ON.-ON, N
—pay = [ (A I
PRT ”"';9,,,.&)v )

a0

s i=12,...n. (5.40)

.

In the Maxwell-Stefan formulation for zeolite diffusion, eq. (5.40), we have to reckon in
general with two types of Maxwell-Stefan diffusivities: D;; and D;. The D, are the same
diffusivites as encountered earlier when we considered single component diffusion. Mixture
diffusion introduces an additional complication due to sorbatc-sorbate interactions. This
interaction is embodied in the coefficients H,. We can consider this coefficient as
representing the facility for counter-exchange, i.e. at a sorption site the sorbed species j is
replaced by the species i. The net effect of this counter-exchange is a slowing down of a faster
moving species due to interactions with a species of lower mobility. Also, a species of lower
mobility is accelerated by interactions with another species of higher mobility. In the
foregoing discussions we view the mobility as reflected in the cocfficients D,. The two types
of Maxwell-Stefan diffusivities are portrayed in Fig. 57. In the insct to Fig. 57 we portray P2
as representing the ease with which species 1 is replaced by species 2.

D,=(1/2) 22v

activation
energy

[ F

=
»
¥

Fig. 57  Pictorial representation of the Maxwell-Stefan diffusivities.

There are no fundamental models as yet to predict the counter-exchange coefficient D,. A
procedure for the estimation of the counter-sorption diffusivity has been suggested by Krishna
1288/ based on the generalisation of Vignes /273/ relationship for diffusion in bulk liquid
mixtures (cf. eq. (5.10a))

165

Brought to you by | Universiteit van Amsterdam - UVA Universiteitsbibliotheek SZ
Authenticated | 146.50.144.11
Download Date | 10/18/12 6:51 AM



Vol. 16, No. 2, 2000 Modeling Diffusion in Zeolites

p,=Ip, ]ﬂ-/(ﬂ.'d, )[D,]""("‘ w,)’ (5.41)

which is essentially a logarithmic interpolation formula between the values of D, and b,. We
will seek validation of eq. (5.41) a little later in this review. It cannot be overstressed that the
important advantage of the Maxwell-Stefan formulation is that the mixture diffusion behaviour
can be estimated on the basis of information on the mobilities of the pure components, P, (i =

1,2,...n).

The chemical potential gradients in eq. (5.40) may be expressed in terms of the gradients of
the occupancies by introduction of the matrix of thermodynamic factors [/]

era r=02RP g 2lp
2, 0,

1-1 i J

i i,j=12..n. (5.42)

Combining eqs (5.38) and (5.42) we can write down an explicit expression for the fluxes N,
using n-dimensional matrix notation

N)=-p0.[B]'[7]v(6) , (5.43)

where the elements of the matrix [B] are

o, ..
; =_.+Z— .=—E‘-; ihLj=12..n. (5.44)

i l-l ()

I

The more commonly used Fick diffusivity matrix is defined as
(N)=-p86,,[D](6). (5.45)

Comparing egs (5.43) and (5.45) we obtain the following inter-relation between the Fick and
the Maxwell-Stefan diffusivities

[ol=6T'l7]; (81" =[DI/T", (5.46)

which is the n-component analogue of eq. (5.29). For the case where the interchange
coefficient D, is fast enough not to be a limiting factor, i.e.

-t;— -0, b, ow; 1,j= 1,2,..n (5.47)

Y

equations (5.43) — (5.46) simplify to yield

b 0 0 O D, 0 0 0
0 b, 0 0 0 p. 0 O )

[D] 0 0 0 [r]; (N) = _mml 0 0- .. [F]V("\ . (3_48)
0 0 0 p 0 0 0 B

" "

The thermodynamid correction factor matrix [/] is generally non-diagonal and has a signiticant
influence on the diffusion behaviour of mixtures. In the following, we shall illustrate several
interesting features of this influence by considering a few special cascs.
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5.8 Diffusion of two components in a zeolite, following a Langmuir isotherm

For a binary mixture (n = 2) for which each component follows the Langmuir model. the
mixture isotherm can be estimated from

[ bp, }

=——= i=12 5.49
‘=9, 1+bp+bp, (5.49)
the matrix of thermodynamic correction factors can be obtained as
[ 5]
g, 1-4
I L2 g 5.50
-7 Rl 620
The inverse of the drag coefficient matrix can be simplified to the form
b 0
o o] [(vaR) o3
[8]" = e o 12 (5.51)
(1+¢9,—2+a,ﬂ)l 6,2 1+02—-)
DIZ 12 DIZ D 12

and the elements of the Fick diffusivity matrix can be obtained after matrix manipulation as

2o feaaz] (2)
1-6,+6,— 1+—=14
[D.. D, [0 D By, Dy (5.52)

D, D jl p, b,
n Yn [1 €D—+¢9 B (1-6, - g)[ (1+D—'-]02 [1—0,+0ZD—'

12 12 12 12

whereafter the fluxes can be calculated from eq. (5.45).

We could force-fit eq. (5.45) for the two fluxes N; into the form of Fick’s law for each
species:

-p0,.D,4,VE; i=12 (5.53)
where the effective Fick diffusivities of components 1 and 2 are given by
vé,
D, =D, +D‘2—6—§’ (5.54)
vé (5.55)

Dz.c/r =D2,V—0Z+Dzz.

For the case where the interchange coefficient D, is fast enough not to be a limiting factor
(cf. Eq. (5.47)), the expressions (5.52). (5.54) and (5.55) for the effective Fick diffusivities
simplify to give
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D, = (l——;—a)[(l 0.)+0, b’.] (5.50)

D, -
D,, = ) )((1 6,)+8. ve:) (5.57
which coincide with those given by Habgood /289/ and Round et al. /290/. While Habgood
and Round derived the above expressions specifically for a two-component system our
approach can be easily extended to the general multicomponent case starting with eq. (5.48).
From eqs (5.56) and (5.57) we see that the effective Fick diffusivities are strong functions of
both concentrations and concentration gradients. Furthermore, the effective diffusivity of
component 1 is affected by the concentration gradient of component 2. This makes mixture
diffusion in zeolites a highly coupled and non-linear process.

We shall illustrate the utility of the above formalisms by considering an example of
permeation of a mixture of methane (1) and propane (2) through a silicalite membrane at a
temperature of 303 K. This mixture is maintained at a total pressure (1o + p2) = 100 kPa in
the upstream compartment (which is well-mixed) and allowed to diffuse through a thin layer
(=10 um effective thickness) of silicalite-1 crystals grown on a porous stainless steel support.
The apparatus is shown schematically in Fig. 58, and is described in detail by Kapteijn et al.
1291/ and Van de Graaf et al. /292/. Other parameters of imponance in the calculations
presented below are: silicalite matrix density, o= 1800 kg/m?; go, = 1.58 mol/kg of silicalite,
which is equivalent to @, =9.1 molecules per unit cell; Langmuir parameters b, =4x10°Pa’,
b, =6.5x10"Pa’'; single component Maxwell-Stefan diffusivities, D, = 1.04x10° m*s™, Py =
3.4x10™" m*s™'. The downstream compartment is flushed with sweep gas and we assume in
the calculations below that the partial pressures of the permeating components are negligibly
small, i.e., p15 = p2s = 0.

é Well-mixed

downstream

compartment

— Pig |
. 0
61 8
Well-mixed p.
upstream Silicalite 13

compartment membrane

Fig. 58  Schematic of a silicalite membrane separation process for the separation of a
hydrocarbon mixture.
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(a) Thermodynamic factors I (b) Effective Fick diffusivity calculations
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Fig. 59 (a) Thermodynamie factor matrix for the mixture of methane (1) and propane (2)
in silicalite-1 at 303 K calculated from the multicomponent Langmuir model, eq.
(5.50). The Langmuir parameters are: by =4<10°Pa”, 5:=6.5x10" Pa™, g, =1.58
mol/kg of silicalite, which is equivalent to @);,,=9.1 molecules per unit cell.
{b) Effective Fick diffusivitics as a function of the upstream mixture composition,
calculated using eqs. (5.54 )-(5.57) and taking the single component Maxweli-
Stefan diffusivities, D) = 1.04x10” m’s", By =3.4x10"' m’s™.

Figure 59 a shows the elements of the matrix of thermodynamic factors [/], calculated
using eq. (5.50), to be strong functions of the upstream partial pressure of propane, px. The
effective Fick diffusivities were calculated including interchange D2 (eqs (5.52)—(5.553)) and
also ignoring interchange (egs (5.56), (5.57)). The interchange coefficient D> was determined
using eq. (5.41). The occupancy gradients are calculated by assuming

‘9.0 _ 0..; ~ _0,_0

5 6
The calculations, shown in Fig. 59 b demonstrate that diffusional interchange has a significant
influence on the effective transport of methane (1) through the zeolite and has the effect of
slowing down the intrinsically faster moving component. The intrinsically slow moving
propane is not influenced by the presence of methane (the two curves for Dagy virtually
coincide).

v, = (5.58)

With the upstream compartment maintained at constant composition, the concentration
within the zeolite layer will build up to their steady-state values. The transient fluxes of
methane and propane for a specific upstream condition: pyp = 95 kPa, p»y =5 kPa can be
calculated by solving the appropriate set of coupled partial differential equations (sce Van de
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Graaf et al. /292/ and Krishna et al. /283/ for details); the results are shown in Fig. 60 a.
Ignoring interchange, P;,, we calculate much higher fluxes of methane as could have been
anticipated from the effective diffusivity calculations secn in Fig. 59 b. A further point to note
is the curious maximum in the flux of methane during the initial transience before the system
evolves to a steady state. Propane (2), which has a higher sorption strength permeates
prefercntially through the membrane; this can be evidenced by calculating the permeation
selectivity defined by

N,
Permeation selectivity = No/N, (5.59)

Px/Pu
The selectivity values are plotted in Fig. 60 b for various upstream partial pressures of propane.
Ignoring interchange, D3, leads to prediction of much lower selectivity values than measured
experimentally by Van de Graaf et al. /292/. The agrecement of the model with interchange
with experimental data is significantly better. Their experiments can be taken as conclusive

(a) permeation fluxes: (b) selectivity:
CH, (1) - C;H, (2) at 303 K CH, (1) - C;H, (2) at 303 K
[ Including counter-exchange D,, = = = - without counter-exchange 9"'
with interchange
80 100 ¢
| = |
P S <[/ ,*** °
: ; = o .
£ b T R Experimental data of @
S T e = ® Van de Graaf et al. (1999a)
E 4of ! Zol
= | = S
& : - -
3 20f : CyHy = o \wimoutinterchange
i N, s B L
{ N o
[
w
o-l L A 2 1 L L A ] -lllllllllllllllllllll
0 0.2 04 0.6 0.8 0 20 40 60 80 100
time, #s] Partial pressure of propane, p,y/[kPa]

Fig. 60  (a) Transient permeation fluxes of methane (1) and propane (2) across a silicalite
membrane at 303 K. The upstream partial pressures are maintained at p1p=95 kPa,
p20=>3 kPa. (b) Permeation selectivity as a function of the upstream partial pressure
of propane. Comparison of model calculations, with and without interchange, with
experimental data of Van de Graaf ct al. /292/. The parameters used in the
calculations are: silicalite matrix density, o =1800 kg/m’; membrane thickness
I=10pum; q2.5u= 1.38 mol’kg of silicalite, which is equivalent to ©; 45, =9.1
molecules per unit cell: @ i = 0> ; Langmuir: by =4x 10°Pa’, b,=6.5x10"Pa’™;
single component Maxwell-Stefan ditfusivities, £ =1.04x 10°m*s™, Py =
3.4x10" m’s™.
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proof of the validity of the Maxwell-Stefan formulation and of the need to take the inter-
change mechanism into account.

The curious maximum observed for the transient flux of methane is a typical phenomenon
observed during transient permeation of a mixture comprising of (1) a faster moving species
with low sorption strength and (2) a slower moving species but with higher sorption strength.
In this mixture, the faster moving species 1 will usually exhibit a maximum flux during
transient permeation. To illustrate this, we present calculations for permeation of hydrogen (1)
and n-butane (2) across a silicalite membrane at 295 K. For pure component permeations, with
the upstream compartment maintained at 50 kPa, the transient fluxes are shown in Fig. 61 a.
Hydrogen has a higher steady-state flux than n-butane. The situation changes dramatically
when we consider permeation of a 50-50 mixture, with partial pressures pyo = p20 = 50 kPa; see
Fig. 61 b. Under steady-state conditions, hydrogen has a much lower flux than n-butane because
it is virtually excluded from the pores of silicalite by the more strongly sorbed n-butane. Again
we note the curious sharp maximum in the flux of the faster-moving hydrogen during the
initial transience. This maximum has been experimentally confirmed by experiments reported

Fluxes, N/immol m2s]

(a) pure components (b) binary mixture
20 20 r
0T _Hz ______ Including counter-exchange D,,

15F I i 15+ = = = - without counter-exchange B,

| E

. ©
10} | £ 10} H,

' nCH, = B nCyHio

l - T ) =
5} - - 5

- 2
I s i
E X s

0 —

i
0 1 2 3 4 5 6
time, #[s] time, t[s]

Fig. 61 (a) Transient permeation fluxes of pure components hydrogen and n-butane across
a silicalite-1 membrane at 295 K. The upstream partial pressures are maintained at
50kPa. (b) Transient permeation fluxes of a 50-50 mixture of hydrogen and n-
butane across a silicalite-1 membrane at 295 K. The upstream partial pressures are
maintained at p;o =50 kPa, p~p=50kPa. The parameters used in the calculations
are: silicalite matrix density, o= 1800 kg/m®; membrane thickness &= 40 um;
gsa= 1.0 mol/kg of silicalite, which is equivalent to @, = 5.77 molecules per unit
cell; Langmuir parameters b, = 1x10°Pa’, b,=4x10™Pa’'; single component
Maxwell-Stefan diffusivities, By = 1x107m?s™, Pa=5x10""m?s”. The
downstream compartment is flushed with sweep gas and we assume in the
calculations below that the partial pressures of the permeating components are
negligibly small, i.e. pj5 =~ p2s = 0.
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by Kapteijn et al. /293/, and provides further support of the Maxwell-Stefan formulation. We
note again in Fig. 61 b that inclusion of interchange Dy, has a significant impact on the
magnitude of the fluxes of hydrogen, analogous to the results seen in Fig. 60 a.

The results seen in Fig. 61 provide the basis of a commercial process for separating
hydrogen from a mixture of light hydrocarbons (methane, ethane, propane and butane) from
refinery fuel gases by allowing the mixture to permeate through a carbon molecular sieve
membrane (Rao and Sircar /294/); see Fig. 62. The hydrocarbons are much more strongly
adsorbed than hydrogen and permeate selectively across the membrane. Propane and butanes
are nearly completely removed in the permeate stream. Final purification of hydrogen by
pressure swing adsorption is required before recycling back to the refinery. The advantage of
this membrane separation process is that the hydrogen rich stream is recovered from the
retentate (feed) side of the membrane and can be re-used in the refinery without the need for
further recompression.

Krishna and Sie /295/ and Van de Graaf et al. /296/ discuss the benefits of incorporation of
membrane separation concepts discussed in the foregoing within a catalytic reactor.

A further illustration of the coupled binary diffusion process is the uptake of a mixture of n-
heptane (1) and benzene (2) by NaX zeolite. The zeolite crystals are exposed to a bulk vapour
mixture maintaining a constant composition environment of benzene and n-heptane and the
uptake of these components by the zeolite is monitored as a function of time. The
experimentally measured transient uptake profiles by Kiirger and Biilow /297/ are shown in

Fig. 63. The profile for n-heptane exhibits a remarkable maximum at ¢ = 50 min with a
molccular loading that is significantly higher than the final (low) equilibrium loading. The
results can be explained physically as follows. The Maxwell-Stcfan mobility of n-heptane D,
is about fifty times larger than the corresponding mobility of benzene Ds; this is because of
differences in the molecular configurations. Initially, beginning with fresh zeolite crystals, n-
heptanc quickly penetrates the pores of the zeolite occupying the sorption sites. The sorption
strength of n-heptane is however considerably lower than that of benzene due inter alia to
differences in polarity. The adsorbed n-heptane eventually gets displaced from the sorption
sites by benzene and the occupancy of n-heptane decreascs from its maximum value to reach
its final low saturation value. At equilibrium, achieved after about 5 hours, the pores of the
zeolite are occupied predominantly by the more strongly adsorbed benzene.

The maximum in the transient flux or loading observed for the faster-moving, less strongly
sorbed, species in Figures 60 a, 61 b and 63 must be seen as a direct consequence of the strong
coupling between the diffusion of the two components. This coupling is a direct consequence
of the non-diagonal elements in the matrix of thermodynamic factors [/]. If this matrix is
forced to have zero non-diagonal elements, the transient profiles will show monotonic
approaches to either a steady-state or equilibrium situation.

Kapteijn et al. /298/ have modified the treatment presented in this section to account for
different saturation capacities &g, of the two components in the mixture.
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Fig. 63 Transient uptake of benzene and »n -heptane by Zeolite NaX. Experimental results
of Kidrger and Biilow /297/.

5.9 Counter-diffasion

In the simulations and experiments, presented in the foregoing section 5.7 both components
in the binary mixture move in the same direction, i.e. we have co-diffusion. In practice we
also have situations in which the driving forces imposed on the system tends to move the two
components in opposite directions, giving rise to counter-diffusion. This could happen within
a zeolite catalyst where the reactants and products move in opposite directions. The
experimental study of counter-diffusion by Moore and Katzer /299/ shows curious asymmetric
behaviour.

5.10 Diffusion of two components in a zeolite, following dual-site Langmuir isotherms

We consider the problem of separation of linear alkanes from branched alkanes. Branched
alkanes are preferred to linear alkanes as ingredients in petrol because the branched hydro-
carbons burn more efficiently and have a higher octane number. Catalytic isomerisation is used
to convert straight-chain hydrocarbons to their mono- or di-branched structures. However, the
product of catalytic isomerisation is a mixture of linear and branched hydrocarbons that are in
thermodynamic equilibrium; this gives rise to a separation problem. As shown in Fig. 52, the
sorption isotherms of branched alkanes in silicalite-1 exhibit inflection behaviour and can be
exploited to develop a process to separate linear alkanes from branched alkanes (Krishna and
van den Broeke /300/; Viugt et al. /301/; Krishna et al. /283/. In order to illustrate these
concepts let us consider the specific example of diffusion of a mixture of n-hexane (n-C,
component 1) and 3-methyl pentane (3MP, component 2) through a silicalite-1 membrane at a
temperature of 362 K. The 50-50 mixture isotherms, determined from Configurational Bias
Monte Carlo simulation techniques (Vlugt et al. /301/ are shown in Fig. 64 a. The mixture
isotherms are well represented by the Dual-site Langmuir model for the mixture:
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(a) 50-50 mixture isotherms for (b) Thermodynamic factor matrix
C, isomers at 362 K for 50-50 mixture of
. C, isomers at 362 K
0, o CBMC simulations

DSL model fits
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Fig. 64 (a) 50-50 mixture isotherms for (1) n-Ce and (2) 3MP at 362 K in silicalite. The
open square and circle symbols represent the CBMC simulations for (1) n-Cg and
(2) 3MP respectively. The continuous and dashed lines are the dual-site Langmuir
(DSL) fits with the parameter values determined only from pure component
CBMC simulation data. The dual-site Langmuir parameter values are for n-Cg:
Ga=4, =4, kia=0.07Pa’, kig=2x10"Pa’ and for IMP: 4s=4, h=4,
kaa=0.045, kzp=5x10". (b) Matrix of thermodynamic factors for 50-50 mixture
of n-C¢ and 3MP calculated using egs (5.62) and (5.63).

9. = (Qsat.Ab:./l + Q.tal.Bbi.B )p [ + (Qsal.A + Qsal.B (¥} I,Bplz .
B S (bl.A +by )Pn + bl,Abl,Bplz + (Bu +byy )pz +b, 0,05

For the 50-50 mixture, the branched alkane 3MP exhibits a curious maximum with respect
to molecular loading within the silicalite structure. We see from Fig. 64 b that as the partial
pressures increase to 100 Pa, the sorbate loading of both linear and branched alkanes increase
till a maximum is reached in the loading of 3MP. This occurs at a total loading of 4 molecules
per unit cell. Up to this point there is really no competition between #-C, and 3MP and both
are almost equally easily adsorbed. Molecular simulations show that at 100 Pa shows all the
3MP molecules are located at the intersections between the straight channels and the zigzag
channcls whereas the n-C, molecules are located everywhere; see Fig. 65. The n-C, molecules
fit nicely into both straight and zigzag channels (Smit and Maesen /302/); these molccules
have a higher "packing efficiency” than 3MP. As the pressure is increased beyond 100 Pa. it is
more efficient to obtain higher loading by "replacing” the 3MP with n-Cg; this entropic effect

i=12 (5.60)
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)
i
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5
N ©o

LAV [V
Intersections

Fig. 65 Preferential siting of 3 MP alkanes at the intersections between the straight and
zig-zag channels. The linear alkane can be located at any position within the
silicalite structure.

is the reason behind the curious maximum in the 3MP isotherm. The same phenomena has

been observed for hydrocarbon mixtures of linear and 2-methy! alkanes with 4-7 carbon atoms
(Krishna et al. /303/; Vlugt et al. /301/.

In eqs (5.60), both components are assumed to have the same saturation capacities, G
and G, for the two sites A and B; this is valid for the Cs isomers being considered here.
The fractional occupancies are

e -
g=—" 5.61
e, +0, (>-61)

saf, A sar,B

The matrix of thermodynamic factors [/] can be derived using eq. (5.42); the result is:

[As (Bz -6,B, )/Pl 4, QIBJ/pl ]
[1"]5' B, QzAa/Pz B, (Al_@lA-l)/pZ
AQBZ - QIA-OB! - QzAzBa

l (5.62)
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where

Az = (Qsal.dbl.d + Qw.ﬂbl.ﬂ) + (gm.d + Qsal.ﬂ y)l.,-tbl,a (2p l)
4= (@ b+ Osal.ﬂbl.B)pl +(@m.,l +6,, l,lklﬁplz

sat A
4,= (bu +bm)+ bubu(ZPl) (5.63)
B, = (Qsm.Abz.A + gm.sb:.a)"' (Qsau +6,, )kuk:s (2p,)

B, =( ot ab2.a Qm.abz.a)Pz +(9m.A +0,; z.akzapzz
B, = (bz_,: +byp )’*‘ by by 5 (2p,)

The calculations of [ /] for various values of the partial pressure of component 1, p; (=p,), are

shown in Fig. 64 b. It is interesting to note that /3, and /3, decrease when the partial pressure

increases beyond 100 kPa; beyond this point 3MP experiences strong inflection (see Fig. 64 a).

Since the thermodynamic factor strongly influences diffusion behaviour, we should expect a

corresponding influence on the permeation characteristics across a silicalite membrane.
Figures 66 a and 66 b shows the transiert permeation fluxes of a 50-50 mixture of n-C¢ and

————Including counter-exchange 9,, = = = « without counter-exchange Bﬂ

nN
)

Dimensionless flux, N.§/pq,, P

o
r

[1 L L ' I i . L J L 'l i 'l I A i | 3

0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 04
Dimensionless time, tH/ & Dimensionless time, tO/&#

Fig. 66  Transient diffusion fluxes for permeation of a 50-50 mixture of n-Cs and 3MP
across a silicalite membrane. The upstream and downstream compartments are
maintained at a total pressure of 84 kPa (atmospheric pressure at Boulder). In the
upstream compartment the hydrocarbons account for (a) 0.18 mole % and (b) 18
mole %, the remainder being inert gas helium. An excess of sweep gas in the
downstream compartment ensures that the partial pressures of the hydrocarbons
are virtually zero. The insets to the figure indicate the partial pressures used in
simulations (a) and (b). (a) In this case the partial pressures of n-C, and 3MP in
the upstream compartment are 75.60 Pa. (b) In this case the partial pressures of n-
C, and 3MP in the upstrcam compartment are 7560 Pa. The conditions used in the
simulation (b) are identical to thosc used in the experiments of Funke et al. /304/
at the University of Colorado. Boulder, USA.
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3MP at 362 K for two different choices of upstream partial pressures, indicated in the insets to
the Figure 66. In the simulations we assume that the pure component Maxwell-Stefan
diffusivities are identical for the isomers, i.e. P, = P;; this assumption is a conservative one
from the viewpoint of separation of the isomers as we expect the branched isomer to have a
lower mobility within the silicalite structure. Since the interchange coefficient P,; has a value
intermediate between D, and D; (cf. Eq. (5.41)) we must also have D; =D;=D),.

There are several interesting aspect of the permeation results presented in Fig. 66. Firstly,
we note that with or without interchange, the results are virtually identical. This leads us to
conclude that diffusional interchange between sorbed spccies is important only when the
specics have significantly different mobilities D) and P,;. When the mobilitics are close to each
other, the phenomenon of interchange docs not influence the results, as in the example of
diffusion of C, isomers. Secondly, we note from Fig. 66 a that when the upstream partial
pressures correspond to conditions near the maximum in the mixturc isotherm for 3MP, the
steady-state selectivity for separation of #-Ce with respect to 3MP, defined by eq. (5.59). is
only 1.75. If the upstream partial pressures are chosen to be sufficiently high. corresponding to
a situation where the branched alkane 3MP is virtually excluded from the zeolite (cf. inset to
Fig. 66 b), the permeation selectivity for separation of n-C, with respect to 3MP increases to
value of about 30. For high selectivity we should ensure that we operate at upstream partial
pressures where the branched alkane exhibits inflection; under such conditions “packing
efficiency™, or entropy effects ensures that the branched alkanes are virtually excluded from
the zeolite.

Funke et al. /304/ have presented experimental evidence to suggest that the high
selectivities seen in Fig. 66 b can be realised in practice. The same separation principle, relying
on differences in packing efficiencies between linear and branched alkanes'can be used for
separation of n-butane from isobutane (Kapteijn et al. /291/) and n-hexane from 2,2 dimethyl
butane (Gump et al. /305/).

5.11 Tracer diffusion and self-diffusivity

Let us apply the above set of equations for tracer diffusion. This system consists of two
species 1 and 2 where 1 and 2 are the same molecular species but 1 is labelled or tagged (e.g.
by radioactive means). Such experiments are usually carried out to determine the self-
diffusivity of a molecular species in a zeolite. The situation can be treated as a special case of
binary diffusion, discussed in the foregoing. The conditions of experiment are such that the
gradients for diffusion of the tagged and untagged species are equal in magnitude and
opposite in sign:

Vg,+Vh, =0 (5.64)
and consequently the fluxes of tagged and untagged species sum to zero:
N, +N, =0. (5.65)

Applying the restriction (5.64) to eq. (5.45) for binary diffusion we obtain, after imposing D, =
D; for the tagged and untagged species, and performing some matrix manipulations:
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1

N,=-p6,DVl,=-pO  —— V4, 5.66
1 ar 1 p (—1—+€l +02J 1 ( )
5 b,
which shows that the tracer diffusivity D* is
. 1
D= ———. (5.67)
( 1 6 +0,)
—+*"
Dl DIZ

Equation (5.67) shows that the tracer diffusivity reduces to the Maxwell-Stefan diffusivity only
when the interchange coefficient is exceedingly high (cf. eq. (5.47)):

D' D, when P, »>w (5.68)

There is considerable experimental evidence to support this conclusion; see for example the
data in Fig. 67 (Kirger and Ruthven /11/). Self-diffusivity or tracer diffusivity experiments
can therefore be used in practice to provide information on the Maxwell-Stefan or “corrected”
diffusivity Dy. In view of the discussions following eq. (5.34) we expect, in general, the self-
diffusivity to be dependent on the molecular loading. This expectation is fulfilled in good
measure by experimental results. In Fig. 68, the oft-cited NMR self-diffusivity data of Kiirger
and Pfeifer /306/, has been re-plotted so that the five sets of data are drawn to the same scales.
This figure shows a variety of observed dependencies on molecular loading. The self-di ffusivity
D* for n-hexane and xylene isomers in NaX decreases with sorbate loading; see Figs68a andb.

-
N

1077 p-xylene in NaX
- [ - QNG|
= RSN SR
0 3 k,.“.;\q%(
- i ~ 3 o
E o le) CRT
s F L\("S&\"\H v
Q i o C LN
= C
Q
=
=
2]
2 - |C Maxwell-Stefan diffusivity, D,
a e
% tracer diffusivity, D’

10 L

0 50 100 150 200
Sorbate loading/[mg g-! of zeolite]

Fig. 67  Comparison between the Maxwell-Stefan diffusivity and self-diffusivity. Data for
p-xylene in NaX taken from Kirger and Ruthven /11/.

179

Brought to you by | Universiteit van Amsterdam - UVA Universiteitsbibliotheek SZ
Authenticated | 146.50.144.11
Download Date | 10/18/12 6:51 AM



Vol. 16, No. 2, 2000

Modeling Diffusion in Zeolites

10-08 (a). n-hexane in NaX at 358 K 1008 . (d). acetonitrile in NaX at 393 K
Co
10°L O o 1 0-09 i
C
R Yool 1w
o o) R
[
10 10" O
-12 12
10 L 1 1 1 ) 10 L 1 L L L
0 50 100 150 200 0 S50 100 150 200 250
— 10 10°%®
'i_,, }(b). o,m,p xylenes in NaX at 393 l(\tle).ceztlt;ane and propane in
o
E10® 10 )
= L =
Q
T 107 | éj) CHe
= 08 @ K
3 -11 -1
:% 10 = ’Q\‘ 10 e §© CsHa
% -12 -12
()] 10 ~L Ll 1 1 ] 10 L, 1 1 L y
0 50 100 150 200 250 0 50 100 150 200 250
10
(c). Ammonia and water in NaX at
298 K
10” L
10" k CPO OO Ho
O
-1 Q
107k O
12
10 "l 1 1 1 1 ]
0 50 100 150 200 250
Sorbate loading/[mg g of zeolite]
Fig. 68 Dependence of the self-diffusivity on molecular loading in the zeolite. Data for
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various molecules in NaX and NaCaA taken from Kiirger and Pfeifer /306/.
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The self-diffusivity D* for NH;, H:O in NaX increases with increased sorbate loading (ct.
Fig. 68 c); the same is found for CH, and C;Hg in NaCaA (cf. Fig. 68 e). The diffusivity D* of
acetonitrile in NaX appears to be practically independent of sorbate loading; see Fig 68 d. The
fundamental understanding of such dependencies is essential and one clue would be to resort to
Monte-Carlo simulations and molecular dynamics (Aust et al. /209/; Bhide and Yashonath
/217/; Van den Brocke et al. 213/; Coppens et al. /174, 175/; Dahlke and Emig 21(¥; Palekar and
Rajadhyaksha /204, 206/; Saravanan and Auerbach /224, 225/; Keil /311/) (see sections 2, 3).

5.12 The Onsager, or Irreversible Thermodynamics, formulation for zeolite diffusion

We have modelled zeolite diffusion using the Maxwell-Stefan approach which has been
developed only in the last decade, starting with the papers of Krishna /288, 307, 308/. Prior to
the development of this approach, an alternative formalism for zeolite diffusion based on the
thermodynamics of irreversible processes was in vogue. This approach stems from the classic
works of Onsager, Prigogine and De Groot and Mazur and has been used by several
researchers (Karger /309/; Yang et al. /310/). We compare below the Onsager formulation
with the Maxwell-Stefan approach with the objective of pointing out the differences and
limitations, if any, of either approach.

In the Onsager formulation, a linear relation is postulated between the fluxes and the
chemical potential gradients:

(N)=-p8, [L] (5.69)

where L are the elements of the matrix of Onsager coefficients having the units of [m?s™].
From eq. (5.42) the chemical potential gradients can related to the occupancy gradients and so
€q. (5.69) may be re-written in the form

Y6, 0 0
(N)=-po L] 0 . o [r}ve). (5.70)
0 0 V8,

Comparison with the Fick and Maxwell-Stefan formulations gives the following inter-
relationship

g 0 0 g 0 0
iLl=[8l"jo . oj=[pIT'j0o *-. o} (5.71)
0 0 & 0 0 4,
Specifically for single component diffusion above system of eqs (5.69)(5.71) reduce to
1 1
=-pB L —Vyu=-p6 L—IVE 5.72
p :alLI RT /ll p salngl 1 ( )
with
L =D, =ﬁ¢9l, (3.73)
Y

which shows that if the Maxwell-Stefan diffusivity £, is independent of occupancy, the
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Onsager single component coefficient L, is directly proportional to the occupancy. In the
event D, is inversely proportional to the occupancy, L, is indendent of occupancy.

For a two-component system., eq. (5.71) simplifies to

-1

1.6 _6
b b, ) g 0
=1 = 12 12 , 574
L= 6" 1 [o a,] 674
B, b, b,

which can be rearranged using matrix algebra to give

1,8, e
b, b, b,
2.6 (L+—’-)01
[Lll LIZ] = DIZ Dl DIZ )

L L 11,681,714
Dl DZ DIZ DI Dl DIZ

(5.75)

confirming the validity of the Onsager reciprocal relations:
L,=1,. (5.76)

Further, it is interesting to note that the interchange coefficient D), contributes not only to the
off-diagonal coefficients L;; and L but also to the main coefficients L;; and L. As a
consequence, the main coefficients L;; and Ly; cannot be identified, respectively, with the
pure component Onsager coefficients L, and L, (Yang et al. /310/). Figure 69 presents a
comparison of the Fick, Maxwell-Stefan and Onsager coefficients for the system methane (1)
—propane (2). It is interesting to note the strong composition (occupancy) dependence of Ly,
making the use of the Onsager formulation inconvenient for solution of practical problems.

When the interchange coefficient is large, P;; — o, the Onsager matrix reduces to

ép, 0
Lll L|2:|= 11 (577)
L, L, 0 4,
and only for this case can the main coefficients be identified with the pure component
Onsager coefficients, i.e. Ljy =L, and Ly; = L,.

For tracer diffusion, imposition of the constraint (5.64), and D, = D, for the tagged and
untagged species we obtain

N, =—pO,LV8 =-p0,| 2 -Lrlvg (5.78)
6 6,

showing that the Onsager tracer coefficient L* equals the pure component Onsager coefficient

L, only for the case where the cross-coefficient L;; vanishes.
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5.12 Concluding remarks

The Maxwell-Stefan formulation provides the most convenicent and general description of
mixturc diffusion in zeolitic structurcs. There is, as yet, no adequate theory for a priori
prediction of the Maxwell-Stefan diffusivities D, and D, for a given molecular species in a
specified zeolite structure. For some molecule — zeolite combination the B, vary with the
loading, and there is a need to develop models to predict this from first principles. using the
mcthods discussed in Sections 2-4,

Notation for Section 5

As, Az, Ay parameters defined in eq. (5.63)
b, parameter in the Langmuir adsorption isotherm, Pa™'
Ba, Bs3, By parameters defined in eq. (5.63)

[B) square matrix of drag coefficients, m™ s

c molar concentration of species , mol m?

oy total molar concentration of the fluid mixture, mol m™

D, Fick diffusivity of component 1 in zeolite, m” s™

Dy Fick diffusivity of 1-2 binary in fluid mixture, m?s’

(D] matrix of Fick diffusivities, m%/s

D, Maxwell-Stefan diffusivity of species i in zeolite, m'/s

Pz Maxwell-Stefan of 1-2 binary in fluid mixture, m%/s

D Maxwell-Stefan diffusivity describing interchange between i and j, m*/s

D et Effective Fick diffusivity for component i diffusing in a zeolite, m*/s

b* tracer or self-diffusivity, m%/s

fi fugacity of species i; f; =p, for ideal gases, Pa

( (n-2 1) :iimensional column vector of diffusion fluxes, mol m? s™ or molecules
m”s

J molar or molecular diffusion flux of species i relative to the molar average
reference velocity u, mol m? s or molecules m? s™

[L] matrix of Onsgager coefficients, m® s™

n number of diffusing species, dimensionless

N, molar or molecular flux of species i, mol m?s? or molecules m? s

N, mixture molar or molecular flux, mol m™ s or molecules m? s™

P system pressure, Pa

P partial pressure of species i, Pa

4 adsorbed species concentration or loading, mol kg'l

Gsar total saturation concentration or loading, mol kg"

R gas constant, 8.314J mol” K

t time, s

T absolute temperature, K

u, velocity of the diffusing species , m 5!

u molar average mixture velocity, m s

X mole fraction of species i, dimensionless

z number of nearest neighbour sites, dimensionless

Greek letters

) length of diffusion path or thickness of membrane, m

A activity coefficient of species i, dimensionless
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r thermodynamic correction factor, dimensionless

7] matrix of thermodynamic factors, dimensionless

a fractional surface occupancy of component i

é molecular loading, molecules per unit cell or per cage
B sa saturation loading, molecules per unit cell or per cage
O maximum loading of site A, molecules per unit cell
Cun maximum loading of site B, molecules per unit cell
[ maximum loading in the zeolite, Qu«=(Bur+ Cun)
A lateral displacement, m

1 molar chemical potential, J mol™

v jump frequency, s™

o density of membrane, number of unit cells per m* or kg m™
Subscripts

A referring to site A, intersections

B referring to site B, channel interiors

1 component 1 in binary mixture

2 component 2 in binary mixture

max referring to maximum loading

sat referring to saturation conditions

ij components in mixture

eff effective parameter

p derivative at constant pressure

T,p derivative at constant temperature and pressure

n+l pseudo species

Superscripts

* tracer coefficient

Vector and Matrix Notation

@) component vector

[1 square matrix

Operators

\% gradient or nabla

6 OUTLOOK

Ever more powerful computers enable the determination of reliable diffusion coefficients for
atoms and molecules in zeolites. Highly elaborated methods lead to a coincidence of calculated
and measured values. Various comparisons of measurements by PFG NMR and QUENS with
calculations demonstrated the reliability of the results. The reason for some deviations between
uptake measurements and PFG NMR methods seems to be clarified /339/. Nijhuis et al. /339/
developed an ultrahigh vacuum system, called the Multitrack (a variant of the TAP-system) to
measure the transport diffusion at low accupancy of n-butane in silicalite-1. This method is
much quicker than conventional macroscopic techniques. External transport limitations, which
seem to be responsible for the deviations between uptake and PFG NMR measurements, can
casily be avoided. The obtained macroscopic or transport diffusivities were in good agreement
with earlier reported microscopic values. Further clarification of the deviations can also be
expected from the recently developed tracer exchange experiments with positron emission
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profiling (TEX-PEP) /340/ to measure in situ self-diffusivities on a macroscopic time scale
and at elevated temperature. When applied to 2-methylpentane and n-hexane diffusion in
silicalite, TEX-PEP showed fair agreement with most macroscopic measurements of the
transport diffusion, and considerable disagreement with microscopic techniques measuring
self-diffusion /340/.

Many simulations reported in the literature examine the behaviour for guest molecules in
zeolites using the approximation of a rigid lattice, others compare results obtained from arigid
and a flexible lattice. The results for both cases often agreed quite well, but often differ
considerably. The assumption of a rigid lattice is an approximation which cannot be adequate
in all cases. Fritzsche et al. /341/ investigated the influence of lattice vibrations on the diffusion
of mcthane in a cation-free zeolite of structure type LTA. Over a wide range of temperatures
and for diffcrent interaction parameters it was shown that the sclf-diffusion coefficients
obtained with flexible and with rigid lattices are practically the same. The lack of effect of the
lattice vibrations on the diffusion of guest molccules leads to the conclusion that the mutual
thermalization of the guest molecules is sufficient for the passage of the potential barrier. The
authors argue the reason why the steric effect of the "breathing" window has a small influence
is perhaps the symmetrical nature of this steric etfect. It leads not only to instantaneous lower
but, also with the same probability, to instantanecous higher potential barriers. For fast
processes taking place inside the cavity, e.g. relaxations or chemical reactions, the influence
of lattice vibrations cannot be neglected.

The problem of single-file diffusion and expecially the transition from single-file to normal
diffusion needs further clarification. A single particle in the tube not in contact with other
particles is assumed to undergo normal diffusion with a mean square displacement of

(z°)=2D¢ (6.1)

where Dy denotes a single-file diffusion coefficient. Single-file diffusion is a movement of
particles in a narrow tube, where due to steric restrictions passing of the particles is forbidden.
Therefore, the relative order of the particles is conserved. In the case of hard particles, this
happens if the particle diameter, d,, is greater than half the tube diameter dr. For the case
where a single particle undergoes normal diffusion, the time behavior in a single-file system
of infinite length is given by

(z)=2Ft 62)

where F denotes the single-file mobility:

A o

where

l=a-d, =-1—€d 6.4

denotes the mean free path between two adjacent particles, and a is the mean distance
between the centers of adjacent particles. In a system where the particle diameter is about half
the tube diameter d, = 0.5 dr, occasional passages between the particles occur so that the order
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of the particles is no longer conserved. Hahn and Kirger /130/ showed that in this case, for
sufficiently long times, the process of particle passage will dominate and the mean square
displacement in the system eventually increases linearly with observation time, while at short
times the influence of particle passages is still small and the time behavior is dominated by
the single-file process. The transition time between single-file behavior and normat diffusion
due to particle passages is given by /130/

il (6.5)

a

where a denotes the length of independent elementary displacements and r the time interval
between them. As soon as boundary conditions became relevant, substantial deviations from
the previous equations may occur. In single-file systems with closed ends, and under the
assumption that the particles are pointlike and that, except for the preserved particle sequence,
there is no correlation between the positions of the diffusants at the beginning and at the end
of the experiment, the mean square displacement is

(z*) =%(1 '0")‘ Ld, (6.6)

where L is the file length. Eq. 6.6 gives much smaller values for the mean square displacement
than the corresponding value for restricted normal diffusion in one direction. The risk that the
obscrved molecular mean square displacement is reduced by blockage of the crystallite surface
is therefore much larger in single-file systems than in case of normal diffusion. This behavior
has to be taken into consideration if one compares the results of measurements by different
methods. PFG NMR covers the range of observation times between 10" and 1s, QUENS
between 10" and 10™ s, and ZLC between seconds and larger. It is quite possible, therefore.
that the techniques trace completely different diffusional regimes /130/.

In the future calculations of diffusivities of zeolites with defects, charges, etc. will be done.
A further field of investigations will be reactions in zeolites.
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