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ABSTRACT: In the immersion precipitation process for membrane formation, a
polymer casting film is placed in contact with a nonsolvent in a coagulation bath; an
essential feature of the membrane formation process is the foray into the metastable
region of the ternary phase diagram for the nonsolvent/solvent/polymer system. The
primary objective of this article is to trace the origins of such forays. The Maxwell—
Stefan diffusion formulation is combined with the Flory—Huggins description of phase
equilibrium thermodynamics to set up a model for describing the transient equilibration
trajectory that is followed in the polymer casting film. Four different systems are
analyzed: water/acetone/CA, water/DMF/PVDEF, water/NMP/PSF, and water/NMP/
PEI (CA = cellulose acetate; PVDF = poly(vinylidene fluoride); PSF = polysulfone; PEI
= polyetherimide, DMF = dimethyl formamide; NMP = N-methyl-2-pyrrolidone). The %,
analysis shows that diffusional forays are mainly engendered due to thermodynamic %
coupling effects; such effects are quantified by the set of thermodynamic factors

g dlng,
" ¢ 0lng’

solvent (j). In regions close to phase transitions, the off-diagonal elements Fij(i # j) are often negative and may attain large
magnitudes in relation to the diagonal elements I';. Strong thermodynamic coupling effects cause the transient equilibration
trajectories to be strongly curvilinear, causing ingress into the metastable region. If thermodynamic coupling effects are ignored, no
such ingress occurs. It is also shown that analogous diffusional forays may lead to emulsion formation in partially miscible liquid
mixtures.
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where a;, the activity of species i, is dependent on the volume fractions, ¢; and ¢, of both nonsolvent (i) and

1. INTRODUCTION $olna
= ; i)j =12

The landmark discovery of the asymmetric cellulose acetate T 45] Jln d’l (1)
(CA) membrane by Loeb and Sourirajan' for water desalination

has had a significant technological impact on the development of where ¢; and ¢; denote the volume fractions of water and
acetone, respectively.lz*‘15

a wide variety of polymer membranes that have several practical
The inset to Figure 1 is a schematic of the immersion

apphcatlons.z’3 To set the scene for this article and define its o ] ) i 3
S . . o . . precipitation process in which a thin layer of casting film of the
objectives, let us consider the basic principles of the immersion . . .
acetone/CA mixture, placed on a support layer, is brought into

contact with water in a coagulation bath. As illustrated, the
transient equilibration trajectory when a 10% solution of CA in

precipitation procedure that was originally used for preparing
CA membranes.”™"> The ternary phase diagram for ternary

water/acetone/CA solutions, constructed on the basis of the acetone is immersed in the coagulation bath is indicated by the
volume fractions using the Flory—Huggins description of phase solid blue line connecting A and A*. With increasing immersion
equilibrium thermodynamics, is shown in Figure 1. The binodal contact times, the compositions within the polymer casting film
curve for this ternary mixture defines the limits of phase will get %Elgolgzrffsively richer in water and impoverished in

acetone. Consequently, the equilibration trajectories get

miscibility; the compositions at the end of a tie-line are in
progressively closer to the binodal curve. Figure 1 plots the

thermodynamic equilibrium requiring equality of component

activities, g, in the two contiguous fluid phases. The spinodal
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curve defines the limit of phase stability. Along the spinodal
curve, the determinant II'l = 0, where II'l is a 2 X 2 dimensional
matrix of thermodynamic correction factors with elements

defined by
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Figure 1. Transient equilibration trajectories A—A*, B—B*, and C—C* during the immersion precipitation process for membrane preparation. These
trajectories were determined from simulations using the starting compositions A, B, and C in the polymer casting film. Further calculation details and
data inputs are provided in the Supporting Information (SI) accompanying this publication.

progression in the equilibration trajectories A—A*, B—B*, and
C—C* with increasing immersion times. All three trajectories
are strongly curvilinear. Particularly noteworthy is that the
trajectory C—C* has penetrated into the metastable region
between the binodal and spinodal curves. This foray into the
metastable region causes precipitation of polymer in the casting
film. Experimental evidence of such forays is provided by
McHugh and Tsay."

The primary objective of this article is to trace the theoretical
origins of the diffusional foray into the metastable region as
witnessed for the trajectory C—C*. For this purpose, we set up a
model to describe the equilibration trajectories by combining
the Flory—Huggins description of phase equilibrium with the
Maxwell—Stefan formulations for diffusion.'’~*' By detailed
analysis of four different systems: water/acetone/CA, water/
DMF/PVDF, water/NMP/PSF, and water/NMP/PEI (CA =
cellulose acetate; PVDF = poly(vinylidene fluoride); PSF =
polysulfone; PEI = polyetherimide; DMF dimethyl
formamide; NMP = N-methyl-2-pyrrolidone), we aim to show
that the diffusional forays into metastable regions are primarily
engendered by thermodynamic coupling effects that are
quantified by the off-diagonal elements I';(i # j). The secondary
objective of this article is to demonstrate that the same concepts
and modeling approaches are applicable to describe diffusion-
induced ingress into metastable regions, resulting in emulsifi-
cation”*~** and production of nanospheres and nanoparticles by

the exploitation of the “Ouzo effect”.”>™*’

2. RESULTS AND DISCUSSIONS

2.1. Maxwell-Stefan Formulation for Diffusion in
Ternary Polymer Solutions. For a description of diffusion
in ternary nonsolvent (1)/solvent (2)/polymer (m) solutions, it
is convenient to use volume fractions, ¢, as composition
measures because this facilitates combination with the Flory—
Huggins description of phase equilibrium. Let us define the

2820

volumetric diffusion fluxes JY, relative to the volume average
velocity of the mixture u" = ¢ u; + Pty + Ppti-

JVo= gy —uV); i=1,2
Iy = (uy —u') == =] @)

The volume fractions are related to the molar concentrations, ¢;
=(;V, where Vs the partial molar volume of species i. The use of
u" as a reference velocity is particularly convenient for polymeric
solutions because V; is practically composition independent.

In the Maxwell—Stefan (M—S) formulation, the volumetric
diffusion fluxes, J, expressed in the units m* m™2s™", are related
to the chemical potential gradients as follows'”'**°

Ly L @' =) | G~ )
IRT 0z DY by,
1 a/'tz (¢1]2V - ¢Z]1V) (¢m]2V - ¢2];/)
T D) " py
21 hm (3)

The M-S diffusivities, D},, and Dy}, quantifying interactions
(“friction”) between species 1 and 2 with the polymer chains are
relatable to the self-diffusivities in polymer solutions, for which
estimation procedures using the free-volume theory are well
established.”®*° The M-S diffusivities D}, and Y, appearing
in the first right members of eq 3, quantify the 1—2 friction. The
symmetry constraint demanded by the Onsager reciprocal
relations is

\%
12

v

%
By _
14 4)
The M-S diffusivities D}, and D}, are relatable to the M—S
diffusivities in binary nonsolvent/solvent solutions for which

reliable estimation procedures are available in the litera-
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Figure 2. (a) Calculations for the matrix of thermodynamic correction
factors, T';. (b, ¢) Calculations of (b) T'y; + 'y, (Agp,/Ad,) and (c) T,
(A¢1/A¢,) for volume fractions along a straight line connecting A—
A*, B—B*, and C—C* in Figure 1. Further calculation details and data
inputs are provided in the Supporting Information accompanying this

publication.

14,15,31,32 . o . . .
ture. 77 °" Detailed derivations of eq 3, 1nclud1nég comparison
2830,3

with the equivalent Bearman friction formulation, >>*along
with step-by-step procedures for estimation of the set of M—S§
diffusivities are provided in the Supporting Information (SI)
accompanying this publication.

In view of eq 1, the left members of eq 3 can be expressed in
terms of the gradients in the volume fractions

2821
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Figure 3. Elements of the Fick diffusivity matrix [D], for water (1)/
acetone (2)/CA (m) at T = 298.15 K. Further calculation details and
data inputs are provided in the Supporting Information accompanying
this publication.
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Figure 4. (a) Transient equilibration trajectory C—C* in the water/
acetone/casting film. The dashed lines represent simulation results
when the simplification I'; = §;, the Kronecker delta, is invoked. (b)
Transient volume fraction profiles in the casting solution, as a function
of the dimensionless distance coordinate z/.,/4D,t. Further
calculation details and data inputs are provided in the Supporting
Information accompanying this publication.

¢ 9m,
[ S 4,1
RT 0z

Oln g,

oz (5)

For the system water (1)/acetone (2)/CA (3), Figure 2a shows
calculations of the four elements [jasa function of the volume
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Figure 5. (a) Transient equilibration trajectory A—A* water/NMP/
PSF casting film. (b) Transient volume fraction profiles in the casting
solution, as a function of the dimensionless distance coordinate
2/ \/4D,st. Further calculation details and data inputs are provided in

the Supporting Information accompanying this publication.

fractions of CA that lie on a straight line connecting A (¢, =
0.2181; by = 0.34308) with A* (¢hy; = 0.2181; b = 0.34308) in
Figure 1. Particularly noteworthy are the large negative values of
I, I factors have the effect of influencing the driving forces for
the transport of water (1) and acetone (2), into and away from
the casting film. Thermodynamic coupling effects on the driving
forces for water and acetone transport may be quantified by the
factors 'y, + 'y, (A¢h,/A¢,) and Ty, (A¢h,/A,) + Ty, where
A¢; denotes the difference between the interfacial volume
fractions, ¢b;;, and those at the start of the equilibration process,

bio
Apy =y = biyi B, = by — by (6)

These terms are plotted in Figure 2b,c for volume fractions
along straight lines connecting A—A*, B—B*, and C—C*. In all
three cases, the influence of thermodynamic coupling is to
suppress both the driving forces of water and acetone. If
thermodynamic coupling effects are ignored by invoking the
assumption I'; = §;, the Kronecker delta, both these factors
should be unity. Remarkably, we note that for C—C*
equilibration, thermodynamic coupling serves not only to
reduce the magnitude of the driving force for water transport
but also to reverse its sign. The precise consequences of such
sign reversals will be elaborated in a later section.

Combining eqs 3 and 5 and casting into matrix notation, we
obtain

2822

solutions is a strongly coupled process.

Figure 3 shows calculations of the elements of the Fick
diffusivity matrix [D] for volume fractions that lie on a straight
line connecting A with A* in Figure 1. The variation of the four
elements of [D] with the volume fraction of CA shows
approximately the same trends as the corresponding elements
of the matrix of thermodynamic factors [I'] in Figure 2a. The
large negative value of the off-diagonal element D,, is largely
engendered by the corresponding negative off-diagonal element
I

2.2. Modeling Transient Diffusion in the Immersion
Precipitation Process. To meet the objectives of this article,
we seek an analytic solution to describe the immersion
precipitation transience and essentially follow the model of
Tsay and McHugh."? The diffusion process is considered to be
essentially uni-(z)-directional; the position z = 0 corresponds to
the position of the interface at the start of the equilibration
process. The contiguous immiscible phases, coagulation bath
and polymer casting film, are both considered to be semi-
infinite. At the position z = +00, the composition corresponds to
that of the bulk coagulation bath that is time-invariant. At the
position z = —co, the composition corresponds to that of the
polymer casting film that is in contact with the support layer; this
composition is also time-invariant. At any time ¢, during the
immersion precipitation process, we have thermodynamic
equilibrium at the interface between the two immiscible phases,
at compositions A* and CB*. The volume fractions ¢); and ¢,
are determined by the thermodynamic equilibrium constraints

9)

The Flory—Hug?ns (F—H) description of phase equilibrium
thermodynamics''~'”*°7*7 is used to solve the set of eq 9;
calculation details and F—H input parameters for all investigated
systems are provided in the SI.

The transient ternary diffusion within the polymer casting film
is described by a set of two coupled partial differential equations

A = Ay Ga1 = Gopy

https://dx.doi.org/10.1021/acsomega.9b03609
ACS Omega 2020, 5, 2819-2828


http://pubs.acs.org/doi/suppl/10.1021/acsomega.9b03609/suppl_file/ao9b03609_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsomega.9b03609?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.9b03609?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.9b03609?fig=fig5&ref=pdf
http://pubs.acs.org/doi/suppl/10.1021/acsomega.9b03609/suppl_file/ao9b03609_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsomega.9b03609?fig=fig5&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://dx.doi.org/10.1021/acsomega.9b03609?ref=pdf

ACS Omega http://pubs.acs.org/journal/acsodf
a == equilibration trajectory C = equilibration trajectory
[ 0.2 A*

0.3 water(1)/ 03[ water(1)
a F NMP(2)/ < DMF(2)/
% [ PEI(m); A L PVDF(m);
2 04 T=298.15K & 04r T1=20815K
5 L s
.5 i _5 0.5 binodal spinodal
g 05 [ g curve curve
= r binodal =
“E’ [ curve g 0.6
=] L =
S 06 S
> A =

0.7
0.00 0.02 0.04 0.06 0.08 0.10 0.12

Volume fraction of water, ¢,

o7 £ 0.10

. r
RS
o r ya -
o 06 008 T
2 [ ey
s [ o water 2
S o5 == NWP 0.06
% [ e PE| ater(1)/ o
z x NMP(2)/ S
5 04 PEI (m); 004 §
5 r T=298.15K =
8 §
“GE‘, 0.3 / T q002 2
3 . D= 10°m?s’
> 0 2 7\ T T O | 000

40 -08 06 04 02 00

Dimensionless distance, z/(4D, )"

I/

0.00 0.02 0.04 006 008 0.10

Volume fraction of water, ¢,

~ 07 4 0.08

< [

I [

e fe —
D 06| = water Y006 =
5 | e NMP g
I L o
s 05 water(1)/ 4004 §
o i DMF(2)/ 5
S [ PVDF(m); E
5 i T=298.15K g
g 04 1002 3
b [ _ 409 2 - >
o i D =10°m*s"

>

2 [

> (07 J e T O O ST S O 0.00

-10 -08 -06 -04 -02 0.0

Dimensionless distance, z/(4D, t)”2

ref

Figure 6. (a, b) Transient equilibration in the water/NMP/PEI casting film. (¢, d) Transient equilibration in the water/DMF/PVDF casting film.
Further calculation details and data inputs are provided in the Supporting Information accompanying this publication.

Vv

a¢1 5]1

¢)
o0 oz (10)

Inserting eq 8 for the volumetric fluxes results in

" A"
¢
2 2

o PIa (11)

Commonly, the coagulation bath consists of a binary mixture of
nonsolvent (1) and solvent (2). As a good approximation, the
composition of the coagulation bath may be assumed to be
polymer-free. The corresponding relation for the transient

diffusion process in the coagulation bath is described by

P _ I'py,
ot b .2 (12)

The subscript b in eq 12 refers to the coagulation bath, and Dy,
represents the Fick diffusivity in the binary solution in the bath.

The initial conditions for eqs 11 and 12 are

2823
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Figure 7. Transient profiles of water activity in the casting solution for
water/acetone/CA, water/NMP/PSF, water/NMP/PEI, and water/
DME/PVDE plotted as a function of the dimensionless distance

coordinate z/ /4D, t.

He0) (b
¢2(Z, 0) ¢20

220, t=0, ¢z 0) =gy, (13)

where ¢,y and ¢y, are the initial compositions of the polymer

casting film and bath, respectively.
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Figure 8. Transient equilibration trajectories A—A* and B—B* for the water/ethanol/benzene mixture at 298 K, demonstrating foray into the
metastable region in the water-rich region of the phase diagram. The solid blue lines represent the trajectories calculated using the Ruschak—Miller
model. Further calculation details and data inputs are provided in the Supporting Information accompanying this publication.

The boundary conditions are
- 0) (b
b0, )] g
¢, (+00, t) = (14)

An analytic solution for the transient volume fractions in the
bath is obtained if the Fick diffusivity Dy is assumed to be
composition independent'***

erfc< i

erfc( 4

W) (15)

The corresponding analytic expression for the volume fractions
in the polymer casting film is also derivable if the Fick diffusivity
matrix [D] = [B]7'[I'] is also assumed to be composition
independent; see Taylor and Krishna.* In all of the calculations
presented in this article, the Fick [D] is evaluated at the average

L ¢10 + d’u

volume fractions — b+ ¢ f this linearization procedure has
20 21

z=++00, t2>0,

¢1b(z; t) = Do t (¢1b1 - ¢1b0)

2

been established to yield results of good accuracy.'® The
transient volume fractions in the polymer film can be written as 2
X 2 dimensional matrix generalization of eq 15; see Taylor and
Krishna®' for further theoretical background on matrix general-
ization procedures

¢1(Z, t) _ ¢1o erfc(—L[D]_l/z)]
bz, )] by Jat

[erfc(—L[D]_l/z)}_l by — Py
2 ¢21 - ¢zo

+

(16)
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Due to interchange of nonsolvent and solvent between the

polymer casting film and the bath, the position of the interface,
e(t) = r/t, will shift with time

He0 ) (4]
#,(e(t), t) bn C
¢ (e(t), £) = py =1 = ¢y, (17)

Ineq17,¢(t) = r\/ tis the position of the moving interface, and r
is a constant with units of m s™V/2, which is determinable from
the continuity of component fluxes at either side of the moving
interface

=1-¢,—- ¢,

e(t
Pl = Rl = = ) 55
t

r

(¢i1 qﬁibl) 2\/?’ ! 1,2 (18)
The simultaneous solution of the set of four nonlinear eqs 9 and
18 allows calculation of the interfacial compositions ¢, ¢,
¢y and 7.

2.3. Simulations of Four Immersion Precipitation
Processes. First, we investigate in detail the C—C*
equilibration trajectory followed in the water/acetone/CA
casting film when the initial volume fractions in the casting
film are chosen as ¢y = 0.28; b, = 0.63; b1 = 0.75; and g =
0.25; corresponding to the position C indicated in Figure 1. The
simultaneous solution of the equations describing thermody-
namic equilibrium at the interface (eq 9) and the flux continuity
relations (eq 18) results in the interfacial volume fractions ¢;; =
0.24596; 1 = 0.46422; and ¢hj,; = 0.6753; these correspond to
C* and CB*. The value of r = —3.46302 X 107° is negative
because of the shrinkage of the polymer casting film due to the
impoverishment of acetone. Evaluated at the arithmetic average
volume fractions between the initial and final equilibrated
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Figure 9. (a) Transient equilibration trajectories for the glycerol (1)/
acetone (2)/water (3) mixture at 298 K, demonstrating foray into the
meta-region in the glycerol-rich phase. (b) Transient equilibration
trajectories for the system water (1)/acetic acid (2)/MTBE (3) at 298
K, demonstrating forays into the metastable region in the MTBE-rich
phase. Further calculation details and data inputs are provided in the
Supporting Information accompanying this publication.

2

1(¢10 + ¢11

compositions, ~ , the elements of the matrix of
by + &y

thermodynamic factors, and the Fick diffusivity matrix are:

— 10.15393  —0.08279
(F1=1Z0%3820 049255 | and
[D] = [0'46829 _0'25204] % 10~ m*s™". Noteworthy are

—0.36327 0.21014

the large negative values of both off-diagonal elements I"}, and
I';,. Both off-diagonal elements D, and D,, are also negative,
primarily because of the corresponding negative values of I'},
and [',;.

The equilibration trajectory calculated using eq 16 is plotted
in Figure 4a composition space; we note that the C—C* is
strongly curvilinear and has penetrated into the metastable
region.

The volume fractions of the three components are plotted in
Figure 4b as a function of the dimensionless distance coordinate

z/ /4Dt in the casting film, where we take the value of the

reference diffusivity D,y = 1 X 107 m* s™'. There is a
significantly higher volume fraction of the polymer near the
surface of the casting film, z & 0. This implies that the polymer
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Figure 10. (a) Trajectories followed during transient equilibration of
homogenous mixtures of two different compositions A and B for the
system water (1)/ethanol (2)/cyclohexane (3) at 298 K. (b) Transient
composition profiles plotted as a function of the dimensionless distance
coordinate z/.,/4D,¢t. Further calculation details and data inputs are

provided in the Supporting Information accompanying this publication.

distributes asymmetrically across the membrane thickness,
resulting in an asymmetric polymer membrane. Also noteworthy
is that the volume fraction of water shows a pronounced

overshoot at z/,/4D,¢t = —0.2; this overshoot signifies uphill

diffusion."****” The overshoot in water is a direct result of the
influence of thermodynamic coupling on the driving force of
water, causing the effective driving force to undergo sign
reversal, as witnessed in Figure 2b.

To delineate the influence of thermodynamic coupling, we
repeated the simulations by invoking the assumption I';; = §;; and
calculating the Fick matrix using [D] = [B]™'; this results in C—
C* trajectory indicated by the dashed line in Figure 4a. No
ingress into the metastable region is experienced, and the
trajectory tends to veer away from the binodal curve in its
approach to C*. The inescapable conclusion is that the influence
of the thermodynamic correction factors is to draw the
trajectories into the metastable region, leading eventually to
polymer precipitation.

Next, we analyze the transient equilibration trajectory
followed in the ternary water/NMP/PSF solutions in which
the initial volume fractions in the polymer casting film and
coagulation bath are chosen as ¢,y = 0; ¢, =0.7; @10 = 0.3; P10
= 0.7, corresponding to the position A indicated in Figure Sa.
The simultaneous solution of the equations describing
thermodynamic equilibrium at the interface (eq 9) and the
flux continuity relations (eq 18) results in the interfacial volume
fractions ¢, = 0.01623; ¢p,; = 0.23293; and ¢1,; = 0.25625. Both
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_ (0.93085 —0.01965
=[2336896 046328 ) and

1% 1077 m?s7! are negative. The

the off-diagonal elements of [I']
(D] = [1:39456  —0.02938
—0.673S 0.01775

strong coupling effects cause the A—A* equilibration trajectory
to exhibit a foray into the metastable region. The dashed line in
Figure Sa represents the trajectory followed by invoking the
assumption I'; = §; and ignoring thermodynamic correction
factors; in this scenario, the A—A* does not cross the binodal
curve.

The volume fractions of the three components are plotted in
Figure Sa as a function of the dimensionless distance coordinate

z/\J4D, ¢t in the casting film. The polymer composition is

significantly higher near the surface of the casting film, z = 0,
resulting eventually in an asymmetric PSF membrane. The
transient overshoot of water signifies uphill transport.

The analyses of the A—A* equilibration trajectories for water/
NMP/PEI and water/DMFE/PVDF solutions proceed along
precisely analogous lines; the results are summarized in Figure
6a—d. Incursions into the metastable regions, induced by off-
diagonal elements Fij(i # j), are experienced in both cases.
Uphill diffusion causes overshoots in water compositions near
the surface of the casting films, and the congregation of PEI and
PVDF polymers near the surface of the casting film, z ~ 0, is also
evident in Figure 6b,d.

The phenomena of uphill diffusion resulting in transient
overshoots of water experienced in the four examples above are,
however, not in violation of the second law of thermody-
namics.”>*” As verification, the corresponding transient profiles
of the activity of water are plotted in Figure 7; in all four cases,
the variation of activity along the dimensionless distance is
monotonic. Put another way, water transport is down the
activity hill.

2.4. Emulsion Formation in Partially Miscible Liquid/
Liquid Mixtures. We now demonstrate analogies between the
immersion precipitation process with emulsion formation.
According to Miller,”” “If the two bulk liquids are not initially
at equilibrium, it is conceivable that dynamic processes such as
diffusion could produce emulsification when the two liquids are
brought into contact without stirring.” The necessary conditions
for spontaneous emulsification are derived by Ruschak and
Miller*® in terms of diffusion equilibration composition
trajectories that must necessarily enter the metastable regions.
These authors adopted the Fickian formulation in which the
diffusion flux of each species i is considered to be linearly
dependent on its own composition gradient, with the Fickian
diffusivities of each component equal to one another.

As illustrated, Figure 8 shows the phase diagram for the
partially miscible water (1)/ethanol (2)/benzene (3) mixtures
at 298 K. Bringing pure water (indicated by A) in contact with a
50:50 ethanol/benzene mixture (indicated by B) results in a
mixture composition (indicated by M) that ends up in the two-
phase region of the phase diagram. This mixture will separate
into two liquid phases of compositions A* and B* that lie on the
binodal curve at either end of the tie-line. The phase A will
equilibrate to the composition A*, while phase B will equilibrate
to B*. Using the model of Ruschak and Miller,”® wherein all of
the component diffusivities in the ternary mixture are equal to
one another, the diffusion equilibration trajectories A—A* and
B—B* will both be straight lines in ternary composition space.
We note that the A—A* trajectory lies in the metastable region
between the binodal and spinodal curves. This foray into the
metastable region is a necessary condition for emulsification to
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occur. Vitale and Katz”’ have coined the generic term Ouzo
effect to describe such a process of creating metastable liquid—
liquid dispersions. Since no input of mechanical energy is
involved, this offers an energy-efficient method of producing
nanospheres and nanoparticles.”

The Ruschak—Miller model is overly simplistic because the
linear equilibration trajectories are only realized if the
thermodynamic correction factors are ignored, I'; = §;, and
the Fick diffusivity matrix [D], in either contiguous fluid phase,
degenerates to a scalar diffusivity times the identity matrix.'*"
Detailed analysis of the published experimental data on
diffusivities in several partially miscible ternary liquid mixtures
reveals that the interdiffusion process is strongly coupled due to
thermodynamic correction factors close to regions of phase
transitions, and the off-diagonal elements of the Fick diffusivity
matrix [D] exert significant influences on the equilibration
trajectories.14’15’32’39

The model for the immersion precipitation process is
amenable to the straight-forward extension to cater for
interdiffusion between two partially miscible liquid phases (A,
B), with two different Fick diffusivity matrices [D,] and [Dg];
the detailed derivations are available in the SIL

Figure 9a shows the simulation results for A—A* and B—B*
equilibration trajectories for glycerol/acetone/water mixtures;
both trajectories are both strongly curvilinear in composition
space; in the glycerol-rich phase, the B—B* exhibits a foray into
the metastable region with the potential for emulsification.
Similarly, for water/acetic acid/MTBE mixtures, the ingress of
B—B* into the metastable region (see Figure 9b) in the MTBE-
rich phase may result in emulsion formation. Analogous results
are obtained for water/chloroform/acetic acid, water/acetone/
ethyl-acetate, water/ethanol/ethyl-acetate, and water/acetic
acid/1-hexanol mixtures; see simulation results in Figures 524,
S25, S27, and S29. It is noteworthy that the Ruschak—Miller
model with straight-line equilibration would also have
anticipated the possibilities of emulsification for all of the
aforementioned six mixtures.

We now demonstrate scenarios in which forays into
metastable regions can occur under conditions that are not
anticipated using the model of Ruschak and Miller.”* For water
(1)/ethanol (2)/cyclohexane (3) mixtures, we choose the set of
starting compositions for the ethanol-rich phase (A) and
cyclohexane-rich phase (B) as x50 = 0.375; x40 = 0.62; %150 =
0; x,50 = 0.57; see Figure 10a. The composition of the A—B
mixture, A* = B* = x;; = 0.1875; x5 = 0.595, lies in the
homogeneous single-phase region, but close to the binodal
curve. According to the Ruschak—Miller analysis, no entry into
the metastable regions is possible. Calculations of the A—A* and
B—B* trajectories with reliable estimates of the Maxwell—Stefan
diftusivities, along with proper accounting of thermodynamic
correction factors (using the NRTL equation for phase
equilibrium), lead to curvilinear trajectories. The B—B*
penetrates the metastable zone in the cyclohexane-rich phase.
The composition profiles of the three components are plotted in
Figure 10b as a function of the dimensionless distance
coordinate z/./4D,t. We note that ethanol experiences a

pronounced undershoot during the transient equilibration
process. Concomitantly, cyclohexane displays a slight overshoot.
The overshoot/undershoot phenomena, along with the entry
into the metastable zone, are engendered by the significant off-

diagonal elements of [I] = [0_(5)9,71047102 O_g61494602] in the

cyclohexane-rich phase. Indeed, if thermodynamic coupling
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effects are completely ignored by invoking the assumption I';; =
0 the equilibration trajectory (shown by the dotted line in
Figure 10a) shows no entry into the metastable region.

Analyses of transient equilibration in glycerol/acetone/water,
water/acetone/ethyl-acetate, water/acetic acid/1-hexanol, and
water/acrylonitrile/toluene mixtures yield results that are
precisely analogous to those in Figure 10; see Figures S23,
§26, S29, S32, and S33. In all cases, thermodynamic coupling
induces entry into metastable zones, while the Ruschak—Miller
model calculations do not anticipate such incursions.

The crystal formation and growth as a consequence of
diffusional foray into supersaturated re(gions is also a
consequence of thermodynamic coupling,*”*

3. CONCLUSIONS

For partially miscible ternary fluid mixtures, diffusivities in
regions close to phase transitions are strongly influenced by
phase equilibrium thermodynamics. These influences are
quantified by thermodynamic correction factors I';, whose off-
diagonal elements I'}, and I';; are often significantly large in
relation to the I'}; and I',,. Consequently, interphase diffusion is
a strongly coupled process that results in strongly curvilinear
equilibration trajectories during transient equilibration. Such
trajectories often signify uphill difftusion phenomena, and cause
forays into the metastable regions, lying between the binodal and
spinodal curves. Such forays are essential in the immersion
precipitation process for the preparation of CA, PSF, PEL, and
PVDF membranes, with asymmetry in the polymer distribution
along the thickness. In all cases, if the off-diagonal elements I'},
and I, are set to zero, no polymer precipitation is realized. The
transient development of volume fractions of water in the
polymer casting film exhibits overshoots in all of the four cases;
such overshoots are signatures of uphill diffusion. The
theoretical model developed in this work should provide
guidelines to the polymer chemist for choosing a set of operating
conditions, and mixture compositions in the casting film and
coagulation bath to prepare asymmetric polymeric membranes.

The exploitation of the Ouzo effect for the formation of
metastable emulsions in liquid/liquid mixtures is also crucially
dependent on thermodynamic coupling effects.
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B NOMENCLATURE

Latin Alphabet
a;  component activity, dimensionless
[B]

Ci
\%
ij

D]

matrix of inverse M—S coefficients, m ™2 s

molar concentration of species i, mol m™

M-S diffusivity for binary pair i—j, m* s~

Fick diffusivity matrix, m* s™*

identity matrix, dimensionless

volumetric diffusion fluxes with respect to u", m

number of species in the mixture, dimensionless

gas constant, 8.314 J mol™! K™!

time, s

absolute temperature, K

. mole fraction of component i in bulk fluid phase,
dimensionless

]

3 2 —1

[
[
]IV m s
n

R

t

T

X

4’ volume average mixture velocity, m s™'

V, partial molar volume of species i, m®> mol ™"

z  direction coordinate, m

B GREEK ALPHABET

y;  activity coefficient of component i, dimensionless
0;  Kronecker delta, dimensionless

e(t) position of moving boundary, m

L thermodynamic correction factors, dimensionless
u;  molar chemical potential, ] mol™

¢;  volume fraction of species i, dimensionless

B SUBSCRIPT

referring to component i
referring to the interface
refers to polymer

referring to component n
referring to the total mixture

r-r:BH~

B SUPERSCRIPT

V volume average reference velocity frame

0
(]
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1 Preamble

The Supporting Information accompanying our article Highlighting Thermodynamic Coupling Effects
in the Immersion Precipitation Process for Formation of Polymeric Membranes provides: (1) detailed
development of the Maxwell-Stefan (M-S) diffusion equations for multicomponent fluid mixtures, (2)
comparison of the M-S formulation with the Bearman friction formulation, (3) procedures for estimation
of the M-S diffusivities, (4) description of phase equilibrium using the Flory-Huggins relations, (5)
development of the analytic model to describe equilibration in the immersion precipitation process, (6)
detailed development of the model to describe emulsification in ternary fluid mixtures, (7) data inputs
and simulation details for all investigated mixtures.

All the calculations and simulations reported in this article were performed using MathCad 15." For
ease of reading, this Supporting Information is written as a stand-alone document; as a consequence,

there is some overlap of material with the main manuscript.
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Phenomenological relations for n-component diffusion

2 Phenomenological relations for n-component diffusion

Before setting up the proper phenomenological relations between the diffusion fluxes and the driving
forces, we first consider the various choices of concentration measures, and reference velocities. The

treatment below is essentially a summary of Chapter 1 of Taylor and Krishna.
2.1 Concentration measures

A summary of the wide variety of concentration measures for n-component mixtures that are
encountered in practice is provided in Table S1.

2.2 Diffusion fluxes and reference velocities

If u; denotes the ensemble average velocity of component i with respect to a laboratory-fixed (i.e.

stationary) coordinate reference frame, the molar flux of component i in the laboratory-fixed reference

frame is N, =c,u, and the molar flux of the mixture is N, :ZNi. The modelling and design of

i=1
separation and reaction equipment requires calculation of the diffusion fluxes, J;; these are defined with
respect to an arbitrarily chosen reference velocity of the fluid mixture, u :

J, Ec(ul.—u); i=12,.n (S1)

1 1

Most commonly, we choose u as the molar average velocity of the mixture
n
U= XU, = Xy Xl X, (S2)
i=1

Only n-1 of the fluxes J; are independent because the diffusion fluxes sum to zero
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Phenomenological relations for n-component diffusion

J =0 (83)
The molar fluxes &V, in the laboratory fixed reference frame are related to the diffusion fluxes J; by
N,=cu;=J,+x,N,;; N, =ZN,. (54)

i=1

The molar diffusion flux can also be defined with respect to other reference velocities; some
commonly used ones are summarized in Table S2.

For ideal gas mixtures, the molar average mixture velocity equals the volume average mixture
velocity. The mass average reference velocity frame is convenient to use when the equations of
conservation of mass need to be solved in conjunction with the momentum balance relations. The
volume average mixture velocity is convenient for liquid mixtures. For diffusion of ions in dilute
aqueous solutions, it is convenient to define the diffusion fluxes with respect to water (the nth

component).

2.3 The Generalized Fick’s law for n-component diffusion
Choosing the mole fraction gradients as the driving forces, the diffusion fluxes

Jo=c,(u,—u); i=12,.n

with respect to the molar average reference velocity may expressed as linear
functions of the (n-1) independent driving forces, by defining a (n-1) x (n-1) dimensional Fick

diffusivity matrix [D]

(D)% (x) (S5)

(J)=—c, [D]d(x) - -

1
dz 74

where V = Z kak is the mean molar volume of the mixture.
k=1

2.4 Other choices of reference velocities in the definition of [ D]
The Fick diffusivity matrix [D] is defined in eq (S5) in terms of molar diffusion fluxes, J,, that are,

in turn, defined with respect to the molar average reference velocity frame u . Other choice of fluxes and
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Phenomenological relations for n-component diffusion
reference velocities are encountered in the chemical engineering literature; see Section 3.2.2 of Taylor
and Krishna.” See also Table S2.

For mass diffusion fluxes, j =p, (v, —v); i=12,.n; Z J; =0 defined with respect the mass

i=1

average mixture velocity v = Za)iui , we write (j)=— pt[ s ]@
i=1 Z
The mass fractions are related to the mole fractions X
a)i
. xM. xM. c, M. O, — ) .
w, = P ==t x,=—t=—" :VIM , where M; is the molar mass of species i, with
. ‘
P; Z X, Mi M ¢ Z jwt i
i=l j

the units kg mol™, and M is the mean molar mass of the mixture is M = inM P =

=l ;
2,

M.

N

mixture mass density is related to the total molar concentration of the mixture p, = ct]\_4 =

For molar diffusion fluxes, J =c, (ui —uV); i=12,.n V.J =0 . defined with respect the

1

. . o — . d(c o
volume average mixture velocity u” =Y ¢, Vu,, we write  (J) = —[DV]#. This is a common
i=1 z

choice in the experimental determination of diffusivities.
For n-component mixtures, the numerical values of the elements of [D], [ e ], and [DV} are
different. However, the determinants of the corresponding matrices are equal to one another.”

p| =|p

=[] (S6)

M1M2
o, 0
Ml MZ

and the Fick diffusivity is the same for the three different choice of reference velocity frames®

MM,
(lel +x,M, )2

For the special case of a binary mixture, n =2, dx, = ~dw; do, = dx,,
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. do,
L =P (”1 _V) =-pD, d_Zl
dx,
Ji=q (”1 _“):_ctDmE (S7)

J =¢ (ul —uV) =-D, %

The inter-relationship between J; and j; is summarized in Table S3.
The formulae for transformation of the Fick diffusivity matrix from one reference frame to another are

provided in Section 3.2.4 of Taylor and Krishna.* For example, for a ternary mixture, n = 3, the

transformation between [D], and [ ’”“”] is

o |- LI LATs [o]=[a) [T
e -of1-22) o122 = o5 o] -

For the ternary mixture of nCgH,s(1)/nC;oH22(2)/1-methylnapthalene(3) with mass fractions o) = @»
= w3 =0.3333 at 295.65 K, Leahy-Dios et al.’ report experimental data on the Fick diffusivity matrix in

1.99 -0.93

the mass average reference velocity frame: [Dm“”]z{ 042 24

}xlO‘9 m’s™' ; the large magnitudes

of the off-diagonal elements are particular noteworthy. The corresponding mole fractions of the three
components are x; = 0.384, x, = 0.308, x3 = 0.308. On transformation using eq (S8), we obtain the
matrix  of  Fick  diffusivities in the molar average reference velocity frame

[D]{ .92 -1.07

= x107 m?s™".
—0.333 247

For a ternary mixture, n = 3, the transformation between [D], and [DV] is given by eq (S9).
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-3y -v) -4(v,-7,
O A S
—2-v) -2(m-n)

Alimadadian and Colver;* report the elements of the Fick matrix [DV] in the volume average

reference velocity frame for acetone(1)/benzene(2)/methanol(3) mixtures at 9 different compositions. At

3.819 042

xl = 0350, x2 = 03027 x3 = 0348’ |:DV] :|: 0 561 2 133

:|><109 m’s™ . The partial molar volumes are

V. =74.1x10°; ¥, =89.4x10"; ¥, =40.7x10° m’ mol". Using equation (S9), we can convert to

3.651 —0.069

x10” m’s™'; see Example
-0.300 2.303

the molar average reference velocity frame to obtain [D] :{

3.2.1 of Taylor and Krishna® for further calculation details.

2.5 The Maxwell-Stefan formulation for 7~-component diffusion

The Maxwell-Stefan approach, that we adopt in this article, has its origins in the pioneering works of
James Clerk Maxwell’ and Josef Stefan® who analyzed diffusion in ideal gas mixtures. The Maxwell-
Stefan (M-S) formulation is best understood by considering z-directional diffusion in a binary gas
mixture consisting of species 1 and 2, contained within the control volume shown schematically in
Figure S1. The cross-sectional area available for diffusion is 1 m” and the length of the diffusion path is

dz. If the change in the partial pressure of component i across the diffusion distance dz is —dp;, the

is —@. The number of moles of species i per m’, ¢, =%, and

dz '

. - . 3
force acting on species i per m

. S T dp, . . .
therefore the force acting per mole of species i is — 22 9P hich for an ideal gas mixture at constant

p; dz

temperature also equals the chemical potential gradient —%. This force is balanced by friction
VA

between the diffusing species 1 and 2, each diffusing with a velocity u, (cf. Figure S2). We may expect
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that the frictional drag to be proportional to the velocity difference (ul —uz), and we write

d RT RT
e —X, (u1 —uz) where the term —— 1is to be interpreted as the drag coefficient. The multiplier
dz D, Dy,

x> in the right member represents the mole fraction of component 2; this factor is introduced because we
expect the friction to be dependent on the number of molecules of component 2 relative to that of
component 1. The Maxwell-Stefan diffusivity P,, has the units m* s and the physical significance of

an inverse drag coefficient. The extension to n-component mixtures is intuitively obvious and can be
written for component 1, for example as follows

d RT RT
_d_f‘Z’I:B—ux2 (ul—u2)+B—l3x3 (TR . +—x, (u,—u,) (S10)

The corresponding relations for components 2, 3, ..n are written down in an analogous manner. The left
member of eq (S10) is the negative of the gradient of the chemical potential, with the units N mol™; it
represents the driving force acting per mole of species 1. The term RT, /D[j is interpreted as the drag
coefficient for the i-j pair. The multiplier x; in each of the right members represents the mole fraction of
component j; this factor is introduced because we expect the 1-j friction to be dependent on the number

of molecules of j relative to that of component 1. The M-S diffusivity D, has the units m” s™ and the
physical significance of an inverse drag coefficient. The magnitudes of the M-S diffusivities D; do not

depend on the choice of the mixture reference velocity because eq (S10) is set up in terms of velocity

differences. Equation (S10) may be re-written as

1 dy, xj(”i_”j)
RT dz _; D, (S11)

Multiplying both sides of equation (S11) by x; we get

_Ldﬂi 3 xixj(ui—uj)_ 1 (xjxiui—xixjuj)_ Ul (xjciui—xl.cjuj)
Rf % b X D =2 ¢.b, (S12)

J=1 i J=1 i J=1
J#i J#i J#i

Introducing the expressions for fluxes N, =c,u, =c,x;u, and J, =N, —x;N, in eq (S12), we get
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_ X _ J L Il i=12,...n
RT dz “5 ¢D, o ¢Db G

I
The Maxwell-Stefan diffusion formulation (S13) is consistent with the Onsager formulation; the

Onsager Reciprocal Relations (ORR) imply that the M-S pair diffusivities are symmetric

b, =D;; i,j=12.n (S14)

The second law of thermodynamics dictates that the rate of entropy production must be positive

1

1 &dy, 1< ,u ,u)
___2 —’JA_———E ———12J, 20
o . 2 (S15)

Insertion of the Maxwell-Stefan eq (S13) into eq (S15) we obtain on re-arrangement’

o= e RY S —u [ 20 (316)
i=l j=1 [‘

The term L% on the left hand member of eq (S13) is the generalization of the mole fraction
z

gradients, used as driving forces for ideal gas mixtures.

For non-ideal liquid mixtures, the chemical potential of component i, 4, are related to the gradients of
the component activities, a; = Vi%;, where y; is the activity coefficient:
o= +RT1n(ai)= w +RT1n(}/ixi) (S17)
For gaseous mixtures at high pressure, the chemical potential of component i, u are related to the
gradients of the component fugacities, f, =@ p, =@x.p
1= +RTIn(f;)=p +RTIn(gxp,) (S18)

where ¢ is the fugacity coefficient and p; is the total gas pressure.
In proceeding further, it is convenient to express the left member of eq (S13) in terms of the mole

fraction gradients by introducing an (n-1) x (n-1) matrix of thermodynamic correction factors [F] :
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X, dp;, _dlna, &y, Ay, ..
i B A r.—~; =6, +x,—; ,j=12...n-1
T X, i T, = i, (S19)

j=

J
For non-ideal ternary liquid mixtures, the elements of [F] can be calculated from Van Laar, Wilson,

UNIQUAC or NRTL models describing phase equilibrium thermodynamics.> ® The analogous

expression for high pressure gaseous mixtures is

_ . 2l dx, _
Sodu_ dinfi S gy rij:gﬂx%; ij=12..n—1 (S20)

J=1 J

RT dz " dz

In this case, the elements of [F] can be calculated by analytic differentiation of an Equation of State
(EOS) such as the Peng-Robinson (PR) EOS; for further details see Krishna and van Baten.’ For binary

Jln f
9

1 1

mixtures, explicit analytic expressions for I' = x, =0, +x, % for PR EOS are provided in the

paper by Tuan et al."’

We also define a (n-1) x (rn-1) matrix of inverse M-S diffusivities [B ] whose elements are given by

i X . 1 1 . s 4
Bii =—+ —]T, Bg’/’(i:tj) (B— - B—], i,j=12..n-1 (S21)

Combining eqs (S13), (S19), (520), and (S21), we can re-cast eq (S13) into (n-1) dimensional matrix

notation
1) L my = —e 1T e 4 Lragmd)
M- Lm0 )= 8] (15 (Al S - S A 522)
where we have additionally defined
[A]=[B]" (S23)

The inter-relationships between the Fick, and the Maxwell-Stefan diffusivities is

(2]= (8] '[rI-[ATI)
D=L

dz

(S24)
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Equation (S24) underscores the direct influence of mixture thermodynamics on the elements D;; of the

matrix of Fick diffusivities [D] )

For an ideal gas mixture, the thermodynamic correction factors I'; =0, and eq (S24) reduces to

[A]= [B]f1 =[D]; ideal gas mixture
For a binary mixture, n =2, eq (S13) simplifies to

_Ldﬂl :(xZJl_leZ)
RT dz ¢,D,

Introducing the constraints J, =—J,, and x, =1—x,, eq (S26) yields

x, dy,

dx
“Pepr &

dx
=—¢, D, Iz ¢,Dy, —

J] = t D
dz

in which the Fick diffusivity for binary mixture is

D12 :DIZF

(S25)

(S26)

(S27)

(S28)

For a ternary mixture, n = 3, eq (S24) gives the following explicit expression for the four elements of

the Fick diffusivity matrix
-1
X KX x(l_lj
1
[Dn D12:|_ Dy, D, Dy b, by [F“ Flz}
D, Dy, 1 1 XX, X Ly Ty
“\p, b, B, B, B,
L 12 23 13 12 13|

The matrix inversion in eq (S29) can performed explicitly and we obtain

_Dn D12}:|:A11 A12j||:1—‘11 1ﬂ12},
D, Dy Ay Ay T, Ty
Bl3(x1D23+(1_x1 )Dlz) x1D23(D13_BIZ)

_A“ Alz}[ x2D13(BZ3_BIZ) Dz3(x21913+(1—x2)912)}
Ay Ay 0D u+x,D+x, D,

The determinant of [B ] for a ternary mixture is

(S29)

(S30)

S13
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DIZDIS D12B23 D13D23 |A

|B|— X " X " X3 _1, ||_ D, D30,y

A= S31
XDy +x, D)5 + x3Dp, ( )

D, D; D)y,
»tX, D+ D),

1/2
The quantity ‘A‘ = \/ ) can be interpreted as a measure of the “average”
X

magnitude of M-S diffusivity in the ternary mixture.

For stable single phase fluid mixtures, we must have |F| > 0. In view of eq (S24) the condition of
phase stability translates to
|D|>0; |[|>0; phase stability (S32)
Equation (S32) implies that all the eigenvalues of the Fick matrix [D] are positive definite. It is

interesting to note that thermodynamic stability considerations do not require the diagonal elements Dj

to be positive. If recourse is made to the kinetic theory of gases, it can be shown that the diagonal

elements D, are individually positive for mixtures of ideal gases. The off-diagonal elements D, (i # ;)

can be either positive or negative, even for ideal gas mixtures. Indeed, the sign of D,(i # j) also
depends on the component numbering.

The condition for phase stability in a binary fluid mixture is
D, 20; I'>0; phase stability (S33)

The occurrence of I' < 0 implies vapor/liquid or liquid/solid phase transitions.

2.6 Estimation procedures for the matrix [A]

11, 12

For binary liquid mixtures, the Vignes interpolation is widely used to describe the composition

dependence of the M-S diffusivity
b, =(py ) (B3~ )* (S34)
where the limiting values of the M-S diffusivities are

x—1 _ x—1, X, X, —>1
D2,lself - BIZ1 s Dl,éelf - D122 (835)
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The infinite dilution self-diffusivities can be estimated using the Wilke-Chang, Tyn-Calus procedures

that are described in detail by Taylor and Krishna.”

The description of the composition dependence of the M-S diffusivities Dj in liquid mixtures

containing three or more species is much less developed. Krishna and van Baten'' postulate that the M-

S diffusivity of the i-j pair in the ternary i-j-k mixture depends on Djir and D; ¢ in this mixture, but

weighted with mole fractions on a k-free basis, i.e.

. X
D, =—" D . +—1—D

i i,self
ij xi+xj Jself X +x

Each of the three M-S pair diffusivities D;; depends on six infinite dilution parameters

x =1, x,—1, x—1, x3—>1, X, 1, x3—>1
Dlz b BlZ b Dl3 b Dl3 b DZ3 b DZ3

These limiting values of Dj; at the edges of the ternary composition space are

=1 _ x—-l, -1 x,—1, -l _ xl x3—l1 xz X3l
P =D P =D pyt=—2 _pslyi T p

2,self 2 1self 2 2.sel Lself >
self self xl +x2 self xl +x2 self
-1 _ x—l, x=>1 oyl X,—l -xl Xyl )C3 x,—1,
BIS - D3,se[f’ DIS - Dl,se(f ’ DIS - D3,self + Dl,self ’
X, + X5 X, + X3
=l oyl 3=l _ sl ;-1 X, x—l x3 x—l,
B23 - D3,se[f > B23 - D2,self’ D23 - D3,self + D2,se[f’
X, + X3 X, + X3
Noting that the following limiting values hold
x;—l1 x—l, X, =l x>,
Dy, = DZ,]self’ Dy = Dl,fvelf >
x;—l1 x—l, x>l x3—1,
Dy = D3,]self' ; D= Dl,fvelf >
x,—1 X1, x>l _ pyx-ol,
Dy = D3fs‘elf’ Dy = 2Zse_1f >
we derive
x—>1 _ x—l, x—l X1, x>l )Cl x3—>1 xz 31,
B12 = DZ,self’ BIZ = Dl,self > BIZ = st + B13 >
X + X, X + X,
x—=>1 _ nyx—ol, 3=l oyl xX,—=l Xl X, —1 -x3 x,—l,
B13 = D3,self’ B13 = Dl,self > DIS = Dzs + BIZ >
X, + X3 X + X3

x,—1 >l N N Xyl X >l X >l
D;32 = D3xf€elf'; D;; = D;ivelf'; BY} = : le3l + 2 BIXZl 5
’ ’ X2 + )C3 x2 + X3

Equation (S40) is the proper estimation procedure for D;’ -

(S36)

(S37)

(S38)

(S39)

(S40)
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For a ternary mixture, Wesselingh and Bollen' have suggested the following extension of the Vignes

interpolation formula (S34)

X;—> i X]-—>1 X Xp—> Xk
b, = (B@/ 1)} (B@/ ) (Btj 1) (S41)
For the estimation of B;ﬁl, the i - j pair diffusivity when both i and j are present in infinitely dilute

concentrations. Krishna and van Baten'' suggest the following extension of eq (S38)

(B1X33 -1 )‘1/()‘1 +x3 )(B;c33 -1 )‘2 (1 +27)
b= (o ) o (542)
Ph -l _ (Dx, -1 )‘fz/(xz X3 )(Dx, -1 )‘3/("2 +x3)

23 12 13

x3—1
BlZ

For the special case of an equimolar mixture we obtain

x3—=>1 _ “ x3 =1 yx; —>1 ’

BIZ - D13 D23
X, =1 [‘ Xy, =1 yx, =1 ’

BIS - DIZ BZS (S43)
x3—>1 “ x; =1 yx =1 ’

BZ} - BIZ D13

The simplified interpolation formula (S43) was proposed by Wesselingh and Bollen."

The square root of the determinant |A|”2 may be viewed as a measure of the “magnitude” of the M-S

diffusivity that characterizes diffusion in a ternary mixture.

|A|1/2 :\/ D12B13B23 (S44)

XD 3 +x,Dp5 + x3D),
Close to the regions of phase splitting, the thermodynamic coupling effects predominate and a simple
procedure for the estimation of the Fick diffusivity matrix has been proposed'*
[P]=[A][r] (845)

The accuracy of the estimates using eq (S45) has been verified by comparison with a very wide range of

MD simulations and experimental data. '*'°
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2.7 List of Tables for Phenomenological relations for n-component diffusion

Table S1. Concentration measures

Concentration measure units

Inter-relation, constraint

xi, mole fraction of species i | - o,
c, M, W — <
x,=—=—-= —=—M;) x, =1
Ct Z a)l M[ i=1
= M,
@;, mole fraction of species i | - P, xM, xM, &
S -
i=l1
©oaM,
i=1
¢;, molar density of species i | mol m™ o . |
C == ch. = ¢, = mixture molar density==
M V

i i=l

i, mass density of species i | kgm’

p. =cM; Z p, = p, = mixture mass density

i
i=1

M;, molar mass of species i | kg mol’'

- ¥
M = ) x;M. =mean molar mass of mixture

i=1

3

I, . 3 -1
V., partial molar volume of | m" mol

n

= 1 .
= > x,V, =— =mean molar volume of mixture

N

1

¢, volume fraction of |-

species i

RS
Il

D

=

fi, fugacity of species i Pa

Y f, = f, = total mixture fugacity

i=1

M, molar chemical potential | J mol ™!

of species i

=4 +RTInf,
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Table S2. Choice of reference velocity frame.

Reference velocity

Constraint on molar fluxes

n
u= inui = molar average mixture velocity

i=1

$5,=0
i=1

n
V= Za)iul. =mass average mixture velocity

i=1

n _ n
u’ = Zci Vi, = Zﬁul = volume average mixture velocity

i=1 i=1

n
u,= Zé'mul. = velocity of component n
i=l
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Table S3. Inter-relation between J; and j; for binary mixture

Molar fluxes Mass fluxes
Jy=cx, (u,—u)su = xu, +x,u, Ji = po (u,—v);v = ou, +o,u,
Ji=¢x (“1 — XU, _xzuz) =G XX, (“1 _”2) Ji =P (”1 —ou, = 0)2”2) = P00, (”1 _uz)
— 0, — ) x.M. xM —
x,=—M;x,=—=M;¢, Py a)i=&= —— = p,=c,M
| M, M

P Z XM, M

J M ( ) M jl:pta)la)Z(ul_MZ):Ctxl'XZ(ul_MZ)
| = P00, 1~ U ) = Ji
M MM . MM, MM,
152 172 =cx X, ——(u, —u, ) =——=J,
Ji Y (1 2) W 1
1
MM
- ——do; do = ———dx,
ﬁ & (x1M1+x2M2)
M, M,
1 J—
== O =M, +x,M,
M M, M,
M _MM
dx, = doy; 2dx1
MM,
€ XX, M
p, oo, MM
dx . dw
hebey h=mpPay
M MM
dxlz M da)l;ct:é da)l_ delapt_CM
MM,
J, =—-p,D M do, Si=-¢ 12Mﬂ42%
1 Pl MM, dz o M z
M dx
MM, D % . Jr=—¢D,—=J,
— Y1 =Pl I =] M M, dz
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2.1 List of Figures for Phenomenological relations for n-component diffusion

Force balance

area =1 mz\

v
|

Piz ] Piz+dz

b4 z+dz

Figure S1. A force balance on a control volume containing an ideal gas mixture.
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Force is balanced by friction

-— -«— 2
u, 2 u;
Force acting per _ Friction between
mole of species 1 B 1 and 2
1 1 I 2

Figure S2. The force acting on each of the species in the diffusing binary mixture of species 1 and 2 is

balanced by friction between the species 1 and 2.
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3 Flory-Huggins description of polymer solution thermodynamics

The proper description of diffusion in polymer solutions is important in wide variety of contexts such
as permeation across polymer membranes; for an introduction to this topic see Wesselingh and
Krishna.'® Diffusion in polymer solutions is strongly influenced by solution thermodynamics, that is

most convenient described by the Flory-Huggins model. '¢'*

3.1 The Flory-Huggins model for polymer solutions

The Flory-Huggins equation in its simplest form deals with molecules that are similar chemically, but
differ greatly in length. An example might be cross-linked polyethylene with the penetrant propane
(CsHsg). The Flory-Huggins model is based on the idea that the chain elements of the polymer arrange
themselves randomly (but with the molecules remaining connected) on a three- dimensional lattice; see
schematic in Figure S3. The guest species could be a solvent (e.g. acetone, toluene), or an anti-solvent
such as water. The guest molecules are also termed “penetrants” in the context of polymer membrane
permeation. In this article, we use the terms “solvent”, “guest”, and “penetrant” interchangeably, and
referring to the same species.

The Flory-Huggins model does not take effects of crystallization or other inhomogeneities into

account. The resulting equation for the activity of the penetrant is a simple function of the volume

fraction of the penetrant in the membrane. We use ¢ to denote the volume fraction of the penetrant

species i; the volume fraction of species i is ¢ =¢,V; where ¢, is the molar concentration, and V; is the

partial molar volume of the penetrant species i. Other concentration measures are listed in Table S4. The
use of mole fractions is not convenient for description of the thermodynamics of polymer solutions
because the molar mass of the polymer chains are ill defined."®

The Flory-Huggins (F-H) model for binary mixture of solvent (1) and polymer (indicated by subscript

m) is
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%
Ina, =In(¢)+(1-¢)~¢, ==+ 1.4,
- A (S46)

¢m = 1 - ¢1
Equation (S46) contains a non-ideality, or interaction parameter y, ~that is assumed to be
independent of the volume fraction. If y, >0, the solvent and polymer repel, or dislike, each other. If

Y. <0, the penetrant and polymer attract each other. If y, =0, the solvent and polymer are similar in

nature and there are no attractive or repulsive forces.

Figure S4 illustrates the influence of the interaction parameter y, ~on the activity (a;) and

Olng,

thermodynamic correction factor, I' = , that plays a pivotal role in diffusion. In these

In g,
calculations, the ratio A =0, 1.e. the partial molar volume of the solvent is negligible in comparison to

the molar volume of the polymer. If y,  is positive, the solution can split into two phases for a range of
volume fractions, one rich in polymer and one rich in solvent; the demixing zone is indicated in cyan in
Figure S4.

If the interaction parameter y, 1is dependent on the volume fractions, the F-H model for unary

systems needs to be extended as follows

Ina, =1n<¢1>+(1—¢1)—(1—¢1)%+zlm(1—¢1)2+¢1(1—¢1)2% (847)

For ternary mixtures of two solvents (penetrants), 1 and 2, and the polymer (m), there are three

interaction parameters in the F-H description of phase equilibrium: y,,, 7,,., ¥,,, - If each of the three
interaction parameters y,,, ¥,,.» X»» are dependent on the volume fractions of the penetrants, ¢,,4,, the

F-H model for the component activities a,,a, of the penetrants in the polymer membrane (m) are
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Iy =10+ (=)= 2= b (2t + 2108, ) (6 )~ 2 - i, i 22

14

m 2 uZ

8/{1m 2 a/’L/lm Vl 2 6/{2m Vl 2 8Zan
—uu +=Lylg L2m L —Aam
1 2¢m a ¢l¢m a ¢m V 2¢m aul V2 ¢2¢m a ¢m
T L _ (S48)
Ina, = In(,) +(1-¢,) - ¢1=—¢ Lol pp 2 2t |(640,) 2 Yoy, + Lanzg, o
Vm V I/1 auZ
vV, , 0 0 0 , 0
Doy O Ve Oy Sy gp O
I/l auZ Vl a¢m a 1 a¢m
In eq (S48), we have defined u, = 2 ;ou=l-u, = i ;o g, =1-(d+0,).
+ 0, ¢+,

Equation (S48) corresponds precisely with equations (6) and (7) of Mulder et al.'” The same set of

extended equations are also given by Yang and Lue® and Varady et al.”!

In the scenario in which the penetrant-polymer interaction parameters y,, , y,, are independent on the

volume fractions of the penetrants, eq (S48) simplifies to yield

= —d)— Vl _ K _ 5 _ X1
Ing =In(g)+(1-¢)-9¢, 72 P, Vm ()(12¢2 + Zin®, )(¢z +4, ) Xom 72 0,9, —uu,p, ou,
AR A A
ln 612 = 1n(¢2)+ (1 ¢2) ¢l ?T ¢m V_m (ZIZQ _1 + Z2m¢m}(¢ ¢ ) Zlm V ¢¢ 7?“12¢2 ailzz

3.2 The Flory-Huggins model for liquid mixtures of two solvents
As a special (degenerate) case, eq (S48) can be applied to describe the component activities for binary
liquid phase mixtures of two different solvents, 1 and 2. Let ¢",4, represent the volume fractions of

components 1 and 2 in the bulk liquid mixture. These volume fractions are related to the mass fractions

np —, where p!l is the liquid phase mass density of the penetrant

>
L

i=1 P

o’ in the bulk liquid mixture ¢ =

species i. Other concentration measures, and inter-relations, are listed in Table S4. We also have the
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constraint ¢ + @, =1. The component activities in the liquid mixture are obtained from eq (S48) by

L
omitting terms containing y,, and y,, ,and setting ¢ =0; & +¢ =1, and u; = e L =g,
+
1 2

Inal =ln(¢1L)+(1_%)¢zL 20 >2 o (4 )2%
o ; (S50)

v, V. 2 0y,

Inat =In(¢H)+(1-=2)pf +=2 iyl =12
=) (1= + (4] 45 Z g (o) 50"
Equation (S50) corresponds precisely with eqgs (9), and (10) of Mulder et al." The 1, 1s related to the

excess Gibbs free energy

X2 = |:x1 In( 1)+xz ln(_)"‘G( }
1¢2

RT
4 ¢ (S51)
GQXCESS
RT =x, In(y,) +x, In(y,)
o
. . cc M, o — .
In eq (S51), x;,x, are liquid phase mole fractions x; =—=—-" ZM—’M , where M, is the molar
G @, i
2

- n
mass of component i (units kg mol™), and M = ZX[M ; 1s the mean molar mass of the mixture; see
i=1

Table S4.

The interaction parameter y,, for mixtures such as water/ethanol are strongly dependent on the liquid

excess

mixture composition. The excess Gibbs free energy

= x, In(y,) + x, In(y,) can be calculated from

activity coefficient models such as that of Wilson, NRTL, and UNIQUAC.”’ 20 Mulder et al."” have also

shown that the dependence of y,, on the volume fractions of components in the bulk liquid mixture can

L

be expressed as a fourth-order polynomial in u) = e =g,
+
1 2
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X =a+ b(uzL )+ c(uzL )2 +d (uZL )3 + e(uzL )4; bulk liquid mixture
Lo # ¢ (S52)

U, = 1 :¢1L:1_”2L:1_¢2L

G+l ¢+ oy

L. L _
:¢2=u1 =

The use of the fourth-order polynomial expression is particularly convenient for the evaluation of the

X1
I
)

derivative

in eq (S50). The five coefficients, a,b,c,d,e can be determined by fitting of the

excess

Wilson, NRTL, and UNIQUAC models for

=x, In(y,) + x, In(y,) -

A significant contribution of Mulder et al." is to demonstrate that the interaction parameter y,, for

the same two penetrants in the polymer matrix phase experiences the same composition dependence on

the normalized volume fraction of component 2 within the polymeric solution: u, = 5 ¢2¢ , 1.€.
+
1 2

2 =a+b(u,)+c(u,) +du,) +e(u,)'; polymermembrane phase

u, = 9, ju, = % =1-u, (853)
¢1+¢2 ¢l+¢2
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3.3 List of Tables for Flory-Huggins description of polymer solution

thermodynamics

Table S4. Concentration measures and inter-relationships.

Concentration measure units Inter-relation, constraint
9
xj, mole fraction of species i | - o,
C M. 0 — &
x,=—"=—="—=—M;) x =1
Ct z (0] M,‘ i=1
i=1 M,‘
@;, mole fraction of species i | - P, xM, XM,
ST -
CSaw, MH
1 1
i=1
¢i, molar density of species i | mol m” JoR ) ) 1
¢ =—; ch. = ¢, = mixture molar density==
M i =l V
; . 3
., mass density of species i | kg m " ) )
Py Y P p. =cM; Z p, = p, = mixture mass density
i=1
M;, molar mass of species i | kg mol’' — & .
M = Zx[M . = mean molar mass of mixture
i=1
¥, partial molar vol £ | m® mol” n
~, partial molar volume o = = )
i» P V =) x,V; =— =mean molar volume of mixture
i=1 c;
i
¢, volume fraction of |- o,
species i b=cV = an
P o,
i=1 p[
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3.4 List of Figures for Flory-Huggins description of polymer solution

thermodynamics

Guest 2

Figure S3. Schematic showing mixture permeation across polymeric membrane. The inset illustrates

the Flory-Huggins lattice model.
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(a) 7 (b)

penetrant(1)/polymer(m); 298.15 K penetrant(1)/polymer(m); 298.15 K

15

1.5
demixing — =1
1.0 70

0.5

0.5 0.0

Activity of penetrant (1) in polymer, a,
Thermodynamic correction factor, I’

-0.5

0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Volume fraction of penetrant, 4 Volume fraction of penetrant, ¢

Figure S4. Influence of the interaction parameter on (a) the activity, a;, and (b) thermodynamic

) . .V : )
correction factor, I'. In these calculations, the ratio V=1 =0, i.e. the molar volume of the penetrant is

m

negligible in comparison to the molar volume of the polymer.
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4 Diffusion in polymer solutions

4.1 The Maxwell-Stefan (M-S) description of diffusion in polymer solutions

We develop the Maxwell-Stefan (M-S) equations to describe the diffusion of n penetrants, 1, 2, 3,..n
in a polymer matrix (m). The M-S equations represent a balance between the force exerted per mole of
species i with the drag, or friction, experienced with each of the partner species in the mixture. We may
expect that the frictional drag to be proportional to differences in the velocities of the diffusing species

(ul. —u j), where u, is the velocity of motion of the penetrant i. For diffusion in multicomponent

polymer solutions such as acetone/cellulose acetate, un, # 0, i.e. the polymer chains have a finite velocity

of diffusion. For a mixture containing a total of n penetrants, 1, 2, 3,..n we write

du,  RT RT RT
kA 2y _ — X — et—X -
Y 2(“1 ”2)"' D 3(“1 ”3)"' + N m(ul u’")
du, _RT RT RT
_Ah Ry _ — X — t—X -
i b, 1(“2 ”1)"' D, 3(”2 u3)+ + N m(u2 um)
--------- (854)
du, RT RT RT
_%:D_MXI(LI" _”1)+D_MZX2(”;1 _“3)+"'+7X'ﬂ(u" _u’")
_%:EXI(M;% _”1)+£X2(“m _“3)+"'+£X"(um _u")
dz Bml m2 mn

The left members of eqs (S54) are the negative of the gradients of the chemical potentials, with the
units N mol™; they represent the driving force acting per mole of species 1, and 2. The subscript m
refers to the polymer chain, that is regarded as the (n+1)th component in the mixture. The term R7/D,,
is interpreted as the drag or friction coefficient between the penetrant i and the polymer. The term

RT / D, is interpreted as the friction coefficient for the i-j pair of penetrants. The multiplier Xj in each of

the right members represents a measure of the composition of component j in the mixture because we
expect the friction to be dependent on the number of molecules of j relative to that of component i.
There are many possible choices for composition measures X.

Mole fractions, x;
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Molar concentrations, ¢;
Mass fractions, @
Partial mass densities, p;
Volume fractions, ¢

The inter-relations between these concentration measures are provided in Table S4.

Written in terms of mole fractions, x;, eqs (S54) are

du, RT RT
a:f;l =B—12x2( . u2)+jx3(ul—u3)+...+191m xm(ul—um)
dy, _ RT RT _
7 D, 1( 2 “1)+ 3 xs(“z u3)+ +D2m xm(u2 ”m)
......... (S55)
d(gn :g_:xl( n “1)+7x2(”n _”3)+ +7xm(un _um)
d;zm :g_::xl( m_”1)+7x2(”m_”3)+ +7xn(um_u")

Only n of the chemical potential gradients % are independent, because of the Gibbs-Duhem
z

relationship
x1%+x2%+...xn%+xmdﬁ=o (856)
dz dz dz dz

The M-S formulation is consistent with the theory of irreversible thermodynamics. The Onsager

Reciprocal Relations imply that the M-S pair diffusivities are symmetric
b, =D, (S57)
Written in terms of volume fractions, the n independent chemical potential gradients are related to the

velocity differences as follows
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_Ld;u[ — N ¢/(u’V_u/)+¢m(u’V_um)’ i:1,2,...n
RT dZ j‘zl Bl/ Bim
J# (858)
1 dyi_ < ¢[¢_j(ui_uj) ¢z¢m(u1_urn) -
_¢i_ — - + % 5 1—1,2,...1’1
RT dZ j=1 Dij Dim

The modified M-S diffusivities B; are related to the M-S diffusivities D, =D, , defined in terms of

mole fractions, by: ¢,D;V; = %’ =D;, and eb,V = 7 =P, . The symmetry constraint

imposed by the Onsager Reciprocal Relations is

V V V Vv
D, :i? =D, = %" v %" = % (S59)
v, v,

It is important to note that the modified M-S diffusivities B; are not symmetric. Specifically, for a

ternary mixture of penetrants 1, 2, and polymer (m), the symmetry constraint demanded by the Onsager

Reciprocal Relations is

v

S

-7 (S60)

S|

We define the volumetric flux of component i in a laboratory-fixed reference frame, expressed as m’

2 -1
m- S

N iV =du, (Se61)
The corresponding molar flux of component 7, in a laboratory-fixed reference frame, expressed as mol

m2stis N, =cu, =

l

u. =

1

s

N/
A

Let us define the volumetric diffusion fluxes J! relative to the volume average velocity of the

. Vv
mixture u ,
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n

J =g (u—u"); Y I +J) =0
i=1

T =4, (u,—u") == =T} -~ J]; (S62)
uV = ¢1u1 + ¢21/l2... + ¢nun + ¢mum

Equation (S58) can be re-written in terms of the volumetric diffusion fluxes J;

n (g —gJ" J -¢J!

_ Ldﬂ122(¢/ i ¢1 ./)+(¢’" ! ¢’ ’”), i=1,2,..n (863)

"RT dz 1o b,

J=1
J#

i i

It is helpful to express the chemical potential gradients in terms of the volume fraction gradients by

introducing an nx n dimensional matrix of thermodynamic factors [F]:

dy, dlnag, & dg,  Olng, . .
i Hi =g L Fij—f; Fij :ﬂ—’; i,j=1,,.n (S64)
RT dz dz = dz ¢j 81n¢j
Let us define an nx n dimensional square matrix [B]
R [ 1o ]
B__:_l+z—+—m; B, .=¢|——-— (S65)
ii v v v i(i#j) i v v
Dim k=1 b, Bim jj Bg/ Dim

It is also convenient to define an nxn dimensional square matrix
[A]=[B]" (S66)
Combining eqs (S63), (S64), and (S65) we may write an explicit expression for the volumetric

diffusion fluxes J; , expressed in n dimensional matrix notation

J (Z (S67)
J")=—[A][T
()=~ (Al
The nxn dimensional square matrix of Fick diffusivities [DV ] may be defined
[ D" |=[A][r] (S68)
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4.2 Bearman friction formulation, and comparisons with M-S formulations

In the vast literature on diffusion in polymer solutions,”* *

it is customary to use the friction
formulation for multicomponent diffusion in polymer solutions; this formulation, normally credited to

Bearman,”* is written in the following manner that is equivalent to equation (1) of Price and

Romdhane®
dﬂi n ,0 5
E_j_=_1M_jng(ul_uj)+ mglm(ul—um), i=1...... n
ﬁzci; i=1...... n (569)
d ) n
d—/;’_Zc]gl/ (ui—uj)—i-cmglm (ul —um), i=1...... n

Comparing with the Maxwell-Stefan formulation (S58), we can derive the following inter-relations

between the friction coefficients ¢;,g,, in the Bearman eq (S69) and the modified M-S diffusivities D;

p./gii :ﬁ PnSim :¢_m
RTM, B’ RIM, D,

_ . (S70)
1 RT¢, RTV, 1 RT$, RITV,
T e B "Te B, D
The symmetry constraint imposed by the Onsager Reciprocal Relations is
vV Vv
Vi VJ 4 ij Ji
Pl eM,1 1 P M1 1
y oM 1 1By M 11 (S71)

RTV, piVy ¢y g5 RIV. pVici ¢

RV, p)V, RIV,  RIV. pV. RIV,
YD gM, B B gM, D

For a binary solution consisting of solvent (1) and polymer (m), the Bearman eq (S69) reduces to
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_diy _ Py
dz M

m

M, RT$, 1| RT¢§, RIV,

m P Dll:n ¢ Dll:n Dll:n

m

glm (ul _um ) = cmglm (ul _um)

(S72)

4.3 Diffusion in binary polymer solutions

Let us start by considering a binary solution consisting of solvent (1) and polymer (m). Equation

(S58) simplifies to yield

g Ldss _ (Bhin—dut) _ (4.8 ‘V AN, ) _ (40 Ll ) (S73)
RT dz ), By, Dy,

The J!,J! are the volumetric diffusion fluxes relative to the volume average velocity of the mixture
JIV :¢1 (ul_uV); J;Z :¢m (um_uy)’ uV :¢1u1+¢mum’ J]V :_Jrl;’ ¢1+¢m :1 (S74)

In view of J! =-J;

m?>

@ +¢, =1, we may re-write eq (S73) as

1 du Olna, \d¢ dé,
JV:_DV __]:_DV "M _]:_DV_l S75
1 WA RT 1m(61n¢1j dz ' dz (575)
Olna, . . . " y Olna, . ) . ..
where I' = ng is the thermodynamic correction factor, and D; =D, —¢ is the Fick diffusivity.
ng g,

An alternative flux expression is often used in the literature to describe for diffusion in polymer
solutions: the mass fluxes, j , kg m? s, relative to the volume average velocity of the mixture, are

expressed as a linear function of the mass concentration gradients.” For the specific case of a binary
solvent/polymer system

R R e 79

=~

Combining eqs (S72), (S75), and (S76) we obtain
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v M, 1 1 d,u1
=:J ——
/i v, ! V A RT dz
fon—Vm—RT
glm (S77)

pooy REM L di o di o[ Ok \dA L dp
dz dz

V] R T dZ " gl m dZ " gl m ap 1 -

The Fick diffusivity, D,, defined in eq (S75) is relatable to the Bearman friction coefficient, and the

modified Maxwell-Stefan diffusivity:

p, = VuP Ot _VRT (& aﬂlj VP py (&%j _p (&%}
1 1m 1m
glm apl glm RT apl ¢mMm RT apl RT a101

P Opy | _[Olna, | Olng,
{RT Gplj (aanJ[élnpl (578)

b _py [ 0na, | olng
b dlng )\ oln p,
— Vo

In eq (S78), we have used the equalities ¢, =c,V, =

. The thermodynamic correction factor

m

£ Oy | _[Olnay [ Olnd, can be determined from the Flory-Huggins theory. From eqs (S75), and
RT op, Olng )\ 0ln p,

(S78), we note that the Fick diffusivities D and D, are defined in two different ways

J! —DVFCM =-D/ —L 4

dz (S79)
_ D dpl

dz

Olng,
Oln p,

The D/ and D, are not precisely identical but inter-related by D, =( JDIV . Often, the

simplification can be made that the correction factor (—SIIH ¢ ] ~
np,
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4.4 Self-diffusivity in binary penetrant/polymer solutions

It is also common in the polymer diffusion literature, to relate the Fick diffusivity D, to the self-
diffusivity, D, . The rationale for this is that the free volume theory allows prediction of self-
diffusivity, D, 162225 The relation between D, and D, ,,, requires careful and rigorous derivation.

We start with the Bearman eq (S69) and apply it to a ternary mixture containing species 1, tagged
species 1*, and polymer (m). The tagged species 1* is identical to species 1 with respect to

thermodynamics and diffusion. This results in the following expression for D,

1 101 pm
= +
RTM, Sni RTM Sim (S80)

D

1,self

.. 0, P, o) @
From eq (S72) we have the equalities = ; =1
q ( ) q RTM Sim BII;n RTM, S

=—-, so, we derive the following
Dll

expression in terms of the M-S diffusivities

L _ 4,4,

D p’ D’ (S81)

1,self’ 11 Im
The D/ is the self-exchange coefficient, and represents the self-diffusivity of pure 1; this can be
estimated using the procedure such as Wilke-Chang.” ** ?” In view of eq (S81) we find P], = DD o

for the case of negligible 1-1 friction.

The corresponding expressions for the self-diffusivity of the polymer (m) are

1
— pm gmm + pl glm — ¢r;/1 +i§/
D, ., RIM, RTM, b Db,
pm _ ¢m . pl _ ¢l
RTMm gmm D’Zm H RTMI glm Dll:n (882)
RTV, RTV,
gmm = D'Zm ’glm = B]I:ﬂ

Combining eqs (S78) and (S80) we obtain
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_ V{ﬂ‘aﬂl}z b [ﬂﬁﬂlj
" URT op, 1 ¢ |\RT0p (S83)
D b’

1,self 11

Equation (S83) is precisely equivalent to equation (8) of Price and Romdhane;* Readers should note
the differences in the notations used here and in the paper of Price and Romdhane:* the equivalence in

Fick diffusivity D, = D, of Price and Romdhane

the notations are: Self-diffusivity D, - = D, of Price and Romdhane

Vv
Self-exchange coefficient B D, of Price and Romdhane
1

For the limiting case of dilute solvent (species 1) in polymer (m) solutions, i.e. ¢, << ¢, , we obtain

ou P Op
D =p.| 2L vy D | LA S84
1 1m[RT 8p1j ¢m 1,self [RT ap]} ( )

Equation (S84) is equivalent to equation (11) of Price and Romdhane.> The thermodynamic

P OH ljz(éln alj[éln ¢1j can be determined from the Flory-Huggins theory.

correction factor
(RT op, Olng, )\ 0ln p,

Often, the simplification can be made that the correction factor [Sllﬂj ~1. We have the following
np

inter-relations between the Bearman coefficients and M-S modified diffusivities

¢, RTM, RTV, ¢ RTM, RTV,
Sim = i T R N
D, P, D, b, p Dy,
4RIV, _RIT. g RIM,_RTT
(S85)

I S U

pmglm — ¢m . plgll :ﬂ
RTM, P! RTM, B/

pmgmm _ ¢m . plglm _ ¢l

RTM, D' 'RTM, B
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From experiments, we can determine the Fick diffusivity D,, along with the self-diffusivities D, ,
and D, ., of solvent (1) and polymer (m). As illustration, Figure S5a shows the experimental data as

reported in Figure 6 of Zielinski® for the self-diffusivities of toluene (1), and polystyrene (m) in
polystyrene at 383 K as a function of the mass fraction of toluene. Also shown are the data for the Fick
(mutual) diffusivity, D;. The plotted data are those obtained from five different types of measurement
techniques. There is a variation of about six orders of magnitude in the diffusivity values as a function
of the mass fraction, ;. This strong variation renders the task of predicting, or estimating, diffusivities
in polymer solutions an extremely difficult one.

A further point to note in the experimental data for 0.5 < @, < 1.0 is that Fick diffusivity D, is lower

than the self-diffusivity of toluene, D, , by about 1-2 orders of magnitude. We calculate the

PO

thermodynamic correction factor,
T op,

], taking y =0.354; see Figure S5b. There is a strong

P Ot

J, by about one to three orders of magnitude as @, — 1.
P

reduction in (
Figure S5c¢ compares the M-S diffusivity, calculated using Dle = D1/ [5} Z’UIJ, with Dy, D s, and
£

Dy seir. We note that B, = D, ,,-; this implies that the 1-1 friction is not of significant importance.

4.5 Free-volume theory for self-diffusivity in binary penetrant/polymer solutions

16, 22, 25

The free-volume theory is commonly used for estimation of the self-diffusivity, D, . The

expression for the self-diffusivity for solvent(1)/polymer(2) system is commonly written as;

—E oV, + 0,8V,
Dl,self = Dl,self,O exp(RTjeXp - ( ~ )
Viuly (S86)
V kn K K
=0 (ﬁj(](ﬂ ~T,+T )+, (fj(]gz ~T,,+7)
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Equation (S86) is the same as eqs (41), and (42) of Vrentas and Duda,” and eq (18) of Verros and
Malamataris.” For detailed derivations, and theoretical background, see Vrentas and Duda.*

For the system toluene/polystyrene, the free-volume parameters are provided in Table 2 of Alsoy and
Duda.*® The continuous solid line in Figure S5¢ are the estimations of the self-diffusivity for toluene in
polystyrene using Equation (S86). The excellent agreement is no surprise, because the free-volume
parameters, totaling 12 in number, have been determined by fitting to experimental data on self-
diffusivities.

Broadly speaking, self-diffusivities display an exponential increase with increasing volume fractions.
This provides the rationale for the use of the exponential model for describing the composition

dependence of the M-S diffusivity31’ 32

By, =B}, expl4 s, +C,p, )| (S87)
Verros and Malamataris® provide a further illustration of use of the free-volume theory for estimation
of the diffusivity of acetone (component 1) in cellulose acetate (indicated by subscript m) at 7= 298.15

K. Calculations, using the input data provided in their paper, are presented in Figure S6. For this

system, the penetrant (1) —-membrane (m) interaction parameter is dependent on the volume fraction and

1

the activities are calculated using eq (S47), taking =0.008. The thermodynamic correction factor

S|

(%%} is a strongly decreasing function of the volume fraction, ¢, and mass fraction @,; see
P

Figure S6a,b. In these calculations the volume fractions, ¢, are related to the mass fractions @, by

1 1 .
¢, =—, and @, =—— where the p,, are the mass densities of pure components.
1+ @ 1_70)1 1+ @ ﬂ
P @ P A

POty

— , lL.e. assuming
RT 0Op,

The Fick diffusivity, calculated using the approximation D, :¢mDI’Sdf[

negligible 1-1 friction, are presented in Figure S6b,d. With increasing volume, or mass, fractions of
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acetone, we note that the Fick diffusivity falls increasing below the self-diffusivity due to the strong
influence of the thermodynamic correction factor.
4.6 Diffusivities in ternary 1/2/polymer solutions

For diffusion in a ternary mixture consisting of two solvent species (1, 2) and polymer (m), eq (S63)

reduces to

1 dy, (¢2J1V _¢1J2V) N (¢m‘]1V —9 (_JIV _JZV))

T D
v v _ (S88)
Ly Ldw (A4 ), (2= (= =)
*RT dz D}, 218
For the ternary 1/2/m mixture, eq (S65) simplifies to
4 , L 1]
:/ T ¢2V T —¢ NG
Dlm D12 Dlm DIZ Dl . -1
[B]= . [A]=[B] (S89)
_¢ 1 _ 1 ¢1 + ¢2 + ¢m
2 DV DV DV DV BV
| 21 2m 21 2m 2m |

o e bl — . o e s . o

The M-S diffusivity 191[/2:%1/2 , and can be estimated from diffusivity data for the binary liquid
1

phase mixtures of the two solvent species; we return to this estimation procedure later.

The Fick diffusivity matrix is

Odlna, Odlna,

D—Ar-r—(éla(é1 ¢16¢2

[D]=[A]T]; [T]= ,2ne, | dina (S90)
tog 7 o4,

For the case of negligible 1-2 friction, eq (S88) simplifies to

(1_¢2) ¢1
b’ D’
Bl=| ™ m . TA]=[B]" S91
Bl [ I8 (s91)
b, b,
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The matrix inversion in eq (S91) can be performed analytically, and we get the following explicit
expression for the Fick diffusivity matrix for the scenario in which 1-2 friction is considered to be

negligible

(1-4) ¢ ¢8lnal dlna,

_ _BLpy,| P B, o of,
[P]=[AIr]== 4 (-4)|, 2, olng,

DZVm Blljn a¢1 a¢2
(S92)
4 Olna, 4 Olna,
:L (1—(251)195” _¢1B2Vm 1 09, 1 og,
¢m _¢2 Blljn (1 - ¢2 )DZVM a ln a2 a ln a2
¢, 9,
o, 09,

The estimation of the four elements of the Fick diffusivities relies on the estimations of the self-
diffusivities in the ternary mixture using the free-volume theory.

The volumetric fluxes are determined from

¢6lna1 ¢6lna1
(ij:_ 1 {(l—qﬁl)ﬂa -0, | o4 T op |4 m (9%)
J) ¢.| 6B, (1-4,)D;, s dlna, s olna, |dz\ 4,

C o4 U o,

Applying eq (S63) to quaternary 1/1*/2/m, and 1/2/2*/m mixtures, we can derive the following

expressions for the self-diffusivities of the penetrants 1, and 2 in the 1/2m mixtures
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bbb L _ b b4,

Dl,self BIVI BII; Blljn , D2 Jself B;; BZVI BZVm
L _psy , Posp | Pubin L _ Poon | PiSu | PuSom
D, RTM RTM RTM D, . RTM RTM RTMm
p—g RTM , ) RTM,
pmGlm plgll
RTM RTM
D,,=¢,—b,=¢—— (S94)
pmgmm plglm
Py :ﬂ. P _ b, . Py _ ¢
RTM, B] RTM, BDj,"RTIM, D
pmglm — ¢m . plgll :ﬂ
RTM, D!’ RTM, D
p m gmm _ ¢m p lglm _ ¢1
RTM, B’ ’RTM P
Equation (S94) are precisely equivalent to equations (19), and (20) of Vrentas and Vrentas:*
1 pgu 4 Psw ,0 glm . 1 Py L Pisa ,0 Som 395
D, RTM RTM RTM D, . RTM RTM RTM (893)
For the case of negligible 1-1, 2-2, and 1-2 friction, eq (S94) simplifies to yield
Blljn: ¢mD1,self; BZVm: ¢mD2,self (896)

Combining eq (S92), and (S96) allows estimation of the four elements of the Fick diffusivity matrix
from information on the self-diffusivities of penetrants and the Flory-Huggins parameters to determine
the matrix of thermodynamic correction factors.

Table 1 of Alsoy and Duda® provides four different scenarios (called Cases 1, 2, 3, and 4 in their
paper) for estimation of the elements of the Fick diffusivity matrix; their expressions are expressed in

terms of the self-diffusivities D, ., D, ., in the 1/2/m mixture. The combination of eqs (S92), and

p, Olng ﬁ&lnai

(S96), along with the simplification —-
p; Olnp, ¢ 0dlng,

, yields relations for the four elements of the

Fick diffusivity matrix that are precisely equivalent to Case 4 in Table 1 of Alsoy and Duda.*
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16, 22, 25

The free-volume theory is commonly used for estimation of the self-diffusivity, D, , and

D in the 1/2/m mixture. The expression for the self-diffusivities for 1, and 2 in the

2,self
solvent(1)/solvent(2)/polymer(3) system are given by equations (23), (24) and (25) of Zielinski and

Hanley,” as reproduced below using their nomenclature

(le;‘ +w§V +w3r;3V;‘j

23

-F
Dl,se[f = Dl,se[f,O exXp (Ej exp| — —~
V kn / V4

* é * *
(a)lVl 2 tal, + o6V,

—E) $s
exp| —

(S97)
Dz,sezf' = D2,self,0 exp( — =
RT VFH/}f

e S O

We shall illustrate the estimations of the use of the free-volume theory by estimating the matrix of
Fick diffusivities [D], for methanol (component 1)/toluene (2)/poly(vinylacetate) (PVAc, subscript m)

at 7= 333.15 K. Figure S7a presents calculations for the matrix of thermodynamic correction factors,

y Olna, y Olna,

1 1

0 0

[T]= g % , using eq (S48), along with the Flory-Huggins parameters
y Olna, y Olna,
2 a¢l 2 a¢2

Yo =Ly, =119 x,, =0.78. In these calculations we take the sum of the volume fractions of

methanol and toluene at a constant value ¢ +¢, = 0.4. Particularly note-worthy are the negative values

. . : I r .
of the off-diagonal elements I,,T,,. Figure S7b plots the ratios ——=*, and ——=- as function of ¢. We

11 1—‘22
note that the off-diagonal elements are significantly larger in magnitude than the diagonal elements for a

range of compositions.
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The self-diffusivities are estimated from eq (S97) using with free-volume parameters provided in
Table 1 of Zielinski and Hanley.”* The Fick diffusivity matrix [D] can then be calculated by

combination of eqs (S92), and (S96); the results are presented in Figure S7c. Both the off-diagonal

. . : D D .
elements D,,,D,, are negative. Figure S7d plots the ratios ——%, and ——=! as function of ¢. We note

11 22
that the off-diagonal elements are significantly larger in magnitude than the diagonal elements for a
range of volume fractions. Comparison of Figure S7b,d clearly show that the large magnitudes of the

. D, D S . . r r
ratios ——2%, and ——2' have their origins in the corresponding ratios ——%, and ——2L .

11 22 11 l—‘22
In their Table IV, Cussler and Lightfoot™ report experimental data for the Fick diffusivity matrix

[D] for polystyrene(1)/cyclohexane(2)/toluene(3) mixtures. At composition mass fractions

89 -1.6

x10™"" m* s™. It is to be emphasized
-89 203.1

o, =0.05;0, =0.05; 0, =0.95, they report [D]z[

that the values of the Fick diffusivity matrix depending on the component numbering. For the same
compositions, if the numbering is chosen as cyclohexane(1)/toluene(2)/polystyrene(3), the values of the
Fick matrix can be re-calculated, using the basis of the data on the partial specific volumes provided in

212 8.9

Table IV of Cussler and Lightfoot,”> we obtain [D]:
—235.8 -3.26

}10“ m’ s'. In order to

understand the large negative value of D;;, we estimated the matrix of thermodynamic factors for

cyclohexane(1)/toluene(2)/polystyrene(3), using F-H parameters y,, =0.476; y,, =0.51; y,, = 0.3548,

093 -0.03

we obiain [I]= { 0.877 0.054

}. The large negative value of I'5; is the main cause of the large negative

value of D»;.
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4.7 List of Tables for Diffusion in polymer solutions

Table S5. Concentration measures and inter-relationships.

Concentration measure units

Inter-relation, constraint

xi, mole fraction of species i | -

@,

c, M, W —
x,=—=—="—=—M;) x, =1
c, Za% M, I

i:lMi

@;, mole fraction of species i | -

. . X 3
¢i, molar density of species i | mol m

. L1
¢ =—; ch. = ¢, = mixture molar dens1ty:7

i i=l

i, mass density of species i | kg m

p. =cM; Z p, = p, = mixture mass density

i=1

M;, molar mass of species i | kg mol”

M = ) x;M, =mean molar mass of mixture
i=1
V., partial molar volume of m’ mol’’ - & = 1
P V =) x,V; =— =mean molar volume of mixture
i=1 C;
I
¢, volume fraction of |- o,
b =cV = P
species i D o
i=1 pz'
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4.8 List of Figures for Diffusion in polymer solutions
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Figure S5. (a) Experimental data as reported in Figure 6 of Zielinski®® for the self-diffusivities of
toluene (1), and polystyrene (m) in polystyrene at 383 K as a function of the mass fraction of toluene.

Also shown are the data for the Fick (mutual) diffusivity, D;. (b) Calculations of the thermodynamic

P Oty

correction factor, (
op,

], taking y =0.354. (c) Comparison of the M-S diffusivity, calculated using

Dﬁn = Dl/ (1’20} Zﬂ‘j , With Dy, D s, and D se1r. The continuous solid line is the estimation of the self-
£

diffusivity using the free-volume theory.
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Figure S6. Calculations for (a, ¢) thermodynamic correction factor, I' = , (b, d) Fick diffusivity,
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The x-axes are (a, b) volume fractions, and (c, d) mass fractions. The input data are taken from the

Verros and Malamataris.?
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Figure S7. (a, b) Calculations of thermodynamic correction factors for methanol (1)/toluene
(2)/poly(vinylacetate)(m) at 7= 333.15 K.. (c, d) Calculations of elements of the Fick diffusivity matrix
[D]. The calculations are based on the predictions of the self-diffusivities using the free-volume
parameters provided in Table 1 of Zielinski and Hanley,34 along with the Flory-Huggins parameters also

provided in page 6 of their paper: y, =1, 7,, =1.19; x,,, =0.78.
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S Modelling the immersion precipitation process

In the immersion precipitation process for preparation of asymmetric polymeric membranes, a thin
layer of casting film of solvent (2) /polymer (3) mixture, placed on a support layer, is brought into
contact with a non-solvent (1) in a coagulation bath; see schematic in Figure S8. The non-solvent
diffuses into the casting polymer film, causing the precipitation of the polymer. The immersion
precipitation process for preparation of polymer membranes is controlled by molecular diffusion and
occurs close to composition regions in which the ternary anti-solvent/solvent/polymer solutions is
partially miscible. For detailed background on the physico-chemical phenomena involved in the
immersion precipitation process, along with the modelling aspects, the reader is referred to the
pioneering works of Strathmann and Kock,”® Radovanovic et al.,”” *® Reuvers et al.,*> * van den Berg
and Smolders,*" and Tsay and McHugh.* Comprehensive surveys of the literature on this subject are
provided by van de Witte et al.,* Guillen et al.,** and Wang and Lai.*’

The phase diagram for diffusion controlled immersion precipitation process is illustrated in Figure S9
for the ternary mixture consisting of water (non-solvent, component 1), acetone (solvent, component 2)
and cellulose acetate (polymer = CA = m, component 3); the ternary phase diagram is constructed on
the basis of the volume fractions. Two different subscripts are used for the polymer, m and 3. We shall
use both these interchangeably. The binodal and spinodal curves for this ternary mixture are calculated
on the basis on the Flory-Huggins equations that relate the component activities to volume fractions, ¢
#6-47 The binodal curve for this ternary mixture defines the limits of phase miscibility. The coagulation
bath usually contains non-solvent (1), almost exclusively or to a predominant extent. The compositions
at the interface between the polymer casting film and the coagulation bath lie at either ends of the tie-
line, at compositions indicated by A* and CB*, respectively. Put another way, we have a concentration

jump at the interface between the casting film and the coagulation bath. Usually, CB* is practically free
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of polymer. The composition A*, is significantly richer in the polymer (CA), as compared to CB*. The

spinodal curve defines the limit of phase stability, and along the spinodal curve, the condition |F| =0

must be satisfied, i.e. we must have I'|,I',, =I',I,,, the product of the off-diagonal elements is equal in

magnitude to the product of the diagonal elements.'* **

This situation implies a significant degree of
thermodynamic coupling.

As illustration, the transient equilibration trajectory when a 10% solution of Cellulose Acetate (CA) in
acetone (indicated by A in Figure S9) is immersed in the coagulation bath is indicated by the blue line
connecting A and A*. With increasing immersion contact times, the compositions within the polymer
casting film will get progressively richer in water, and poorer in acetone; this is clearly elucidated by
Tsay and McHugh42 and van de Witte et al.*’ Consequently, the equilibration trajectories get
progressively closer to the binodal curve. Figure S10 plots the progression in the equilibration
trajectories A-A*, B-B*, and C-C* with increasing immersion times; these plots are analogous to the
trajectories plotted in Figure 5 of Tsay and McHugh* for immersion times of 0.24 s, 10 s, and 24 s.
Particularly noteworthy is that the trajectory C-C* has penetrated into the metastable region between the
binodal and spinodal curves. This foray into the metastable region causes precipitation of polymer in the

casting film.

Detailed numerical modelling of the equilibration trajectories, using the Bearman frictional

37, 38 39, 40
1.,°" |

formulation, are available in the papers of Radovanovic et a Reuvers et a and Tsay and

McHugh.** In this article, we set ourselves a different objective. We aim to show that the foray into the
metastable regions, an inherent characteristic of immersion precipitation, is essentially engendered the

_ ¢ Olng,

1

thermodynamic correction factors I'; === that exert strong influences on the driving forces for

; Olng,

diffusion.
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For the system water (1)/acetone (2)/cellulose acetate (= CA = 3), Figure S11a shows calculations of

the elements of the matrix of thermodynamic factors [F] for compositions along a straight line
connecting A and A* in Figure S10. Particularly noteworthy are the large negative values of I, .

The self-diffusivities for water and acetone are estimated from eq (S97) using with free-volume

parameters provided in Table 1 of Altinkaya and Ozbas.*’

bl —
Rather than ignoring 1-2 friction, the M-S diffusivity Dl';:%Vz quantifying 1-2 friction is
1
estimated using the following step-by-step procedure.

The experimental data of the Fick diffusivity for water(1)/acetone(2) pair diffusivity D,, as reported

0

by Grossmann and Winkelmann® is used to determine the M-S diffusivity D,, by correcting for the

. D, . . . .
thermodynamic factor D12=?12; the thermodynamic factor is determined from the NRTL equation,

with parameters 7, =2.09542; 17, =-0.6652; «,, =0.2; the calculation details are provided in Figure

S7, and Table 5 of Krishna.'"*
The variation of the M-S diffusivity D,, with mole fraction of water, is described adequately by the

Vignes interpolation formula''- '?

B, =By ) (o) (S98)
In eq (S98) the infinite-dilution values of the M-S diffusivities are

Dlleﬁl — lx 1079 m2 S-l

S99
P27'=53%x10" m’ s’ (5%9)
. e ., DLV, Ph—
For use in eqs (S89), and (S90), the M-S diffusivity Bu:T :71/2 D,, is calculated from eq
1

(S98) using the interpolation formula for the binary water(1)/acetone(2) pair on a polymer-free basis. In

other words, the mole fractions x; is calculated for the effective volume fraction of water (component 1)

b _ 4

in the binary pair in the ternary mixture ——

4+4, 1-¢,
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Figure S11b shows calculations of the Fick diffusivity matrix [D] using a combination of eqs (S89),
(S90), (S96), (S97), (S98), and (S99). Due to the significantly higher mobility of water than acetone,
D,, >>D,,. The variation of the four elements of [D] with the volume fraction of CA, shows
approximately the same trends the corresponding elements of the matrix of thermodynamic factors [F] .
The large negative value of the off-diagonal element D, is largely attributable to the corresponding

negative off-diagonal element I',,. The flux of acetone (2) is strongly influenced by the driving force

for transfer of water (1).

5.1 A simplified analytic model for transient equilibration

In order to demonstrate the foray into the meta-stable region is engendered by the thermodynamic

. Olna,
correction factors T, _¢ 0lng,
¢, Olng,

, we adopt the simplified analytical solution to the immersion

precipitation process, as presented by Tsay and McHugh.51 For convenience of the readers, the model
equations have been presented below, albeit using a slightly different nomenclature than in the original
article by Tsay and McHugh.”'

The following set of assumptions are made in the model development.

(1) The diffusion is essentially z-directional; see schematic in Figure S12. The position z = 0,
corresponds to the position of the interface at start of the equilibration process. The adjoining
immiscible phases, coagulation bath and polymer casting film are both considered to be semi-
infinite. At the position z =+ the composition corresponds to that of the bulk coagulation
bath that is time-invariant. At the position z = —co the composition corresponds to that of the
polymer casting film that is contact with the support layer; this composition is also time-
invariant.

(i1) At any time ¢, during the immersion precipitation process, we have thermodynamic

equilibrium at the interface between the two-immiscible phases, at compositions A* and CB*.
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Due to finite interphase diffusion, the position of the interface will be altered to satisfy the
jump balance condition at the interface; this is discussed in detail below.

The assumption of two semi-infinite reservoirs allows the derivation of simple analytical solutions.
However, this assumption also implies that the analytical solution can only be applied to represent the
trajectories being followed for short contact times, say of the order of 1 s. Consequently, the A-A*, B-
B*, and C-C* trajectories in Figure S10 need to be analyzed by choosing different initial compositions
in the polymer casting film (A, B, C) and in the coagulation bath; each trajectory being allowed to
progress for relatively short contact times of about 1 s.

The transient ternary diffusion within the polymer casting film is described by a set of fwo
independent coupled partial differential equations

(o) )
6) \J (S100)

ot 0z
¢3 :1_¢1 _¢2

The volumetric fluxes, J; with respect to the volume average reference velocity is particularly
convenient for polymeric solutions because the partial molar volumes are practically composition
independent. The volumetric fluxes sum to zero. J| +J) +J, =0. The two independent fluxes J; for

non-solvent and solvent are described by eqs (S89), and (S90) as summarized below

[QZJ:‘[D%—@Z@} [P]=[A][T)

~ | | _
gly +gzv +g"§ —4, (F_DV J
-1 1m 12 1 12 1
[A]=[B] : [B]= ;
YRS 4 . b . b (S101)
% prpl ) plopl P!
21 2m 21 2m 2m |
Olna Olna
4 - ¢ 1
[F]: a¢1 8¢2
Olna, Olna,
¢, ¢,
og, og,
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The Fick diffusivity matrix [D] is estimated using a combination of eqs (S89), (S90), (S96), (S97),
(S98), and (S99). Combining eqs (S100), (S101), and (S102) we obtain

£8)
¢ _[D] b)), (S102)

ot 0z*
¢3 :1_¢1 _¢2

Commonly, the coagulation bath consists of a binary mixture of non-solvent(1) and solvent(2). The

corresponding relation for the transient diffusion process is described by

o0¢, oJ.,
0
Jyy =D, aéb; Sy ==, (S103)
a¢lb =D 82¢1b
ot "o

The subscript b in eq (S103) refers to the coagulation bath. The symbol D, in eq (S103) represents

the Fick diffusivity in the binary aqueous solution in the coagulation bath. For water/acetone mixtures

in the coagulation bath, the Fick diffusivity D, is estimated as a function of the composition by using

the combination of (S98), and (S99), along with calculation of the thermodynamic correction factors

using the NRTL equation. For water/DMF mixtures in the coagulation bath, the Fick diffusivity D, is

estimated as a function of the composition by using the combination of eq (S98) and (S118) (see later
section, along with calculation of the thermodynamic correction factors using the NRTL equation).

The initial conditions for eqs (S102), and (S103) are

con 1m0, (4G (4)
$,(2,0)) (S104)

z<0, t=0, ¢, (z,O):¢]b0
where ¢, and ¢,, are the initial compositions of the polymer casting film and bath, respectively

The boundary conditions are
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z=—om, tZO, (¢1(_Ooat)J:(¢1oj
¢ (—0.1)) by (S105)

z=+w, 120, ¢, (+0,t)=dy,
An analytic solution for the transient volume fractions in bath is obtained if the Fick diffusivity D, is

.. . 52
assumed to be composition independent; see Crank

The corresponding analytic expression for the volume fractions in the polymer casting film are also

Gy (z,0) = + (¢1b1 _¢1b0) (S106)

derivable, if the Fick diffusivity matrix [D]=[A][I] is also assumed to be composition independent;

see Taylor and Krishna.” In all the calculations presented in this article, the Fick [D] is evaluated using

+
eq (S101) at the average volume fractions l(% 2y

]. The transient volume fractions in the polymer
2 ¢20 + ¢21

film can be written 2 x 2 dimensional matrix generalization of eq (S106) (see Taylor and Krishna® for

further theoretical background on matrix generalization strategies):
$(z,1) _ Do b — o
{¢z (z, t)j - [¢2oj " [Q] {%1 - ¢2oj
z -1/2 r -1/2 N
1| - Fptor | {5001

The Sylvester theorem, detailed in Appendix A of Taylor and Krishna,” is required for explicit

(S107)

evaluation of the four elements of the 2 % 2 dimensional square matrix [Q] For the case of distinct

eigenvalues, 4, and A, of the 2 x 2 dimensional square matrix [D], the Sylvester theorem yields
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erfc[_z} (S108)
flzt2)=—u
e

In eq (S108), [I ] is the identity matrix with elements o, , the Kronecker delta. The calculations of the

L

$(z,1)
$,(z,1)

equilibration trajectories in the polymer casting film, ( J, using eqs (S107), and (S108) are easily

implemented in MathCad 15.'
Due to interchange of non-solvent and solvent between the polymer casting film and the bath, the

position of the interface will move with time. At the moving boundary, the boundary conditions are

¢1(6(t),t)}(¢”)_ g
[¢2(8(t),t) @, 5Py b, — b (S109)

¢, ((),1) =By =1—0y,

In eq (S109), &(t) =r«/t 1is the position of the moving interface (see schematic in Figure S12); r is a

-172

constant with units of m s™'~, that is determinable from the continuity of component fluxes at either side

of the moving interface

v 14 . a’g(t). .
T z=er) _Jib z=£(1) - (¢l _¢ibl)7a 1= 1,2
S (S110)
dt dt 2t
vV 14 . ad . .
i z=£(t) _Jib z=¢(t) N (¢l _¢ib[)2_\/;’ 1= 152

The volume fractions ¢, and ¢,, are determined by the thermodynamic equilibrium constraints

ln(au) = ln(aw ), In(a,,)= ln(azw) (S111)
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The natural logarithm of the component activities are described by eqs (S49), and (S50); note that

since the coagulation bath is a polymer-free aqueous solution, eq (S50) is the appropriate expression to
be used for calculation of In(ay, ).

The volume fractions at the (moving) interface between the casting film and the coagulation bath,

2y
s by =1-4,-¢,
WEEEE

3, (e(0),0) =, =1-9,,

, must satisfy the conditions of thermodynamic equilibrium, eq (S111), along

with the jump-balance conditions for the interfacial fluxes at the moving interface, eq (S109).

Essentially, we have a set of four independent equations in order to determine the four independent

unknowns r,¢,,4,,,4,,. These four independent variables r,¢,,,4,,,4,,, are time-invariant. In order to

prove this, we present below the detailed derivations.

derf(z) 2 (_22) _ Oerfc(z)
0z \/; Oz

Noting that Se rfc|: z } Ge rfc{—

2 1 z
=— exp| — =—
2 Iz Jaii p( 4/11.1) oz

44t

1

z }, and differentiating the

composition profile for the volume fraction in coagulation bath, eq (S106), allows the determination of

the interfacial fluxes

S58



Modelling the immersion precipitation process

exp z
0¢,(z,t) 2 1 4Dbt

= Viang { , }

¢1 bl ¢1b0

4D,

2 _2
ex

J_ 4D p( j

erfc TDb }

v :_Db d¢1h(zat)
z=¢(t) dZ

(s = Bino)

z=g(t)

(S112)

\J4D,

Jrtgl| =—mtJ,

z=g(t)

z=£(t)= \/Hb f[ . J(¢1b1¢1b0)

4D,

The corresponding expressions for the interfacial fluxes in the polymer casting film are written

analogously as matrix generalization of eq (S112)

a[¢1(zat)j
[lej ——[D] ¢2a(zzat)
2 z=e(r)
o (S113)
JlV ¢11 _¢10
—-|D
\/E[J;jz 0 [ ][QI](@I _¢20]

S

In eq (S113), the Sylvester theorem is required for explicit evaluation of the four elements of the 2 x 2

dimensional square matrix [Q,]. For the case of distinct eigenvalues, 4, and A, of the 2 x 2

dimensional square matrix [D], the Sylvester theorem yields
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| exp(—zj (S114)

Combining eqs (S109), (S112), and (S113), we get

eh

2b

¢11 _¢1b1 r _ JlV
(¢21 _¢2b1] 2‘/; \/E B \/%(JZVJ

z=¢(t) z=¢(t)

(S115)

(¢” ~ ]ﬁz—[D][Q ][¢11 _ﬂoj_ D, exp(‘u)b] ( B — Pvo ]
by =Py ) 2 ' by =P \/Hb r _(¢1h1 _¢1b0)
erfc| ———
4D,

It is easy to see that eq (S115), which is precisely equivalent to equations A16 and A17 of Tsay and
McHugh,”' is time-invariant. In the simulation results presented in this article the set of jump balance
conditions (eq (S115)), in combination with the conditions of thermodynamic equilibrium (eq (S111)),
are solved using the Given-Find solve block of MathCad 15' in order to determine the four independent

unknowns r,4,,,4,,,4,,. Since the compositions at each end of the tie-line ¢,,4,,,4,, are not initially
known for a given set of initial conditions, a simple head-to-tail iteration procedure is employed.
Firstly, the volume fraction ¢,,, of CB*, that lies on the binodal curve is assumed. The compositions at
the other end of the tie-line must be in equilibrium, and these are determined by solving the set of two
equations (S133) describing thermodynamic equilibrium. The Fick matrix [D] is then evaluated using a

combination of eqs (S89), (S90), (S96), (S97), (S98) and (S99) at the average volume fractions

l[¢10 +¢11

2\ g+ j With this information, and an initial guess value for 7, the set of four non-linear eqs
+
20 21

(S111) and (S115) are solved to obtain updated values of r,¢,,9,,,4,,; these are used to obtain new
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estimates of the Fick matrix [D] The head-to-tail iteration procedure usually converges rapidly in about

3-4 steps. Generally speaking, the casting film shrinks in thickness, and the value of 7 is negative.

The simulations for the immersion precipitation process that are presented in the subsequent sections

are most conveniently presented in terms of the dimensionless distance coordinate 77 = where

4D

ref t

the chosen reference velocity D,, =1x10” m” s™. Expressed in terms of the dimensionless distance
coordinate, the volume fraction profiles in the polymer casting film are
(¢1(77)J _ (QOJ_I_[Q]{QI — 4o ];
&, (17) i b1 =
[[D 1], 7 (R)P]-AL]

(4 -4
} (S116)

f0]-7

erfc [

f(zt/1

”fC[F ]

The corresponding profiles in the coagulation bath are

-

G, (1) = Py + (¢1b1 ~ o ) (S117)
D
el’fC! ref :l

J4D,, \ D

5.2 Uphill diffusion in water/acetone/CA solutions

We first consider transient diffusion of water(1)/acetone(2)/CA(3) in which the initial volume

0 1
fractions in the casting film and coagulation bath are, respectively, (%] =( j; (qﬁm}:( ]; see
¢20 09 ¢2b0 O

Figure S13a. The F-H and diffusivity input data for the calculations are specified in Table S6.
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The set of four non-linear eqs (S111) and (S115) are solved using the Given-Find solve block of

MathCad 15;' the values of the volume fractions at either sides of the interface, A* and CB* are

- A 0.2181 B 0.75432
determined as = ; = . The value of
¢, ) \0.34308 é,,, ) 10.24568

=-7.48505x107 is

ref
negative because of shrinkage of the polymer casting film.

For water/acetone mixtures in the coagulation bath, the Fick diffusivity D, is evaluated as a function
of the composition by using the combination of (S98) and (S99). The Fick diffusivity matrix [D] is

estimated using a combination of eqs (S89), (590), (S96), (S97), (S98) and (S99). Evaluated at the

arithmetic average volume fractions between the initial and final equilibrated compositions,

l[¢10 +¢ll

g g ) the elements of the matrix of thermodynamic factors, and the Fick diffusivity matrix are:
21 + 21

-1.1073  -0.0232

039141 0.01964
(F1=] 084517 o011602] [P

1.59603 0.0816 PR _ .
x107”m’s™. The large negative value of D,, is

directly attributable to the corresponding negative value of I, .
For convenience of the readers, all the input parameters, along with the values of [F] and [D] are

also summarized in Figure S13

The transient equilibration trajectory A-A* is curvilinear; see Figure S13a in which the equilibration
trajectories are plotted both in binary and ternary composition spaces. No foray into the meta-stable
region is experienced. The calculated composition trajectory is comparable to the numerical simulation
results as presented in Figure 5 of Tsay and McHugh* for immersion time of 0.24 .

Figure S13b show the transient approach to equilibration, in which the x-axis is the dimensionless

: : z e } i
distance coordinate 77 =—=== where the reference value of the diffusivity is D, =1x10” m” s™.
; .
ref

Particularly noteworthy is that the volume fraction of the polymer CA near the surface of the casting
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film are significantly higher than in the base of the casting film, z =~ 0. This implies that the polymer
distributes asymmetrically across the membrane thickness.

As the immersion time increases, the composition in the polymer casting film will become richer in
water, but more impoverished in the solvent acetone. Conversely, the coagulation bath will get
progressively richer in acetone and poorer in water. In our simplified approach, we model the transient

equilibration trajectory by choosing the initial compositions of the casting film and coagulation baths for

0.11 0.92 0.28 0.75
as ((ﬁm] = { j; [%0 j = ( ], and [(AOJ :( j; (%’0 j = [ ] for B, and C, respectively.
é,) 08 b0 ) \0.08 ¢ ) \0.63 b0 ) 10.25

Let us analyze the B-B* trajectory in which the initial volume fractions in casting film and

i $o) (011} () (0.92) .
coagulation bath are chosen = ; = ; see Figure S14.
¢ ) (0.8 b)) 10.08

The set of four non-linear eqs (S111) and (S115) are solved using the Given-Find solve block of

MathCad 15;' the values of the volume fractions at either sides of the interface, B* and CB* are

, @, 0.23067 . 0.71629 r , ,
determined as = ; = . The value of =-0.05545 1is negative
@, 0.40421 by 0.28371 4D,,,

because of shrinkage of the polymer casting film.

Evaluated at the arithmetic average volume fractions between the initial and final equilibrated

1(¢10 +¢l[

compositions, —
¢21 + ¢21

5 ], the elements of the matrix of thermodynamic factors, and the Fick

e . ) 0.29527 -0.01645
diffusivity — matrix  are: [F]z{ } [D]

1.04718 -0.05711 P
x1
-0.81379 0.24899

m’s .
-0.78251 0.07094
Noteworthy are the large negative values of both off-diagonal elements I'|,, and I’,,. Both off-diagonal
elements D, and D,, are negative, because of the corresponding negative values of I',, and I,.

We note that the B-B* is also curvilinear but no foray into the metastable region is observed; see
Figure S14a. The curvilinear trajectories are directly attributable to the off-diagonal contributions of

D,, and D,, that cause strong coupled diffusion phenomena.
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The volume fractions of the three components are plotted in Figure S14b as function of the

dimensionless distance coordinate . There is a significantly higher volume fraction of the

4D ref

1z
polymer near the surface of the casting film, z~0. This implies that the polymer distributes

asymmetrically across the membrane thickness.

Let us analyze the C-C* trajectory in which the initial volume fractions in casting film are chosen as

0.28 0.75
{%]=( j; (%’0]:( );see Figure S15.
by 0.63 Doro 0.25

The set of four non-linear (S111) and (S115) are solved using the Given-Find solve block of MathCad

15;' the values of the volume fractions at either sides of the interface, C* and CB* are determined as

b, 0.24596 /3 0.6753 r . .
= ; = . The value of =-0.05476; r=-3.46302x10" 1is
&, 0.46422 [ 0.3247 D,,

negative because of shrinkage of the polymer casting film.

Evaluated at the arithmetic average volume fractions between the initial and final equilibrated

compositions, —
2 ¢21+¢2[

1[¢10 +¢l[

J, the elements of the matrix of thermodynamic factors, and the Fick

m’s.

con . 0.15393 -0.08279
diffusivity = matrix  are: [F] ={ }; [D]

0.46829 -0.25204 5
-0.53829  0.49255

X
-0.36327 0.21014

Noteworthy is the large negative value of both off-diagonal elements I';,, and I’,,. Both off-diagonal

122

elements D,, and D,, are negative, because of the corresponding negative values of I',, and I, .

12 »
We note that the C-C* is strongly curvilinear and has penetrated into the metastable region; see Figure

S15a. The curvilinear trajectories are directly attributable to the off-diagonal contributions of D,, and
D,, that cause strong coupled diffusion phenomena.

The volume fractions of the three components are plotted in Figure S15b as function of the

dimensionless distance coordinate . There is a significantly higher volume fraction of the

D,
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polymer near the surface of the casting film, z~0. This implies that the polymer distributes

asymmetrically across the membrane thickness. Also noteworthy is that the volume fraction of water

shows a pronounced overshoot at ~—0.2 ; this overshoot signifies uphill diffusion.'* '>>* The

4D

ref 4

overshoot in water is a direct result of coupled diffusion phenomena, as explained in earlier works.'* !>

33 Figure S15¢ compares the transient volume fractions of water with the corresponding activities; the
transient activity profiles show no overshoot, confirming that the diffusion is only uphill if gauged in
terms of volume fraction; the transport is down the activity hill.

In order to demonstrate that the forays into the metastable region between the binodal and spinodal
curves is engendered by thermodynamic coupling effects, we also calculated the equilibration
trajectories in which the thermodynamic corrections are ignored by invoking the assumption I'; =4,
the Kronecker delta. The corresponding equilibration trajectories are indicated by the dashed lines in
Figure S15a. In this simplified scenario, no forays into the metastable region is observed. Indeed, the
equilibration trajectory tends to veer away from the binodal curve in its approach to C*. The inescapable

conclusion is that the influence of the thermodynamic correction factors is to draw the trajectories into

the metastable region, leading eventually to polymer precipitation.

5.3 Uphill diffusion in water/DMF/PVDF solutions

For the ternary system water (non-solvent, component 1), dimethyl formamide (DMF, solvent,
component 2) and poly(vinylidene fluoride) (PVDF = polymer = m, component 3), the binodal and
spinodal curves are shown in Figure S16.

Let us analyze the A-A* trajectory using our simplified model in which the initial volume fractions in

, : : Bo) (0 ). (B | _[04)
polymer casting film and coagulation bath are chosen, respectively, as = ; = ;
$) \0.65) \4y,) \0.6

see Figure S16.

S65



Modelling the immersion precipitation process

V —_—
Rather than ignoring 1-2 friction, the M-S diffusivity D/,= %VZ quantifying 1-2 friction is
1
estimated using the following step-by-step procedure. The experimental data of the Fick diffusivity for

water(1)/DMF(2) pair diffusivity D,, as reported by Chen et al.>™* is used to determine the M-S

diffusivity BD,, by correcting for the thermodynamic factor B12=%; the thermodynamic factor is

determined from the NRTL equation, with parameters 7,, =0.18973; 7, =-0.10798; «,, =0.277. The

variation of the M-S diffusivity D,, with mole fraction of water, is described adequately by the Vignes

11,12

interpolation formula, eq (S34), in which the infinite-dilution values of the M-S diffusivities are

lez]—ﬂ: 1X10—9 m2 S—l

S118
De7'=2.5%10" m* s (G118)

_ ;o
For use in eqgs (S89), and (S90), the M-S diffusivity Dﬁz% :%V2 D,, 1s calculated from eq
1

(S34) using the interpolation formula for the binary water(1)/DMF(2) pair on a polymer-free basis. In

other words, the mole fractions x; is calculated for the effective volume fraction of water (component 1)

4 _ 4
¢1+¢2 1_¢3

in the binary pair in the ternary mixture

For water/DMF mixtures in the coagulation bath, the Fick diffusivity D, is estimated as a function of
the composition by using the combination of (S98), and (S118), along with calculation of the
thermodynamic correction factors using the NRTL equation. The Fick diffusivity matrix [D] is
estimated using a combination of egs (S89), (590), (S96), (S97), (S98), and (S118).

The set of four non-linear eqs (S111) and (S115) are solved using the Given-Find solve block of

MathCad 15;1 the values of the volume fractions at either sides of the interface, A* and CB* are

, Y 0.0609 B 0.29701
determined as = : _ '
¢, ) \0.23075 ¢, ) 10.70299
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Evaluated at the arithmetic average volume fractions between the initial and final equilibrated

compositions, —
2 ¢2]+¢2[

1[¢10 +¢l[

J, the elements of the matrix of thermodynamic factors, and the Fick

2.1

ms

. . 0.81984 -0.04225 3.23211 -0.16621 S
diffusivity =~ matrix  are: [F]: ; [D]z

X
-2.92545  0.42313 -1.49605 0.08997

Noteworthy is the large negative value of both off-diagonal elements I',, and I’,,. Both off-diagonal

125
elements D,, and D, are negative, because of the corresponding negative values of T',, and I, .

We note that the A-A* is strongly curvilinear and has penetrated into the metastable region; see
Figure S16a. The curvilinear trajectories are directly attributable to the off-diagonal contributions of
D,, and D,, that cause strong coupled diffusion phenomena.

The volume fractions of the three components are plotted in Figure S16b as function of the

z

J4D, 1

polymer near the surface of the casting film, z = 0. Also noteworthy is that the volume fraction of water

dimensionless distance coordinate . There is a significantly higher volume fraction of the

14, 15, 53

(1) shows a pronounced overshoot at ~ —0.1; this overshoot signifies uphill diffusion.

4D

ref 4

The overshoot in water is a direct result of coupled diffusion phenomena, as explained in earlier

14, 15, 53
works. "

5.4 Uphill diffusion in water/NMP/PSF solutions

For the ternary system water (non-solvent, component 1), N-methyl-2-pyrrolidone (NMP) (solvent,
component 2) and polysulfone (PSF = polymer, component m= 3). The binodal and spinodal curves are

shown in Figure S17.
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Let us analyze the A-A* trajectory using our simplified model in which the initial volume fractions in

: . . o _ 0 ) Divo _ 0.3 .
polymer casting film and coagulation bath are chosen, respectively as = ; = ;
¢20 07 ¢2b0 07

see Figure S17.

. - o b, — o o
Rather than ignoring 1-2 friction, the M-S diffusivity Béz%Vz quantifying 1-2 friction is
1

estimated using the experimental data of the Fick diffusivity for water(1)/NMP(2) pair diffusivity D,,
as reported by Tkacik and Zeman.”® From this data the M-S diffusivity and both taken to be composition
independent, both values being equal to 0.73x10”m’s™". For water/NMP mixtures in the coagulation
bath, the Fick diffusivity D, =0.73x10°m’s™'

The set of four non-linear eqs (S111) and (S115) are solved using the Given-Find solve block of

MathCad 15;' the values of the volume fractions at either sides of the interface, A* and CB* are
. S, 0.01623 P 0.25625
determined as = : _ '
¢2] 023293 ¢2b] 074375

The value of

5 =-0.0148; r=-9.35997x107 is negative because of shrinkage of the polymer
ref

casting film.

Evaluated at the arithmetic average volume fractions between the initial and final equilibrated

compositions, —
2 ¢21 +¢21

l[cémﬂéu

J, the elements of the matrix of thermodynamic factors, and the Fick

-5.36896  0.46328

o s . 0.93085 -0.01965
diffusivity ~ matrix  are:  [[]= ; [D] 06735 0.01775

1.39456 -0.02938 o 9
x107 m’s .

Noteworthy is the large negative value of both off-diagonal elements I',, and I’,,. Both off-diagonal

120

elements D, and D, are negative, because of the corresponding negative values of T',, and I, .
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We note that the A-A* trajectory is strongly curvilinear and has penetrated into the metastable region;
see Figure S17a. The curvilinear trajectories are directly attributable to the off-diagonal contributions of

D,, and D,, that cause strong coupled diffusion phenomena.

The volume fractions of the three components are plotted in Figure S17b as function of the

dimensionless distance coordinate \/F There is a significantly higher volume fraction of the
t
ref

polymer near the surface of the casting film, z = 0. Also noteworthy is that the volume fraction of water

14, 15, 53

(1) shows a pronounced overshoot at ~ —0.1; this overshoot signifies uphill diffusion.

reft

The overshoot in water is a direct result of coupled diffusion phenomena, as explained in earlier
works.'* >3

In order to demonstrate that the forays into the metastable region between the binodal and spinodal
curves is engendered by thermodynamic coupling effects, we also calculated the equilibration
trajectories in which the thermodynamic corrections are ignored, by invoking the assumption I'; =3,
the Kronecker delta. The corresponding equilibration trajectories are indicated by the dashed lines in
Figure S17a. In this simplified scenario, no forays into the metastable region is observed. The

inescapable conclusion is that the influence of the thermodynamic correction factors is to draw the

trajectories into the metastable region, leading eventually to polymer precipitation.

5.5 Uphill diffusion in water/NMP/PEI solutions

For the ternary system water (non-solvent, component 1), N-methyl-2-pyrrolidone (NMP) (solvent,
component 2) and polyetherimide (PEI = polymer, component m = 3). The binodal and spinodal curves

are shown in Figure S18.
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Let us analyze the A-A* trajectory using our simplified model in which the initial volume fractions in

: : : $o|_(O Do | _(0.35
polymer casting film and coagulation bath are chosen, respectively as = ; =
by 0.65 Doro 0.65

; see Figure S18.

. - e b, — o o
Rather than ignoring 1-2 friction, the M-S diffusivity Béz%Vz quantifying 1-2 friction is
1

estimated using the experimental data of the Fick diffusivity for water(1)/NMP(2) pair diffusivity D,,
as reported by Tkacik and Zeman.”® From this data the M-S diffusivity and both taken to be composition
independent, both values being equal to 0.73x10”m’s™". For water/NMP mixtures in the coagulation
bath, the Fick diffusivity D, =0.73x10°m’s™'

The set of four non-linear (S111) and (S115) are solved using the Given-Find solve block of MathCad

15;1 the values of the volume fractions at either sides of the interface, A* and CB* are determined as

¢,) (0.08883) (4, | (0.2491
¢, ) (036142) \@,, ) 10.7509)
Evaluated at the arithmetic average volume fractions between the initial and final equilibrated

compositions, —
2 ¢21+¢21

1[¢ﬁm+¢u

J, the elements of the matrix of thermodynamic factors, and the Fick

-1

- , 075052 -0.03616 122949 0.05916] ., ,
diffusivity — matrix are:  [[]= ; [D]= 1

x107m’s
-3.08371 0.33542 -0.64793  0.03233
Noteworthy is the large negative value of both off-diagonal elements I'},, and I',;. Both off-diagonal

elements D,, and D, are negative, because of the corresponding negative values of T',,, and I, .

We note that the A-A* trajectory is strongly curvilinear and has penetrated into the metastable region;
see Figure S18a. The curvilinear trajectories are directly attributable to the off-diagonal contributions of

D,, and D,, that cause strong coupled diffusion phenomena.
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The volume fractions of the three components are plotted in Figure S18b as function of the

dimensionless distance coordinate . There is a significantly higher volume fraction of the

z
J4D, 1

polymer near the surface of the casting film, z = 0. Also noteworthy is that the volume fraction of water

(1) shows a slight overshoot at Z_» —0.02 ; this overshoot signifies uphill diffusion.'* > ** The

Dref 1

overshoot in water is a direct result of coupled diffusion phenomena, as explained in earlier works.'* '

53
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5.6 List of Tables for Modelling the immersion precipitation process

Table S6. Flory-Huggins and diffusivity parameters for penetrants water (anti-solvent, component 1)
and acetone (solvent, Component 2) in cellulose acetate (CA) (polymer, indicated by subscript m=3) at
T = 298.15 K. The Flory-Huggins parameters are taken from Altena and Smolders.”® The self-
diffusivities for water (1)/acetone(2)/CA(m=3) are estimated using the free-volume parameters as
reported in Table 1 of Altinkaya and Ozbas,* and Table 3.3 of the MS thesis of Yip,”’ that is available

online. The values are reproduced below for ready reference.

Parameter Units Values
PisPas P kg m-3 1000,790,1310
M M, M, g mol” 18,58.08,307000
V.,V cm® mol” 18,73.92,30532
2 3 4 ¢2
X :a+b(u2)+c(u2) +d(u2) +e(u2) ;U =——
¢ + 9,
a=1.1b=-0.42;¢=4.09;d =-6.7;e =4.28;
Xin =14 7, =0.45;
VI*,V;,V; cm’ g 1.071,0.943,2.67
D, 05D s 0 10°m* s 8.55,3.6
E T mol™ 0
K, K, K cm® g' K 0.00218,0.00186,0.000364
y vy
Ky —T,,K,, — T, Kyy — T,y K —152.29,-53.33,-240
&3 dimensionless 0.0943,0.268
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Table S7. Flory-Huggins and diffusivity parameters for penetrants water (anti-solvent, component 1)
and DMF (solvent, Component 2) in PVDF (poly(vinylidene) fluoride), indicated by subscript m=3) at
T = 298.15 K. The Flory-Huggins parameters are taken from Yip,”’ and Matsuyama et al.”® The self-
diffusivities are estimated using the free-volume parameters as reported in Table 3.3 of the MS thesis of

Yip,”’ that is available online. The values are reproduced below for ready reference.

Parameter Units Values
Di> Prs Ps kg m™ 1000,944.3,1739
M .M, M, g mol”! 18,73.09,534000
V.,V cm® mol” 18,77.4,307000
2 3 4 ¢2
X :a+b(u2)+c(u2) +d (u,) +e(u2) ;o Uy =———
¢+
a=0.5b=0.04;,c=0.8;d =-1.2;¢=0.8;
Xim =2.09; y, =0.43;
ANANA cm’ g’ 1.071,0.926,0.565
D, 05D seir 0 10°m? s 8.55,8.48
E T mol™ 0
K, K, K em’ g! K 0.00218,0.000976,0.000273
y oy oy
Ky —T, K, —T,, Ky, —T,, K —152.29,-43.8,—127
E3rC0s dimensionless 0.313,1.1
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Table S8. Flory-Huggins and diffusivity parameters for penetrants water (anti-solvent, component 1)

and NMP (solvent, Component 2) in PSF (polysulfone, indicated by subscript m=3) at 7 = 298.15 K.

The Flory-Huggins parameters are taken from Yip,”” and Kim et al.” The self-diffusivities are estimated

using the free-volume parameters as reported in Table 3.3 of the MS thesis of Yip,”’ that is available

online. The values are reproduced below for ready reference.

Parameter Units Values
,019,02:,03 kg m-3 1000,1030,1240
M,,M,,M, g mol” 18,99.1,20270
V.,V cm® mol” 18,96.2,16347
2 3 4 ¢2
;(lzza+b(u2)+c(u2) +d(u2) +e(u2) ;o Uy =———
¢ + 9,

a=0.785;b=0.665;,c=0;d =0;e=0;

Xim =375 7,5, =0.24;

/AN ANA cm’ g 1.071,0.841,0.733

D seir05Ds a0 10°m?® s 8.55,3.137

E T mol™ 0

K, K, K em® g' K 0.00218,0.000963,0.00043
y v o7

Ky -T,Ky—T,.Ky, — T, K —152.29,-48.496,-410

E3rC0s dimensionless 0.097,0.4194
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Table S9. Flory-Huggins and diffusivity parameters for penetrants water (anti-solvent, component 1)

and NMP (solvent, Component 2) in PEI (polyetherimide), indicated by subscript m=3) at 7= 298.15 K.

The Flory-Huggins parameters are taken from Yip,”’ Kim et al.,”” and Fernandes et al.** The self-

diffusivities are estimated using the free-volume parameters as reported in Table 3.3 of the MS thesis of

Yip,”’ that is available online. The values are reproduced below for ready reference.

Parameter Units Values
PrsLrs P kg m'3 1000, 1030, 1270
M, M, M, g mol” 18,99.1,22400
V.,V cm® mol” 18,96.2,17638
2 3 4 ¢2
;(lzza+b(u2)+c(u2) +d(u2) +e(u2) ;o Uy =———
¢ + 9,

a=0.785;b=0.665;,c=0;d =0;e=0;

X =21 7, =0.507;

AN AN A cm’ g 1.071,0.841,0.663

D seir05Ds a0 10°m?® s 8.55,3.137

E J mol” 0

K, K, K em’ g! K 0.00218,0.000963,0.000452
y v oy

K, -T,.K,,~T,.K,,~T,, K —152.29,-48.496, 443

E3rC0s dimensionless 0.0909,0.393
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5.7 List of Figures for Modelling the immersion precipitation process

Coagulation bath containing non-solvent (1), predominantly

non-solvent(1) solvent(2)

Casting polymer film: solvent(2)/polymer(3)

& B RN RN

< R N N A I N NI
E R R R B R I S

B 4| R N N A I N NI
EE IR I S T T T T T T T T T T T T T T T T T

)

Figure S8. Schematic of the configuration used to model the immersion precipitation process.

z=0
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Coagulation bath containing non-solvent, predominantly

— J:o
\w

cellulose
R S S S N . (T SIS SNl acetate (3)

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

Casting polymer film;
Initial composition = A

0.8

03 e A-A* equilibration trajectory
’ 0.7

metastable

0.4 water(1)/acetone(2)/
cellulose acetate(3);
0.7 T=298.15K

0.3

tie-line

0.1

cozﬂulatlon bath 0.0

acetone(2) 00 01 02 03 04 05 06 07 08 09 10  water(1)

Figure S9. Transient equilibration trajectory A-A* during the immersion precipitation process for
membrane preparation; adapted from the Figure 5 of Tsay and McHugh for an immersion time of 0.24
s.* A 10% solution of Cellulose Acetate (CA) in acetone is immersed in a coagulation bath of pure
water. The equilibration trajectory A-A* was determined from our simulations (described in detail in

this article).
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cellulose 0.4 - water(1)/

acetate (3) i (a:f):f(tg)r)e(zy

0.0

0.8 e C-C* equilibration
e A-A* equilibration

e B-B* equilibration

Volume fraction of acetone, ¢,

0.3
07 10

0.0 0.1 0.2 0.3

metastable

04 region

0.6 Volume fraction of water, ¢,

1.0

0.0

acetone (2) 00 01 02 03)5.04 05 06 07 08 08 10 water(1)

| T=298.15K curve

Figure S10. Transient equilibration trajectories A-A*, B-B*, and C-C* during the immersion

precipitation process for membrane preparation with increasing immersion times. These trajectories

were determined from our simulations (described in detail in this article) using the starting compositions

A, B, and C in the polymer casting film for three different, increasing, immersion times ranging from

0.24s, 10 s, and 24 s, as presented in Figure 5 of Tsay and McHugh.*
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water(1)/acetone(2)/CA(m);
T=298.15K
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Volume fraction of CA, ¢,

Figure S11. Calculations for (a) matrix of thermodynamic correction factors, [F] , and (b) Elements of

the Fick diffusivity matrix [D], for water(1)/acetone(2)/CA(m) at 7= 298.15 K. The input data for the

calculations are specified in Table S6.
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Figure S12. Schematic of the configuration used to model the immersion precipitation process.
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a = cquilibration trajectory b water(1)/acetone(2)/CA(3); T =298.15 K
0.0 cellulose ~ 10 025
acetate = [
o spinodal g ':
? 0.2 curve 0.0 T 08 r 4020 &
S water(1)/ 1.0 ,“1N == water 5
3 " acetone(2)/ = [ e acetone T
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Volume fraction of water, ¢, Dimensionless distance, /(4D )

water(1)/acetone(2)/
cellulose acetate(3);
T=298.15K

0.1

coagulation bath

0.0
acetone 00 01 02 03 04 05 06 07 08 09 10 water

N ) (0 ), () (1
Initial [¢20]_[0.9J’ [%]_[0] [r]=[0'39141 0.01964} [D]_{I.S%OS 0.0816}107%25,[

0.84517 0.11602 Tl-11073 -0.0232
Interf 6,)_(02181 ) (4, _(0.75432
ntertace |, =(034308)° (4, ) 024568

Figure S13. (a) Transient equilibration trajectory in a ternary system consisting of water (non-solvent,
component 1), acetone (solvent, component 2) and cellulose acetate (polymer = m, component 3). The
A-A* equilibration trajectory is indicated by the blue line in binary and ternary composition space. (b)

Transient volume fraction profiles in the slab, as function of the dimensionless distance coordinate

— =2 The Flory-Huggins parameters and diffusivity data are provided in Table S6.

4D, t
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a === equilibration trajectory b water(1)/acetone(2)/CA(m); T = 298.15 K
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cellulose acetate(m);
0.8 T=298.15K
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0.0
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Figure S14. (a) Transient equilibration trajectory in a ternary system consisting of water (non-solvent,
component 1), acetone (solvent, component 2) and cellulose acetate (polymer = m, component 3). The
B-B* equilibration trajectory is indicated by the blue line in binary and ternary composition space. (b)

Transient volume fraction profiles in the slab, as function of the dimensionless distance coordinate

— 2 The Flory-Huggins parameters and diffusivity data are provided in Table S6.
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component 1), acetone (solvent, component 2) and cellulose acetate (polymer = m, component 3). The

C-C* equilibration trajectory is indicated by the blue line in binary and ternary composition space. The

dashed lines represent simulation results for which thermodynamic coupling effects are considered to be

negligible. (b) Transient volume fraction profiles in the slab, as function of the dimensionless distance

coordinate

ref 1

activities. The Flory-Huggins parameters and diffusivity data are provided in Table S6.

. (c) Comparing the transient volume fractions of water with the corresponding
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Figure S16. (a) Transient equilibration trajectory in a ternary system consisting of water (non-solvent,
component 1), DMF (solvent, component 2) and PVDF (polymer = m, component 3). The A-A*
equilibration trajectory is indicated by the blue line in binary and ternary composition space. (b)

Transient volume fraction profiles in the slab, as function of the dimensionless distance coordinate

%. The Flory-Huggins parameters and diffusivity data are provided in Table S7.
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Figure S17. (a) Transient equilibration trajectory in a ternary system consisting of water (non-solvent,
component 1), N-methyl-2-pyrrolidone (NMP) (solvent, component 2) and polysulfone (PSF = polymer,
component 3). The A-A* equilibration trajectory is indicated by the blue line in binary and ternary

composition space. (b) Transient volume fraction profiles in the slab, as function of the dimensionless

distance coordinate % The Flory-Huggins parameters and diffusivity data are provided in Table
t
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Figure S18. (a) Transient equilibration trajectory in a ternary system consisting of water (non-solvent,
component 1), N-methyl-2-pyrrolidone (NMP) (solvent, component 2) and poly(etherimide) (= PEI =

polymer = m, component 3). The A-A& equilibration trajectory is indicated by the blue line in binary

and ternary composition space. (b) Transient volume fraction profiles in the slab, as function of the

dimensionless distance coordinate T The Flory-Huggins parameters and diffusivity data are
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provided in Table S9.
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6 Emulsification in partially miscible ternary liquid mixtures

Miller® wrote “If the two bulk liquids are not initially at equilibrium, it is conceivable that dynamic
processes such as diffusion could produce emulsification when the two liquids are brought into contact
without stirring.” The aniseed-based alcoholic beverage Ouzo consists of a three component mixture of
ethanol (= 45 vol%), water (55 vol%) and an essential oil called trans-anethol (= 0.1%).%* The addition
of five volumes of water to one volume of Ouzo causes the drink to appear milky white.®* Vitale and
Katz® have coined the generic term “Ouzo effect” to describe such a process of creating meta-stable
liquid-liquid dispersions. Since no input of mechanical energy is involved, this offers an energy-
efficient method of producing nanospheres and nanoparticles.**

Essential to the formation of meta-stable dispersions is the requirement that the composition
trajectories during equilibration enter the meta-stable region in the liquid-liquid phase equilibrium
diagram. In the paper by Ruschak and Miller,® the necessary conditions for spontaneous emulsification
are derived in terms of diffusion equilibration composition trajectories that must necessarily enter the
meta-stable regions. Ruschak and Miller®® adopted the Fickian formulation in which the diffusion flux

of each species i, J,, with respect to the molar average mixture velocity, is considered to be linearly

dependent on its own composition gradient

J=—eD i 2123 (S119)
dz

in which all the component diffusivities in the ternary mixture are equal to one another, i.e. D; = D, =
Ds;=D. Only two of the eqs (S119) are independent because the mole fraction gradients sum to zero

| dx, | dx

=0 120
dz dz dz (8120)

and the diffusion fluxes also sum to zero
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J+J,+J;=0 (S121)

As illustration, Figure S19 shows the phase diagram for the partially miscible
water(1)/ethanol(2)/benzene(3) mixtures at 298 K. Bring pure water (indicated by A) into contact with a
50/50 ethanol/benzene mixture (indicated by B) results in a mixture composition that ends up in the
two-phase region of the phase diagram (indicated by M). This mixture will separate into two liquid
phases of compositions A* and B* that lie on the binodal curve, are at either ends of the tie-line. The
phase A will equilibrate to the composition A*, while phase B will equilibrate to B*. Using the model
of Ruschak and Miller,”> wherein all the component diffusivities in the ternary mixture are equal to one
another, i.e. D; = D, = D3 = D, the diffusion equilibration trajectories A-A*, and B-B* will both be
straight lines in ternary composition space. We note that the A-A* equilibration lies in the meta-stable
region between the binodal and spinodal curves. This foray into the metastable region is a necessary
condition for emulsification to occur.

The primary objective of this article is to show that the diffusional equilibration trajectories will be
generally curvilinear and forays into meta-stable regions will occur for scenarios in which the Ruschak-
Miller analysis do not anticipate. For this purpose, we develop an analytic solution to the transient
equilibration for calculating the A-A*, and B-B* trajectories using the Maxwell-Stefan formulation that

includes the strong influences of  thermodynamic coupling engendered by

Iny.
Fl.j =54_/.+xl. J n]/l;
é’xj

i,j=1,2...n—1 in either fluid phase, A and B.

6.1 A simplified analytic model for transient equilibration
Below we generalize the analytic solutions presented in the works of Ruschak and Miller,”
Jackson,®® and Tsay and McHugh.”!
The following set of assumptions are made in the model development; see schematic in Figure S20.
(ii1)  The diffusion is essentially z-directional. The position z = 0, corresponds to the position of the

interface at start of the equilibration process. The adjoining immiscible phases A and B of
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ternary liquid mixtures, of two different compositions, expressed in mole fractions, are both
considered to be semi-infinite. At the position z =—o the composition corresponds to that of
the liquid mixture in phase B. At the position z = +o0 the composition corresponds to that of
the liquid mixture in phase A. These compositions are time-invariant.

(iv) At any time ¢, during the inter-diffusion process, we have thermodynamic equilibrium between
the two-immiscible phases, at compositions A* and B*. Due to finite interphase diffusion, the
position of the interface will be altered to satisfy the jump balance condition at the interface.

This assumption of two semi-infinite reservoirs allows the derivation of simple analytical solutions.

However, this assumption also implies that the analytical solution can only be applied to represent the
trajectories being followed for relatively short contact times.

The transient ternary diffusion within the phase A is described by a set of two independent coupled

partial differential equations

a['xlz‘l] a(JlAJ
J
Y24/ _ T2 (S122)

4ot Oz

Xy =1=x,-%,,

c

The molar fluxes, J,, are defined with respect to the molar average reference velocity, u. The molar

fluxes sum to zero J,, +J,, +J,, =0. The two independent fluxes J,,,J,, are described by

iy 0 [ X4
——c [D1Z
(JZAJ ., [ A] ™ (XM (S123)

In eq (S123), ca is the total molar concentration of the ternary liquid mixture in phase A.

Combining eqs (S122), and (S123) we obtain

a[xmj az(xmj
A:[DA]A. (S124)

ot oz
The corresponding relation for the transient diffusion process in the ternary liquid mixture in phase B

is described by
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X
62 1B
LJ (S125)

cxo, 1m0, [SEO) (50
%24 (Za 0) X240
(S126)
z< 0, = 0, (XIB (_Z,O)j = (XIBOJ
%28 (_Za 0) X280
where x,,, and x,, are the initial compositions of the liquid phases A and B, respectively
The boundary conditions are
s, 120, (XM (OO,l)J _ [xhqo]
X4 (Ooa t) X240
(S127)

z=-mo, 120, [xw (—OO,t)j _ [xwo]
X2p (—oo,t) X280

Analytic solutions for the transient mole fractions in phases A, and B are obtained if the Fick

diffusivity matrices [D,], and [D,] are assumed to be composition independent; see Crank>® and

Taylor and Krishna.” In practice, the Fick diffusivity matrices [D,], and [D,] are evaluated using eq

. 1 xlAO +x1A[ 1 xlBO +x]B[ .
(S30) at the average mole fractions — ,and — , respectively. For phase A, the
x2AO + x2AI 2 ‘XZBO + XZBI

composition profile can be written in 2 dimensional matrix notation as

X4(Z,0)) [ X Xrar — X140 |, _ Z[DA]il/z r ]
[sz(Zat)j_(szoj—i-[QA][xz/u_szoJ’ [QA]_[erfc{ Jar ]}{erfctz[l)ﬁi] j} (S128)
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The Sylvester theorem, detailed in Appendix A of Taylor and Krishna,> is required for explicit

evaluation of the four elements of the 2 X 2 dimensional square matrix [QA]. For the case of distinct

eigenvalues, 4, , and 4,, of the 2 x 2 dimensional square matrix [D A] , the Sylvester theorem yields

A)[[DA]_AM [[]] i f(ﬂ'zA)[[DA]_’LA [[]]
(21/1 _2'2/1) (2'2/1 _/11/1)

erfc( \/W] (S129)
erfc (,_4r/1iA ]

In eq (S129), [I ] is the 1dentity matrix with elements o, , the Kronecker delta. The calculations of the

[QA]zf(%

f(Zt/llA)_

equilibration trajectories are easily implemented in MathCad 15.'

Analogously for phase B, we write

X5(2,0) ) _( Xigo Xisr ~*ipo |, B —Z[DA]fl/2 -r o\
o)) [Qﬂ]l”f{—@ M”f{z[%] )

/o) (Do) =20 [1]] | f (Za)[[Ds]= 2 [1]]
(hs =4 ) (A5 = 45) (S130)

—Z
| giz)
f(zt,Ay)=———

A&l

[QB]:

Due to interchange of components 1, 2, and 3 between the phases A and B, the position of the

liquid/liquid interface will move with time. At the moving boundary, the boundary conditions are
xlA(g(t) t) Xiar v —l—x  —x
” (g(t) t) XZAI 341 141 241

x5 (€(0),1 [xlmj o —lex. —x
3B = 181 ~ X251
Xy, (&(2),t Xy

=

(S131)
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In eq (S131), &(¢) =r+t 1is the position of the moving interface; r is a constant that is determinable

from the continuity of component molar fluxes at either side of the moving interface

de(t i
Jiua =& (1) —Ji s=e(t) (Cziji/u ~CoprXipr )%’ i=12
de(t) _dt __r (S132)
dt dt 2t
r .
idlz=g(r) —Jip =ty (CtAlxiAl ~CopiXips )2_\/;’ i=12

In eq (S132), cia1, and ¢ are the total molar concentrations of the ternary liquid mixtures at the
interface in phases A, and B, respectively.

The mole fractions at the interface layer x,, and x, are determined by the thermodynamic

equilibrium constraint requiring that the component activities be equal in either fluid phase
A, =a,; =123 (S133)
The component activities are determinable from phase equilibrium models such as the NRTL,
UNIQUAUC, or an equation of state.
The mole fractions at the (moving) interface between the casting film and the coagulation bath,

X

X5 » must satisfy the conditions of thermodynamic equilibrium, eq (S133), along with the jump-

iBI >
balance conditions for the interfacial fluxes at the moving interface, eq (S132). Essentially, we have a

set of five independent equations in order to determine the five independent unknowns

Py X415 X0415 X515 %25 5 these five independent variables are time-invariant. In order to prove this, we

present below the detailed derivations.

drf(2) _ 2 o (_Zz)z_ﬁerfc(z)

0z pa 0z
z :l , and differentiating the

Noting that derfe z derfe| -
Ny 2 1 z? N
=— exp| — =—
oz NENTTA T oz

composition profiles for phases A, and B, eqs

(S128), and (S130), allows the determination of the interfacial fluxes
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] (S134)

In eq (S134), the Sylvester theorem is required for explicit evaluation of the four elements of the 2 x 2

dimensional square matrix [Q,,]. For the case of distinct eigenvalues, 4, and A,, of the 2 x 2

dimensional square matrix [D A] , the Sylvester theorem yields

S (AP~ [1]] | /(2 [Da]=Al1]]

[QAI]z (ﬂlA _/12A) (AZA _ﬂm)
exp(— r ] (S135)
1 44,
f(z,t,/ll.A)—\/Z ;
e 42,

The corresponding expressions for the interfacial fluxes in the phase B are written analogously
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6{x13(zat)j

J N

[ij =—c, [DB] ng(z )

2B Jz=e(1) Z
z=¢(t)
J X 5 — X
\/E[ij =—c, [DB][QBI]( 1BI 130}
28 ))._p0) X251 ~X2p0

[0,]=[D,]" [exp (_TFZ[DB I ﬂ {erfc (%[DB ]_mﬂl (S136)
S (s ) [Ps]~ s [1]] | 1 (s ) [ D]~ [ 1],

[QBI]: (/113_123) (123_2'13) ,
1 42,
f(z t )%B) 7 »
erfc M

Combining eqs (S132), (S134), and (S136) we get

s

[ ctA[xl Al tB[xl bl
2B

Coar®2a1 ~ Cipr*anr J 2t z=2(1) (S137)

[ctA[xlAI CiarXipr Jr\é_ ¢, [D ][QAI](XIA[ _x1A0J+C[B [DB][QBI](XIB[ _xlBoj

Cour*241 — Cipr¥onr Xour ~ X240 Xyp1r ~X2p0

=)

z=£(t)

It is easy to see that eq (S137) is time-invariant. In the simulation results presented in this article the
set of jump balance conditions (eq (S137)), in combination with the conditions of thermodynamic
equilibrium (eq (S133)), are solved using the Given-Find solve block of MathCad 15' in order to

determine the five independent unknowns r,x,,,,X, ,;,X ., - Since the compositions at each end of
the tie-line x, ,,,x, ,,,X,,,X,5 are not initially known for a given set of initial conditions, a simple head-
to-tail iteration procedure is employed. Firstly, the mole fractions x,,,x,, of B*, that lies on the

binodal curve are assumed. The compositions at the other end of the tie-line must be in equilibrium, and

these are determined by solving the set eqs (S133) describing thermodynamic equilibrium. The Fick

diffusivity matrices [D, ], and [D,] are then evaluated using eq (S30) at the arithmetic average mole
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) 1
fractions —(

Xig0 Xy L Xip0 + Xy
,and —
2\ Xy 40 T X4

j, respectively. With this information, and an initial guess
2\ Xyp0 + Xy

value for », the set of five non-linear eqs (S137) and (S133) are solved to obtain updated values of

Py X, 410X, 41> X151, X5 5 these are used to obtain new estimates of the Fick diffusivity matrices [D,], and

[DB] . The head-to-tail iteration procedure usually converges rapidly in about 3-4 steps.

The simulations illustrating diffusional forays into meta-stable regions that are presented in the
subsequent sections are most convenient presented in terms of the dimensionless distance coordinate

n=——— where the chosen reference velocity D, =1x10" m”s". Expressed in terms of the
JaD

dimensionless distance coordinate, the mole fraction profiles in phase A are

x,4(17) | X140 Xrar X0 |,
(sz (77)] - (xz,qo j " [QA ] [XZAI ~ X240 ] ’

-1 (S138)
~1/2 r -1/2
[0.]=| erte(nyD 0] erfc(—\/_aef [D,] }
( )| |
The corresponding mole fraction profiles in phase B are
(xlB(Zat)j _ (x130j+[QB][xlBl ~Xipo j;
X%,5(2,1) X280 X281 ~ X280
(S139)

[QB]z[el’fC(—n\/Ed[DB]—l/z)J erfc(ﬁ@[Dg]m}

The Sylvester theorem, detailed in Appendix A of Taylor and Krishna,” is required for explicit

evaluation of the four elements of the 2 x 2 dimensional square matrices [Q,], and [Q,]; see egs

(S129), and (S130).

If the interface is considered to be stationary, eqs (S138), and (S139) simplify to yield
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R N R i WA R AR )

x,,4(17) X340 Xaar ~ X240
15(77) 180 181 ~ X180 -1/2
(;623(7;)} ) (i230]+[QB](;C231 230) [QB [ ( ﬂ\/j[D )J

(S140)

A further special scenario emerges when the two phases A and B are entirely miscible; in this
scenario, the transient equilibration process of two miscible ternary liquid mixtures A and B, of different

initial compositions will equilibrate following the following set of equations

[ et (0-[ene(nyB 10 )]

x,,(17) X5 40 240
X3 (77)] (xlgoj (xll ~Xigo ] “1/2
= +10 ;19 =[erfc -nyD.,, | D J (S141)
(ng(ﬂ) X280 [ B] Xor —Xapo [ B] ( / [ B] )
Y = Xia0 T Xigo . _ Y40 T Xop0
= 5 5 Xy = 5

Equation (S141) implies that the final equilibrated composition is the arithmetic average of the initial

compositions of the two mixtures A, and B.

6.2 Uphill diffusion in partially miscible glycerol/acetone/water mixtures

The experimental data (indicated by the white circles) for transient equilibration of glycerol-rich and
acetone-rich phases of the glycerol/acetone/water mixture were measured in a stirred Lewis cell by

Krishna et al.;*’ see Figure S21. The initial compositions in the acetone-rich phase (A) and glycerol-rich

X140 0 X180 0.85 .\ . .
phase (B) are = ; . The composition of the A-B mixture lies in the two
X540 0.77 X550 0

phase region, and therefore will separate into two liquid phases with compositions A* and B*, at either

end of the tie-line. The experimentally determined values of the final equilibrated compositions at either

) ) X . 0.042 X,z 0.539414 )
side of the interface, A* and B¥*, are = ; = . The transient
X, 0.894 Xy 5 0.161496

equilibration trajectories in phases A, and B in the Lewis stirred cell will be modeled assuming that each
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of the phases is semi-infinite in either direction of the interface, that remains stationary during the
equilibration process. With these set of assumptions, the equilibration trajectories are described by eq
(S140).

For calculation of the transient equilibration trajectories, the Fick diffusivity matrices [D, ], and [D,]
are evaluated using eq (S45), wherein the scalar diffusivity |A|1/2 is calculated from

|A|l/2 = (Dl,self )Kl (DZ,self )Q (D3,self )Ks , taking Di seir = 0.01, Dy eir = 3.2, D3 sere = 0.5 with units 10° m” s”'; the

accuracy of this estimation procedure has been firmly established in our previous works.'* % **

. . . L{ X0 %X 1{ Xip0 +Xpp .
Evaluated at the arithmetic average mole fractions — ,and — , the matrices
2\ Xy 40+, 2\ Xyp0 + X

of thermodynamic correction factors, and the Fick diffusivity matrices are

1.064438 0.177947 2.296962 0.383994 o 5
[r,]= ; [Dy]= x107m°s™ and
0.956407 0.766246 2.06384 1.653491
2174183 1.17946 8338294 4.523394] . . .
[T,]= ; [Dy]= x10™"'m’s™ . Particularly noteworthy
0.020901 0.692517 0.080158  2.6559

are the large magnitudes of the off-diagonal elements of the Fick diffusivity matrices, that are directly
attributable to the corresponding large off-diagonal elements of the matrices of thermodynamic
correction factors.

The calculated equilibration trajectories are indicated by the blue lines in Figure S21; these are both
curvilinear in shape and in good agreement with the measured experimental data.

In order to demonstrate that the curvilinear equilibration trajectories may enter the meta-stable regions

between the binodal and spinodal curve, we choose a different set of starting compositions for the

) . X140 0 X150 0.9 )
acetone-rich phase (A) and glycerol-rich phase (B) as = ; = ; see Figure S22.
X5 40 0.6 X550 0.1

The composition of the A-B mixture lies in the two phase region, and therefore will separate into two

liquid phases with compositions A* and B*, at either end of the tie-line. Using the head-to-tail iteration
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procedure, outlined in the foregoing section, the final converged values of the mole fractions at either

] ) ) X4 0.076941 X, 51 0.203211
sides of the interface, A* and B* are determined as = ; = .
Xy 0.58913 Xy 5 0.307942

2 'xZAO + xZAI

. : : 1
Evaluated at the arithmetic average mole fractions —[
2 'xZBO + xZB[

X, 0+ X L[ X5 tx .
140 141 j, and _[ 180 181 j , the matrices

of thermodynamic correction factors, and the Fick diffusivity matrices are

[1.162681 0.248166
; [D4]

1.507982 0.321868
| 1.251188 0.570727

x10”m?s™ and
1.622774 0.740226

[2.153468  1.428097 18.171242 12.050468] . .
[T,]= ; [Dy]= x10™'m’s™"
10.124265 0.365738 1.048567  3.086145

Particularly noteworthy are the relatively large magnitudes of the off-diagonal elements of the Fick
diffusivity matrices, that are directly attributable to the corresponding large off-diagonal elements of the
matrices of thermodynamic correction factors.

The equilibration trajectories A-A* and B-B*, calculated using eqs (S138), and (S139), are indicated
by the solid blue lines in Figure S22a. We note that the B-B* trajectory exhibits a foray into the meta-
stable region; this foray could result in emulsion formation. For the glycerol-rich phase, the mole

fractions of the three components are plotted in Figure S22b as function of the dimensionless distance

coordinate . We note that acetone experiences a pronounced undershoot during the transient

4D

ref t

equilibration process; this undershoot signifies uphill diffusion'® '> *

that is engendered by
thermodynamic coupling effects.
Diffusional forays are also possible if mixture of two ternary liquid mixtures of compositions A and B

lies in the homogeneous region of the phase equilibrium diagram, close to the binodal curve. In order to

demonstrate this, we choose a different set of starting compositions for the acetone-rich phase (A) and
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. X140 0 X180 1 . ..
glycerol-rich phase (B) as = ; = ; see Figure S23. The composition of the A-B
X240 0.3 X280

X140 T X150
) X S .. ) .
mixture, A*= B* = ( = 2 = ( j lies in the homogeneous single phase region.
Xa1 X240 T %20 0.15
2

2\ Xy 49 T Xy,

1( X0 +X .
,and —| "*° "' || the matrices of
2\ Xy50 T Xy,

. . . L[ X0+ %,
Evaluated at the arithmetic average mole fractions —

thermodynamic correction factors, and the Fick diffusivity matrices are

[2.02215 0.964119
) [DA]

0.57734  0.275264
10.41644 0.421514

x10”m?s™ and
0.118897 0.120346

2.010421 1.070186 6.144592 3.270885 0
73 s [Dy]= x10""'m’s™" .
| 4.788247x10™  0.706486 0.014635 2.159282

Particularly noteworthy are the relatively large magnitudes of the off-diagonal elements of the Fick
diffusivity matrices, that are directly attributable to the corresponding large off-diagonal elements of the
matrices of thermodynamic correction factors.

The equilibration trajectories A-A* and B-B* calculated using eq (S141) are indicated by the solid
blue lines. We note that the A-A* trajectory exhibits a foray into the meta-stable region (cf. Figure
S23); this foray could result in emulsion formation.

If thermodynamic coupling effects are completely ignored by invoking the assumption I'; =9, the
Kronecker delta, the equilibration trajectories (shown by the dotted lines) do not exhibit any foray into

the meta-stable region.

6.3 Uphill diffusion in water(1)/chloroform(2)/acetic acid(3) mixtures

For water(1)/chloroform(2)/acetic-acid(3) mixtures we demonstrate that the curvilinear equilibration
trajectories may enter the meta-stable regions between the binodal and spinodal curve. The initial

starting compositions for the water-rich phase (A) and chloroform-rich phase (B) are
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X140 0.56 X180 0.05 . ... . ..
= ; = ; see Figure S24. The composition of the A-B mixture lies in the two
X5 40 0 X550 0.95

phase region, and therefore will separate into two liquid phases with compositions A* and B*, at either

end of the tie-line. For calculation of the transient equilibration trajectories, the Fick diffusivity matrices

[D,], and [D,] are evaluated using eq (S45), wherein the scalar diffusivity |A|1/2 is calculated from

|A|1/2 =(D1,Sdf)’1 (Dzysdf)x2 (Dlse[,»)x3 , taking D ge1= 0.4, Dager= 0.8, D3se= 1.1 with units 107 m” s'; the

. . . . . . 14,15, 48
accuracy of this estimation procedure has been firmly established in our previous works. ™ >

Using the head-to-tail iteration procedure for the moving interface solution, outlined in a foregoing

section, the final converged values of the mole fractions at either sides of the interface, A* and B* are
) X, . 0.5557304 X, 57 0.31227988
determined as = ; = .
X, 0.10821082 Xy p 0.31941605

Xi40 T X141 L{ Xp0 + X5
,and —

. : . 1
Evaluated at the arithmetic average mole fractions —(
2\ Xypo T Xop

], the matrices
2\ %X, 40+ Xy 4

of thermodynamic correction factors, and the Fick diffusivity matrices are

1.10052017 1.46264076 0.6767361 0.89941269 o 5
[r,]= ; [Dy]= x107m°s™ and

0.27788563 0.89132962 0.1708785 0.54809984

0.95610059 0.60317132 0.71537497 0.45130572 o 2
[T,]= ; [Dy]= x107m’s™ .

0.79275008 0.76248396 0.59315262 0.57050686

Particularly noteworthy are the relatively large magnitudes of the off-diagonal elements of the Fick
diffusivity matrices, that are directly attributable to the corresponding large off-diagonal elements of the
matrices of thermodynamic correction factors.

The equilibration trajectories A-A* and B-B*, calculated using eqs (S138), and (S139), are indicated
by the solid blue lines in Figure S24. We note that the B-B* trajectory exhibits a foray into the meta-

stable region; this foray could result in emulsion formation.
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6.4 Uphill diffusion in water(1)/acetone(2)/ethylacetate(3) mixtures

For water(1)/acetone(2)/ethylacetate(3) mixtures we demonstrate that the curvilinear equilibration
trajectories may enter the meta-stable regions between the binodal and spinodal curve. The initial

starting compositions for the ethylacetate-rich phase (A) and water-rich phase (B) are

X 0.1 X 0.8
R ; R ; see Figure S25a. The composition of the A-B mixture lies in the two
X540 0 Xy 50 0.2

phase region, and therefore will separate into two liquid phases with compositions A* and B*, at either

end of the tie-line. For calculation of the transient equilibration trajectories, the Fick diffusivity matrices

[D,], and [D,] are evaluated using eq (S45), wherein the scalar diffusivity |A|1/2 is estimated using

|A|1/2 :\/ BI2D13B23
XD y+x,D; +x;D,,

, wherein the infinite dilution M-S pair diffusivities are estimated using

the Wilke-Change correlation.'® 1> 48

Using the head-to-tail iteration procedure for the moving interface solution, outlined in a foregoing

section, the final converged values of the mole fractions at either sides of the interface, A* and B* are
. X . 0.345783 X, 51 0.851566
determined as = ; = .
Xy 0.304066 Xyp 0.112756

xlAO + xlA[ 1 xlBO + xlB[
,and —

. . ) 1
Evaluated at the arithmetic average mole fractions —(
2\ Xy50 + Xy

j, the matrices
2\ Xy 40 T Xy

of thermodynamic correction factors, and the Fick diffusivity matrices are

0.32443  -0.271489 0.798534  -0.692396 o 2
[r,]= ; [Dy]= x107m’s™ and

-0.042701 1.139018 -0.129092 1.820496

-0.199831 -0.610359 -0.765409 -1.473046 o 2
[r,]= s [Dy]= x107m’s™ .

1.021323  1.561543 1.552319  2.386829

Particularly noteworthy are the relatively large magnitudes of the off-diagonal elements of the Fick

diffusivity matrices, that are directly attributable to the corresponding large off-diagonal elements of the

matrices of thermodynamic correction factors.
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The equilibration trajectories A-A* and B-B*, calculated using eqs (S138), and (S139), are indicated
by the solid blue lines in Figure S25a. We note that the A-A* trajectory exhibits a foray into the meta-
stable region; this foray could result in emulsion formation.

For the ethyl-acetate rich phase, the mole fractions of the three components are plotted in Figure S25b

as function of the dimensionless distance coordinate . We note that water experiences an

4D

reft

undershoot during the transient equilibration process; this undershoot signifies uphill diffusion'* > 3

that is engendered by thermodynamic coupling effects.
Diffusional forays are also possible if mixture of two ternary liquid mixtures of compositions A and B
lies in the homogeneous region of the phase equilibrium diagram, close to the binodal curve. In order to

demonstrate this, we choose a different set of starting compositions for the ethyl-acetate-rich phase (A)

. X140 0.1 X180 0.46 . ..
and water-rich phase (B) as = ; = ; see Figure S26. The composition of the
X5 40 0 X550 0.54

‘xlAO + xlBO
X 0.28
A-B mixture, A*= B* = ( Y= 2 = [ J lies in the homogeneous single phase region.
Xy, X5 40+ X550 0.27
2

xlAO + xl[ 1 xlBO + xl[
, and 5

— ] , the matrices of
Xyp0 T Xy,

. . . 1
Evaluated at the arithmetic average mole fractions —(
2 x2A0 + x2[

thermodynamic correction factors, and the Fick diffusivity matrices are

2 —1
m's and

[ 0.405118 -0.235514
) [DA]

0.805166 -0.468081 5
1 -0.060166  1.11633

X
-0.11958 2.218687

0.050634 -0.464034
, [DB]

0.117665 -1.07834 112
x107 ' ms .
_0.398981 1.417488

0.927167 3.294013

Particularly noteworthy are the relatively large magnitudes of the off-diagonal elements of the Fick
diffusivity matrices, that are directly attributable to the corresponding large off-diagonal elements of the

matrices of thermodynamic correction factors.
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The equilibration trajectories A-A* and B-B* calculated using eq (S141) are indicated by the solid
blue lines. We note that the B-B* trajectory exhibits a foray into the meta-stable region (cf. Figure
S26); this foray could result in emulsion formation.

If thermodynamic coupling effects are completely ignored by invoking the assumption I'; =0, the
Kronecker delta, the equilibration trajectories (shown by the dotted lines) do not exhibit any foray into

the meta-stable region.

6.5 Uphill diffusion in water(1)/ethanol (2)/ethylacetate(3) mixtures

For water(1)/ethanol(2)/ethylacetate(3) mixtures we demonstrate that the curvilinear equilibration
trajectories may enter the meta-stable regions between the binodal and spinodal curve. The initial

starting compositions for the water-rich phase (A) and ethylacetate-rich phase (B) are

X 0.85 X 0.1
e ; e ; see Figure S27a. The composition of the A-B mixture lies in the two
X540 0.15 X, 50

phase region, and therefore will separate into two liquid phases with compositions A* and B*, at either

end of the tie-line. For calculation of the transient equilibration trajectories, the Fick diffusivity matrices

[D,], and [D,] are evaluated using eq (S45), wherein the scalar diffusivity |A|1/2 is assumed to have

the value |A|”2 =1x10" m?s".

Using the head-to-tail iteration procedure for the moving interface solution, outlined in a foregoing

section, the final converged values of the mole fractions at either sides of the interface, A* and B* are
) X . 0.801496 X, 51 0.605492
determined as = ; = .
Xy 0.130168 Xyp 0.181393

. . . 1(x,, +Xx 1 X0+ X .
Evaluated at the arithmetic average mole fractions —( t0 Al J, and —[ 180 B J, the Fick
2\ Xy 40 T X5y 2\ Xy50 T Xy

diffusivity matrices are

-0.528945 -1.664652
[DA] = X
1.213593 2.714187

-9 2 -1
m’s~ and
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2.-1

0.24995 —1.051542} o
= m’s

D.]=
[B] -0.146769 1.913183

Particularly noteworthy are the relatively large magnitudes of the off-diagonal elements of the Fick
diffusivity matrices, that are directly attributable to the corresponding large off-diagonal elements of the
matrices of thermodynamic correction factors.

The equilibration trajectories A-A* and B-B*, calculated using eqs (S138), and (S139), are indicated
by the solid blue lines in Figure S27a. We note that the B-B* trajectory exhibits a foray into the meta-
stable region; this foray could result in emulsion formation.

For the ethylacetate rich phase, the mole fractions of the three components are plotted in Figure S27b

as function of the dimensionless distance coordinate . We note that water experiences a slight

Dreft

undershoot during the transient equilibration process; this undershoot signifies uphill diffusion'* > 3

that is engendered by thermodynamic coupling effects.

6.6 Uphill diffusion in water(1)/acetic-acid (2)/1-hexanol(3) mixtures

For water(1)/acetic-acid(2)/1-hexanol(3) mixtures we demonstrate that the curvilinear equilibration
trajectories may enter the meta-stable regions between the binodal and spinodal curve. The initial

starting compositions for the water-rich phase (A) and 1-hexanol-rich phase (B) are

X 0.8 X 0.1
[ 1AOJ =( j; [ 130] =( j; see Figure S28. The composition of the A-B mixture lies in the two

X540 0.2 X280

phase region, and therefore will separate into two liquid phases with compositions A* and B*, at either

end of the tie-line. For calculation of the transient equilibration trajectories, the Fick diffusivity matrices

[D,], and [D,] are evaluated using eq (S45), wherein the scalar diffusivity |A|1/2 is assumed to have

the value |A|1/2 =1x10" m?s".
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Using the head-to-tail iteration procedure for the moving interface solution, outlined in a foregoing

section, the final converged values of the mole fractions at either sides of the interface, A* and B* are
) X . 0.777853 X, 51 0.587665
determined as = ; = .
Xy 0.183813 X, 5 0.253836

i i _ 1 x,, +x 1( x5 +X i
Evaluated at the arithmetic average mole fractions —( tA0 A j, and —( 180 wj, the Fick
2 x2A0 + x2A[ 2 xZBO + x2B[

diffusivity matrices are

[-0.741926 -1.423583 | o 5
[DA]: x10"m"s™ and
| 1.445324  2.305922 |

[0.630045 -0.560827] =, ,
[DB]= x107ms .
1-0.203612  1.001456 |

Particularly noteworthy are the relatively large magnitudes of the off-diagonal elements of the Fick
diffusivity matrices, that are directly attributable to the corresponding large off-diagonal elements of the
matrices of thermodynamic correction factors.

The equilibration trajectories A-A* and B-B*, calculated using eqs (S138), and (S139), are indicated
by the solid blue lines in Figure S28. We note that the B-B* trajectory exhibits a foray into the meta-
stable region; this foray could result in emulsion formation.

Diffusional forays are also possible if mixture of two ternary liquid mixtures of compositions A and B
lies in the homogeneous region of the phase equilibrium diagram, close to the binodal curve. In order to

demonstrate this, we choose a different set of starting compositions for the water-rich phase (A) and 1-

) X, 40 0.15 X, 50 0.62 .
hexanol-rich phase (B) as = ; = ; see Figure S29.
X540 0 X550 0.38

x1A0+x130
X 0.385
The composition of the A-B mixture, A*= B* = ( Y= 2 =( J lies in the
X, X540+ X550 0.19
2

homogeneous single phase region.
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. . . 1 xlAO + xl[ 1 xlBO + xl[ .
Evaluated at the arithmetic average mole fractions — , and — , the Fick
2 'XZAO + x2[ XZBO + x21

diffusivity matrices are

0.773471 -0.430359 o 9
[DA]z x10”m’s™ and

-0.16503  0.956984

0.140218 -0.768897 o 9
[D,]= x107m’s™.

0.078006 1.370439

Particularly noteworthy are the relatively large magnitudes of the off-diagonal elements of the Fick
diffusivity matrices, that are directly attributable to the corresponding large off-diagonal elements of the
matrices of thermodynamic correction factors.

The equilibration trajectories A-A* and B-B* calculated using eq (S141) are indicated by the solid
blue lines. We note that the A-A* trajectory exhibits a foray into the meta-stable region (cf. Figure

S29); this foray could result in emulsion formation.

If thermodynamic coupling effects are completely ignored by invoking the assumption I'; =9, the
Kronecker delta, the equilibration trajectories (shown by the dotted lines) do not exhibit any foray into
the meta-stable region.

6.7 Uphill diffusion in water(1)/acetic-acid (2)/MTBE(3) mixtures

For water(1)/acetic-acid(2)/MTBE(3) mixtures we demonstrate that the curvilinear equilibration
trajectories may enter the meta-stable regions between the binodal and spinodal curve. The initial

starting compositions for the water-rich phase (A) and MTBE-rich phase (B) are

X 0.85 X 0.05
I ; = ; see Figure S30a. The composition of the A-B mixture lies in the
X5 40 0.15 X, 50

two phase region, and therefore will separate into two liquid phases with compositions A* and B*, at

either end of the tie-line. For calculation of the transient equilibration trajectories, the Fick diffusivity
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matrices [D,], and [D,] are evaluated using eq (S45), wherein the scalar diffusivity |A|l/2 is assumed

to have the value |A|1/2 =1x10"° m?s™".

Using the head-to-tail iteration procedure for the moving interface solution, outlined in a foregoing

section, the final converged values of the mole fractions at either sides of the interface, A* and B* are

X4 0.85090555 X, 51 0.46928732
determined as = ; = .
X, 0.11244516 Xy 0.24612399

Xi40 X4 L[ Xi50 + X5
,and —
X340t Xous 2\ Xypo + Xy

. . . 1 .
Evaluated at the arithmetic average mole fractions —( ], the Fick

diffusivity matrices are

[-0.88449784 -2.23493914] ., |
[D,]= x10”m’s™ and
| 178233869  3.42983167 |

[ 0.2160129  -0.85366825] ., , |
[D,]= x107m’s™ .
|-0.20855647  1.84454786 |

Particularly noteworthy are the relatively large magnitudes of the off-diagonal elements of the Fick
diffusivity matrices, that are directly attributable to the corresponding large off-diagonal elements of the
matrices of thermodynamic correction factors.

The equilibration trajectories A-A* and B-B*, calculated using eqs (S138), and (S139), are indicated
by the solid blue lines in Figure S30a. We note that the B-B* trajectory exhibits a foray into the meta-
stable region; this foray could result in emulsion formation.

For the MTBE rich phase, the mole fractions of the three components are plotted in Figure S30b as

function of the dimensionless distance coordinate . We note that water experiences a slight

4D

ref t

undershoot during the transient equilibration process; this undershoot signifies uphill diffusion'* ' 3

that is engendered by thermodynamic coupling effects.
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6.8 Uphill diffusion in water(1)/ethanol (2)/cyclohexane(3) mixtures

For water(1)/ethanol(2)/cyclohexane(3) mixtures we shall demonstrate that diffusional forays are
possible if mixture of two ternary liquid mixtures of A and B lies in the homogeneous region of the
phase equilibrium diagram, close to the binodal curve. In order to demonstrate this, we choose the set of

starting compositions for the ethanol-rich phase (A) and cyclohexane-rich phase (B) as

X 0.375 X 0
M= ; = ; see Figure S31a. The composition of the A-B mixture, A*= B* =
X540 0.62 X550 0.57

X140 1 Xipo
X 0.1875
( V= 2 = [ ] lies in the homogeneous single phase region.
X, Xy 40+ %550 0.595
2

For calculation of the transient equilibration trajectories, the Fick diffusivity matrices [D, ], and [D, ]

are evaluated wusing eq (S45), wherein the scalar diffusivity |A|1/2 is estimated using

= Dy D13 D5y , wherein the infinite dilution M-S pair diffusivities are estimated using
xDy+x, D5 + 53D,

the Wilke-Change correlation.'* ' **

2\ Xy Xy,

. : . 1
Evaluated at the arithmetic average mole fractions —(
2\ Xy 40 T Xy

X, 0+ X L[ Xp+x .
140 ”J,and ( 180 ”J,the matrices of

thermodynamic correction factors, and the Fick diffusivity matrices are

10.17271 -0.42498] [ ]_{0.52899 -1.30166
> A

_ = x10”m’s™" and
| -0.0155  0.74746 -0.04747 2.28938

0.59141  -0.19602 1.70934 -0.56656
[FB]_ , [DB]_

= x10""'m?s™".
_—0.70702 0.3644 -2.04347 1.0532

Particularly noteworthy are the relatively large magnitudes of the off-diagonal elements of the Fick
diffusivity matrices, that are directly attributable to the corresponding large off-diagonal elements of the

matrices of thermodynamic correction factors.
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The equilibration trajectories A-A* and B-B* calculated using eq (S141) are indicated by the solid
blue lines Figure S31a. We note that the B-B* trajectory exhibits a foray into the meta-stable region;
this foray could result in emulsion formation.

The composition profiles of the three components are plotted in Figure S31b as function of the

dimensionless distance coordinate . We note that ethanol experiences a pronounced undershoot

4D

reft

during the transient equilibration process. Concomitantly, cyclohexane displays a slight overshoot. The

15, 53

overshoot and undershoot phenomena signify uphill diffusion'* that is engendered by

thermodynamic coupling effects.

If thermodynamic coupling effects are completely ignored by invoking the assumption I'; =3, the

Kronecker delta, the equilibration trajectories (shown by the dotted lines) do not exhibit any foray into

the meta-stable region.

6.9 Uphill diffusion in water(1)/acetontrile(2)/toluene(3) mixtures

For water(1)/acetonitrile(2)/toluene(3) mixtures, the experiments of Califano and Mauri®® demonstrate
that the mixing of two liquids of different compositions can lead to forays into meta-stable regions and
emulsion formation in either the water-rich or toluene-rich phases. Herein, we trace the origins of such
diffusional forays to thermodynamic coupling effects. we demonstrate that forays into metastable
regions

Consider the inter-diffusion between acetonitrile-rich phase (A) and water-rich phase (B) with initial

.. X140 0 X150 0.24 . ..
compositions = ; = ; see Figure S32a. The composition of the A-B
X540 0.63 X550 0.76

xlAO + xlBO
X 0.12
mixture, A¥=B*=| " |= 2 = lies in the homogeneous single phase region.
Xy, X500 T X550 0.695
2
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For calculation of the transient equilibration trajectories, the Fick diffusivity matrices [D, ], and [D,]

are evaluated using eq (S45), wherein the scalar diffusivity |A|l/2 is assumed to have the value

1/2_ -9 2 . . . 1 x1A0+x11
|A| =1x10" m°s” . Evaluated at the arithmetic average mole fractions — , and
2\ Xy 40 Xy
1 'xlBO + X” . . o . .
- , the Fick diffusivity matrices are
2\ Xy50 + Xy,

0.48838 -0.20289] =, , |
[DA]= x10"m°s™ and
|-0.58745  0.79614 |

[-0.01252 -0.41202] =, ,
[DB]= x10"m’s™ .
| 0.50203  1.17708 |

Particularly noteworthy are the relatively large magnitudes of the off-diagonal elements of the Fick
diffusivity matrices, that are directly attributable to the corresponding large off-diagonal elements of the
matrices of thermodynamic correction factors.

The equilibration trajectories A-A* and B-B* calculated using eq (S141) are indicated by the solid
blue lines. We note that the B-B* trajectory exhibits a foray into the meta-stable region (cf. Figure
S32a); this foray could result in emulsion formation. If thermodynamic coupling effects are completely

ignored by invoking the assumption I'; =6,

ij°

the Kronecker delta, the equilibration trajectories (shown

by the dotted lines) do not exhibit any foray into the meta-stable region.

The composition profiles of the three components are plotted in Figure S32b as function of the

dimensionless distance coordinate . We note that water experiences a pronounced overshoot

4D

reft

during the transient equilibration process. Acetonitrile displays both overshoot and undershoot

phenomena. The overshoot and undershoot phenomena signify uphill diffusion'* !>

that is engendered
by thermodynamic coupling effects.
Forays into meta-stable regions are also realized for a different set of compositions for the

acetonitrile-rich  phase (A) and water-rich phase (B) with initial compositions
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X140 0 X180 0.35 . .\ .
= ; = ; see Figure S33a. The composition of the A-B mixture, A*= B* =
X540 0.8 X550 0.65

X 40 T X150
X 0.175
( V= 2 :( j lies in the homogeneous single phase region.
X, Xy 00+ %50 0.725
2

) ) . L( X0t X, 1 X5+ .
Evaluated at the arithmetic average mole fractions — , and — , the Fick
2\ %y 49 + Xy, 2\ Xyp0 + Xy

diffusivity matrices are

[0.39488 -0.24774 o g
[DA]= x107"m’s™ and
| -0.1031  0.94395

[-0.25967 -0.51125

[D,]= }<109m2s1 :

| 0.9391  1.35636

Particularly noteworthy are the relatively large magnitudes of the off-diagonal elements of the Fick
diffusivity matrices, that are directly attributable to the corresponding large off-diagonal elements of the
matrices of thermodynamic correction factors.

The equilibration trajectories A-A* and B-B* calculated using eq (S141) are indicated by the solid
blue lines. We note that the B-B* trajectory exhibits a foray into the meta-stable region (cf. Figure

S33a); this foray could result in emulsion formation. If thermodynamic coupling effects are completely

ignored by invoking the assumption I'; =9, the Kronecker delta, the equilibration trajectories (shown

by the dotted lines) do not exhibit any foray into the meta-stable region.

The composition profiles of the three components are plotted in Figure S33b as function of the

dimensionless distance coordinate . We note that water experiences a pronounced overshoot

Dt

during the transient equilibration process. Concomitantly, acetonitrile displays and undershoot

14, 15, 53

phenomena. The overshoot and undershoot phenomena signify uphill diffusion that is engendered

by thermodynamic coupling effects.
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6.10 List of Tables for Emulsification in partially miscible ternary liquid mixtures

Table S10. NRTL parameters for glyercol(1)/acetone(2)/water(3) at 298 K. These parameters are

from Krishna et al.®

7y =4; [T Tﬁ:Aﬁ/T a; =a;

dimensionless dimensionless dimensionless
glycerol(1)/acetone(2) 0.868423 2.467651 0.2
glycerol(1)/water(3) -1.293658 -1.520738 0.2
acetone(2)/water(3) -0.665537 2.096477 0.2
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Table S11. UNIQUAC parameters for water(1)/chloroform(2)/acetic-acid(3) at 298 K. These

parameters are from Pertler.”” These parameters needed re-adjustment in order to match the

experimental solubility data of Othmer and Ku.”’ The following are the adjusted values used in the

calculations.
hi 4
dimensionless dimensionless
water(1) 0.92 1.4
chloroform(2) 2.87 2.41
acetic-acid(3) 2.2024 2.072

z; :exp(—Al.j/T) rﬁ:exp(—Aﬁ/T)

dimensionless dimensionless
water(1)/chloroform(2) 0.42845912 0.22867995
water(1)/acetic-acid(3) 1.27379861 1.31092921
chloroform(2)/acetic-acid(3) 1.38787923 0.885

S113




Emulsification in partially miscible ternary liquid mixtures

Table S12. UNIQUAC parameters for water(1)/acetone(2)/ethylacetate(3) at 293 K. These parameters

are from Pertler.*’

hi 4
dimensionless dimensionless
water(1) 0.92 1.4
acetone(2) 2.5735 2.336
ethyl-acetate(3) 3.4786 3.116

z; :exp(—Al.j/T) rﬁ:exp(—Aﬁ/T)

dimensionless dimensionless
water(1)/acetone(2) 1.327669 0.487929
water(1)/ethylacetate(3) 0.770478 0.253826
acetone(2)/ethyl-acetate(3) 1.307766 0.826986

S114




Emulsification in partially miscible ternary liquid mixtures

Table S13. UNIQUAC parameters for water (1)/ethanol(2)/ethyl-acetate(3). These parameters are

taken from Table 3 of Resa and Goenaga.”!

hi g;
dimensionless dimensionless
water(1) 0.92 1.4
ethanol(2) 2.105 1.972
Ethyl acetate (3) 3.4786 3.116
4, A,
K' K'
Water(1)/ethanol(2) -109.102 -137.836
water(1)/ethyl 176.158 320.83
acetate(3)
Ethanol(2)/ -355.791 390.218
Ethyl-acetate(3)
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Table S14. NRTL parameters for water(1)/acetic acid(2)/1-hexanol(3) at 298 K. These parameters are

taken from Table 3 of Fahim et al.”

7, =(ad+b,(T-273.15))/r

7, =(a% +b,(T=273.05))/r

ji T if ji
dimensionless dimensionless dimensionless
water(1)/acetic 1.219886 -0.323559 0.2
acid(2)
water(1)/ 6.951283 -0.345447 0.2
1-hexanol(3)
Acetic acid (2)/ -0.361647 0.990639 0.2

1-hexanol(3)
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Table S15. NRTL parameters for water(1)/acetic acid(2)/MTBE (3) at 298.15 K. The parameters are

from Zhang and Wang.”

;= A4, /T v, =4;/T a;=a,
dimensionless dimensionless dimensionless
water(1)/acetic acid (2) | 0.354 -1.2151 0.47
water(1)/MTBE(3) 3.9737 1.2998 0.2
Acetic acid(2)/ -0.2774 -2.8068 0.37
MTBE(3)
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Table S16. NRTL parameters for water(1)/ethanol(2)/cyclohexane (3) at 298 K. These parameters are

from the DECHEMA Dortmund data bank, as reported in Table 1 of Springer et al.”*

Ty Tji a; =q;

dimensionless dimensionless dimensionless
Water(1)/ethanol(2) 1.8707 0.0976 0.3475
water(1)/cyclohexane(3) 14.84 5.6653 0.21159
ethanol(2)/cyclohexane(3) | 1.4786 2.408 0.46261
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Table S17. NRTL parameters for water(1)/acetonitrile(2)/toluene (3) at 293.15 K. The parameters are

from Di Cave and Mazzarotta.”

7, 7, a, =a,

dimensionless dimensionless dimensionless
water(1)/acetonitrile (2) | 1.60724 0.95391 0.3
water(1)/toluene(3) 4.48747 7.26421 0.2
Acetonitrile(2)/ 0.97552 -0.0199 0.3
toluene(3)
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6.11 List of Figures for Emulsification in partially miscible ternary liquid mixtures

Ethanol

0.0
1.0

0.3/ water(1)/

ethanol(2)/
benzene(3) mixture;
T=298.15K

0.7

0.4

0.1

> 0.0
Water 00 01 02 03 04 05 06 07 08 09 10 Benzene

Figure S19. Transient equilibration trajectories A-A*, and B-B* for water(1)/ethanol(2)/benzene(3)
mixture at 298 K, demonstrating forays into the metastable region in the water-rich region of the phase

diagram.
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AZ=F©
\ Moving

(;Zj Phase A: Ternary liquid mixture [xmj

interface

Yoo at

Phase B: Ternary liquid mixture

(xmo)
X280
V¥ Z=-00

Figure S20. Schematic showing the chosen configuration for modeling transient equilibration between

two phases A and B of partially miscible ternary liquid mixtures.
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equilibration trajectory
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04l urve  glycerol(1)/acetone(2)/
. L water(3) mixture; 0.0 1.0
2 [ T=298K ’
= [
5 03[ *
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o
5 L
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= [ 0.3 O exptdata
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0.0 0.2 0.4 0.6 0.8 1.0 T =208 K

Mole fraction of glycerol
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1.0 curve

0.0
Acetone 00 01 02 03 04 05 06 07 08 09 10 Glycerol

Figure S21. Transient equilibration trajectories for the system glycerol(1)/acetone(2)/water(3)
mixtures at 298 K. The experimental data for the equilibration paths for glycerol(1)/acetone(2)/water(3)
mixture measured in a stirred Lewis cell by Krishna et al.,’” indicated by the symbols, are compared
with the calculated equilibration trajectories, indicated by the solid blue lines. The phase equilibrium is

determined from the NRTL parameters in Table S10.
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a @ equilibration trajectory
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Figure S22. (a) Transient equilibration trajectories for glycerol(1)/acetone(2)/water(3) mixture at 298

K, demonstrating forays into the metastable region. (b) Transient composition profiles in glycerol-rich

phase B plotted as function of the dimensionless distance coordinate

determined from the NRTL parameters in Table S10.

. The phase equilibrium is

Dt
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Figure S23. Transient equilibration trajectories followed during equilibration of homogenous mixtures

of two different compositions for the system glycerol(1)/acetone(2)/water(3). The NRTL parameters for

calculation of the phase equilibrium thermodynamics are provided in Table S10.
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acetic acid(3)
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b 0.0
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Figure S24. Transient equilibration trajectories for water(1)/chloroform(2)/acetic-acid(3) mixture at

298 K. The UNIQUAC parameters are provided in Table S11.
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a e equilibration trajectory Acetone(2) b
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Figure S25. (a) Transient equilibration trajectories for water(1)/acetone(2)/ethyl-acetate(3) mixtures at

293 K. (b) Transient composition profiles in ethylacetate-rich phase B plotted as function of the

dimensionless distance coordinate ————. The UNIQUAC parameters for calculation of the phase
t
ref

equilibrium thermodynamics are provided in Table S12.
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Figure S26. Transient equilibration trajectories followed during equilibration of homogenous mixtures
of two different compositions for the system water(1)/acetone(2)/ethyl-acetate(3) mixture. The
UNIQUAC parameters for calculation of the phase equilibrium thermodynamics are provided in Table

S12.
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Figure S27. (a) Transient equilibration trajectories for the system water(1)/ethanol(2)/ethyl-acetate(3)

at 298 K. (b) Transient composition profiles in ethylacetate-rich phase B plotted as function of the

dimensionless distance coordinate

ref 1

equilibrium thermodynamics are provided in Table S13.

The UNIQUAC parameters for calculation of the phase
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Figure S28. Transient equilibration trajectories for the system water(1)/acetic acid(2)/1-hexanol(3) at
298 K. The NRTL parameters for calculation of the phase equilibrium thermodynamics are provided in

Table S14.
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Figure S29. Transient equilibration trajectories followed during equilibration of homogenous mixtures

of two different compositions for the system water(1)/acetic acid(2)/1-hexanol(3) at 298 K. The NRTL

parameters for calculation of the phase equilibrium thermodynamics are provided in Table S14.
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Figure S30. (a) Transient equilibration trajectories for the system water(1)/acetic-acid(2)/MTBE(3) at

298 K. (b) Transient composition profiles in MTBE-rich phase B, as function of the dimensionless

distance coordinate The NRTL parameters for calculation of the phase equilibrium

z
[aD ¢

thermodynamics are provided in Table S15.
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Figure S31. (a) Transient equilibration trajectories followed during equilibration of homogenous

mixtures of two different compositions for the system water(1)/ethanol(2)/cyclohexane(3) at 298 K. (b)

Transient composition profiles plotted as function of the dimensionless distance coordinate ﬁ
4
ref

The NRTL parameters for calculation of the phase equilibrium thermodynamics are provided in Table

S16.
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Figure S32. (a) Transient equilibration trajectories followed during equilibration of homogenous

mixtures of two different compositions for the system water(1)/acetontrile(2)/toluene(3) at 293.15 K. (b)

Transient composition profiles plotted as function of the dimensionless distance coordinate .
t
ref

The NRTL parameters for calculation of the phase equilibrium thermodynamics are provided in Table

S17.
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Figure S33. (a) Transient equilibration trajectories followed during equilibration of homogenous

mixtures of two different compositions for the system water(1)/acetontrile(2)/toluene(3) at 293.15 K. (b)

Transient composition profiles plotted as function of the dimensionless distance coordinate WE
t
ref

The NRTL parameters for calculation of the phase equilibrium thermodynamics are provided in Table

S17.
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7 Nomenclature

Latin alphabet

ai
[B]

Ci

component activity, dimensionless

. . . 2
matrix of inverse M-S coefficients, m™ s

. . . 3
molar concentration of species i, mol m
total molar concentration of mixture, mol m™
. . . 2 -1
M-S exchange coefficient for binary mixture, m” s
. . . . 2 -1

M-S binary pair diffusivity, m” s

modified M-S diffusivity for binary penetrant pair i-j, m”> s
modified M-S diffusivity for penetrant i in polymer m, m* s™'
self-diffusivity of species i, m* s

Fick diffusivity for binary 1-2 mixture , m*s™

Fick diffusivity matrix, m* s

Determinant of the Fick diffusivity matrix, m* s
Square-root of determinant of [D] ,m’s”

Identity matrix, dimensionless

mass diffusion flux of species i with respect to v, kg m™s™

molar diffusion flux of species i with respect to u, mol m? s
volumetric diffusion fluxes with respect to «” , mol m?s™
molar mass of species i, kg mol™

- -1
mean molar mass of mixture, kg mol

1
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n number of species in the mixture, dimensionless
[Q] two-dimensional square matrix, dimensionless
R gas constant, 8.314 J mol™ K
t time, s
T absolute temperature, K
Xi mole fraction of component i in bulk fluid phase, dimensionless
X generalized composition variable, dimensionless
Vi mole fraction of component i in bulk vapor phase, dimensionless
u molar average mixture velocity, m s™
u” volume average mixture velocity, m s
L
uy = —2— relative volume fractions in bulk liquid mixture, dimensionless
¢+
u, = _b relative volume fractions in polymer phase, dimensionless
é + 9,
v mass average mixture velocity, m s™
Vl. partial molar volume of species /, m® mol™
T_/ mean molar volume of mixture, m> mol’
z direction coordinate, m
Greek alphabet
Yi activity coefficient of component i, dimensionless

position of moving boundary, m
Kronecker delta, dimensionless
thermodynamic correction factors, dimensionless

matrix of thermodynamic factors, dimensionless
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Subscript

Superscript

mass

Square-root of determinant of [F], dimensionless

eigenvalue of diffusivity matrix, m” s™'

matrix of M-S diffusivities, m’s’!

Square-root of determinant of [A] ,m’s’

molar chemical potential, J mol™
volume fraction of penetrant i in polymer, dimensionless
volume fraction of polymer, dimensionless

volume fraction in bulk liquid mixture, dimensionless

mass density of component i, kg m™
interaction parameter in Flory-Huggins model, dimensionless

mass fraction of component i, dimensionless

referring to component i
referring to the interface
refers to polymer
referring to component n

referring to total mixture

mass average reference velocity frame

volume average reference velocity frame
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Matrix notation

() column matrix

[] square matrix
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