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ABSTRACT: In the immersion precipitation process for membrane formation, a
polymer casting film is placed in contact with a nonsolvent in a coagulation bath; an
essential feature of the membrane formation process is the foray into the metastable
region of the ternary phase diagram for the nonsolvent/solvent/polymer system. The
primary objective of this article is to trace the origins of such forays. The Maxwell−
Stefan diffusion formulation is combined with the Flory−Huggins description of phase
equilibrium thermodynamics to set up a model for describing the transient equilibration
trajectory that is followed in the polymer casting film. Four different systems are
analyzed: water/acetone/CA, water/DMF/PVDF, water/NMP/PSF, and water/NMP/
PEI (CA = cellulose acetate; PVDF = poly(vinylidene fluoride); PSF = polysulfone; PEI
= polyetherimide, DMF = dimethyl formamide; NMP = N-methyl-2-pyrrolidone). The
analysis shows that diffusional forays are mainly engendered due to thermodynamic
coupling effects; such effects are quantified by the set of thermodynamic factors

, where ai, the activity of species i, is dependent on the volume fractions, ϕi and ϕj, of both nonsolvent (i) and

solvent (j). In regions close to phase transitions, the off-diagonal elements Γij(i ≠ j) are often negative and may attain large
magnitudes in relation to the diagonal elements Γii. Strong thermodynamic coupling effects cause the transient equilibration
trajectories to be strongly curvilinear, causing ingress into the metastable region. If thermodynamic coupling effects are ignored, no
such ingress occurs. It is also shown that analogous diffusional forays may lead to emulsion formation in partially miscible liquid
mixtures.

1. INTRODUCTION

The landmark discovery of the asymmetric cellulose acetate
(CA) membrane by Loeb and Sourirajan1 for water desalination
has had a significant technological impact on the development of
a wide variety of polymer membranes that have several practical
applications.2,3 To set the scene for this article and define its
objectives, let us consider the basic principles of the immersion
precipitation procedure that was originally used for preparing
CA membranes.3−13 The ternary phase diagram for ternary
water/acetone/CA solutions, constructed on the basis of the
volume fractions using the Flory−Huggins description of phase
equilibrium thermodynamics, is shown in Figure 1. The binodal
curve for this ternary mixture defines the limits of phase
miscibility; the compositions at the end of a tie-line are in
thermodynamic equilibrium requiring equality of component
activities, ai, in the two contiguous fluid phases. The spinodal
curve defines the limit of phase stability. Along the spinodal
curve, the determinant |Γ| = 0, where |Γ| is a 2 × 2 dimensional
matrix of thermodynamic correction factors with elements
defined by
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where ϕi and ϕj denote the volume fractions of water and
acetone, respectively.14,15

The inset to Figure 1 is a schematic of the immersion
precipitation process in which a thin layer of casting film of the
acetone/CA mixture, placed on a support layer, is brought into
contact with water in a coagulation bath. As illustrated, the
transient equilibration trajectory when a 10% solution of CA in
acetone is immersed in the coagulation bath is indicated by the
solid blue line connecting A and A*. With increasing immersion
contact times, the compositions within the polymer casting film
will get progressively richer in water and impoverished in
acetone.3,5,6,12,13 Consequently, the equilibration trajectories get
progressively closer to the binodal curve. Figure 1 plots the
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progression in the equilibration trajectories A−A*, B−B*, and
C−C* with increasing immersion times. All three trajectories
are strongly curvilinear. Particularly noteworthy is that the
trajectory C−C* has penetrated into the metastable region
between the binodal and spinodal curves. This foray into the
metastable region causes precipitation of polymer in the casting
film. Experimental evidence of such forays is provided by
McHugh and Tsay.16

The primary objective of this article is to trace the theoretical
origins of the diffusional foray into the metastable region as
witnessed for the trajectory C−C*. For this purpose, we set up a
model to describe the equilibration trajectories by combining
the Flory−Huggins description of phase equilibrium with the
Maxwell−Stefan formulations for diffusion.17−21 By detailed
analysis of four different systems: water/acetone/CA, water/
DMF/PVDF, water/NMP/PSF, and water/NMP/PEI (CA =
cellulose acetate; PVDF = poly(vinylidene fluoride); PSF =
polysulfone; PEI = polyetherimide; DMF = dimethyl
formamide; NMP = N-methyl-2-pyrrolidone), we aim to show
that the diffusional forays into metastable regions are primarily
engendered by thermodynamic coupling effects that are
quantified by the off-diagonal elements Γij(i≠ j). The secondary
objective of this article is to demonstrate that the same concepts
and modeling approaches are applicable to describe diffusion-
induced ingress into metastable regions, resulting in emulsifi-
cation22−24 and production of nanospheres and nanoparticles by
the exploitation of the “Ouzo effect”.25−27

2. RESULTS AND DISCUSSIONS
2.1. Maxwell−Stefan Formulation for Diffusion in

Ternary Polymer Solutions. For a description of diffusion
in ternary nonsolvent (1)/solvent (2)/polymer (m) solutions, it
is convenient to use volume fractions, ϕi, as composition
measures because this facilitates combination with the Flory−
Huggins description of phase equilibrium. Let us define the

volumetric diffusion fluxes Ji
V, relative to the volume average

velocity of the mixture uV = ϕ1u1 + ϕ2u2 + ϕmum.
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The volume fractions are related to the molar concentrations, ϕi
= ciV̅i, where V̅i is the partial molar volume of species i. The use of
uV as a reference velocity is particularly convenient for polymeric
solutions because V̅i is practically composition independent.
In the Maxwell−Stefan (M−S) formulation, the volumetric

diffusion fluxes, Ji
V, expressed in the units m3 m−2 s−1, are related

to the chemical potential gradients as follows17,18,20
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The M−S diffusivities, Đ1m
V and Đ2m

V , quantifying interactions
(“friction”) between species 1 and 2 with the polymer chains are
relatable to the self-diffusivities in polymer solutions, for which
estimation procedures using the free-volume theory are well
established.28−30 The M−S diffusivities Đ12

V and Đ21
V , appearing

in the first right members of eq 3, quantify the 1−2 friction. The
symmetry constraint demanded by the Onsager reciprocal
relations is

=
Đ
V

Đ
V

21
V

1

12
V

2 (4)

The M−S diffusivities Đ12
V and Đ21

V are relatable to the M−S
diffusivities in binary nonsolvent/solvent solutions for which
reliable estimation procedures are available in the litera-

Figure 1. Transient equilibration trajectories A−A*, B−B*, and C−C* during the immersion precipitation process for membrane preparation. These
trajectories were determined from simulations using the starting compositions A, B, and C in the polymer casting film. Further calculation details and
data inputs are provided in the Supporting Information (SI) accompanying this publication.
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ture.14,15,31,32 Detailed derivations of eq 3, including comparison
with the equivalent Bearman friction formulation,28,30,33,34 along
with step-by-step procedures for estimation of the set of M−S
diffusivities are provided in the Supporting Information (SI)
accompanying this publication.
In view of eq 1, the left members of eq 3 can be expressed in

terms of the gradients in the volume fractions

∑ϕ μ
ϕ

ϕ∂
∂

=
∂
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z z
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j
ij

j
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2

(5)

For the system water (1)/acetone (2)/CA (3), Figure 2a shows
calculations of the four elements Γij as a function of the volume

Figure 2. (a) Calculations for the matrix of thermodynamic correction
factors, Γij. (b, c) Calculations of (b) Γ11 + Γ12 (Δϕ2/Δϕ1) and (c) Γ21
(Δϕ1/Δϕ2) for volume fractions along a straight line connecting A−
A*, B−B*, and C−C* in Figure 1. Further calculation details and data
inputs are provided in the Supporting Information accompanying this
publication.

Figure 3. Elements of the Fick diffusivity matrix [D], for water (1)/
acetone (2)/CA (m) at T = 298.15 K. Further calculation details and
data inputs are provided in the Supporting Information accompanying
this publication.

Figure 4. (a) Transient equilibration trajectory C−C* in the water/
acetone/casting film. The dashed lines represent simulation results
when the simplification Γij = δij, the Kronecker delta, is invoked. (b)
Transient volume fraction profiles in the casting solution, as a function
of the dimensionless distance coordinate z D t/ 4 ref . Further
calculation details and data inputs are provided in the Supporting
Information accompanying this publication.
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fractions of CA that lie on a straight line connecting A (ϕ10 =
0.2181;ϕ20 = 0.34308) with A* (ϕ1I = 0.2181;ϕ2I = 0.34308) in
Figure 1. Particularly noteworthy are the large negative values of
Γ21.Γij factors have the effect of influencing the driving forces for
the transport of water (1) and acetone (2), into and away from
the casting film. Thermodynamic coupling effects on the driving
forces for water and acetone transport may be quantified by the
factors Γ11 + Γ12 (Δϕ2/Δϕ1) and Γ21 (Δϕ1/Δϕ2) + Γ22, where
Δϕi denotes the difference between the interfacial volume
fractions, ϕiI, and those at the start of the equilibration process,
ϕi0

ϕ ϕ ϕ ϕ ϕ ϕΔ = − Δ = −;1 1I 10 2 2I 20 (6)

These terms are plotted in Figure 2b,c for volume fractions
along straight lines connecting A−A*, B−B*, and C−C*. In all
three cases, the influence of thermodynamic coupling is to
suppress both the driving forces of water and acetone. If
thermodynamic coupling effects are ignored by invoking the
assumption Γij = δij, the Kronecker delta, both these factors
should be unity. Remarkably, we note that for C−C*
equilibration, thermodynamic coupling serves not only to
reduce the magnitude of the driving force for water transport
but also to reverse its sign. The precise consequences of such
sign reversals will be elaborated in a later section.
Combining eqs 3 and 5 and casting into matrix notation, we

obtain
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Premultiplying eq 7 by [B]−1, we can explicitly relate the
diffusion fluxes to the gradients in the volume fractions
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Equation 8 also serves to define the 2 × 2 dimensional square
matrix of Fick diffusivities [D], which is a product of two square
matrices [B]−1 and [Γ]. Generally speaking, the off-diagonal
contributions of each of the twomatrices, [B]−1 and [Γ] are non-
negligible; consequently, molecular diffusion in ternary polymer
solutions is a strongly coupled process.
Figure 3 shows calculations of the elements of the Fick

diffusivity matrix [D] for volume fractions that lie on a straight
line connecting A with A* in Figure 1. The variation of the four
elements of [D] with the volume fraction of CA shows
approximately the same trends as the corresponding elements
of the matrix of thermodynamic factors [Γ] in Figure 2a. The
large negative value of the off-diagonal element D21 is largely
engendered by the corresponding negative off-diagonal element
Γ21.

2.2. Modeling Transient Diffusion in the Immersion
Precipitation Process. To meet the objectives of this article,
we seek an analytic solution to describe the immersion
precipitation transience and essentially follow the model of
Tsay and McHugh.13 The diffusion process is considered to be
essentially uni-(z)-directional; the position z = 0 corresponds to
the position of the interface at the start of the equilibration
process. The contiguous immiscible phases, coagulation bath
and polymer casting film, are both considered to be semi-
infinite. At the position z = +∞, the composition corresponds to
that of the bulk coagulation bath that is time-invariant. At the
position z = −∞, the composition corresponds to that of the
polymer casting film that is in contact with the support layer; this
composition is also time-invariant. At any time t, during the
immersion precipitation process, we have thermodynamic
equilibrium at the interface between the two immiscible phases,
at compositions A* and CB*. The volume fractions ϕiI and ϕ1bI
are determined by the thermodynamic equilibrium constraints

= =a a a a;1I 1bI 2I 2bI (9)

The Flory−Huggins (F−H) description of phase equilibrium
thermodynamics17−19,35−37 is used to solve the set of eq 9;
calculation details and F−H input parameters for all investigated
systems are provided in the SI.
The transient ternary diffusion within the polymer casting film

is described by a set of two coupled partial differential equations

Figure 5. (a) Transient equilibration trajectory A−A* water/NMP/
PSF casting film. (b) Transient volume fraction profiles in the casting
solution, as a function of the dimensionless distance coordinate
z D t/ 4 ref . Further calculation details and data inputs are provided in
the Supporting Information accompanying this publication.
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Inserting eq 8 for the volumetric fluxes results in
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Commonly, the coagulation bath consists of a binary mixture of

nonsolvent (1) and solvent (2). As a good approximation, the

composition of the coagulation bath may be assumed to be

polymer-free. The corresponding relation for the transient

diffusion process in the coagulation bath is described by
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The subscript b in eq 12 refers to the coagulation bath, and Db

represents the Fick diffusivity in the binary solution in the bath.
The initial conditions for eqs 11 and 12 are
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where ϕi0 and ϕ1b0 are the initial compositions of the polymer

casting film and bath, respectively.

Figure 6. (a, b) Transient equilibration in the water/NMP/PEI casting film. (c, d) Transient equilibration in the water/DMF/PVDF casting film.
Further calculation details and data inputs are provided in the Supporting Information accompanying this publication.

Figure 7. Transient profiles of water activity in the casting solution for
water/acetone/CA, water/NMP/PSF, water/NMP/PEI, and water/
DMF/PVDF plotted as a function of the dimensionless distance
coordinate z D t/ 4 ref .
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The boundary conditions are
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An analytic solution for the transient volume fractions in the
bath is obtained if the Fick diffusivity Db is assumed to be
composition independent13,38
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The corresponding analytic expression for the volume fractions
in the polymer casting film is also derivable if the Fick diffusivity
matrix [D] = [B]−1[Γ] is also assumed to be composition
independent; see Taylor and Krishna.31 In all of the calculations
presented in this article, the Fick [D] is evaluated at the average
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been established to yield results of good accuracy.18 The
transient volume fractions in the polymer film can be written as 2
× 2 dimensional matrix generalization of eq 15; see Taylor and
Krishna31 for further theoretical background on matrix general-
ization procedures
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Due to interchange of nonsolvent and solvent between the
polymer casting film and the bath, the position of the interface,
ε(t) = r√t, will shift with time
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In eq 17, ε(t) = r√t is the position of the moving interface, and r
is a constant with units of m s−1/2, which is determinable from
the continuity of component fluxes at either side of the moving
interface
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The simultaneous solution of the set of four nonlinear eqs 9 and
18 allows calculation of the interfacial compositions ϕ1I, ϕ2I,
ϕ1bI, and r.

2.3. Simulations of Four Immersion Precipitation
Processes. First, we investigate in detail the C−C*
equilibration trajectory followed in the water/acetone/CA
casting film when the initial volume fractions in the casting
film are chosen as ϕ10 = 0.28; ϕ20 = 0.63; ϕ1b0 = 0.75; and ϕ2b0 =
0.25; corresponding to the position C indicated in Figure 1. The
simultaneous solution of the equations describing thermody-
namic equilibrium at the interface (eq 9) and the flux continuity
relations (eq 18) results in the interfacial volume fractions ϕ1I =
0.24596; ϕ2I = 0.46422; and ϕ1bI = 0.6753; these correspond to
C* and CB*. The value of r = −3.46302 × 10−6 is negative
because of the shrinkage of the polymer casting film due to the
impoverishment of acetone. Evaluated at the arithmetic average
volume fractions between the initial and final equilibrated

Figure 8. Transient equilibration trajectories A−A* and B−B* for the water/ethanol/benzene mixture at 298 K, demonstrating foray into the
metastable region in the water-rich region of the phase diagram. The solid blue lines represent the trajectories calculated using the Ruschak−Miller
model. Further calculation details and data inputs are provided in the Supporting Information accompanying this publication.
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, the elements of the matrix of

thermodynamic factors, and the Fick diffusivity matrix are:

[Γ] = [ −
− ]0.15393 0.08279

0.53829 0.49255 a n d

[ ] = [ −
− ] × − −D 0.46829 0.25204

0.36327 0.21014 10 m s9 2 1. Noteworthy are

the large negative values of both off-diagonal elements Γ12 and
Γ21. Both off-diagonal elements D12 and D21 are also negative,
primarily because of the corresponding negative values of Γ12
and Γ21.
The equilibration trajectory calculated using eq 16 is plotted

in Figure 4a composition space; we note that the C−C* is
strongly curvilinear and has penetrated into the metastable
region.
The volume fractions of the three components are plotted in

Figure 4b as a function of the dimensionless distance coordinate
z D t/ 4 ref in the casting film, where we take the value of the
reference diffusivity Dref = 1 × 10−9 m2 s−1. There is a
significantly higher volume fraction of the polymer near the
surface of the casting film, z ≈ 0. This implies that the polymer

distributes asymmetrically across the membrane thickness,
resulting in an asymmetric polymer membrane. Also noteworthy
is that the volume fraction of water shows a pronounced
overshoot at ≈ −z D t/ 4 0.2ref ; this overshoot signifies uphill
diffusion.14,32,39 The overshoot in water is a direct result of the
influence of thermodynamic coupling on the driving force of
water, causing the effective driving force to undergo sign
reversal, as witnessed in Figure 2b.
To delineate the influence of thermodynamic coupling, we

repeated the simulations by invoking the assumption Γij = δij and
calculating the Fick matrix using [D] = [B]−1; this results in C−
C* trajectory indicated by the dashed line in Figure 4a. No
ingress into the metastable region is experienced, and the
trajectory tends to veer away from the binodal curve in its
approach to C*. The inescapable conclusion is that the influence
of the thermodynamic correction factors is to draw the
trajectories into the metastable region, leading eventually to
polymer precipitation.
Next, we analyze the transient equilibration trajectory

followed in the ternary water/NMP/PSF solutions in which
the initial volume fractions in the polymer casting film and
coagulation bath are chosen asϕ10 = 0;ϕ20 = 0.7;ϕ1b0 = 0.3;ϕ2b0
= 0.7, corresponding to the position A indicated in Figure 5a.
The simultaneous solution of the equations describing
thermodynamic equilibrium at the interface (eq 9) and the
flux continuity relations (eq 18) results in the interfacial volume
fractions ϕ1I = 0.01623; ϕ2I = 0.23293; and ϕ1bI = 0.25625. Both

Figure 9. (a) Transient equilibration trajectories for the glycerol (1)/
acetone (2)/water (3) mixture at 298 K, demonstrating foray into the
meta-region in the glycerol-rich phase. (b) Transient equilibration
trajectories for the system water (1)/acetic acid (2)/MTBE (3) at 298
K, demonstrating forays into the metastable region in the MTBE-rich
phase. Further calculation details and data inputs are provided in the
Supporting Information accompanying this publication.

Figure 10. (a) Trajectories followed during transient equilibration of
homogenous mixtures of two different compositions A and B for the
system water (1)/ethanol (2)/cyclohexane (3) at 298 K. (b) Transient
composition profiles plotted as a function of the dimensionless distance
coordinate z D t/ 4 ref . Further calculation details and data inputs are
provided in the Supporting Information accompanying this publication.
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the off-diagonal elements of [Γ] = [ −
− ]0.93085 0.01965

5.36896 0.46328 and

[ ] = [ −
− ] × − −D 1.39456 0.02938

0.6735 0.01775 10 m s9 2 1 are negative. The

strong coupling effects cause the A−A* equilibration trajectory
to exhibit a foray into the metastable region. The dashed line in
Figure 5a represents the trajectory followed by invoking the
assumption Γij = δij and ignoring thermodynamic correction
factors; in this scenario, the A−A* does not cross the binodal
curve.
The volume fractions of the three components are plotted in

Figure 5a as a function of the dimensionless distance coordinate
z D t/ 4 ref in the casting film. The polymer composition is
significantly higher near the surface of the casting film, z ≈ 0,
resulting eventually in an asymmetric PSF membrane. The
transient overshoot of water signifies uphill transport.
The analyses of the A−A* equilibration trajectories for water/

NMP/PEI and water/DMF/PVDF solutions proceed along
precisely analogous lines; the results are summarized in Figure
6a−d. Incursions into the metastable regions, induced by off-
diagonal elements Γij(i ≠ j), are experienced in both cases.
Uphill diffusion causes overshoots in water compositions near
the surface of the casting films, and the congregation of PEI and
PVDF polymers near the surface of the casting film, z≈ 0, is also
evident in Figure 6b,d.
The phenomena of uphill diffusion resulting in transient

overshoots of water experienced in the four examples above are,
however, not in violation of the second law of thermody-
namics.32,39 As verification, the corresponding transient profiles
of the activity of water are plotted in Figure 7; in all four cases,
the variation of activity along the dimensionless distance is
monotonic. Put another way, water transport is down the
activity hill.
2.4. Emulsion Formation in Partially Miscible Liquid/

Liquid Mixtures.We now demonstrate analogies between the
immersion precipitation process with emulsion formation.
According to Miller,22 “If the two bulk liquids are not initially
at equilibrium, it is conceivable that dynamic processes such as
diffusion could produce emulsification when the two liquids are
brought into contact without stirring.”The necessary conditions
for spontaneous emulsification are derived by Ruschak and
Miller23 in terms of diffusion equilibration composition
trajectories that must necessarily enter the metastable regions.
These authors adopted the Fickian formulation in which the
diffusion flux of each species i is considered to be linearly
dependent on its own composition gradient, with the Fickian
diffusivities of each component equal to one another.
As illustrated, Figure 8 shows the phase diagram for the

partially miscible water (1)/ethanol (2)/benzene (3) mixtures
at 298 K. Bringing pure water (indicated by A) in contact with a
50:50 ethanol/benzene mixture (indicated by B) results in a
mixture composition (indicated by M) that ends up in the two-
phase region of the phase diagram. This mixture will separate
into two liquid phases of compositions A* and B* that lie on the
binodal curve at either end of the tie-line. The phase A will
equilibrate to the composition A*, while phase B will equilibrate
to B*. Using the model of Ruschak and Miller,23 wherein all of
the component diffusivities in the ternary mixture are equal to
one another, the diffusion equilibration trajectories A−A* and
B−B* will both be straight lines in ternary composition space.
We note that the A−A* trajectory lies in the metastable region
between the binodal and spinodal curves. This foray into the
metastable region is a necessary condition for emulsification to

occur. Vitale and Katz27 have coined the generic term Ouzo
effect to describe such a process of creating metastable liquid−
liquid dispersions. Since no input of mechanical energy is
involved, this offers an energy-efficient method of producing
nanospheres and nanoparticles.25

The Ruschak−Miller model is overly simplistic because the
linear equilibration trajectories are only realized if the
thermodynamic correction factors are ignored, Γij = δij, and
the Fick diffusivity matrix [D], in either contiguous fluid phase,
degenerates to a scalar diffusivity times the identity matrix.14,15

Detailed analysis of the published experimental data on
diffusivities in several partially miscible ternary liquid mixtures
reveals that the interdiffusion process is strongly coupled due to
thermodynamic correction factors close to regions of phase
transitions, and the off-diagonal elements of the Fick diffusivity
matrix [D] exert significant influences on the equilibration
trajectories.14,15,32,39

The model for the immersion precipitation process is
amenable to the straight-forward extension to cater for
interdiffusion between two partially miscible liquid phases (A,
B), with two different Fick diffusivity matrices [DA] and [DB];
the detailed derivations are available in the SI.
Figure 9a shows the simulation results for A−A* and B−B*

equilibration trajectories for glycerol/acetone/water mixtures;
both trajectories are both strongly curvilinear in composition
space; in the glycerol-rich phase, the B−B* exhibits a foray into
the metastable region with the potential for emulsification.
Similarly, for water/acetic acid/MTBE mixtures, the ingress of
B−B* into the metastable region (see Figure 9b) in the MTBE-
rich phase may result in emulsion formation. Analogous results
are obtained for water/chloroform/acetic acid, water/acetone/
ethyl-acetate, water/ethanol/ethyl-acetate, and water/acetic
acid/1-hexanol mixtures; see simulation results in Figures S24,
S25, S27, and S29. It is noteworthy that the Ruschak−Miller
model with straight-line equilibration would also have
anticipated the possibilities of emulsification for all of the
aforementioned six mixtures.
We now demonstrate scenarios in which forays into

metastable regions can occur under conditions that are not
anticipated using the model of Ruschak and Miller.23 For water
(1)/ethanol (2)/cyclohexane (3) mixtures, we choose the set of
starting compositions for the ethanol-rich phase (A) and
cyclohexane-rich phase (B) as x1A0 = 0.375; x2A0 = 0.62; x1B0 =
0; x2B0 = 0.57; see Figure 10a. The composition of the A−B
mixture, A* = B* = x1I = 0.1875; x2I = 0.595, lies in the
homogeneous single-phase region, but close to the binodal
curve. According to the Ruschak−Miller analysis, no entry into
the metastable regions is possible. Calculations of the A−A* and
B−B* trajectories with reliable estimates of the Maxwell−Stefan
diffusivities, along with proper accounting of thermodynamic
correction factors (using the NRTL equation for phase
equilibrium), lead to curvilinear trajectories. The B−B*
penetrates the metastable zone in the cyclohexane-rich phase.
The composition profiles of the three components are plotted in
Figure 10b as a function of the dimensionless distance
coordinate z D t/ 4 ref . We note that ethanol experiences a
pronounced undershoot during the transient equilibration
process. Concomitantly, cyclohexane displays a slight overshoot.
The overshoot/undershoot phenomena, along with the entry
into the metastable zone, are engendered by the significant off-

diagonal elements of [Γ ] = [ −
− ]0.59141 0.19602

0.70702 0.3644B in the

cyclohexane-rich phase. Indeed, if thermodynamic coupling
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effects are completely ignored by invoking the assumption Γij =
δij, the equilibration trajectory (shown by the dotted line in
Figure 10a) shows no entry into the metastable region.
Analyses of transient equilibration in glycerol/acetone/water,

water/acetone/ethyl-acetate, water/acetic acid/1-hexanol, and
water/acrylonitrile/toluene mixtures yield results that are
precisely analogous to those in Figure 10; see Figures S23,
S26, S29, S32, and S33. In all cases, thermodynamic coupling
induces entry into metastable zones, while the Ruschak−Miller
model calculations do not anticipate such incursions.
The crystal formation and growth as a consequence of

diffusional foray into supersaturated regions is also a
consequence of thermodynamic coupling.32,40

3. CONCLUSIONS
For partially miscible ternary fluid mixtures, diffusivities in
regions close to phase transitions are strongly influenced by
phase equilibrium thermodynamics. These influences are
quantified by thermodynamic correction factors Γij, whose off-
diagonal elements Γ12 and Γ21 are often significantly large in
relation to the Γ11 and Γ22. Consequently, interphase diffusion is
a strongly coupled process that results in strongly curvilinear
equilibration trajectories during transient equilibration. Such
trajectories often signify uphill diffusion phenomena, and cause
forays into themetastable regions, lying between the binodal and
spinodal curves. Such forays are essential in the immersion
precipitation process for the preparation of CA, PSF, PEI, and
PVDF membranes, with asymmetry in the polymer distribution
along the thickness. In all cases, if the off-diagonal elements Γ12
and Γ21 are set to zero, no polymer precipitation is realized. The
transient development of volume fractions of water in the
polymer casting film exhibits overshoots in all of the four cases;
such overshoots are signatures of uphill diffusion. The
theoretical model developed in this work should provide
guidelines to the polymer chemist for choosing a set of operating
conditions, and mixture compositions in the casting film and
coagulation bath to prepare asymmetric polymeric membranes.
The exploitation of the Ouzo effect for the formation of

metastable emulsions in liquid/liquid mixtures is also crucially
dependent on thermodynamic coupling effects.
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1 Preamble 

The Supporting Information accompanying our article Highlighting Thermodynamic Coupling Effects 

in the Immersion Precipitation Process for Formation of Polymeric Membranes provides: (1) detailed 

development of the Maxwell-Stefan (M-S)  diffusion equations for multicomponent fluid mixtures, (2) 

comparison of the M-S formulation with the Bearman friction formulation, (3) procedures for estimation 

of the M-S diffusivities, (4) description of phase equilibrium using the Flory-Huggins relations, (5) 

development of the analytic model to describe equilibration in the immersion precipitation process, (6) 

detailed development of the model to describe emulsification in ternary fluid mixtures, (7) data inputs 

and simulation details for all investigated mixtures.  

All the calculations and simulations reported in this article were performed using MathCad 15.1 For 

ease of reading, this Supporting Information is written as a stand-alone document; as a consequence, 

there is some overlap of material with the main manuscript.  
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2 Phenomenological relations for n-component diffusion 

Before setting up the proper phenomenological relations between the diffusion fluxes and the driving 

forces, we first consider the various choices of concentration measures, and reference velocities. The 

treatment below is essentially a summary of Chapter 1 of Taylor and Krishna.2 

2.1 Concentration measures 

A summary of the wide variety of concentration measures for n-component mixtures that are 

encountered in practice is provided in Table S1. 

2.2 Diffusion fluxes and reference velocities 

If ui denotes the ensemble average velocity of component i with respect to a laboratory-fixed (i.e. 

stationary) coordinate reference frame, the molar flux of component  i  in the laboratory-fixed reference 

frame is i i iN c u  and the molar flux of the mixture is 
1

n

t i
i

N N


 . The modelling and design of 

separation and reaction equipment requires calculation of the diffusion fluxes, iJ ; these are defined with 

respect to an arbitrarily chosen reference velocity of the fluid mixture, u : 

  niuucJ iii ,..2,1;   (S1) 

Most commonly, we choose u  as the molar average velocity of the mixture 

1 1 2 2
1

n

i i n n
i

u x u x u x u x u


    
 

(S2) 

Only n-1 of the fluxes iJ  are independent because the diffusion fluxes sum to zero 
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



n

i
iJ

1

0
 

(S3) 

The molar fluxes iN  in the laboratory fixed reference frame are related to the diffusion fluxes iJ  by 





n

i
ittiiiii NNNxJucN

1

;
 

(S4) 

The molar diffusion flux can also be defined with respect to other reference velocities; some 

commonly used ones are summarized in Table S2. 

For ideal gas mixtures, the molar average mixture velocity equals the volume average mixture 

velocity. The mass average reference velocity frame is convenient to use when the equations of 

conservation of mass need to be solved in conjunction with the momentum balance relations.  The 

volume average mixture velocity is convenient for liquid mixtures. For diffusion of ions in dilute 

aqueous solutions, it is convenient to define the diffusion fluxes with respect to water (the nth 

component).  

2.3 The Generalized Fick’s law for n-component diffusion 

Choosing the mole fraction gradients as the driving forces, the diffusion fluxes 

  ; 1, 2,..i i iJ c u u i n  
 with respect to the molar average reference velocity may expressed as linear 

functions of the (n-1) independent driving forces, by defining a (n-1) (n-1) dimensional Fick 

diffusivity matrix  D  

       1
( ) t

d x d x
J c D D

dz dzV
   

 
(S5) 

where  
1

n

k k
k

V x V


   is the mean molar volume of the mixture. 

2.4 Other choices of reference velocities in the definition of [D] 

The Fick diffusivity matrix  D  is defined in eq (S5) in terms of molar diffusion fluxes, iJ , that are, 

in turn, defined with respect to the molar average reference velocity frame u . Other choice of fluxes and 
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reference velocities are encountered in the chemical engineering literature; see Section 3.2.2 of Taylor 

and Krishna.2 See also Table S2. 

For mass diffusion fluxes,  
1

; 1,2,.. ; 0
n

i i i i
i

j u v i n j


     defined with respect the mass 

average mixture velocity 
1

n

i i
i

v u


 , we write    
dz

d
Dj mass

t

)( . 

The mass fractions are related to the mole fractions xi  

M
M

M

M

c

c
x

M

Mx

Mx

Mx

i

i
n

i i

i

i

i

t

i
i

ii
n

i
ii

ii

t

i
i







 


 11

; , where Mi is the molar mass of species i, with 

the units kg mol-1, and  M  is the mean molar mass of the mixture is 








 n

i i

i

n

i
ii

M

MxM

1

1

1


. The 

mixture mass density is related to the total molar concentration of the mixture 
1

t tc M M
V

   .  

For molar diffusion fluxes,  
1

; 1,2,.. ; 0
n

V V V
i i i i i

i

J c u u i n V J


    . defined with respect the 

volume average mixture velocity 
1

n
V

i i i
i

u c V u


  , we write 
 

( )V V d c
J D

dz
     . This is a common 

choice in the experimental determination of diffusivities.  

For n-component mixtures, the numerical values of the elements of  D ,  massD , and VD    are 

different.  However, the determinants of the corresponding matrices are equal to one another.2 

mass VD D D   (S6) 

For the special case of a binary mixture, n = 2,  
  12

2211

21
112

2

2

1

1

21
1 ;

1

dx
MxMx

MM
dd

MM

MM
dx














 


, 

and the Fick diffusivity is the same for the three different choice of reference velocity frames2 
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 

 

 

1
1 1 1 12

1
1 1 1 12

1
1 1 12

t

t

V V
i

d
j u v D

dz
dx

J c u u c D
dz
dc

J c u u D
dz

    

   

   

 (S7) 

The inter-relationship between J1 and j1 is summarized in Table S3. 

The formulae for transformation of the Fick diffusivity matrix from one reference frame to another are 

provided in Section 3.2.4 of Taylor and Krishna.2 For example, for a ternary mixture, n = 3, the 

transformation between  D , and  massD  is  

 

            

 
1

2

1

2

1

23

23
2

13

13
2

23

23
1

13

13
1

11

0

0

0

0

111

111

;;




















































































x

x

x

x

x

x

x

x

x

x

A

ADADADAD massmass
















 (S8) 

For the ternary mixture of nC8H18(1)/nC10H22(2)/1-methylnapthalene(3) with mass fractions 1 =  2 

=  3 = 0.3333 at 295.65 K, Leahy-Dios et al.3 report experimental data on the Fick diffusivity matrix in 

the mass average reference velocity frame:   129 sm10
4.242.0

93.099.1 










massD ; the large magnitudes 

of the off-diagonal elements are particular noteworthy. The corresponding mole fractions of the three 

components are x1 = 0.384, x2 = 0.308, x3 = 0.308. On transformation using eq (S8), we obtain the 

matrix of Fick diffusivities in the molar average reference velocity frame 

  129 sm10
47.2333.0

07.192.1 










D . 

For a ternary mixture, n = 3, the transformation between  D , and VD    is given by eq (S9).  
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         

 
   

   

1 1

1 1
1 3 2 3 3

12 2
1 3 2 3

; ;

1
;

1

V V

k k
k

D A D A D A D A

x x
V V V V

V VA V x V
x x

V V V V
V V

 



       
     

  
      


 (S9) 

Alimadadian and Colver;4 report the elements of the Fick matrix VD    in the volume average 

reference velocity frame for acetone(1)/benzene(2)/methanol(3) mixtures at 9 different compositions. At 

x1 = 0.350, x2 = 0.302, x3 = 0.348, 9 2 13.819 0.42
10 m s

0.561 2.133
VD          

. The partial molar volumes are 

6 6 6 3 -1
1 2 374.1 10 ; 89.4 10 ; 40.7 10 m  molV V V        . Using equation (S9), we can convert to 

the molar average reference velocity frame to obtain   9 2 13.651 0.069
10 m s

0.300 2.303
D   

   
; see Example 

3.2.1 of Taylor and Krishna2 for further calculation details. 

2.5 The Maxwell-Stefan formulation for n-component diffusion 

The Maxwell-Stefan approach, that we adopt in this article, has its origins in the pioneering works of 

James Clerk Maxwell5 and Josef Stefan6 who analyzed diffusion in ideal gas mixtures. The Maxwell-

Stefan (M-S) formulation is best understood by considering z-directional diffusion in a binary gas 

mixture consisting of species 1 and 2, contained within the control volume shown schematically in 

Figure S1. The cross-sectional area available for diffusion is 1 m2 and the length of the diffusion path is 

dz .  If the change in the partial pressure of component i across the diffusion distance dz  is idp , the 

force acting on species i per m3 is 
dz

dpi . The number of moles of species i per m3, 
RT

p
c i

i  , and 

therefore the force acting per mole of species i is 
dz

dp

p

RT i

i

  which for an ideal gas mixture at constant 

temperature also equals the chemical potential gradient 
dz

d i . This force is balanced by friction 

between the diffusing species 1 and 2, each diffusing with a velocity iu  (cf. Figure S2). We may expect 
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that the frictional drag to be proportional to the velocity difference  21 uu  , and we write 

 1
2 1 2

12

d RT
x u u

dz Ð


    where the term 

12Ð

RT
 is to be interpreted as the drag coefficient. The multiplier 

x2 in the right member represents the mole fraction of component 2; this factor is introduced because we 

expect the friction to be dependent on the number of molecules of component 2 relative to that of 

component 1. The Maxwell-Stefan diffusivity 12Ð  has the units m2 s-1 and the physical significance of 

an inverse drag coefficient. The extension to n-component mixtures is intuitively obvious and can be 

written for component 1, for example as follows  

     1
2 1 2 3 1 3 1

12 13 1

........ n n
n

d RT RT RT
x u u x u u x u u

dz Ð Ð Ð


         (S10) 

The corresponding relations for components 2, 3, ..n are written down in an analogous manner. The left 

member of eq (S10) is the negative of the gradient of the chemical potential, with the units N mol-1; it 

represents the driving force acting per mole of species 1. The term ijÐRT  is interpreted as the drag 

coefficient for the i-j pair. The multiplier xj in each of the right members represents the mole fraction of 

component j; this factor is introduced because we expect the 1-j friction to be dependent on the number 

of molecules of j relative to that of component 1. The M-S diffusivity ijÐ  has the units m2 s-1 and the 

physical significance of an inverse drag coefficient. The magnitudes of the M-S diffusivities ijÐ  do not 

depend on the choice of the mixture reference velocity because eq (S10) is set up in terms of velocity 

differences. Equation (S10) may be re-written as  

 








n

j ij

jiji

ij

Ð

uux

dz

d

RT 1

1 

 

(S11) 

Multiplying both sides of equation (S11) by xi we get 

     














n

j ijt

jjiiij
n

j ij

jjiiij
n

j ij

jijiii

ijijij

Ðc

ucxucx

Ð

uxxuxx

Ð

uuxx

dz

d

RT

x

111



 

(S12) 

Introducing the expressions for fluxes i i i t i iN c u c x u   and i i i tJ N x N   in eq (S12), we get 
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JxJx

Ðc

NxNx
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n

j ijt

jiij

ijt

jiijii
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,2,1;
1 1
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




  
 
 



 

(S13) 

The Maxwell-Stefan diffusion formulation (S13) is consistent with the Onsager formulation; the 

Onsager Reciprocal Relations (ORR) imply that the M-S pair diffusivities are symmetric  

njiÐÐ jiij ...2,1,; 
 (S14) 

The second law of thermodynamics dictates that the rate of entropy production must be positive 

 
0

11 1

11




 




n

i
i

ni
i

n

i

i J
dz

d

T
J

dz

d

T


 

(S15) 

Insertion of the Maxwell-Stefan eq (S13) into eq (S15) we obtain on re-arrangement7 

0
2

1

1 1

2
 

 

n

i

n

j
ji

ij

ji
t uu

Ð

xx
Rc

 
(S16) 

The term 
dz

d

RT

x ii 
 on the left hand member of eq (S13) is the generalization of the mole fraction 

gradients, used as driving forces for ideal gas mixtures. 

For non-ideal liquid mixtures, the chemical potential of component i, i  are related to the gradients of 

the component activities, iii xa  , where i  is the activity coefficient: 

   iiiiii xRTaRT  lnln 00   (S17) 

For gaseous mixtures at high pressure, the chemical potential of component i, i  are related to the 

gradients of the component fugacities, i i i i if p x p   : 

   0 0ln lni i i i i i tRT f RT x p        (S18) 

where i  is the fugacity coefficient and pt is the total gas pressure. 

In proceeding further, it is convenient to express the left member of eq (S13) in terms of the mole 

fraction gradients by introducing an (n-1) (n-1) matrix of thermodynamic correction factors   : 
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(S19) 

For non-ideal ternary liquid mixtures, the elements of    can be calculated from Van Laar, Wilson, 

UNIQUAC or NRTL models describing phase equilibrium thermodynamics.2, 8 The analogous 

expression for high pressure gaseous mixtures is 

12,1,;
ln

;
ln 1

1

 



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j
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iijij

j
n

j
ij

i
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ii 

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


 
(S20) 

In this case, the elements of    can be calculated by analytic differentiation of an Equation of State 

(EOS) such as the Peng-Robinson (PR) EOS; for further details see Krishna and van Baten.9 For binary 

mixtures, explicit analytic expressions for 
1

1
1

1

1
1

lnln

x
x

x

f
x ij 





  for PR EOS are provided in the 

paper by Tuan et al.10 

We also define a (n-1) (n-1) matrix of inverse M-S diffusivities  B  whose elements are given by 

1...2,1,;
11

; )(
1











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
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ÐÐ
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Ð
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Ð
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ijiij
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k ik

k

in

i
ii

ik  

(S21) 

Combining eqs (S13), (S19), (S20), and (S21), we can re-cast eq (S13) into (n-1) dimensional matrix 

notation 

                     11 1
( ); ( ) t t

t

d x d x d x d x
B J J c B c

dz c dz dz dzV

               (S22) 

where we have additionally defined  

    1 B  (S23) 

The inter-relationships between the Fick, and the Maxwell-Stefan diffusivities is 

        

        

1
;

1 1
( )

D B

d x d x
J D

dz dzV V

    

     
 (S24) 



Phenomenological relations for n-component diffusion 
   

S13 
 

Equation (S24) underscores the direct influence of mixture thermodynamics on the elements Dij of the 

matrix of Fick diffusivities  D . 

For an ideal gas mixture, the thermodynamic correction factors  ij ij   and eq (S24) reduces to  

    1
[ ]; ideal  gas  mixtureB D

    (S25) 

For a binary mixture, n = 2, eq (S13)  simplifies to  

 
12

211211

Ðc

JxJx

dz

d

RT

x

t






 
(S26) 

Introducing the constraints 12 JJ  , and 12 1 xx  , eq (S26) yields 

dz

dx
Dc

dz

dx
Ðc

dz

d

RT

x
ÐcJ ttt

1
12

1
12

11
121 



 
(S27) 

in which the Fick diffusivity for binary mixture is 

 1212 ÐD  (S28) 

For a ternary mixture, n = 3, eq (S24) gives the following explicit expression for the four elements of 

the Fick diffusivity matrix 

1

32 1
1

23 12 23 12 1311 12 11 12

21 22 21 2231 2
2

12 23 13 12 13

1 1

1 1

xx x
x

Ð Ð Ð Ð ÐD D

D D xx x
x

Ð Ð Ð Ð Ð


  

    
                         

(S29) 

The matrix inversion in eq (S29) can performed explicitly and we obtain 

    
    

11 12 11 12 11 12

21 22 21 22 21 22

13 1 23 1 12 1 23 13 12

2 13 23 12 23 2 13 2 1211 12

21 22 1 23 2 13 3 12

;

1

1

D D

D D

Ð x Ð x Ð x Ð Ð Ð

x Ð Ð Ð Ð x Ð x Ð

x Ð x Ð x Ð

        
             
   
 

             

 (S30) 

 

The determinant of   B  for a ternary mixture is 
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The quantity 
1/2 12 13 23

1 23 2 13 3 12

Ð Ð Ð

x Ð x Ð x Ð
 

 
 can be interpreted as a measure of the “average” 

magnitude of M-S diffusivity in the ternary mixture.  

For stable single phase fluid mixtures, we must have 0 . In view of eq (S24)  the condition of 

phase stability translates to 

stability phase;0;0 D
 (S32) 

Equation (S32) implies that all the eigenvalues of the Fick matrix [D] are positive definite. It is 

interesting to note that thermodynamic stability considerations do not require the diagonal elements Dii 

to be positive. If recourse is made to the kinetic theory of gases, it can be shown that the diagonal 

elements iiD  are individually positive for mixtures of ideal gases. The off-diagonal elements )( jiDij   

can be either positive or negative, even for ideal gas mixtures. Indeed, the sign of )( jiDij   also 

depends on the component numbering. 

The condition for phase stability in a binary fluid mixture is 

12 0; 0; phase  stabilityD    (S33) 

The occurrence of 0  implies vapor/liquid or liquid/solid phase transitions. 

2.6 Estimation procedures for the matrix [] 

For binary liquid mixtures, the Vignes interpolation11, 12 is widely used to describe the composition 

dependence of the M-S diffusivity 

    2211 1
12

1
1212

xxxx ÐÐÐ   (S34) 

where the limiting values of the M-S diffusivities are 

1
12

1
,1

1
12

1
,2

2211 ;   xx
self

xx
self ÐDÐD  (S35) 
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The infinite dilution self-diffusivities can be estimated using the Wilke-Chang, Tyn-Calus procedures 

that are described in detail by Taylor and Krishna.2 

The description of the composition dependence of the M-S diffusivities Ðij in liquid mixtures 

containing three or more species is much less developed. Krishna and van Baten11 postulate that the M-

S diffusivity of the i-j pair in the ternary i-j-k mixture depends on Di,self and Dj,self in this mixture, but 

weighted with mole fractions on a k-free basis, i.e.  

selfi
ji

j
selfj

ji

i
ij D

xx

x
D

xx

x
Ð ,, 




  (S36) 

Each of the three M-S pair diffusivities Ðij depends on six infinite dilution parameters  
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These limiting values of Ðij at the edges of the ternary composition space are 
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Noting that the following limiting values hold  
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we derive 
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Equation (S40) is the proper estimation procedure for 
1jx

ijÐ . 
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For a ternary mixture, Wesselingh and Bollen13 have suggested the following extension of the Vignes 

interpolation formula (S34) 
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ijij ÐÐÐÐ 111   (S41) 

For the estimation of 1kx
ijÐ , the i - j pair diffusivity when both i and j are present in infinitely dilute 

concentrations. Krishna and van Baten11 suggest the following extension of eq (S38) 
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For the special case of an equimolar mixture we obtain 
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The simplified interpolation formula (S43) was proposed by Wesselingh and Bollen.13 

The square root of the determinant 2/1  may be viewed as a measure of the “magnitude” of the M-S 

diffusivity that characterizes diffusion in a ternary mixture. 

123132231

2313122/1

ÐxÐxÐx

ÐÐÐ


  (S44) 

Close to the regions of phase splitting, the thermodynamic coupling effects predominate and a simple 

procedure for the estimation of the Fick diffusivity matrix has been proposed14 

   1/2
D     (S45) 

The accuracy of the estimates using eq (S45) has been verified by comparison with a very wide range of 

MD simulations and experimental data. 14, 15 
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2.7 List of Tables for Phenomenological relations for n-component diffusion 

Table S1. Concentration measures 

Concentration measure units Inter-relation, constraint 

xi, mole fraction of species i - 
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ci, molar density of species i mol m-3 

1

1
; mixture molar density=

n
i

i i t
ii

c c c
M V


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i, mass density of species i kg m-3 

1

; mixture mass density
n

i i i i t
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c M  
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Mi, molar mass of species i kg mol-1 
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mean molar mass of mixture
n
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iV , partial molar volume of 

i 
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1

1
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V x V
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- 
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fi, fugacity of species i Pa 

1
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n

i t
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f f

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i, molar chemical potential 

of species i 

J mol-1 0 lni i iRT f    

 

  



Phenomenological relations for n-component diffusion 
   

S18 
 

 

Table S2. Choice of reference velocity frame. 

Reference velocity Constraint on molar fluxes 
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Table S3. Inter-relation between J1 and j1 for binary mixture 

Molar fluxes Mass fluxes 
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2.1 List of Figures for Phenomenological relations for n-component diffusion 

 

Figure S1. A force balance on a control volume containing an ideal gas mixture. 

  

Force balance
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Figure S2. The force acting on each of the species in the diffusing binary mixture of species 1 and 2 is 

balanced by friction between the species 1 and 2. 
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3 Flory-Huggins description of polymer solution thermodynamics 

The proper description of diffusion in polymer solutions is important in  wide variety of contexts such 

as permeation across polymer membranes; for an introduction to this topic see Wesselingh and 

Krishna.16 Diffusion in polymer solutions is strongly influenced by solution thermodynamics, that is 

most convenient described by the Flory-Huggins model. 16-18 

3.1 The Flory-Huggins model for polymer solutions 

The Flory-Huggins equation in its simplest form deals with molecules that are similar chemically, but 

differ greatly in length. An example might be cross-linked polyethylene with the penetrant propane 

(C3H8). The Flory-Huggins model is based on the idea that the chain elements of the polymer arrange 

themselves randomly (but with the molecules remaining connected) on a three- dimensional lattice; see 

schematic in Figure S3. The guest species could be a solvent (e.g. acetone, toluene), or an anti-solvent 

such as water. The guest molecules are also termed “penetrants” in the context of polymer membrane 

permeation.  In this article, we use the terms “solvent”, “guest”, and “penetrant” interchangeably, and 

referring to the same species. 

The Flory-Huggins model does not take effects of crystallization or other inhomogeneities into 

account. The resulting equation for the activity of the penetrant is a simple function of the volume 

fraction of the penetrant in the membrane. We use i  to denote the volume fraction of the penetrant 

species i; the volume fraction of species i is i i ic V   where ic  is the molar concentration, and iV  is the 

partial molar volume of the penetrant species i. Other concentration measures are listed in Table S4. The 

use of mole fractions is not convenient for description of the thermodynamics of polymer solutions 

because the molar mass of the polymer chains are ill defined.16 

The Flory-Huggins (F-H) model for binary mixture of solvent (1) and polymer (indicated by subscript 

m) is   



Flory-Huggins description of polymer solution thermodynamics 
   

S23 
 

21
1 1 1 1

1

ln ln( ) (1 )

1

m m m
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 

    

 

 (S46) 

Equation (S46) contains a non-ideality, or interaction parameter 1m  that is assumed to be 

independent of the volume fraction. If 1 0m  , the solvent and polymer repel, or dislike, each other. If 

1 0m  , the penetrant and polymer attract each other. If 1 0m  , the solvent and polymer are similar in 

nature and there are no attractive or repulsive forces. 

Figure S4 illustrates the influence of the interaction parameter 1m  on the activity (a1) and 

thermodynamic correction factor, 
1

1

ln

ln





a

, that plays a pivotal role in diffusion.  In these 

calculations, the ratio 01 
mV

V
, i.e. the partial molar volume of the solvent is negligible in comparison to 

the molar volume of the polymer. If 1m  is positive, the solution can split into two phases for a range of 

volume fractions, one rich in polymer and one rich in solvent; the demixing zone is indicated in cyan in 

Figure S4. 

If the interaction parameter 1m  is dependent on the volume fractions, the F-H model for unary 

systems needs to be extended as follows 

     
1

12
11

2
11

1
1111 111)1()ln(ln






 m
m

mV

V
a  (S47) 

For ternary mixtures of two solvents (penetrants), 1 and 2, and the polymer (m), there are three 

interaction parameters in the F-H description of phase equilibrium: mm 2112 ,,  . If each of the three 

interaction parameters mm 2112 ,,   are dependent on the volume fractions of the penetrants, 1 2,  , the 

F-H model for the component activities 1 2,a a  of the penetrants in the polymer membrane (m) are 
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In eq (S48), we have defined  2 1
2 1 2 1 2

1 2 1 2

; 1 ; 1mu u u
    

   
      

 
.  

Equation (S48) corresponds precisely with equations (6) and (7) of Mulder et al.19 The same set of 

extended equations are also given by Yang and Lue20 and Varady et al.21  

In the scenario in which the penetrant-polymer interaction parameters 1 2,m m   are independent on the 

volume fractions of the penetrants, eq (S48) simplifies to yield 
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 (S49) 

 

3.2  The Flory-Huggins model for liquid mixtures of two solvents 

As a special (degenerate) case, eq (S48) can be applied to describe the component activities for binary 

liquid phase mixtures of two different solvents, 1 and 2.  Let LL
21 ,  represent the volume fractions of 

components 1 and 2 in the bulk liquid mixture.  These volume fractions are related to the mass fractions 

L
i  in the bulk liquid mixture 

1

L
i
L

L i
i Ln

i
L

i i









, where L

i  is the liquid phase mass density of the penetrant 

species i. Other concentration measures, and inter-relations, are listed in Table S4. We also have the 
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constraint 121  LL  . The component activities in the liquid mixture are obtained from eq (S48) by 

omitting terms containing 1m  and 2m , and setting 1 20; 1L L
m     , and L
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Equation (S50) corresponds precisely with eqs (9), and (10) of Mulder et al.19 The 12  is related to the 

excess Gibbs free energy 

)ln()ln(
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 (S51) 

In eq (S51), 21, xx  are liquid phase mole fractions 

1

L
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i Ln
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c M
x M

c M
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
, where iM  is the molar 

mass of component i (units kg mol-1), and 
1

n

i i
i

M x M


  is the mean molar mass of the mixture; see 

Table S4.   

The interaction parameter 12  for mixtures such as water/ethanol are strongly dependent on the liquid 

mixture composition. The excess Gibbs free energy )ln()ln( 2211  xx
RT

G excess

  can be calculated from 

activity coefficient models such as that of Wilson, NRTL, and UNIQUAC.19, 20 Mulder et al.19 have also 

shown that the dependence of 12  on the volume fractions of components in the bulk liquid mixture can 

be expressed as a fourth-order polynomial in L
LL

L
Lu 2

21

2
2 







  
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The use of the fourth-order polynomial expression is particularly convenient for the evaluation of the 

derivative 12

2
L







 in eq (S50). The five coefficients, , , , ,a b c d e  can be determined by fitting of the 

Wilson, NRTL, and UNIQUAC models for )ln()ln( 2211  xx
RT

G excess

 .  

A significant contribution of Mulder et al.19 is to demonstrate that the interaction parameter 12  for 

the same two penetrants in the polymer matrix phase experiences the same composition dependence on 

the normalized volume fraction of component 2 within the polymeric solution: 
21

2
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3.3 List of Tables for Flory-Huggins description of polymer solution 

thermodynamics 

 

Table S4. Concentration measures and inter-relationships. 
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3.4 List of Figures for Flory-Huggins description of polymer solution 

thermodynamics 

 

Figure S3. Schematic showing mixture permeation across polymeric membrane. The inset illustrates 

the Flory-Huggins lattice model. 
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Figure S4. Influence of the interaction parameter on (a) the activity, a1, and (b) thermodynamic 

correction factor, . In these calculations, the ratio 01 
mV

V
, i.e. the molar volume of the penetrant is 

negligible in comparison to the molar volume of the polymer.  
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4 Diffusion in polymer solutions 

4.1 The Maxwell-Stefan (M-S) description of diffusion in polymer solutions 

We develop the Maxwell-Stefan (M-S) equations to describe the diffusion of n penetrants, 1, 2, 3,..n 

in a polymer matrix (m). The M-S equations represent a balance between the force exerted per mole of 

species i with the drag, or friction, experienced with each of the partner species in the mixture. We may 

expect that the frictional drag to be proportional to differences in the velocities of the diffusing species 

 ji uu  , where iu  is the velocity of motion of the penetrant i. For diffusion in multicomponent 

polymer solutions such as acetone/cellulose acetate, um  0, i.e. the polymer chains have a finite velocity 

of diffusion. For a mixture containing a total of n penetrants, 1, 2, 3,..n we write 
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  (S54) 

The left members of eqs (S54) are the negative of the gradients of the chemical potentials, with the 

units N mol-1; they represent the driving force acting per mole of species 1, and 2. The subscript m 

refers to the polymer chain, that is regarded as the (n+1)th component in the mixture. The term imÐRT  

is interpreted as the drag or friction coefficient between the penetrant i and the polymer. The term 

ijÐRT  is interpreted as the friction coefficient for the i-j pair of penetrants. The multiplier Xj in each of 

the right members represents a measure of the composition of component j in the mixture because we 

expect the friction to be dependent on the number of molecules of j relative to that of component i.  

There are many possible choices for composition measures Xi.  

Mole fractions, xi 
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Molar concentrations, ci 

Mass fractions, i 

Partial mass densities, i 

Volume fractions, i 

The inter-relations between these concentration measures are provided in Table S4. 

Written in terms of mole fractions, xi, eqs (S54) are 
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Only n of the chemical potential gradients 
dz

d i  are independent, because of the Gibbs-Duhem 

relationship 

02
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dz
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x m
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The M-S formulation is consistent with the theory of irreversible thermodynamics. The Onsager 

Reciprocal Relations imply that the M-S pair diffusivities are symmetric  

jiij ÐÐ   (S57) 

Written in terms of volume fractions, the n independent chemical potential gradients are related to the 

velocity differences as follows 
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1
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1
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j i j m i mi

V V
j ij im
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j ij im

u u u ud
i n

RT dz Ð Ð

u u u ud
i n

RT dz Ð Ð
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







 
   

 
   




 (S58) 

The modified M-S diffusivities V
ijÐ  are related to the M-S diffusivities jiij ÐÐ  , defined in terms of 

mole fractions, by: V
ij

jij
jijt Ð

V

VÐ
VÐc  , and V

im
mim

mimt Ð
V

VÐ
VÐc  . The symmetry constraint 

imposed by the Onsager Reciprocal Relations is 

j

V
ij

i

V
ji

i

V
ji

ji

j

V
ij

ij
V

Ð

V

Ð
V

V

Ð
ÐV

V

Ð
Ð  ;  (S59) 

It is important to note that the modified M-S diffusivities V
ijÐ  are not symmetric. Specifically, for a 

ternary mixture of penetrants 1, 2, and polymer (m), the symmetry constraint demanded by the Onsager 

Reciprocal Relations is  

21 12

1 2

V VÐ Ð

V V
  (S60) 

We define the volumetric flux of component i in a laboratory-fixed reference frame, expressed as m3 

m-2 s-1  

V
i i iN u  (S61) 

The corresponding molar flux of component i, in a laboratory-fixed reference frame, expressed as mol 

m-2 s-1 is 
i

V
i

i

i

i
iii

V

N
u

V
ucN 


.   

Let us define the volumetric diffusion fluxes V
iJ  relative to the volume average velocity of the 

mixture Vu ,   
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

   
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   


 (S62) 

Equation (S58)  can be re-written in terms of the volumetric diffusion fluxes V
iJ  

   
1

1
; 1, 2,...

j i

V V V Vn
j i i j m i i mi

i V V
j ij im

J J J Jd
i n

RT dz Ð Ð

   



 
     (S63) 

It is helpful to express the chemical potential gradients in terms of the volume fraction gradients by 

introducing an nn dimensional matrix of thermodynamic factors   : 

1

ln ln
; ; , 1, ,..

ln

j n
ji i i i i

i ij ij
j j j

dd d a a
i j n

RT dz dz dz

  
 






     

  (S64) 

Let us define an nn dimensional square matrix  B  

( )
1

1 1
;

k i

n
i k m

ii ij i j iV V V V V
kim ik im ij im

B B
Ð Ð Ð Ð Ð

   





 
      

 
  (S65) 

It is also convenient to define an nn dimensional square matrix 

    1
B

   (S66) 

Combining eqs (S63), (S64), and (S65) we may write an explicit expression for the volumetric 

diffusion fluxes V
iJ , expressed in n dimensional matrix notation 

           

      

1 1
; ;V

V

d
J B B

dz
d

J
dz





     

   

 (S67) 

The nn dimensional square matrix of Fick diffusivities VD    may be defined 

  VD       (S68) 
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4.2 Bearman friction formulation, and comparisons with M-S formulations 

In the vast literature on diffusion in polymer solutions,22, 23 it is customary to use the friction 

formulation for multicomponent diffusion in polymer solutions; this formulation, normally credited to 

Bearman,24 is written in the following manner that is equivalent to equation (1) of Price and 

Romdhane23 

   

   

1

1
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j i

j i
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ji m

ij i j im i m
j j m

i
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i

n
i

j ij i j m im i m
j

d
u u u u i n

dz M M

c i n
M

d
c u u c u u i n

dz

  



  









     

 

     











 (S69) 

 

Comparing with the Maxwell-Stefan formulation (S58), we can derive the following inter-relations 

between the friction coefficients imij  ,  in the Bearman eq (S69) and the modified M-S diffusivities V
ijÐ  

;

1 1
;

j ij j m im m
V V

j ij m im

j j m m
ij imV V V V

j ij ij m im im

RTM Ð RTM Ð

RT RTV RT RTV

c Ð Ð c Ð Ð

     

  

 

   

 (S70) 

The symmetry constraint imposed by the Onsager Reciprocal Relations is 

;

1 1 1 1
;

;

V V
ji ij

ij ji

i j

V V
ij j j ji i i

ij ij ji jij j j i i i

j j j j i i i i
ij jiV V V V

ij j j ij ji i i ji

Ð Ð

V V

Ð M Ð M

RTV V RTV V

RTV V RTV RTV V RTV

Ð M Ð Ð M Ð

 

 
    

  
 

 

    

   

 (S71) 

 

For a binary solution consisting of solvent (1) and polymer (m), the Bearman eq (S69) reduces to 
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m
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m V V V
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 (S72) 

 

4.3 Diffusion in binary polymer solutions 

Let us start by considering a binary solution consisting of solvent (1) and polymer (m). Equation 

(S58)  simplifies to yield 

     1 1 1 11 1 11
1

1 1 1

1
V V V V

m m m mm m m
V V V
m m m

N N J Ju ud

RT dz Ð Ð Ð

    
 

     (S73) 

The V
m

V JJ ,1  are the volumetric diffusion fluxes relative to the volume average velocity of the mixture  

   1 1 1 1 1 1 1; ; ; ; 1V V V V V V V
m m m m m m mJ u u J u u u u u J J                (S74) 

In view of 1 1; 1V V
m mJ J      , we may re-write eq (S73) as  

1 1 1 1
1 1 1 1 1

1

ln1

ln
V V V V

m m

d a d d
J Ð Ð D

RT dz dz dz

  


 
       

 (S75) 

where 1

1

ln

ln

a




 


 is the thermodynamic correction factor, and 
1

1
11 ln

ln





a

ÐD V
m

V  is the Fick diffusivity.  

An alternative flux expression is often used in the literature to describe for diffusion in polymer 

solutions: the mass fluxes, V
ij , kg m-2 s-1, relative to the volume average velocity of the mixture, are 

expressed as a linear function of the mass concentration gradients.23 For the specific case of a binary 

solvent/polymer system  

   1 1 1
1 1 1 1 1 1 1

1 1

V V V VM M d
j u u u u J D

dzV V

         (S76) 

Combining eqs (S72), (S75), and (S76) we obtain 
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 (S77) 

The Fick diffusivity, 1D , defined in eq (S75) is relatable  to the Bearman friction coefficient, and the 

modified Maxwell-Stefan diffusivity:  
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          
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 (S78) 

In eq (S78), we have used the equalities 
m

mm
mmm M

V
Vc

  . The thermodynamic correction factor 

1 1 1 1

1 1 1
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 can be determined from the Flory-Huggins theory. From eqs (S75), and  

(S78), we note that the Fick diffusivities 1
VD  and 1D  are defined in two different ways 
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The 1
VD  and 1D  are not precisely identical but inter-related by 1

1 1
1

ln

ln
VD D




 
   

. Often, the 

simplification can be made that the correction factor 1
ln

ln

1

1 













. 
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4.4 Self-diffusivity in binary penetrant/polymer solutions  

It is also common in the polymer diffusion literature, to relate the Fick diffusivity 1D  to the self-

diffusivity, selfD ,1 . The rationale for this is that the free volume theory allows prediction of self-

diffusivity, selfD ,1 .16, 22, 25  The relation between 1D  and selfD ,1  requires careful and rigorous derivation. 

We start with the Bearman eq (S69) and apply it to a ternary mixture containing species 1, tagged 

species 1*, and polymer (m). The tagged species 1* is identical to species 1 with respect to 

thermodynamics and diffusion. This results in the following expression for  selfD ,1  

m
m

m

self RTMRTMD 111
1

1

,1

1 
  (S80) 

From eq (S72) we have the equalities 1 1
1 11

1 1 11

;m m
m V V

m mRTM Ð RTM Ð

      ; so, we derive the following 

expression in terms of the M-S diffusivities 

1

1, 11 1

1 m
V V

self mD Ð Ð


   (S81) 

The VÐ11  is the self-exchange coefficient, and represents the self-diffusivity of pure 1; this can be 

estimated using the procedure such as Wilke-Chang.9, 26, 27 In view of eq (S81) we find selfm
V
m DÐ ,11   

for the case of negligible 1-1 friction. 

The corresponding expressions for the self-diffusivity of the polymer (m) are 

1 1
1

, 1 1

1 1
1

1 1

1
1

1

1

;

;

m m
mm m V V

m self m mm m

m m
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mm m

D RTM RTM Ð Ð
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 

   

 

 

 (S82) 

Combining eqs (S78) and (S80) we obtain 
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(S83) 

Equation (S83) is precisely equivalent to equation (8) of Price and Romdhane;23 Readers should note 

the differences in the notations used here and in the paper of Price and Romdhane:23 the equivalence in 

the notations are: 
1 11

1, 1

*11
1

1

Fick diffusivity  of Price and Romdhane

Self-diffusivity  of Price and Romdhane

Self-exchange coefficient  of Price and Romdhane

self

V

D D

D D

Ð
D








 

For the limiting case of dilute solvent (species 1) in polymer (m) solutions, i.e. m 1 , we obtain 
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V
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 (S84) 

 

Equation (S84) is equivalent to equation (11) of Price and Romdhane.23 The thermodynamic 

correction factor 1 1 1 1

1 1 1
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 can be determined from the Flory-Huggins theory. 
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. We have the following 

inter-relations between the Bearman coefficients and M-S modified diffusivities 
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From experiments, we can determine the Fick diffusivity 1D , along with the self-diffusivities selfD ,1 , 

and selfmD ,  of solvent (1) and polymer (m). As illustration, Figure S5a shows the experimental data as 

reported in Figure 6 of Zielinski28 for the self-diffusivities of toluene (1), and polystyrene (m) in 

polystyrene at 383 K as a function of the mass fraction of toluene. Also shown are the data for the Fick 

(mutual) diffusivity, D1. The plotted data are those obtained from five different types of measurement 

techniques. There is a variation of about six orders of magnitude in the diffusivity values as a function 

of the mass fraction, 1. This strong variation renders the task of predicting, or estimating, diffusivities 

in polymer solutions an extremely difficult one.   

A further point to note in the experimental data for 0.5 < 1 < 1.0 is that Fick diffusivity 1D  is lower 

than the self-diffusivity of toluene, selfD ,1  by about 1-2 orders of magnitude. We calculate the 

thermodynamic correction factor, 










1

11




RT
, taking 354.0 ; see Figure S5b. There is a strong 

reduction in 










1

11




RT
, by about one to three orders of magnitude as 11  .  

Figure S5c compares the M-S diffusivity, calculated using 











1

11
11 


RT

DÐV
m , with D1, D1,self, and 

D2,self. We note that selfm DÐ ,11  ;  this implies that the 1-1 friction is not of significant importance.   

4.5 Free-volume theory for self-diffusivity in binary penetrant/polymer solutions  

The free-volume theory16, 22, 25 is commonly used for estimation of the self-diffusivity, selfD ,1 . The 

expression for the self-diffusivity for solvent(1)/polymer(2) system is commonly written as;  
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 (S86) 
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Equation (S86) is the same as eqs (41), and (42) of Vrentas and Duda,22 and eq (18) of Verros and 

Malamataris.29 For detailed derivations, and theoretical background, see Vrentas and Duda.22 

For the system toluene/polystyrene, the free-volume parameters are provided in Table 2 of Alsoy and 

Duda.30 The continuous solid line in Figure S5c are the estimations of the self-diffusivity for toluene in 

polystyrene using Equation (S86). The excellent agreement is no surprise, because the free-volume 

parameters, totaling 12 in number, have been determined by fitting to experimental data on self-

diffusivities.  

Broadly speaking, self-diffusivities display an exponential increase with increasing volume fractions. 

This provides the rationale for the use of the exponential model for describing the composition 

dependence of the M-S diffusivity31, 32 

  jijii
V
im

V
im CAÐÐ   exp0,  (S87) 

Verros and Malamataris29 provide a further illustration of use of the free-volume theory for estimation 

of the diffusivity of acetone (component 1) in cellulose acetate (indicated by subscript m) at T = 298.15 

K.  Calculations, using the input data provided in their paper, are presented in Figure S6. For this 

system, the penetrant (1) –membrane (m) interaction parameter is dependent on the volume fraction and 

the activities are calculated using eq (S47), taking 008.01 
mV

V
. The thermodynamic correction factor 
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RT
 is a strongly decreasing function of the volume fraction, 1 , and mass fraction 1 ; see 

Figure S6a,b. In these calculations the volume fractions, 1 , are related to the mass fractions 1  by 

1

1

20

10
1 1

1

1










 , and 

1

1

10

20
1 1

1

1










  where the 0i  are the mass densities of pure components. 

The Fick diffusivity, calculated using the approximation 











1

11
,11 


RT

DD selfm , i.e. assuming 

negligible 1-1 friction, are presented in Figure S6b,d. With increasing volume, or mass, fractions of 
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acetone, we note that the Fick diffusivity falls increasing below the self-diffusivity due to the strong 

influence of the thermodynamic correction factor. 

4.6 Diffusivities in ternary 1/2/polymer solutions  

For diffusion in a ternary mixture consisting of two solvent species (1, 2) and polymer (m), eq (S63) 

reduces to 

    

    

1 1 1 22 1 1 21
1

12 1

2 2 1 21 2 2 12
2

21 2

1

1

V V VV V
m

V V
m

V V VV V
m

V V
m

J J JJ Jd

RT dz Ð Ð

J J JJ Jd

RT dz Ð Ð

  

  

  
  

  
  

 (S88) 

For the ternary 1/2/m mixture, eq (S65) simplifies to  

     

1 2
1

11 12 1 12 1

1 2
2

21 2 21 2 2

1 1

;
1 1

m
V V V V V
m m m

m
V V V V V

m m m

Ð Ð Ð Ð Ð
B B

Ð Ð Ð Ð Ð

  

 



  
     

              

 (S89) 

The M-S diffusivity 21
12 2

1

V
V Ð

Ð V
V

 , and can be estimated from diffusivity data for the binary liquid 

phase mixtures of the two solvent species; we return to this estimation procedure later.  

The Fick diffusivity matrix is  

      
1 1

1 1
1 2

2 2
2 2

1 2

ln ln

;
ln ln

a a

D
a a

 
 

 
 

  
       

  
   

 (S90) 

 

For the case of negligible 1-2 friction, eq (S88) simplifies to 

 

 

 
   

2 1

11 1

12

2 2

1

;
1

V V
m m

V V
m m

Ð Ð
B B

Ð Ð

 




 
 
   
 
 
  

 (S91) 
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The matrix inversion in eq (S91) can be performed analytically, and we get the following explicit 

expression for the Fick diffusivity matrix for the scenario in which 1-2 friction is considered to be 

negligible 

    

 

 

 
 

1 1 1 1
1 1

2 1 1 21 2

2 222
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1 22 1

1 1
1 1

1 21 1 1 2

2 22 1 2 2
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11
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m mm m
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m mm

a a

Ð ÐÐ Ð
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Ð Ð
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Ð Ð

a aÐ Ð
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    
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



 (S92) 

The estimation of the four elements of the Fick diffusivities relies on the estimations of the self-

diffusivities in the ternary mixture using the free-volume theory.   

The volumetric fluxes are determined from  

 
 

1 1
1 1

1 2 11 1 1 21

22 22 1 2 22
2 2

1 2
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Ð ÐJ d

a aÐ Ð dzJ
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 

  
                         
   

 (S93) 

Applying eq (S63) to quaternary 1/1*/2/m, and 1/2/2*/m mixtures, we can derive the following 

expressions for the self-diffusivities of the penetrants 1, and 2 in the 1/2m mixtures 
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  (S94) 

 

Equation (S94) are precisely equivalent to equations (19), and (20) of Vrentas and Vrentas:33 

1 21 11 2 12 2 22 1 21

1, 1 2 2, 2 1

1 1
;m m m m

self m self mD RTM RTM RTM D RTM RTM RTM

          
        (S95) 

For the case of negligible 1-1, 2-2, and 1-2 friction, eq (S94) simplifies to yield  

1 1, 2 2,;V V
m m self m m selfÐ D Ð D     (S96) 

Combining eq (S92), and (S96) allows estimation of the four elements of the Fick diffusivity matrix 

from information on the self-diffusivities of penetrants and the Flory-Huggins parameters to determine 

the matrix of thermodynamic correction factors.  

Table 1 of Alsoy and Duda30 provides four different scenarios (called Cases 1, 2, 3, and 4 in their 

paper) for estimation of the elements of the Fick diffusivity matrix; their expressions are expressed in 

terms of the self-diffusivities 1, 2,,self selfD D  in the 1/2/m mixture. The combination of eqs (S92), and 

(S96), along with the simplification 
ln ln

ln ln
i i i i

j j j j

a a 
   

 


 
, yields relations for the four elements of the 

Fick diffusivity matrix that are precisely equivalent to Case 4 in Table 1 of Alsoy and Duda.30 
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The free-volume theory16, 22, 25 is commonly used for estimation of the self-diffusivity, selfD ,1 , and 

selfD ,2  in the 1/2/m mixture. The expression for the self-diffusivities for 1, and 2 in the 

solvent(1)/solvent(2)/polymer(3) system are given by equations (23), (24) and (25) of Zielinski and 

Hanley,34 as reproduced below using their nomenclature  

 

* * *13
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23
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  
 
  

   
         

  
 
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   1312

22 2 3 23 3g g

KK
K T T K T T

 
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   

 
(S97) 

We shall illustrate the estimations of the use of the free-volume theory by estimating the matrix of 

Fick diffusivities  D , for methanol (component 1)/toluene (2)/poly(vinylacetate) (PVAc, subscript m) 

at T = 333.15 K. Figure S7a presents calculations for the matrix of thermodynamic correction factors, 

 
1 1

1 1
1 2

2 2
2 2

1 2

ln ln

ln ln

a a

a a

 
 

 
 

  
    

  
   

, using eq (S48), along with the Flory-Huggins parameters 

78.0;19.1;1 2112  mm  . In these calculations we take the sum of the volume fractions of 

methanol and toluene at a constant value 1 2 0.4   . Particularly note-worthy are the negative values 

of the off-diagonal elements 2112 , . Figure S7b plots the ratios 12

11





, and 21

22





 as function of 1 . We 

note that the off-diagonal elements are significantly larger in magnitude than the diagonal elements for a 

range of compositions. 
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The self-diffusivities are estimated from eq (S97) using with free-volume parameters provided in 

Table 1 of Zielinski and Hanley.34 The Fick diffusivity matrix  D  can then be calculated by 

combination of eqs (S92), and (S96); the results are presented in Figure S7c. Both the off-diagonal 

elements 2112 , DD  are negative. Figure S7d plots the ratios 12

11

D

D
 , and 21

22

D

D
  as function of 1 . We note 

that the off-diagonal elements are significantly larger in magnitude than the diagonal elements for a 

range of volume fractions.  Comparison of Figure S7b,d clearly show that the large magnitudes of the 

ratios 12

11

D

D
 , and 21

22

D

D
  have their origins in the corresponding ratios 12

11





, and 21

22





. 

  In their Table IV, Cussler and Lightfoot35 report experimental data for the Fick diffusivity matrix 

 D  for polystyrene(1)/cyclohexane(2)/toluene(3) mixtures. At composition mass fractions  

95.0;05.0;05.0 321   , they report   1110
1.2039.8

6.19.8 










D  m2 s-1. It is to be emphasized 

that the values of the Fick diffusivity matrix depending on the component numbering. For the same 

compositions, if the numbering is chosen as cyclohexane(1)/toluene(2)/polystyrene(3), the values of the 

Fick matrix can be re-calculated, using the basis of the data on the  partial specific volumes provided in 

Table IV of Cussler and Lightfoot,35 we obtain   1110
26.38.235

9.8212 









D  m2 s-1. In order to 

understand the large negative value of D21, we estimated the matrix of thermodynamic factors for  

cyclohexane(1)/toluene(2)/polystyrene(3), using F-H parameters 3548.0;51.0;476.0 231312   , 

we obtain   









0.0540.877-

0.03-0.93
. The large negative value of 21 is the main cause of the large negative 

value of D21. 
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4.7 List of Tables for Diffusion in polymer solutions 

 

Table S5. Concentration measures and inter-relationships. 

Concentration measure units Inter-relation, constraint 

xi, mole fraction of species i - 

1

1

; 1

i
n

i i i
i in

iit i

i i

c M
x M x

c M
M




 



   


 

i, mole fraction of species i - 

1

1

; 1
n

i i i i i
i in

it
i i

i

x M x M

Mx M

 
 



   


 

ci, molar density of species i mol m-3 

1

1
; mixture molar density=

n
i

i i t
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4.8 List of Figures for Diffusion in polymer solutions 

 

 

Figure S5. (a) Experimental data as reported in Figure 6 of Zielinski28 for the self-diffusivities of 

toluene (1), and polystyrene (m) in polystyrene at 383 K as a function of the mass fraction of toluene. 

Also shown are the data for the Fick (mutual) diffusivity, D1. (b) Calculations of the thermodynamic 

correction factor, 









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11


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, taking 354.0 . (c) Comparison of the M-S diffusivity, calculated using 
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
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






1

11
11 


RT

DÐV
m , with D1, D1,self, and D2,self. The continuous solid line is the estimation of the self-

diffusivity using the free-volume theory. 
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Figure S6. Calculations for (a, c) thermodynamic correction factor, 
1

1

ln

ln



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a

, (b, d) Fick diffusivity, 

1

1
11 ln

ln





a

ÐD V
m , and self-diffusivity, selfD ,1 ,  for acetone (1) in cellulose acetate (m) at T = 298.15 K.  

The x-axes are (a, b) volume fractions, and (c, d) mass fractions. The input data are taken from the 

Verros and Malamataris.29  
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Figure S7. (a, b) Calculations of thermodynamic correction factors for methanol (1)/toluene 

(2)/poly(vinylacetate)(m) at T = 333.15 K.. (c, d) Calculations of  elements of the Fick diffusivity matrix 

 D . The calculations are based on the predictions of the self-diffusivities using the free-volume 

parameters provided in Table 1 of Zielinski and Hanley,34 along with the Flory-Huggins parameters also 

provided in page 6 of their paper: 78.0;19.1;1 2112  mm  .  
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5 Modelling the immersion precipitation process 

In the immersion precipitation process for preparation of asymmetric polymeric membranes, a thin 

layer of casting film of solvent (2) /polymer (3) mixture, placed on a support layer, is brought into 

contact with a non-solvent (1) in a coagulation bath; see schematic in Figure S8. The non-solvent 

diffuses into the casting polymer film, causing the precipitation of the polymer. The immersion 

precipitation process for preparation of polymer membranes is controlled by molecular diffusion and 

occurs close to composition regions in which the ternary anti-solvent/solvent/polymer solutions is 

partially miscible. For detailed background on the physico-chemical phenomena involved in the 

immersion precipitation process, along with the modelling aspects, the reader is referred to the 

pioneering works of Strathmann and Kock,36 Radovanovic et al.,37, 38 Reuvers et al.,39, 40 van den Berg 

and Smolders,41 and Tsay and McHugh.42 Comprehensive surveys of the literature on this subject are 

provided by van de Witte et al.,43 Guillen et al.,44 and Wang and Lai.45 

The phase diagram for diffusion controlled immersion precipitation process is illustrated in Figure S9 

for  the ternary mixture consisting of water (non-solvent, component 1), acetone (solvent, component 2) 

and cellulose acetate (polymer = CA = m, component 3); the ternary phase diagram is constructed on 

the basis of the volume fractions. Two different subscripts are used for the polymer, m and 3. We shall 

use both these interchangeably. The binodal and spinodal curves for this ternary mixture are calculated 

on the basis on the Flory-Huggins equations that relate the component activities to volume fractions, i

.46, 47 The binodal curve for this ternary mixture defines the limits of phase miscibility.  The coagulation 

bath usually contains non-solvent (1), almost exclusively or to a predominant extent. The compositions 

at the interface between the polymer casting film and the coagulation bath lie at either ends of the tie-

line, at compositions indicated by A* and CB*, respectively. Put another way, we have a concentration 

jump at the interface between the casting film and the coagulation bath.  Usually, CB* is practically free 
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of polymer. The composition A*, is significantly richer in the polymer (CA), as compared to CB*.  The  

spinodal curve defines the limit of phase stability, and along the spinodal curve, the condition   = 0 

must be satisfied, i.e. we must have 21122211  , the product of the off-diagonal elements is equal in 

magnitude to the product of the diagonal elements.14, 48 This situation implies a significant degree of 

thermodynamic coupling. 

As illustration, the transient equilibration trajectory when a 10% solution of Cellulose Acetate (CA) in 

acetone (indicated by A in Figure S9) is immersed in the coagulation bath is indicated by the blue line 

connecting A and A*. With increasing immersion contact times, the compositions within the polymer 

casting film will get progressively richer in water, and poorer in acetone; this is clearly elucidated by 

Tsay and McHugh42 and van de Witte et al.43 Consequently, the equilibration trajectories get 

progressively closer to the binodal curve. Figure S10 plots the progression in the equilibration 

trajectories A-A*, B-B*, and C-C* with increasing immersion times; these plots are analogous to the 

trajectories plotted in Figure 5 of Tsay and McHugh42 for immersion times of 0.24 s, 10 s, and 24 s. 

Particularly noteworthy is that the trajectory C-C* has penetrated into the metastable region between the 

binodal and spinodal curves. This foray into the metastable region causes precipitation of polymer in the 

casting film.   

Detailed numerical modelling of the equilibration trajectories, using the Bearman frictional 

formulation, are available in the papers of Radovanovic et al.,37, 38 Reuvers et al.,39, 40 and Tsay and 

McHugh.42 In this article, we set ourselves a different objective. We aim to show that the foray into the 

metastable regions, an inherent characteristic of immersion precipitation, is essentially engendered the 

thermodynamic correction factors 
ln

ln
i i

ij
j j

a
 


 


 that exert strong influences on the driving forces for 

diffusion. 
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For the system water (1)/acetone (2)/cellulose acetate (= CA = 3), Figure S11a shows calculations of 

the elements of the matrix of thermodynamic factors    for compositions along a straight line 

connecting A and A* in Figure S10. Particularly noteworthy are the large negative values of 21 .  

The self-diffusivities for water and acetone are estimated from eq (S97) using with free-volume 

parameters provided in Table 1 of Altinkaya and Ozbas.49  

Rather than ignoring 1-2 friction, the M-S diffusivity 21
12 2

1

V
V Ð

Ð V
V

  quantifying 1-2 friction is 

estimated using the following step-by-step procedure. 

The experimental data of the Fick diffusivity for water(1)/acetone(2) pair diffusivity 12D  as reported 

by Grossmann and Winkelmann50 is used to determine the M-S diffusivity 12Ð  by correcting for the 

thermodynamic factor 12
12

D
Ð 


; the thermodynamic factor is determined from the NRTL equation, 

with parameters 12 12 122.09542; -0.6652; 0.2     ; the calculation details are provided in Figure 

S7, and Table 5 of Krishna.14 

The variation of the M-S diffusivity 12Ð  with mole fraction of water, is described adequately by the 

Vignes interpolation formula11, 12  

    2211 1
12

1
1212

xxxx ÐÐÐ   (S98) 

In eq (S98) the infinite-dilution values of the M-S diffusivities are 

1

2

1 9 2 -1
12

1 9 2 -1
12

1 10 m  s

5.3 10 m  s

x

x

Ð

Ð

 

 

 

 
 (S99) 

For use in eqs (S89), and (S90), the M-S diffusivity 12 2 21
12 2

1

V
V Ð V Ð

Ð V
V V

  12Ð  is calculated from eq 

(S98)  using the interpolation formula for the binary water(1)/acetone(2) pair on a polymer-free basis. In 

other words, the mole fractions x1 is calculated for the effective volume fraction of water (component 1) 

in the binary pair in the ternary mixture 1 1

1 2 31

 
  


 
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Figure S11b shows calculations of the Fick diffusivity matrix  D  using a combination of eqs (S89), 

(S90), (S96), (S97), (S98), and (S99). Due to the significantly higher mobility of water than acetone, 

11 22D D . The variation of the four elements of  D  with the volume fraction of CA, shows 

approximately the same trends the corresponding elements of the matrix of thermodynamic factors   . 

The large negative value of the off-diagonal element 21D  is largely attributable to the corresponding 

negative off-diagonal element 21 . The flux of acetone (2) is strongly influenced by the driving force 

for transfer of water (1). 

5.1 A simplified analytic model for transient equilibration  

In order to demonstrate the foray into the meta-stable region is engendered by the thermodynamic 

correction factors 
ln

ln
i i

ij
j j

a
 


 


, we adopt the simplified analytical solution to the immersion 

precipitation process, as presented by Tsay and McHugh.51 For convenience of the readers, the model 

equations have been presented below, albeit using a slightly different nomenclature than in the original 

article by Tsay and McHugh.51 

The following set of assumptions are made in the model development.  

(i) The diffusion is essentially z-directional; see schematic in Figure S12. The position z = 0, 

corresponds to the position of the interface at start of the equilibration process. The adjoining 

immiscible phases, coagulation bath and polymer casting film are both considered to be semi-

infinite. At the position z    the composition corresponds to that of the bulk coagulation 

bath that is time-invariant. At the position z    the composition corresponds to that of the 

polymer casting film that is contact with the support layer; this composition is also time-

invariant. 

(ii) At any time t, during the immersion precipitation process, we have thermodynamic 

equilibrium at the interface between the two-immiscible phases, at compositions A* and CB*. 
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Due to finite interphase diffusion, the position of the interface will be altered to satisfy the 

jump balance condition at the interface; this is discussed in detail below. 

The assumption of two semi-infinite reservoirs allows the derivation of simple analytical solutions. 

However, this assumption also implies that the analytical solution can only be applied to represent the 

trajectories being followed for short contact times, say of the order of 1 s.  Consequently, the A-A*, B-

B*, and C-C* trajectories in Figure S10 need to be analyzed by choosing different initial compositions 

in the polymer casting film (A, B, C) and in the coagulation bath; each trajectory being allowed to 

progress for relatively short contact times of about 1 s.  

The transient ternary diffusion within the polymer casting film is described by a set of two 

independent coupled partial differential equations 

1 1

2 2

3 1 21

V

V

J

J

t z




  

      
    
 
  

  (S100) 

The volumetric fluxes, V
iJ  with respect to the volume average reference velocity is particularly 

convenient for polymeric solutions because the partial molar volumes are practically composition 

independent. The volumetric fluxes sum to zero. 1 2 3 0V V VJ J J   . The two independent fluxes V
iJ  for 

non-solvent and solvent are described by eqs (S89), and (S90) as summarized below 

      

     

 
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22

1 2
1

1 1 12 1 12 1

1 2
2

21 2 21 2 2

1 1
1 1

1 2

2 2
2 2

1 2

;

1 1

; ;
1 1

ln ln

ln ln

V

V

m
V V V V V
m m m

m
V V V V V

m m m

J
D D

zJ

Ð Ð Ð Ð Ð
B B

Ð Ð Ð Ð Ð

a a

a a




  

 

 
 

 
 



   
          

  
     

               
  

    
  

   

 

(S101) 
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 The Fick diffusivity matrix   D  is estimated using a combination of eqs (S89), (S90), (S96), (S97), 

(S98), and (S99). Combining eqs (S100), (S101), and (S102) we obtain 

 
1 12

2 2
2

3 1 2

;

1

D
t z

 
 

  

   
    
   
 
  

  (S102) 

Commonly, the coagulation bath consists of a binary mixture of non-solvent(1) and solvent(2).  The 

corresponding relation for the transient diffusion process is described by 

1 1
2 1

1
1 2 1

2
1 1

2

; 1

;

V
b b

b b

V V Vb
b b b b

b b
b

J

t z

J D J J
z

D
t z

  



 

 
   

 


   


 


 

  (S103) 

The subscript b in eq (S103) refers to the coagulation bath. The symbol bD  in eq (S103) represents 

the Fick diffusivity in the binary aqueous solution in the coagulation bath.  For water/acetone mixtures 

in the coagulation bath, the Fick diffusivity bD  is estimated as a function of the composition by using 

the combination of (S98), and (S99), along with calculation of the thermodynamic correction factors 

using the NRTL equation. For water/DMF mixtures in the coagulation bath, the Fick diffusivity bD  is 

estimated as a function of the composition by using the combination of eq (S98)  and (S118) (see later 

section, along with calculation of the thermodynamic correction factors using the NRTL equation).   

The initial conditions for eqs (S102), and (S103) are 

 
 
 

1 10

2 20

1 1 0

,0
0, 0,

,0

0, 0, ,0b b

z
z t

z

z t z

 
 

 

   
     

  
  

  (S104) 

where 0i  and 1 0b   are the initial compositions of the polymer casting film and bath, respectively 

The boundary conditions are 
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 
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,
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z t

t
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 
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  (S105) 

An analytic solution for the transient volume fractions in bath is obtained if the Fick diffusivity bD  is 

assumed to be composition independent; see Crank52 

 1 1 0 1 1 0

4
( , )

4

b
b b bI b

b

z
erfc

D t
z t

r
erfc

D
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 
 
    
 
 
  

  (S106) 

The corresponding analytic expression for the volume fractions in the polymer casting film are also 

derivable, if the Fick diffusivity matrix     D     is also assumed to be composition independent; 

see Taylor and Krishna.2 In all the calculations presented in this article, the Fick  D  is evaluated using 

eq (S101) at the average volume fractions 10 1

20 2

1

2
I

I

 
 

 
  

. The transient volume fractions in the polymer 

film can be written 2 × 2 dimensional matrix generalization of eq (S106) (see Taylor and Krishna2 for 

further theoretical background on matrix generalization strategies): 

 

     

10 1 101

20 2 202

1
1/2 1/2

( , )

( , )
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
 

    
           

                  

  (S107) 

The Sylvester theorem, detailed in Appendix A of Taylor and Krishna,2 is required for explicit 

evaluation of the four elements of the 2 × 2 dimensional square matrix  Q . For the case of distinct 

eigenvalues, 1  and 2  of the 2 × 2 dimensional square matrix  D , the Sylvester theorem yields 
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  (S108) 

 

In eq (S108),  I  is the identity matrix with elements ik , the Kronecker delta. The calculations of the 

equilibration trajectories in the polymer casting film, 1

2

( , )

( , )

z t

z t



 
 
 

, using eqs (S107), and (S108) are easily 

implemented in MathCad 15.1   

Due to interchange of non-solvent and solvent between the polymer casting film and the bath, the 

position of the interface will move with time. At the moving boundary, the boundary conditions are 
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  (S109) 

In eq (S109), ( )t r t   is the position of the moving interface (see schematic in Figure S12); r is a 

constant with units of m s-1/2, that is determinable from the continuity of component fluxes at either side 

of the moving interface 
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 (S110) 

The volume fractions iI  and 1bI  are determined by the thermodynamic equilibrium constraints  

1 1 2 2ln( ) ln( ); ln( ) ln( )I bI I bIa a a a    (S111) 
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The natural logarithm of the component activities are described by eqs (S49), and (S50); note that 

since the coagulation bath is a polymer-free aqueous solution, eq (S50) is the appropriate expression to 

be used for calculation of  ln ibIa .  

The volume fractions at the (moving) interface between the casting film and the coagulation bath, 

1
3 1 2

2

1 1 2

; 1

( ( ), ) 1

I
I I I

I

b bI bIt t


  


   

 
   

 
  

, must satisfy  the conditions of thermodynamic equilibrium, eq (S111), along 

with the jump-balance conditions for the interfacial fluxes at the moving interface, eq (S109). 

Essentially, we have a set of four independent equations in order to determine the four independent 

unknowns 1 2 1, , ,I I bIr    . These four independent variables 1 2 1, , ,I I bIr     are time-invariant. In order to 

prove this, we present below the detailed derivations. 

Noting that 
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, and differentiating the 

composition profile for the volume fraction in coagulation bath, eq (S106), allows the determination of 

the interfacial fluxes  

 



Modelling the immersion precipitation process    

S59 
 

 

 

 

2

1
1 1 0

2

1
1 1 1 0( )

( )

2

1 1 1 0
( )

exp
4( , ) 2 1

4

4

2 1
exp

44( , )

4

exp
4

4

bb
bI b

b

b

bbV b
b b b bI bz t

z t

b

bV b
b bI b

z t
b

b

z
D tz t

z D t r
erfc

D

r
DD td z t

J D D
dz r

erfc
D

r
DD

t J
D r

erfc
D






  


  

  








 
     

  
 
  

 
 
    

 
  
 

 
 
  
 
  
 

 

2

2 1 1 1 0
( ) ( )

exp
4

4

bV V b
b b bI b

z t z t
b

b

r
DD

t J t J
D r

erfc
D

 
  

 

 
 
     
 
  
 

  

(S112) 

 

The corresponding expressions for the interfacial fluxes in the polymer casting film are written 

analogously as matrix generalization of eq (S112) 
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(S113) 

In eq (S113), the Sylvester theorem is required for explicit evaluation of the four elements of the 2 × 2 

dimensional square matrix  IQ . For the case of distinct eigenvalues, 1  and 2  of the 2 × 2 

dimensional square matrix  D , the Sylvester theorem yields 
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  (S114) 

Combining eqs (S109), (S112), and (S113), we get 
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  (S115) 

It is easy to see that eq (S115), which is precisely equivalent to equations A16 and A17 of Tsay and 

McHugh,51  is time-invariant. In the simulation results presented in this article the set of jump balance 

conditions (eq (S115)), in combination with the conditions of thermodynamic equilibrium (eq (S111)), 

are solved using the Given-Find solve block of MathCad 151 in order to determine the four independent 

unknowns 1 2 1, , ,I I bIr    . Since the compositions at each end of the tie-line 1 2 1, ,I I bI    are not initially 

known for a given set of initial conditions, a simple head-to-tail iteration procedure is employed.  

Firstly, the volume fraction 1bI  of CB*, that lies on the binodal curve is assumed. The compositions at 

the other end of the tie-line must be in equilibrium, and these are determined by solving the set of two 

equations (S133) describing thermodynamic equilibrium. The Fick matrix  D  is then evaluated using a 

combination of eqs (S89), (S90), (S96), (S97), (S98) and (S99) at the average volume fractions 

10 1

20 2

1

2
I

I

 
 

 
  

. With this information, and an initial guess value for r, the set of four non-linear eqs 

(S111) and (S115) are solved to obtain updated values of 1 2 1, , ,I I bIr    ; these are used to obtain new 
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estimates of the Fick matrix  D . The head-to-tail iteration procedure usually converges rapidly in about 

3-4 steps. Generally speaking, the casting film shrinks in thickness, and the value of r is negative. 

The simulations for the immersion precipitation process that are presented in the subsequent sections 

are most conveniently presented in terms of the dimensionless distance coordinate 
4 ref

z

D t
   where 

the chosen reference velocity 9 2 -11 10 m  srefD   .  Expressed in terms of the dimensionless distance 

coordinate, the volume fraction profiles in the polymer casting film are 
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The corresponding profiles in the coagulation bath are 
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  (S117) 

 

5.2 Uphill diffusion in water/acetone/CA solutions 

We first consider transient diffusion of water(1)/acetone(2)/CA(3) in which the initial volume 

fractions in the casting film and coagulation bath are, respectively, 10 1 0

20 2 0

0 1
;

0.9 0
b

b

 
 
      

       
      

; see 

Figure S13a. The F-H and diffusivity input data for the calculations are specified in Table S6.  
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The set of four non-linear eqs (S111) and (S115) are solved using the Given-Find solve block of 

MathCad 15;1 the values of the volume fractions at either sides of the interface, A* and CB* are 

determined as 11

22

0.2181 0.75432
;

0.34308 0.24568
bII

bII



      

       
      

. The value of 37.48505 10
4 ref

r

D
   is 

negative because of shrinkage of the polymer casting film. 

For water/acetone mixtures in the coagulation bath, the Fick diffusivity bD  is evaluated as a function 

of the composition by using the combination of (S98) and (S99). The Fick diffusivity matrix   D  is 

estimated using a combination of eqs (S89), (S90), (S96), (S97), (S98) and (S99). Evaluated at the 

arithmetic average volume fractions between the initial and final equilibrated compositions, 

10 1

2 2

1

2
I

I I

 
 

 
  

, the elements of the matrix of thermodynamic factors, and the Fick diffusivity matrix are: 

    9 2 10.39141 0.01964 1.59603 0.0816
; 10 m s

-0.84517 0.11602 -1.1073 -0.0232
D     

      
   

.  The large negative value of 21D  is 

directly attributable to the corresponding negative value of 21 .  

For convenience of the readers, all the input parameters, along with the values of     and  D  are 

also summarized in Figure S13 

The transient equilibration trajectory A-A* is curvilinear; see Figure S13a in which the equilibration 

trajectories are plotted both in binary and ternary composition spaces. No foray into the meta-stable 

region is experienced. The calculated composition trajectory is comparable to the numerical simulation 

results as presented in Figure 5 of Tsay and McHugh42 for immersion time of 0.24 s.  

Figure S13b show the transient approach to equilibration, in which the x-axis is the dimensionless 

distance coordinate 
4 ref

z

D t
  , where the reference value of the diffusivity is 9 2 -11 10 m  srefD   . 

Particularly noteworthy is that the volume fraction of the polymer CA near the surface of the casting 
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film are significantly higher than in the base of the casting film, 0z  . This implies that the polymer 

distributes asymmetrically across the membrane thickness. 

As the immersion time increases, the composition in the polymer casting film will become richer in 

water, but more impoverished in the solvent acetone. Conversely, the coagulation bath will get 

progressively richer in acetone and poorer in water. In our simplified approach, we model the transient 

equilibration trajectory by choosing the initial compositions of the casting film and coagulation baths for 

as 10 1 0

20 2 0

0.11 0.92
;

0.8 0.08
b

b

 
 
      

       
      

, and 10 1 0

20 2 0

0.28 0.75
;

0.63 0.25
b

b

 
 
      

       
      

 for B, and C, respectively.  

Let us analyze the B-B* trajectory in which the initial volume fractions in casting film and 

coagulation bath are chosen 10 1 0

20 2 0

0.11 0.92
;

0.8 0.08
b

b

 
 
      

       
      

; see Figure S14.  

The set of four non-linear eqs (S111) and (S115) are solved using the Given-Find solve block of 

MathCad 15;1 the values of the volume fractions at either sides of the interface, B* and CB* are 

determined as 11

22

0.23067 0.71629
;

0.40421 0.28371
bII

bII



      

       
      

. The value of -0.05545
4 ref

r

D
  is negative 

because of shrinkage of the polymer casting film. 

Evaluated at the arithmetic average volume fractions between the initial and final equilibrated 

compositions, 10 1

2 2

1

2
I

I I

 
 

 
  

, the elements of the matrix of thermodynamic factors, and the Fick 

diffusivity matrix are:     9 2 10.29527 -0.01645 1.04718 -0.05711
; 10 m s

-0.81379 0.24899 -0.78251 0.07094
D     

      
   

. 

Noteworthy are the large negative values of both off-diagonal elements 12 , and 21 . Both off-diagonal 

elements 12D  and 21D  are negative, because of the corresponding negative values of 12 , and 21 .  

We note that the B-B* is also curvilinear but no foray into the metastable region is observed; see 

Figure S14a. The curvilinear trajectories are directly attributable to the off-diagonal contributions of 

12D  and 21D  that cause strong coupled diffusion phenomena. 
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The volume fractions of the three components are plotted in Figure S14b as function of the 

dimensionless distance coordinate 
4 ref

z

D t
. There is a significantly higher volume fraction of the 

polymer near the surface of the casting film, 0z  . This implies that the polymer distributes 

asymmetrically across the membrane thickness. 

Let us analyze the C-C* trajectory in which the initial volume fractions in casting film are chosen as 

10 1 0

20 2 0

0.28 0.75
;

0.63 0.25
b

b

 
 
      

       
      

; see Figure S15.  

The set of four non-linear (S111) and (S115) are solved using the Given-Find solve block of MathCad 

15;1 the values of the volume fractions at either sides of the interface, C* and CB* are determined as 

11

22

0.24596 0.6753
;

0.46422 0.3247
bII

bII



      

       
      

. The value of 6-0.05476; 3.463 2
4

0 10
ref

r
r

D
   is 

negative because of shrinkage of the polymer casting film. 

Evaluated at the arithmetic average volume fractions between the initial and final equilibrated 

compositions, 10 1

2 2

1

2
I

I I

 
 

 
  

, the elements of the matrix of thermodynamic factors, and the Fick 

diffusivity matrix are:     9 2 10.15393 -0.08279 0.46829 -0.25204
; 10 m s

-0.53829 0.49255 -0.36327 0.21014
D     

      
   

.  

Noteworthy is the large negative value of both off-diagonal elements 12 , and 21 . Both off-diagonal 

elements 12D  and 21D  are negative, because of the corresponding negative values of 12 , and 21 . 

We note that the C-C* is strongly curvilinear and has penetrated into the metastable region; see Figure 

S15a. The curvilinear trajectories are directly attributable to the off-diagonal contributions of 12D  and 

21D  that cause strong coupled diffusion phenomena. 

The volume fractions of the three components are plotted in Figure S15b as function of the 

dimensionless distance coordinate 
4 ref

z

D t
. There is a significantly higher volume fraction of the 
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polymer near the surface of the casting film, 0z  . This implies that the polymer distributes 

asymmetrically across the membrane thickness. Also noteworthy is that the volume fraction of water 

shows a pronounced overshoot at 0.2
4 ref

z

D t
  ; this overshoot signifies uphill diffusion.14, 15, 53 The 

overshoot in water is a direct result of coupled diffusion phenomena, as explained in earlier works.14, 15, 

53 Figure S15c compares the transient volume fractions of water with the corresponding activities; the 

transient activity profiles show no overshoot, confirming that the diffusion is only uphill if gauged in 

terms of volume fraction; the transport is down the activity hill. 

In order to demonstrate that the forays into the metastable region between the binodal and spinodal 

curves is engendered by thermodynamic coupling effects, we also calculated the equilibration 

trajectories in which the thermodynamic corrections are ignored by invoking the assumption ij ij  , 

the Kronecker delta. The corresponding equilibration trajectories are indicated by the dashed lines in 

Figure S15a. In this simplified scenario, no forays into the metastable region is observed.  Indeed, the 

equilibration trajectory tends to veer away from the binodal curve in its approach to C*. The inescapable 

conclusion is that the influence of the thermodynamic correction factors is to draw the trajectories into 

the metastable region, leading eventually to polymer precipitation.  

5.3 Uphill diffusion in water/DMF/PVDF solutions 

For the ternary system water (non-solvent, component 1), dimethyl formamide (DMF, solvent, 

component 2) and poly(vinylidene fluoride) (PVDF = polymer = m, component 3), the binodal and 

spinodal curves are shown in Figure S16.  

Let us analyze the A-A* trajectory using our simplified model in which the initial volume fractions in 

polymer casting film and coagulation bath are chosen, respectively, as 10 1 0

20 2 0

0 0.4
;

0.65 0.6
b

b

 
 
      

       
      

; 

see Figure S16.  
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Rather than ignoring 1-2 friction, the M-S diffusivity 21
12 2

1

V
V Ð

Ð V
V

  quantifying 1-2 friction is 

estimated using the following step-by-step procedure. The experimental data of the Fick diffusivity for 

water(1)/DMF(2) pair diffusivity 12D  as reported by Chen et al.54  is used to determine the M-S 

diffusivity 12Ð  by correcting for the thermodynamic factor 12
12

D
Ð 


; the thermodynamic factor is 

determined from the NRTL equation, with parameters 12 12 120.18973; -0.10798; 0.277     . The 

variation of the M-S diffusivity 12Ð  with mole fraction of water, is described adequately by the Vignes 

interpolation formula, 11, 12 eq (S34), in which the infinite-dilution values of the M-S diffusivities are 

1

2

1 9 2 -1
12

1 9 2 -1
12

1 10 m  s

2.5 10 m  s

x

x

Ð

Ð

 

 

 

 
 (S118) 

For use in eqs (S89), and (S90), the M-S diffusivity 12 2 21
12 2

1

V
V Ð V Ð

Ð V
V V

  12Ð  is calculated from eq 

(S34) using the interpolation formula for the binary water(1)/DMF(2) pair on a polymer-free basis. In 

other words, the mole fractions x1 is calculated for the effective volume fraction of water (component 1) 

in the binary pair in the ternary mixture 1 1

1 2 31

 
  


 

. 

For water/DMF mixtures in the coagulation bath, the Fick diffusivity bD  is estimated as a function of 

the composition by using the combination of (S98), and (S118), along with calculation of the 

thermodynamic correction factors using the NRTL equation. The Fick diffusivity matrix   D  is 

estimated using a combination of eqs (S89), (S90), (S96), (S97), (S98), and (S118). 

The set of four non-linear eqs (S111) and (S115) are solved using the Given-Find solve block of 

MathCad 15;1 the values of the volume fractions at either sides of the interface, A* and CB* are 

determined as 11

22

0.0609 0.29701
;

0.23075 0.70299
bII

bII



      

       
      

.  
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Evaluated at the arithmetic average volume fractions between the initial and final equilibrated 

compositions, 10 1

2 2

1

2
I

I I

 
 

 
  

, the elements of the matrix of thermodynamic factors, and the Fick 

diffusivity matrix are:     9 2 10.81984 -0.04225 3.23211 -0.16621
; 10 m s

-2.92545 0.42313 -1.49605 0.08997
D     

      
   

. 

Noteworthy is the large negative value of both off-diagonal elements 12 , and 21 . Both off-diagonal 

elements 12D  and 21D  are negative, because of the corresponding negative values of 12 , and 21 . 

We note that the A-A* is strongly curvilinear and has penetrated into the metastable region; see  

Figure S16a. The curvilinear trajectories are directly attributable to the off-diagonal contributions of 

12D  and 21D  that cause strong coupled diffusion phenomena. 

The volume fractions of the three components are plotted in Figure S16b as function of the 

dimensionless distance coordinate 
4 ref

z

D t
. There is a significantly higher volume fraction of the 

polymer near the surface of the casting film, 0z  . Also noteworthy is that the volume fraction of water 

(1) shows a pronounced overshoot at 0.1
4 ref

z

D t
  ; this overshoot signifies uphill diffusion.14, 15, 53 

The overshoot in water is a direct result of coupled diffusion phenomena, as explained in earlier 

works.14, 15, 53 

5.4 Uphill diffusion in water/NMP/PSF solutions 

For the ternary system water (non-solvent, component 1), N-methyl-2-pyrrolidone (NMP) (solvent, 

component 2) and polysulfone  (PSF = polymer, component m= 3). The binodal and spinodal curves are 

shown in Figure S17.  



Modelling the immersion precipitation process    

S68 
 

Let us analyze the A-A* trajectory using our simplified model in which the initial volume fractions in 

polymer casting film and coagulation bath are chosen, respectively as 10 1 0

20 2 0

0 0.3
;

0.7 0.7
b

b

 
 
      

       
      

; 

see Figure S17.  

Rather than ignoring 1-2 friction, the M-S diffusivity 21
12 2

1

V
V Ð

Ð V
V

  quantifying 1-2 friction is 

estimated using the experimental data of the Fick diffusivity for water(1)/NMP(2) pair diffusivity 12D  

as reported by Tkacik and Zeman.55 From this data the M-S diffusivity and both taken to be composition 

independent, both values being equal to 9 2 10.73 10 m s  .  For water/NMP mixtures in the coagulation 

bath, the Fick diffusivity 9 2 10.73 10 m sbD     

The set of four non-linear eqs (S111) and (S115) are solved using the Given-Find solve block of 

MathCad 15;1 the values of the volume fractions at either sides of the interface, A* and CB* are 

determined as 11

22

0.01623 0.25625
;

0.23293 0.74375
bII

bII



      

       
      

.  

The value of 7-0.014 9 18; -9.359 7
4

0
ref

r
r

D
   is negative because of shrinkage of the polymer 

casting film. 

Evaluated at the arithmetic average volume fractions between the initial and final equilibrated 

compositions, 10 1

2 2

1

2
I

I I

 
 

 
  

, the elements of the matrix of thermodynamic factors, and the Fick 

diffusivity matrix are:     9 2 10.93085 -0.01965 1.39456 -0.02938
; 10 m s

-5.36896 0.46328 -0.6735 0.01775
D     

      
   

. 

Noteworthy is the large negative value of both off-diagonal elements 12 , and 21 . Both off-diagonal 

elements 12D  and 21D  are negative, because of the corresponding negative values of 12 , and 21 . 
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We note that the A-A* trajectory is strongly curvilinear and has penetrated into the metastable region; 

see  Figure S17a. The curvilinear trajectories are directly attributable to the off-diagonal contributions of 

12D  and 21D  that cause strong coupled diffusion phenomena. 

The volume fractions of the three components are plotted in Figure S17b as function of the 

dimensionless distance coordinate 
4 ref

z

D t
. There is a significantly higher volume fraction of the 

polymer near the surface of the casting film, 0z  . Also noteworthy is that the volume fraction of water 

(1) shows a pronounced overshoot at 0.1
4 ref

z

D t
  ; this overshoot signifies uphill diffusion.14, 15, 53 

The overshoot in water is a direct result of coupled diffusion phenomena, as explained in earlier 

works.14, 15, 53 

In order to demonstrate that the forays into the metastable region between the binodal and spinodal 

curves is engendered by thermodynamic coupling effects, we also calculated the equilibration 

trajectories in which the thermodynamic corrections are ignored, by invoking the assumption ij ij  , 

the Kronecker delta. The corresponding equilibration trajectories are indicated by the dashed lines in 

Figure S17a. In this simplified scenario, no forays into the metastable region is observed. The 

inescapable conclusion is that the influence of the thermodynamic correction factors is to draw the 

trajectories into the metastable region, leading eventually to polymer precipitation.  

5.5 Uphill diffusion in water/NMP/PEI solutions 

For the ternary system water (non-solvent, component 1), N-methyl-2-pyrrolidone (NMP) (solvent, 

component 2) and polyetherimide (PEI = polymer, component m = 3). The binodal and spinodal curves 

are shown in Figure S18.  
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Let us analyze the A-A* trajectory using our simplified model in which the initial volume fractions in 

polymer casting film and coagulation bath are chosen, respectively as 10 1 0

20 2 0

0 0.35
;

0.65 0.65
b

b

 
 
      

       
      

; see Figure S18.  

Rather than ignoring 1-2 friction, the M-S diffusivity 21
12 2

1

V
V Ð

Ð V
V

  quantifying 1-2 friction is 

estimated using the experimental data of the Fick diffusivity for water(1)/NMP(2) pair diffusivity 12D  

as reported by Tkacik and Zeman.55 From this data the M-S diffusivity and both taken to be composition 

independent, both values being equal to 9 2 10.73 10 m s  .  For water/NMP mixtures in the coagulation 

bath, the Fick diffusivity 9 2 10.73 10 m sbD     

The set of four non-linear (S111) and (S115) are solved using the Given-Find solve block of MathCad 

15;1 the values of the volume fractions at either sides of the interface, A* and CB* are determined as 

11

22

0.08883 0.2491
;

0.36142 0.7509
bII

bII



      

       
      

.  

Evaluated at the arithmetic average volume fractions between the initial and final equilibrated 

compositions, 10 1

2 2

1

2
I

I I

 
 

 
  

, the elements of the matrix of thermodynamic factors, and the Fick 

diffusivity matrix are:     9 2 10.75052 -0.03616 1.22949 -0.05916
; 10 m s

-3.08371 0.33542 -0.64793 0.03233
D     

      
   

. 

Noteworthy is the large negative value of both off-diagonal elements 12 , and 21 . Both off-diagonal 

elements 12D  and 21D  are negative, because of the corresponding negative values of 12 , and 21 . 

We note that the A-A* trajectory is strongly curvilinear and has penetrated into the metastable region; 

see  Figure S18a. The curvilinear trajectories are directly attributable to the off-diagonal contributions of 

12D  and 21D  that cause strong coupled diffusion phenomena. 
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The volume fractions of the three components are plotted in Figure S18b as function of the 

dimensionless distance coordinate 
4 ref

z

D t
. There is a significantly higher volume fraction of the 

polymer near the surface of the casting film, 0z  . Also noteworthy is that the volume fraction of water 

(1) shows a slight overshoot at 0.02
4 ref

z

D t
  ; this overshoot signifies uphill diffusion.14, 15, 53 The 

overshoot in water is a direct result of coupled diffusion phenomena, as explained in earlier works.14, 15, 

53 
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5.6 List of Tables for Modelling the immersion precipitation process 

Table S6. Flory-Huggins and diffusivity parameters for penetrants water (anti-solvent, component 1) 

and acetone (solvent, Component 2) in cellulose acetate (CA) (polymer, indicated by subscript m=3) at 

T = 298.15 K. The Flory-Huggins parameters are taken from Altena and Smolders.56 The self-

diffusivities for water (1)/acetone(2)/CA(m=3) are estimated using the free-volume parameters as 

reported in Table 1 of Altinkaya and Ozbas,49 and Table 3.3 of the MS thesis of Yip,57 that is available 

online. The values are reproduced below for ready reference. 

Parameter Units Values 

1 2 3, ,    -3kg m  1000,790,1310  

1 2 3, ,M M M  -1g mol  18,58.08,307000  

1 2, , mV V V  3 -1cm  mol  18,73.92,30532  

       2 3 4 2
12 2 2 2 2 2

1 2

1 2

;

1.1; 0.42; 4.09; 6.7; 4.28;

1.4; 0.45;m m

a b u c u d u e u u

a b c d e


 

 

     


      
 

 

* * *
1 2 3, ,V V V  3 -1cm  g  1.071,0.943,2.67  

1, ,0 2, ,0,self selfD D  8 2 -110 m  s  8.55,3.6  

E  -1J mol  0  

1311 12, ,
KK K

  
 

3 -1 -1cm  g  K  0.00218,0.00186,0.000364  

21 1 22 2 23 3, ,g g gK T K T K T    K  152.29, 53.33, 240    

13 23,   dimensionless  0.0943,0.268  
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Table S7. Flory-Huggins and diffusivity parameters for penetrants water (anti-solvent, component 1) 

and DMF (solvent, Component 2) in PVDF (poly(vinylidene) fluoride), indicated by subscript m=3) at 

T = 298.15 K. The Flory-Huggins parameters are taken from Yip,57 and Matsuyama et al.58 The self-

diffusivities are estimated using the free-volume parameters as reported in Table 3.3 of the MS thesis of 

Yip,57 that is available online. The values are reproduced below for ready reference. 

Parameter Units Values 

1 2 3, ,    -3kg m  1000,944.3,1739  

1 2 3, ,M M M  -1g mol  18,73.09,534000  

1 2, , mV V V  3 -1cm  mol  18,77.4,307000  

       2 3 4 2
12 2 2 2 2 2

1 2

1 2

;

0.5; 0.04; 0.8; 1.2; 0.8;

2.09; 0.43;m m

a b u c u d u e u u

a b c d e


 

 

     


     
 

 

* * *
1 2 3, ,V V V  3 -1cm  g  1.071,0.926,0.565  

1, ,0 2, ,0,self selfD D  8 2 -110 m  s  8.55,8.48  

E  -1J mol  0  

1311 12, ,
KK K

  
 

3 -1 -1cm  g  K  0.00218,0.000976,0.000273 

21 1 22 2 23 3, ,g g gK T K T K T    K  152.29, 43.8, 127    

13 23,   dimensionless  0.313,1.1 
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Table S8. Flory-Huggins and diffusivity parameters for penetrants water (anti-solvent, component 1) 

and NMP (solvent, Component 2) in PSF (polysulfone, indicated by subscript m=3) at T = 298.15 K. 

The Flory-Huggins parameters are taken from Yip,57 and Kim et al.59 The self-diffusivities are estimated 

using the free-volume parameters as reported in Table 3.3 of the MS thesis of Yip,57 that is available 

online. The values are reproduced below for ready reference. 

Parameter Units Values 

1 2 3, ,    -3kg m  1000,1030,1240  

1 2 3, ,M M M  -1g mol  18,99.1,20270  

1 2, , mV V V  3 -1cm  mol  18,96.2,16347  

       2 3 4 2
12 2 2 2 2 2

1 2

1 2

;

0.785; 0.665; 0; 0; 0;

3.7; 0.24;m m

a b u c u d u e u u

a b c d e


 

 

     


    
 

 

* * *
1 2 3, ,V V V  3 -1cm  g  1.071,0.841,0.733 

1, ,0 2, ,0,self selfD D  8 2 -110 m  s  8.55,3.137  

E  -1J mol  0  

1311 12, ,
KK K

  
 

3 -1 -1cm  g  K  0.00218,0.000963,0.00043  

21 1 22 2 23 3, ,g g gK T K T K T    K  152.29, 48.496, 410    

13 23,   dimensionless  0.097,0.4194  
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Table S9. Flory-Huggins and diffusivity parameters for penetrants water (anti-solvent, component 1) 

and NMP (solvent, Component 2) in PEI (polyetherimide), indicated by subscript m=3) at T = 298.15 K. 

The Flory-Huggins parameters are taken from Yip,57 Kim et al.,59 and Fernandes et al.60 The self-

diffusivities are estimated using the free-volume parameters as reported in Table 3.3 of the MS thesis of 

Yip,57 that is available online. The values are reproduced below for ready reference. 

Parameter Units Values 

1 2 3, ,    -3kg m  1000,1030,1270  

1 2 3, ,M M M  -1g mol  18,99.1,22400  

1 2, , mV V V  3 -1cm  mol  18,96.2,17638  

       2 3 4 2
12 2 2 2 2 2

1 2

1 2

;

0.785; 0.665; 0; 0; 0;

2.1; 0.507;m m

a b u c u d u e u u

a b c d e


 

 

     


    
 

 

* * *
1 2 3, ,V V V  3 -1cm  g  1.071,0.841,0.663 

1, ,0 2, ,0,self selfD D  8 2 -110 m  s  8.55,3.137  

E  -1J mol  0  

1311 12, ,
KK K

  
 

3 -1 -1cm  g  K  0.00218,0.000963,0.000452  

21 1 22 2 23 3, ,g g gK T K T K T    K  152.29, 48.496, 443    

13 23,   dimensionless  0.0909,0.393 
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5.7 List of Figures for Modelling the immersion precipitation process 

 

Figure S8. Schematic of the configuration used to model the immersion precipitation process. 

  

Coagulation bath containing non-solvent (1), predominantly

z=0

Support

non-solvent(1) solvent(2)

Casting polymer film: solvent(2)/polymer(3)
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Figure S9. Transient equilibration trajectory A-A* during the immersion precipitation process for 

membrane preparation; adapted from the Figure 5 of Tsay and McHugh for an immersion time of 0.24 

s.42 A 10% solution of Cellulose Acetate (CA) in acetone is immersed in a coagulation bath of pure 

water. The equilibration trajectory A-A* was determined from our simulations (described in detail in 

this article). 
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Figure S10. Transient equilibration trajectories A-A*, B-B*, and C-C* during the immersion 

precipitation process for membrane preparation with increasing immersion times. These trajectories 

were determined from our simulations (described in detail in this article) using the starting compositions 

A, B, and C in the polymer casting film for three different, increasing, immersion times ranging from 

0.24 s, 10 s, and 24 s, as presented in Figure 5 of Tsay and McHugh.42 
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Figure S11. Calculations for (a) matrix of thermodynamic correction factors,   , and (b) Elements of 

the Fick diffusivity matrix  D , for water(1)/acetone(2)/CA(m) at T = 298.15 K. The input data for the 

calculations are specified in Table S6. 
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Figure S12. Schematic of the configuration used to model the immersion precipitation process. 
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Figure S13. (a) Transient equilibration trajectory in a ternary system consisting of water (non-solvent, 

component 1), acetone (solvent, component 2) and cellulose acetate (polymer = m, component 3). The 

A-A* equilibration trajectory is indicated by the blue line in binary and ternary composition space. (b) 

Transient volume fraction profiles in the slab, as function of the dimensionless distance coordinate 

4 ref

z

D t
. The Flory-Huggins parameters and diffusivity data are provided in Table S6.  
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Figure S14. (a) Transient equilibration trajectory in a ternary system consisting of water (non-solvent, 

component 1), acetone (solvent, component 2) and cellulose acetate (polymer = m, component 3). The 

B-B* equilibration trajectory is indicated by the blue line in binary and ternary composition space. (b) 

Transient volume fraction profiles in the slab, as function of the dimensionless distance coordinate 

4 ref

z

D t
. The Flory-Huggins parameters and diffusivity data are provided in Table S6. 
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Figure S15. (a) Transient equilibration trajectory in a ternary system consisting of water (non-solvent, 

component 1), acetone (solvent, component 2) and cellulose acetate (polymer = m, component 3). The 

C-C* equilibration trajectory is indicated by the blue line in binary and ternary composition space. The 

dashed lines represent simulation results for which thermodynamic coupling effects are considered to be 

negligible. (b) Transient volume fraction profiles in the slab, as function of the dimensionless distance 

coordinate 
4 ref

z

D t
. (c) Comparing the transient volume fractions of water with the corresponding 

activities. The Flory-Huggins parameters and diffusivity data are provided in Table S6. 
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Figure S16. (a) Transient equilibration trajectory in a ternary system consisting of water (non-solvent, 

component 1), DMF (solvent, component 2) and PVDF (polymer = m, component 3). The A-A* 

equilibration trajectory is indicated by the blue line in binary and ternary composition space. (b) 

Transient volume fraction profiles in the slab, as function of the dimensionless distance coordinate 

4 ref

z

D t
. The Flory-Huggins parameters and diffusivity data are provided in Table S7. 
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Figure S17. (a) Transient equilibration trajectory in a ternary system consisting of water (non-solvent, 

component 1), N-methyl-2-pyrrolidone (NMP) (solvent, component 2) and polysulfone (PSF = polymer, 

component 3). The A-A* equilibration trajectory is indicated by the blue line in binary and ternary 

composition space. (b) Transient volume fraction profiles in the slab, as function of the dimensionless 

distance coordinate 
4 ref

z

D t
. The Flory-Huggins parameters and diffusivity data are provided in Table 

S8. 
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Figure S18. (a) Transient equilibration trajectory in a ternary system consisting of water (non-solvent, 

component 1), N-methyl-2-pyrrolidone (NMP) (solvent, component 2) and poly(etherimide)  (= PEI = 

polymer = m, component 3). The A-A& equilibration trajectory is indicated by the blue line in binary 

and ternary composition space. (b) Transient volume fraction profiles in the slab, as function of the 

dimensionless distance coordinate 
4 ref

z

D t
. The Flory-Huggins parameters and diffusivity data are 

provided in Table S9. 
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6 Emulsification in partially miscible ternary liquid mixtures 

Miller61 wrote “If the two bulk liquids are not initially at equilibrium, it is conceivable that dynamic 

processes such as diffusion could produce emulsification when the two liquids are brought into contact 

without stirring.” The aniseed-based alcoholic beverage Ouzo consists of a three component mixture of 

ethanol (≈ 45 vol%), water (55 vol%) and an essential oil called trans-anethol (≈ 0.1%).62 The addition 

of five volumes of water to one volume of Ouzo causes the drink to appear milky white.62 Vitale and 

Katz63 have coined the generic term “Ouzo effect” to describe such a process of creating meta-stable 

liquid-liquid dispersions. Since no input of mechanical energy is involved, this offers an energy-

efficient method of producing nanospheres and nanoparticles.64  

Essential to the formation of meta-stable dispersions is the requirement that the composition 

trajectories during equilibration enter the meta-stable region in the liquid-liquid phase equilibrium 

diagram. In the  paper by Ruschak and Miller,65 the necessary conditions for spontaneous emulsification 

are derived in terms of diffusion equilibration composition trajectories that must necessarily enter the 

meta-stable regions. Ruschak and Miller65 adopted the Fickian formulation in which the diffusion flux 

of each species i, iJ , with respect to the molar average mixture velocity, is considered to be linearly 

dependent on its own composition gradient  

3,2,1;  i
dz

dx
DcJ i

iti  (S119) 

in which all the component diffusivities in the ternary mixture are equal to one another, i.e. D1 = D2 = 

D3 = D.  Only two of the eqs (S119) are independent because the mole fraction gradients sum to zero 

0321 
dz

dx

dz

dx

dz

dx
 (S120) 

and the diffusion fluxes also sum to zero 
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0321  JJJ  (S121) 

As illustration, Figure S19 shows the phase diagram for the partially miscible  

water(1)/ethanol(2)/benzene(3) mixtures at 298 K. Bring pure water (indicated by A) into contact with a 

50/50 ethanol/benzene mixture (indicated by B) results in a mixture composition that ends up in the 

two-phase region of the phase diagram (indicated by M). This mixture will separate into two liquid 

phases of compositions A* and B* that lie on the binodal curve, are at either ends of the tie-line. The 

phase A will equilibrate to the composition A*, while phase B will equilibrate to B*.  Using the model 

of Ruschak and Miller,65 wherein all the component diffusivities in the ternary mixture are equal to one 

another, i.e. D1 = D2 = D3 = D, the diffusion equilibration trajectories A-A*, and B-B* will both be 

straight lines in ternary composition space.  We note that the A-A* equilibration lies in the meta-stable 

region between the binodal and spinodal curves. This foray into the metastable region is a necessary 

condition for emulsification to occur. 

The primary objective of this article is to show that the diffusional equilibration trajectories will be 

generally curvilinear and forays into meta-stable regions will occur for scenarios in which the Ruschak-

Miller analysis do not anticipate. For this purpose, we develop an analytic solution to the transient 

equilibration for calculating the A-A*, and B-B* trajectories using the Maxwell-Stefan formulation that 

includes the strong influences of thermodynamic coupling engendered by 

ln
; , 1, 2 1i

ij ij i
j

x i j n
x

 


      in either fluid phase, A and B. 

6.1  A simplified analytic model for transient equilibration  

Below we generalize the  analytic solutions presented in the works of Ruschak and Miller,65 

Jackson,66 and Tsay and McHugh.51 

The following set of assumptions are made in the model development; see schematic in Figure S20.  

(iii) The diffusion is essentially z-directional. The position z = 0, corresponds to the position of the 

interface at start of the equilibration process. The adjoining immiscible phases A and B of 
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ternary liquid mixtures, of two different compositions, expressed in mole fractions, are both 

considered to be semi-infinite. At the position z    the composition corresponds to that of 

the liquid mixture in phase B. At the position z    the composition corresponds to that of 

the liquid mixture in phase A. These compositions are time-invariant. 

(iv) At any time t, during the inter-diffusion process, we have thermodynamic equilibrium between 

the two-immiscible phases, at compositions A* and B*. Due to finite interphase diffusion, the 

position of the interface will be altered to satisfy the jump balance condition at the interface. 

This assumption of two semi-infinite reservoirs allows the derivation of simple analytical solutions. 

However, this assumption also implies that the analytical solution can only be applied to represent the 

trajectories being followed for relatively short contact times.  

The transient ternary diffusion within the phase A is described by a set of two independent coupled 

partial differential equations 

1 1

2 2

3 1 21

A A

A A
tA

A A A

x J

x J
c

t z
x x x

   
    
    
 

  

  (S122) 

The molar fluxes, iAJ  are defined with respect to the molar average reference velocity, u. The molar 

fluxes sum to zero 1 2 3 0A A AJ J J   . The two independent fluxes 1 2,A AJ J  are described by  

 1 1

2 2

A A
tA A

A A

J x
c D

J xz

   
       

 (S123) 

In eq (S123), ctA is the total molar concentration of the ternary liquid mixture in phase A.  

Combining eqs (S122), and (S123) we obtain 

 
1 12

2 2
2

;

A A

A A
A

x x

x x
D

t z

   
    
   
 

  
(S124) 

The corresponding relation for the transient diffusion process in the ternary liquid mixture in phase B 

is described by 
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 
1 12

2 2
2

;

B B

B B
B

x x

x x
D

t z

   
    
   
 

  
(S125) 

The initial conditions for eqs (S124), and (S125) are 

 
 
 
 
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2 2 0
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2 2 0
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  (S126) 

where 0iAx  and 0iBx  are the initial compositions of the liquid phases A and B, respectively 

The boundary conditions are 

 
 
 
 

1 1 0

2 2 0

1 1 0

2 2 0

,
, 0,

,

,
, 0,

,
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x t x
z t

x t x

x t x
z t

x t x

   
         

   
         

  (S127) 

 

Analytic solutions for the transient mole fractions in phases A, and B are obtained if the Fick 

diffusivity matrices   AD , and  BD  are assumed to be composition independent; see Crank52 and 

Taylor and Krishna.2 In practice, the Fick diffusivity matrices  AD , and  BD  are  evaluated using eq 

(S30) at the average mole fractions 1 0 1

2 0 2

1

2
A AI

A AI

x x

x x

 
  

, and  1 0 1

2 0 2

1

2
B BI

B BI

x x

x x

 
  

, respectively. For phase A, the 

composition profile can be written in 2 dimensional matrix notation as 

 

       
1/2 1

1/21 0 1 1 01

2 0 2 2 02

( , )
;

( , ) 24
A AI AA A

A A A
A AI AA

x x xx z t z D r
Q Q erfc erfc D

x x xx z t t

 


                                  
  

 

(S128) 
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The Sylvester theorem, detailed in Appendix A of Taylor and Krishna,2 is required for explicit 

evaluation of the four elements of the 2 × 2 dimensional square matrix  AQ . For the case of distinct 

eigenvalues, 1A  and 2 A  of the 2 × 2 dimensional square matrix  AD , the Sylvester theorem yields 

       
 

     
 

 

1 2 2 1

1 2 2 1

4
, ,

4

A A A A A A

A
A A A A

iA
iA

iA

f D I f D I
Q

z
erfc

t
f z t

r
erfc

   
   






        
 

 
  
 
 
  
 

  (S129) 

In eq (S129),  I  is the identity matrix with elements ik , the Kronecker delta. The calculations of the 

equilibration trajectories are easily implemented in MathCad 15.1   

Analogously for phase B, we write 

       

       
 

     
 

 

1/2 1
1/21 0 1 1 01

2 0 2 2 02

1 2 2 1

1 2 2 1

( , )
;

( , ) 24

4
, ,

B BI BB A
B B A

B BI BB

B B B B B B
B

B B B B

iB
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x x xx z t z D r
Q Q erfc erfc D

x x xx z t t

f D I f D I
Q

z
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t
f z t

   
   




 


                                    

        
 

 
 
 

4 iB

r
erfc





 
  
 

  

(S130) 

 

Due to interchange of components 1, 2, and 3 between the phases A and B, the position of the 

liquid/liquid interface will move with time. At the moving boundary, the boundary conditions are 

 

 
 
 
 

1 1
3 1 2

2 2

1 1
3 1 2

2 2

( ),
; 1

( ),

( ),
; 1

( ),

A AI
AI AI AI
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BI BI BI

B BI

x t t x
x x x

x t t x

x t t x
x x x

x t t x







   
      
  

   
      
  

  (S131) 
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In eq (S131), ( )t r t   is the position of the moving interface; r is a constant that is determinable 

from the continuity of component molar fluxes at either side of the moving interface 

   

 

 

( ) ( )

( ) ( )

; 1,2

2

; 1,2
2

iA iB tAI iAI tBI ibIz t z t

iA iB tAI iAI tBI ibIz t z t

d t
J J c x c x i

dt

d t dr t r

dt dt t
r

J J c x c x i
t

 

 





 

 

   

 

   

 (S132) 

In eq (S132), ctAI, and ctBI are the total molar concentrations of the ternary liquid mixtures at the 

interface in phases A, and B, respectively.  

The mole fractions at the interface layer iAIx  and iBIx  are determined by the thermodynamic 

equilibrium constraint requiring that the component activities be equal in either fluid phase 

; 1, 2,3iAI iBIa a i    (S133) 

The component activities are determinable from phase equilibrium models such as the NRTL, 

UNIQUAC, or an equation of state. 

The mole fractions at the (moving) interface between the casting film and the coagulation bath, 

,iAI iBIx x , must satisfy  the conditions of thermodynamic equilibrium, eq (S133), along with the jump-

balance conditions for the interfacial fluxes at the moving interface, eq (S132). Essentially, we have a 

set of five independent equations in order to determine the five independent unknowns 

1 2 1 2, , , ,AI AI BI BIr x x x x ; these five independent variables are time-invariant. In order to prove this, we 

present below the detailed derivations. 

Noting that 

 2

2

( ) 2 ( )
exp

4 42 1
exp

44

i i

ii

erf z erfc z
z

z z

z z
erfc erfc

t tz

z t zt



 
 

 
   

 

   
     

              

, and differentiating the 

composition profiles for phases A, and B, eqs  

(S128), and (S130), allows the determination of the interfacial fluxes  
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 

  
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;
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               

  
(S134) 

 

In eq (S134), the Sylvester theorem is required for explicit evaluation of the four elements of the 2 × 2 

dimensional square matrix  AIQ . For the case of distinct eigenvalues, 1A  and 2 A  of the 2 × 2 

dimensional square matrix  AD , the Sylvester theorem yields 

       
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 
 
 
 
  
 

  (S135) 

 

The corresponding expressions for the interfacial fluxes in the phase B are written analogously  
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Combining eqs (S132), (S134), and (S136) we get 

     

1 1 1 1
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           

       
             

  (S137) 

It is easy to see that eq (S137) is time-invariant. In the simulation results presented in this article the 

set of jump balance conditions (eq (S137)), in combination with the conditions of thermodynamic 

equilibrium (eq (S133)), are solved using the Given-Find solve block of MathCad 151 in order to 

determine the five independent unknowns 1 2 1 2, , , ,AI AI BI BIr x x x x . Since the compositions at each end of 

the tie-line 1 2 1 2, , ,AI AI BI BIx x x x  are not initially known for a given set of initial conditions, a simple head-

to-tail iteration procedure is employed. Firstly, the mole fractions 1 2,BI BIx x  of B*, that lies on the 

binodal curve are assumed. The compositions at the other end of the tie-line must be in equilibrium, and 

these are determined by solving the set eqs (S133) describing thermodynamic equilibrium. The Fick 

diffusivity matrices  AD , and  BD  are then evaluated using eq (S30) at the arithmetic average mole 
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fractions 1 0 1

2 0 2

1

2
A AI

A AI

x x

x x

 
  

, and  1 0 1

2 0 2

1

2
B BI

B BI

x x

x x

 
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, respectively. With this information, and an initial guess 

value for r,  the set of five non-linear eqs (S137) and (S133) are solved to obtain updated values of 

1 2 1 2, , , ,AI AI BI BIr x x x x ; these are used to obtain new estimates of the Fick diffusivity matrices  AD , and 

 BD . The head-to-tail iteration procedure usually converges rapidly in about 3-4 steps. 

The simulations illustrating diffusional forays into meta-stable regions that are presented in the 

subsequent sections are most convenient presented in terms of the dimensionless distance coordinate 

4 ref

z

D t
   where the chosen reference velocity 9 2 -11 10 m  srefD   .  Expressed in terms of the 

dimensionless distance coordinate, the mole fraction profiles in phase A are 
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  (S138) 

The corresponding mole fraction profiles in phase B are 
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  (S139) 

The Sylvester theorem, detailed in Appendix A of Taylor and Krishna,2 is required for explicit 

evaluation of the four elements of the 2 × 2 dimensional square matrices  AQ , and  BQ ; see eqs 

(S129), and (S130). 

If the interface is considered to be stationary, eqs (S138), and (S139) simplify to yield 
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  (S140) 

 

A further special scenario emerges when the two phases A and B are entirely miscible; in this 

scenario, the transient equilibration process of two miscible ternary liquid mixtures A and B, of different 

initial compositions will equilibrate following the following set of equations 
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 
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  (S141) 

 

Equation (S141) implies that the final equilibrated composition is the arithmetic average of the initial 

compositions of the two mixtures A, and B.  

6.2 Uphill diffusion in partially miscible glycerol/acetone/water mixtures 

The experimental data (indicated by the white circles) for transient equilibration of glycerol-rich and 

acetone-rich phases of the glycerol/acetone/water mixture were measured in a stirred Lewis cell by 

Krishna et al.;67 see Figure S21. The initial compositions in the acetone-rich phase (A) and glycerol-rich 

phase (B) are 1 0 1 0

2 0 2 0

0 0.85
;

0.77 0
A B

A B

x x

x x

      
       
      

. The composition of the A-B mixture lies in the two 

phase region, and therefore will separate into two liquid phases with compositions A* and B*, at either 

end of the tie-line. The experimentally determined values of the final equilibrated compositions at either 

side of the interface, A* and B*, are 1 1

2 2

0.042 0.539414
;

0.894 0.161496
AI BI

AI BI

x x

x x

      
       
      

. The transient 

equilibration trajectories in phases A, and B in the Lewis stirred cell will be modeled assuming that each 
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of the phases is semi-infinite in either direction of the interface, that remains stationary during the 

equilibration process. With these set of assumptions, the equilibration trajectories are described by eq 

(S140).  

For calculation of the transient equilibration trajectories, the Fick diffusivity matrices  AD , and  BD  

are evaluated using eq (S45), wherein the scalar diffusivity 
2/1  is calculated from 

      321
,3,2,1

2/1 x
self

x
self

x
self DDD , taking D1,self = 0.01, D2,self = 3.2, D3,self = 0.5 with units 10-9 m2 s-1; the 

accuracy of this estimation procedure has been firmly established in our previous works.14, 15, 48  

Evaluated at the arithmetic average mole fractions 1 0 1

2 0 2

1

2
A AI

A AI

x x

x x

 
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, and  1 0 1

2 0 2

1

2
B BI

B BI

x x

x x

 
  

, the matrices 

of thermodynamic correction factors, and the Fick diffusivity matrices are 

    9 2 11.064438 0.177947 2.296962 0.383994
; 10 m s

0.956407 0.766246 2.06384 1.653491A AD     
      

   
 and 

    11 2 12.174183 1.17946 8.338294 4.523394
; 10 m s

0.020901 0.692517 0.080158 2.6559B BD     
      

   
. Particularly noteworthy 

are the large magnitudes of the off-diagonal elements of the Fick diffusivity matrices, that are directly 

attributable to the corresponding large off-diagonal elements of the matrices of thermodynamic 

correction factors. 

The calculated equilibration trajectories are indicated by the blue lines in Figure S21; these are both 

curvilinear in shape and in good agreement with the measured experimental data.  

In order to demonstrate that the curvilinear equilibration trajectories may enter the meta-stable regions 

between the binodal and spinodal curve, we choose a different set of starting compositions for the 

acetone-rich phase (A) and glycerol-rich phase (B) as 1 0 1 0

2 0 2 0

0 0.9
;

0.6 0.1
A B

A B

x x

x x

      
       
      

; see Figure S22. 

The composition of the A-B mixture lies in the two phase region, and therefore will separate into two 

liquid phases with compositions A* and B*, at either end of the tie-line. Using the head-to-tail iteration 
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procedure, outlined in the foregoing section, the final converged values of the mole fractions at either 

sides of the interface, A* and B* are determined as 1 1

2 2

0.076941 0.203211
;

0.58913 0.307942
AI BI

AI BI

x x

x x

      
       
      

. 

Evaluated at the arithmetic average mole fractions 1 0 1

2 0 2

1

2
A AI

A AI

x x

x x

 
  

, and  1 0 1

2 0 2

1

2
B BI

B BI

x x

x x

 
  

, the matrices 

of thermodynamic correction factors, and the Fick diffusivity matrices are 

    9 2 11.162681 0.248166 1.507982 0.321868
; 10 m s

1.251188 0.570727 1.622774 0.740226A AD     
      

   
 and 

    11 2 12.153468 1.428097 18.171242 12.050468
; 10 m s

0.124265 0.365738 1.048567 3.086145B BD     
      

   
.  

Particularly noteworthy are the relatively large magnitudes of the off-diagonal elements of the Fick 

diffusivity matrices, that are directly attributable to the corresponding large off-diagonal elements of the 

matrices of thermodynamic correction factors. 

The equilibration trajectories A-A* and B-B*, calculated using eqs (S138), and (S139), are indicated 

by the solid blue lines in Figure S22a.  We note that the B-B* trajectory exhibits a foray into the meta-

stable region; this foray could result in emulsion formation. For the glycerol-rich phase, the mole 

fractions of the three components are plotted in Figure S22b  as function of the dimensionless distance 

coordinate 
4 ref

z

D t
. We note that acetone experiences a pronounced undershoot during the transient 

equilibration process; this undershoot signifies uphill diffusion14, 15, 53 that is engendered by 

thermodynamic coupling effects. 

Diffusional forays are also possible if mixture of two ternary liquid mixtures of compositions A and B 

lies in the homogeneous region of the phase equilibrium diagram, close to the binodal curve. In order to 

demonstrate this, we choose a different set of starting compositions for the acetone-rich phase (A) and 
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glycerol-rich phase (B) as 1 0 1 0

2 0 2 0

0 1
;

0.3 0
A B

A B

x x

x x

      
       
      

; see Figure S23. The composition of the A-B 

mixture, A*= B* = 

1 0 1 0

1

2 2 0 2 0

0.52
0.15

2

A B

I

I A B

x x
x

x x x

 
    

           
 

 lies in the homogeneous single phase region.  

Evaluated at the arithmetic average mole fractions 1 0 1

2 0 2

1

2
A I

A I

x x

x x

 
  

, and  1 0 1

2 0 2

1

2
B I

B I

x x

x x

 
  

, the matrices of 

thermodynamic correction factors, and the Fick diffusivity matrices are 

    9 2 12.02215 0.964119 0.57734 0.275264
; 10 m s

0.41644 0.421514 0.118897 0.120346A AD     
      

   
 and 

   3
11 2 16.144592 3.270885

; 1
2.010421 1.070186

4.788
0 m s

124 0.014635 2. 592827 10 0.706486B BD 


   
      

   
.  

Particularly noteworthy are the relatively large magnitudes of the off-diagonal elements of the Fick 

diffusivity matrices, that are directly attributable to the corresponding large off-diagonal elements of the 

matrices of thermodynamic correction factors. 

The equilibration trajectories A-A* and B-B* calculated using eq (S141) are indicated by the solid 

blue lines.  We note that the A-A* trajectory exhibits a foray into the meta-stable region (cf. Figure 

S23); this foray could result in emulsion formation.  

If thermodynamic coupling effects are completely ignored by invoking the assumption ij ij  , the 

Kronecker delta, the equilibration trajectories (shown by the dotted lines) do not exhibit any foray into 

the meta-stable region. 

6.3 Uphill diffusion in water(1)/chloroform(2)/acetic acid(3) mixtures 

For water(1)/chloroform(2)/acetic-acid(3) mixtures we demonstrate that the curvilinear equilibration 

trajectories may enter the meta-stable regions between the binodal and spinodal curve. The initial 

starting compositions for the water-rich phase (A) and chloroform-rich phase (B) are
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1 0 1 0

2 0 2 0

0.56 0.05
;

0 0.95
A B

A B

x x

x x

      
       
      

; see Figure S24. The composition of the A-B mixture lies in the two 

phase region, and therefore will separate into two liquid phases with compositions A* and B*, at either 

end of the tie-line. For calculation of the transient equilibration trajectories, the Fick diffusivity matrices 

 AD , and  BD  are evaluated using eq (S45), wherein the scalar diffusivity 
2/1  is calculated from 

      321
,3,2,1

2/1 x
self

x
self

x
self DDD , taking D1,self= 0.4, D2,self= 0.8, D3,self= 1.1 with units 10-9 m2 s-1; the 

accuracy of this estimation procedure has been firmly established in our previous works.14, 15, 48  

Using the head-to-tail iteration procedure for the moving interface solution, outlined in a foregoing 

section, the final converged values of the mole fractions at either sides of the interface, A* and B* are 

determined as 1 1

2 2

0.5557304 0.31227988
;

0.10821082 0.31941605
AI BI

AI BI

x x

x x

      
       
      

. 

Evaluated at the arithmetic average mole fractions 1 0 1

2 0 2

1

2
A AI

A AI

x x

x x

 
  

, and  1 0 1

2 0 2

1

2
B BI

B BI

x x

x x

 
  

, the matrices 

of thermodynamic correction factors, and the Fick diffusivity matrices are 

    9 2 11.10052017 1.46264076 0.6767361 0.89941269
; 10 m s

0.27788563 0.89132962 0.1708785 0.54809984A AD     
      

   
 and 

    9 2 10.95610059 0.60317132 0.71537497 0.45130572
; 10 m s

0.79275008 0.76248396 0.59315262 0.57050686B BD     
      

   
.  

Particularly noteworthy are the relatively large magnitudes of the off-diagonal elements of the Fick 

diffusivity matrices, that are directly attributable to the corresponding large off-diagonal elements of the 

matrices of thermodynamic correction factors. 

The equilibration trajectories A-A* and B-B*, calculated using eqs (S138), and (S139), are indicated 

by the solid blue lines in Figure S24.  We note that the B-B* trajectory exhibits a foray into the meta-

stable region; this foray could result in emulsion formation.  
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6.4 Uphill diffusion in water(1)/acetone(2)/ethylacetate(3) mixtures 

For water(1)/acetone(2)/ethylacetate(3) mixtures we demonstrate that the curvilinear equilibration 

trajectories may enter the meta-stable regions between the binodal and spinodal curve. The initial 

starting compositions for the ethylacetate-rich phase (A) and water-rich phase (B) are

1 0 1 0

2 0 2 0

0.1 0.8
;

0 0.2
A B

A B

x x

x x

      
       
      

; see Figure S25a.  The composition of the A-B mixture lies in the two 

phase region, and therefore will separate into two liquid phases with compositions A* and B*, at either 

end of the tie-line. For calculation of the transient equilibration trajectories, the Fick diffusivity matrices 

 AD , and  BD  are evaluated using eq (S45), wherein the scalar diffusivity 
2/1  is estimated using

123132231

2313122/1

ÐxÐxÐx

ÐÐÐ


 , wherein the infinite dilution M-S pair diffusivities are estimated using 

the Wilke-Change correlation.14, 15, 48  

Using the head-to-tail iteration procedure for the moving interface solution, outlined in a foregoing 

section, the final converged values of the mole fractions at either sides of the interface, A* and B* are 

determined as 1 1

2 2

0.345783 0.851566
;

0.304066 0.112756
AI BI

AI BI

x x

x x

      
       
      

. 

Evaluated at the arithmetic average mole fractions 1 0 1

2 0 2

1

2
A AI

A AI

x x

x x

 
  

, and  1 0 1

2 0 2

1

2
B BI

B BI

x x

x x

 
  

, the matrices 

of thermodynamic correction factors, and the Fick diffusivity matrices are 

    9 2 10.32443 -0.271489 0.798534 -0.692396
; 10 m s

-0.042701 1.139018 -0.129092 1.820496A AD     
      

   
 and 

    9 2 1-0.199831 -0.610359 -0.765409 -1.473046
; 10 m s

1.021323 1.561543 1.552319 2.386829B BD     
      

   
.  

Particularly noteworthy are the relatively large magnitudes of the off-diagonal elements of the Fick 

diffusivity matrices, that are directly attributable to the corresponding large off-diagonal elements of the 

matrices of thermodynamic correction factors. 
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The equilibration trajectories A-A* and B-B*, calculated using eqs (S138), and (S139), are indicated 

by the solid blue lines in Figure S25a.  We note that the A-A* trajectory exhibits a foray into the meta-

stable region; this foray could result in emulsion formation.  

For the ethyl-acetate rich phase, the mole fractions of the three components are plotted in Figure S25b  

as function of the dimensionless distance coordinate 
4 ref

z

D t
. We note that water experiences an 

undershoot during the transient equilibration process; this undershoot signifies uphill diffusion14, 15, 53 

that is engendered by thermodynamic coupling effects. 

Diffusional forays are also possible if mixture of two ternary liquid mixtures of compositions A and B 

lies in the homogeneous region of the phase equilibrium diagram, close to the binodal curve. In order to 

demonstrate this, we choose a different set of starting compositions for the ethyl-acetate-rich phase (A) 

and water-rich phase (B) as 1 0 1 0

2 0 2 0

0.1 0.46
;

0 0.54
A B

A B

x x

x x

      
       
      

; see Figure S26. The composition of the 

A-B mixture, A*= B* = 

1 0 1 0

1

2 2 0 2 0

0.282
0.27

2

A B

I

I A B

x x
x

x x x

 
    

           
 

 lies in the homogeneous single phase region.  

Evaluated at the arithmetic average mole fractions 1 0 1

2 0 2

1

2
A I

A I

x x

x x

 
  

, and  1 0 1

2 0 2

1

2
B I

B I

x x

x x

 
  

, the matrices of 

thermodynamic correction factors, and the Fick diffusivity matrices are 

    9 2 10.405118 -0.235514 0.805166 -0.468081
; 10 m s

-0.060166 1.11633 -0.11958 2.218687A AD     
      

   
 and 

    11 2 10.050634 -0.464034 0.117665 -1.07834
; 10 m s

0.398981 1.417488 0.927167 3.294013B BD     
      

   
.  

Particularly noteworthy are the relatively large magnitudes of the off-diagonal elements of the Fick 

diffusivity matrices, that are directly attributable to the corresponding large off-diagonal elements of the 

matrices of thermodynamic correction factors. 
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The equilibration trajectories A-A* and B-B* calculated using eq (S141) are indicated by the solid 

blue lines.  We note that the B-B* trajectory exhibits a foray into the meta-stable region (cf. Figure 

S26); this foray could result in emulsion formation.  

If thermodynamic coupling effects are completely ignored by invoking the assumption ij ij  , the 

Kronecker delta, the equilibration trajectories (shown by the dotted lines) do not exhibit any foray into 

the meta-stable region. 

6.5 Uphill diffusion in water(1)/ethanol (2)/ethylacetate(3) mixtures 

For water(1)/ethanol(2)/ethylacetate(3) mixtures we demonstrate that the curvilinear equilibration 

trajectories may enter the meta-stable regions between the binodal and spinodal curve. The initial 

starting compositions for the water-rich phase (A) and ethylacetate-rich phase (B) are

1 0 1 0

2 0 2 0

0.85 0.1
;

0.15 0
A B

A B

x x

x x

      
       
      

; see Figure S27a.  The composition of the A-B mixture lies in the two 

phase region, and therefore will separate into two liquid phases with compositions A* and B*, at either 

end of the tie-line. For calculation of the transient equilibration trajectories, the Fick diffusivity matrices 

 AD , and  BD  are evaluated using eq (S45), wherein the scalar diffusivity 
2/1  is assumed to have 

the value 1292/1
sm101  . 

Using the head-to-tail iteration procedure for the moving interface solution, outlined in a foregoing 

section, the final converged values of the mole fractions at either sides of the interface, A* and B* are 

determined as 1 1

2 2

0.801496 0.605492
;

0.130168 0.181393
AI BI

AI BI

x x

x x

      
       
      

. 

Evaluated at the arithmetic average mole fractions 1 0 1

2 0 2

1

2
A AI

A AI

x x

x x

 
  

, and  1 0 1

2 0 2

1

2
B BI

B BI

x x

x x

 
  

, the Fick 

diffusivity matrices are 

  9 2 1-0.528945 -1.664652
10 m s

1.213593 2.714187AD   
  
 

 and 
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  9 2 10.24995 -1.051542
10 m s

-0.146769 1.913183BD   
  
 

.  

Particularly noteworthy are the relatively large magnitudes of the off-diagonal elements of the Fick 

diffusivity matrices, that are directly attributable to the corresponding large off-diagonal elements of the 

matrices of thermodynamic correction factors. 

The equilibration trajectories A-A* and B-B*, calculated using eqs (S138), and (S139), are indicated 

by the solid blue lines in Figure S27a.  We note that the B-B* trajectory exhibits a foray into the meta-

stable region; this foray could result in emulsion formation.  

For the ethylacetate rich phase, the mole fractions of the three components are plotted in Figure S27b  

as function of the dimensionless distance coordinate 
4 ref

z

D t
. We note that water experiences a slight 

undershoot during the transient equilibration process; this undershoot signifies uphill diffusion14, 15, 53 

that is engendered by thermodynamic coupling effects. 

6.6 Uphill diffusion in water(1)/acetic-acid (2)/1-hexanol(3) mixtures 

For water(1)/acetic-acid(2)/1-hexanol(3) mixtures we demonstrate that the curvilinear equilibration 

trajectories may enter the meta-stable regions between the binodal and spinodal curve. The initial 

starting compositions for the water-rich phase (A) and 1-hexanol-rich phase (B) are

1 0 1 0

2 0 2 0

0.8 0.1
;

0.2 0
A B

A B

x x

x x

      
       
      

; see Figure S28.  The composition of the A-B mixture lies in the two 

phase region, and therefore will separate into two liquid phases with compositions A* and B*, at either 

end of the tie-line. For calculation of the transient equilibration trajectories, the Fick diffusivity matrices 

 AD , and  BD  are evaluated using eq (S45), wherein the scalar diffusivity 
2/1  is assumed to have 

the value 1292/1
sm101  . 
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Using the head-to-tail iteration procedure for the moving interface solution, outlined in a foregoing 

section, the final converged values of the mole fractions at either sides of the interface, A* and B* are 

determined as 1 1

2 2

0.777853 0.587665
;

0.183813 0.253836
AI BI

AI BI

x x

x x

      
       
      

. 

Evaluated at the arithmetic average mole fractions 1 0 1

2 0 2

1

2
A AI

A AI

x x

x x

 
  

, and  1 0 1

2 0 2

1

2
B BI

B BI

x x

x x

 
  

, the Fick 

diffusivity matrices are 

  9 2 1-0.741926 -1.423583
10 m s

1.445324 2.305922AD   
  
 

 and 

  9 2 10.630045 -0.560827
10 m s

-0.203612 1.001456BD   
  
 

.  

Particularly noteworthy are the relatively large magnitudes of the off-diagonal elements of the Fick 

diffusivity matrices, that are directly attributable to the corresponding large off-diagonal elements of the 

matrices of thermodynamic correction factors. 

The equilibration trajectories A-A* and B-B*, calculated using eqs (S138), and (S139), are indicated 

by the solid blue lines in Figure S28.   We note that the B-B* trajectory exhibits a foray into the meta-

stable region; this foray could result in emulsion formation.  

Diffusional forays are also possible if mixture of two ternary liquid mixtures of compositions A and B 

lies in the homogeneous region of the phase equilibrium diagram, close to the binodal curve. In order to 

demonstrate this, we choose a different set of starting compositions for the water-rich phase (A) and 1-

hexanol-rich phase (B) as 1 0 1 0

2 0 2 0

0.15 0.62
;

0 0.38
A B

A B

x x

x x

      
       
      

; see Figure S29. 

The composition of the A-B mixture, A*= B* = 

1 0 1 0

1

2 2 0 2 0

0.3852
0.19

2

A B

I

I A B

x x
x

x x x

 
    

           
 

 lies in the 

homogeneous single phase region.  
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Evaluated at the arithmetic average mole fractions 1 0 1

2 0 2

1

2
A I

A I

x x

x x

 
  

, and  1 0 1

2 0 2

1

2
B I

B I

x x

x x

 
  

, the Fick 

diffusivity matrices are 

  9 2 10.773471 -0.430359
10 m s

-0.16503 0.956984AD   
  
 

 and 

  9 2 10.140218 -0.768897
10 m s

0.078006 1.370439BD   
  
 

.  

Particularly noteworthy are the relatively large magnitudes of the off-diagonal elements of the Fick 

diffusivity matrices, that are directly attributable to the corresponding large off-diagonal elements of the 

matrices of thermodynamic correction factors. 

The equilibration trajectories A-A* and B-B* calculated using eq (S141) are indicated by the solid 

blue lines.  We note that the A-A* trajectory exhibits a foray into the meta-stable region (cf. Figure 

S29); this foray could result in emulsion formation.  

If thermodynamic coupling effects are completely ignored by invoking the assumption ij ij  , the 

Kronecker delta, the equilibration trajectories (shown by the dotted lines) do not exhibit any foray into 

the meta-stable region. 

6.7 Uphill diffusion in water(1)/acetic-acid (2)/MTBE(3) mixtures 

For water(1)/acetic-acid(2)/MTBE(3) mixtures we demonstrate that the curvilinear equilibration 

trajectories may enter the meta-stable regions between the binodal and spinodal curve. The initial 

starting compositions for the water-rich phase (A) and MTBE-rich phase (B) are

1 0 1 0

2 0 2 0

0.85 0.05
;

0.15 0
A B

A B

x x

x x

      
       
      

; see Figure S30a.  The composition of the A-B mixture lies in the 

two phase region, and therefore will separate into two liquid phases with compositions A* and B*, at 

either end of the tie-line. For calculation of the transient equilibration trajectories, the Fick diffusivity 
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matrices  AD , and  BD  are evaluated using eq (S45), wherein the scalar diffusivity 
2/1  is assumed 

to have the value 1292/1
sm101  . 

Using the head-to-tail iteration procedure for the moving interface solution, outlined in a foregoing 

section, the final converged values of the mole fractions at either sides of the interface, A* and B* are 

determined as 1 1

2 2

0.85090555 0.46928732
;

0.11244516 0.24612399
AI BI

AI BI

x x

x x

      
       
      

. 

Evaluated at the arithmetic average mole fractions 1 0 1

2 0 2

1

2
A AI

A AI

x x

x x

 
  

, and  1 0 1

2 0 2

1

2
B BI

B BI

x x

x x

 
  

, the Fick 

diffusivity matrices are 

  9 2 1-0.88449784 -2.23493914
10 m s

1.78233869 3.42983167AD   
  
 

 and 

  9 2 10.2160129 -0.85366825
10 m s

-0.20855647 1.84454786BD   
  
 

.  

Particularly noteworthy are the relatively large magnitudes of the off-diagonal elements of the Fick 

diffusivity matrices, that are directly attributable to the corresponding large off-diagonal elements of the 

matrices of thermodynamic correction factors. 

The equilibration trajectories A-A* and B-B*, calculated using eqs (S138), and (S139), are indicated 

by the solid blue lines in Figure S30a. We note that the B-B* trajectory exhibits a foray into the meta-

stable region; this foray could result in emulsion formation.  

For the MTBE rich phase, the mole fractions of the three components are plotted in Figure S30b  as 

function of the dimensionless distance coordinate 
4 ref

z

D t
. We note that water experiences a slight 

undershoot during the transient equilibration process; this undershoot signifies uphill diffusion14, 15, 53 

that is engendered by thermodynamic coupling effects. 
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6.8 Uphill diffusion in water(1)/ethanol (2)/cyclohexane(3) mixtures 

For water(1)/ethanol(2)/cyclohexane(3) mixtures we shall demonstrate that diffusional forays are  

possible if mixture of two ternary liquid mixtures of A and B lies in the homogeneous region of the 

phase equilibrium diagram, close to the binodal curve. In order to demonstrate this, we choose the set of 

starting compositions for the ethanol-rich phase (A) and cyclohexane-rich phase (B) as 

1 0 1 0

2 0 2 0

0.375 0
;

0.62 0.57
A B

A B

x x

x x

      
       
      

; see Figure S31a. The composition of the A-B mixture, A*= B* = 

1 0 1 0

1

2 2 0 2 0

0.18752
0.595

2

A B

I

I A B

x x
x

x x x

 
    

           
 

 lies in the homogeneous single phase region.  

For calculation of the transient equilibration trajectories, the Fick diffusivity matrices  AD , and  BD  

are evaluated using eq (S45), wherein the scalar diffusivity 
2/1  is estimated using

123132231

2313122/1

ÐxÐxÐx

ÐÐÐ


 , wherein the infinite dilution M-S pair diffusivities are estimated using 

the Wilke-Change correlation.14, 15, 48  

Evaluated at the arithmetic average mole fractions 1 0 1

2 0 2

1

2
A I

A I

x x

x x

 
  

, and  1 0 1

2 0 2

1

2
B I

B I

x x

x x

 
  

, the matrices of 

thermodynamic correction factors, and the Fick diffusivity matrices are 

    9 2 10.17271 -0.42498 0.52899 -1.30166
; 10 m s

-0.0155 0.74746 -0.04747 2.28938A AD     
      

   
 and 

    11 2 10.59141 -0.19602 1.70934 -0.56656
; 10 m s

-0.70702 0.3644 -2.04347 1.0532B BD     
      

   
.  

Particularly noteworthy are the relatively large magnitudes of the off-diagonal elements of the Fick 

diffusivity matrices, that are directly attributable to the corresponding large off-diagonal elements of the 

matrices of thermodynamic correction factors. 
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The equilibration trajectories A-A* and B-B* calculated using eq (S141) are indicated by the solid 

blue lines Figure S31a. We note that the B-B* trajectory exhibits a foray into the meta-stable region; 

this foray could result in emulsion formation.  

The composition profiles of the three components are plotted in Figure S31b as function of the 

dimensionless distance coordinate 
4 ref

z

D t
. We note that ethanol experiences a pronounced undershoot 

during the transient equilibration process. Concomitantly, cyclohexane displays a slight overshoot. The 

overshoot and undershoot phenomena signify uphill diffusion14, 15, 53 that is engendered by 

thermodynamic coupling effects. 

If thermodynamic coupling effects are completely ignored by invoking the assumption ij ij  , the 

Kronecker delta, the equilibration trajectories (shown by the dotted lines) do not exhibit any foray into 

the meta-stable region. 

6.9 Uphill diffusion in water(1)/acetontrile(2)/toluene(3) mixtures 

For water(1)/acetonitrile(2)/toluene(3) mixtures, the experiments of Califano and Mauri68 demonstrate 

that the mixing of two liquids of different compositions can lead to forays into meta-stable regions and 

emulsion formation in either the water-rich or toluene-rich phases. Herein, we trace the origins of such 

diffusional forays to thermodynamic coupling effects.  we demonstrate that forays into metastable 

regions 

Consider the inter-diffusion between acetonitrile-rich phase (A) and water-rich phase (B) with initial 

compositions 1 0 1 0

2 0 2 0

0 0.24
;

0.63 0.76
A B

A B

x x

x x

      
       
      

; see Figure S32a. The composition of the A-B 

mixture, A*= B* = 

1 0 1 0

1

2 2 0 2 0

0.122
0.695

2

A B

I

I A B

x x
x

x x x

 
    

           
 

 lies in the homogeneous single phase region.  
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For calculation of the transient equilibration trajectories, the Fick diffusivity matrices  AD , and  BD  

are evaluated using eq (S45), wherein the scalar diffusivity 
2/1  is assumed to have the value 

1292/1
sm101  . Evaluated at the arithmetic average mole fractions 1 0 1

2 0 2

1

2
A I

A I

x x

x x

 
  

, and  

1 0 1

2 0 2

1

2
B I

B I

x x

x x

 
  

, the Fick diffusivity matrices are 

  9 2 10.48838 -0.20289
10 m s

-0.58745 0.79614AD   
  
 

 and 

  9 2 1-0.01252 -0.41202
10 m s

0.50203 1.17708BD   
  
 

.  

Particularly noteworthy are the relatively large magnitudes of the off-diagonal elements of the Fick 

diffusivity matrices, that are directly attributable to the corresponding large off-diagonal elements of the 

matrices of thermodynamic correction factors. 

The equilibration trajectories A-A* and B-B* calculated using eq (S141) are indicated by the solid 

blue lines.  We note that the B-B* trajectory exhibits a foray into the meta-stable region (cf. Figure 

S32a); this foray could result in emulsion formation. If thermodynamic coupling effects are completely 

ignored by invoking the assumption ij ij  , the Kronecker delta, the equilibration trajectories (shown 

by the dotted lines) do not exhibit any foray into the meta-stable region. 

The composition profiles of the three components are plotted in Figure S32b as function of the 

dimensionless distance coordinate 
4 ref

z

D t
. We note that water experiences a pronounced overshoot 

during the transient equilibration process. Acetonitrile displays both overshoot and undershoot 

phenomena. The overshoot and undershoot phenomena signify uphill diffusion14, 15, 53 that is engendered 

by thermodynamic coupling effects. 

Forays into meta-stable regions are also realized for a different set of compositions for the 

acetonitrile-rich phase (A) and water-rich phase (B) with initial compositions 
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1 0 1 0

2 0 2 0

0 0.35
;

0.8 0.65
A B

A B

x x

x x

      
       
      

; see Figure S33a. The composition of the A-B mixture, A*= B* = 

1 0 1 0

1

2 2 0 2 0

0.1752
0.725

2

A B

I

I A B

x x
x

x x x

 
    

           
 

 lies in the homogeneous single phase region.  

Evaluated at the arithmetic average mole fractions 1 0 1

2 0 2

1

2
A I

A I

x x

x x

 
  

, and  1 0 1

2 0 2

1

2
B I

B I

x x

x x

 
  

, the Fick 

diffusivity matrices are 

  9 2 10.39488 -0.24774
10 m s

-0.1031 0.94395AD   
  
 

 and 

  9 2 1-0.25967 -0.51125
10 m s

0.9391 1.35636BD   
  
 

.  

Particularly noteworthy are the relatively large magnitudes of the off-diagonal elements of the Fick 

diffusivity matrices, that are directly attributable to the corresponding large off-diagonal elements of the 

matrices of thermodynamic correction factors. 

The equilibration trajectories A-A* and B-B* calculated using eq (S141) are indicated by the solid 

blue lines.  We note that the B-B* trajectory exhibits a foray into the meta-stable region (cf. Figure 

S33a); this foray could result in emulsion formation. If thermodynamic coupling effects are completely 

ignored by invoking the assumption ij ij  , the Kronecker delta, the equilibration trajectories (shown 

by the dotted lines) do not exhibit any foray into the meta-stable region. 

The composition profiles of the three components are plotted in Figure S33b as function of the 

dimensionless distance coordinate 
4 ref

z

D t
. We note that water experiences a pronounced overshoot 

during the transient equilibration process. Concomitantly, acetonitrile displays and undershoot 

phenomena. The overshoot and undershoot phenomena signify uphill diffusion14, 15, 53 that is engendered 

by thermodynamic coupling effects. 
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6.10 List of Tables for Emulsification in partially miscible ternary liquid mixtures 

Table S10.  NRTL parameters for glyercol(1)/acetone(2)/water(3) at 298 K. These parameters are 

from Krishna et al.8 

 TAijij   TAjiji   jiij    

dimensionless dimensionless dimensionless 

glycerol(1)/acetone(2) 0.868423 2.467651 0.2 

glycerol(1)/water(3) -1.293658 -1.520738 0.2 

acetone(2)/water(3) -0.665537 2.096477 0.2 
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Table S11. UNIQUAC parameters for water(1)/chloroform(2)/acetic-acid(3) at 298 K. These 

parameters are from Pertler.69 These parameters needed re-adjustment in order to match the 

experimental solubility data of Othmer and Ku.70 The following are the adjusted values used in the 

calculations. 

 ir  iq  

dimensionless dimensionless 

water(1) 0.92 1.4 

chloroform(2) 2.87 2.41 

acetic-acid(3) 2.2024 2.072 

 

 )exp( TAijij   )exp( TAjiji   

dimensionless dimensionless 

water(1)/chloroform(2) 0.42845912 0.22867995 

water(1)/acetic-acid(3) 1.27379861 1.31092921 

chloroform(2)/acetic-acid(3) 1.38787923 0.885 
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Table S12. UNIQUAC parameters for water(1)/acetone(2)/ethylacetate(3) at 293 K. These parameters 

are from Pertler.69 

 

 ir  iq  

dimensionless dimensionless 

water(1) 0.92 1.4 

acetone(2) 2.5735 2.336 

ethyl-acetate(3) 3.4786 3.116 

 

 )exp( TAijij   )exp( TAjiji   

dimensionless dimensionless 

water(1)/acetone(2) 1.327669 0.487929 

water(1)/ethylacetate(3) 0.770478 0.253826 

acetone(2)/ethyl-acetate(3) 1.307766 0.826986 
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Table S13. UNIQUAC parameters for water (1)/ethanol(2)/ethyl-acetate(3).  These parameters are 

taken from Table 3 of Resa and Goenaga.71 

 

 
ir  iq  

dimensionless dimensionless 

water(1) 0.92 1.4 

ethanol(2) 2.105 1.972 

Ethyl acetate (3) 3.4786 3.116 

 

 

 
ijA  jiA  

K-1 K-1 

Water(1)/ethanol(2) -109.102 -137.836 

water(1)/ethyl 

acetate(3) 

176.158 320.83 

Ethanol(2)/ 

Ethyl-acetate(3) 

-355.791 390.218 
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Table S14. NRTL parameters for water(1)/acetic acid(2)/1-hexanol(3) at 298 K. These parameters are 

taken from Table 3 of Fahim et al.72 

 

    TTba ijijij 15.2730      TTba jijiji 15.2730   jiij    

dimensionless dimensionless dimensionless 

water(1)/acetic 

acid(2) 

1.219886 -0.323559 0.2 

water(1)/ 

1-hexanol(3) 

6.951283 -0.345447 0.2 

Acetic acid (2)/ 

1-hexanol(3) 

-0.361647 0.990639 0.2 
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Table S15. NRTL parameters for water(1)/acetic acid(2)/MTBE (3) at 298.15 K. The parameters are 

from Zhang and Wang.73 

 

 TAijij   TAjiji   
jiij    

dimensionless dimensionless dimensionless 

water(1)/acetic acid (2) 0.354 -1.2151 0.47 

water(1)/MTBE(3) 3.9737 1.2998 0.2 

Acetic acid(2)/ 

MTBE(3) 

-0.2774 -2.8068 0.37 
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Table S16. NRTL parameters for water(1)/ethanol(2)/cyclohexane (3) at 298 K. These parameters are 

from the DECHEMA Dortmund data bank, as reported in Table 1 of Springer et al.74 

 

 
ij  ji  jiij    

dimensionless dimensionless dimensionless 

Water(1)/ethanol(2) 1.8707 0.0976 0.3475 

water(1)/cyclohexane(3) 14.84 5.6653 0.21159 

ethanol(2)/cyclohexane(3) 1.4786 2.408 0.46261 
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Table S17. NRTL parameters for water(1)/acetonitrile(2)/toluene (3) at 293.15 K. The parameters are 

from Di Cave and Mazzarotta.75  

 

 
ij  ji  jiij    

dimensionless dimensionless dimensionless 

water(1)/acetonitrile (2) 1.60724 0.95391 0.3 

water(1)/toluene(3) 4.48747 7.26421 0.2 

Acetonitrile(2)/ 

toluene(3) 

0.97552 -0.0199 0.3 
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6.11 List of Figures for Emulsification in partially miscible ternary liquid mixtures 

 

Figure S19.  Transient equilibration trajectories A-A*, and B-B* for water(1)/ethanol(2)/benzene(3) 

mixture at 298 K, demonstrating forays into the metastable region in the water-rich region of the phase 

diagram.   
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Figure S20. Schematic showing the chosen configuration for modeling transient equilibration between 

two phases A and B of partially miscible ternary liquid mixtures. 
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Figure S21. Transient equilibration trajectories for the system glycerol(1)/acetone(2)/water(3) 

mixtures at 298 K.  The experimental data for the equilibration paths for glycerol(1)/acetone(2)/water(3) 

mixture measured in a stirred Lewis cell by Krishna et al.,67 indicated by the symbols, are compared 

with the calculated equilibration trajectories, indicated by the solid blue lines. The phase equilibrium is 

determined from the NRTL parameters in Table S10. 
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Figure S22.  (a) Transient equilibration trajectories for glycerol(1)/acetone(2)/water(3) mixture at 298 

K, demonstrating forays into the metastable region. (b) Transient composition profiles in glycerol-rich 

phase B plotted as function of the dimensionless distance coordinate 
4 ref

z

D t
. The phase equilibrium is 

determined from the NRTL parameters in Table S10. 
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Figure S23. Transient equilibration trajectories followed during equilibration of homogenous mixtures 

of two different compositions for the system glycerol(1)/acetone(2)/water(3). The NRTL parameters for 

calculation of the phase equilibrium thermodynamics are provided in Table S10. 
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Figure S24. Transient equilibration trajectories for water(1)/chloroform(2)/acetic-acid(3) mixture at 

298 K. The UNIQUAC parameters are provided in Table S11. 
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Figure S25. (a) Transient equilibration trajectories for water(1)/acetone(2)/ethyl-acetate(3) mixtures at 

293 K. (b) Transient composition profiles in ethylacetate-rich phase B plotted as function of the 

dimensionless distance coordinate 
4 ref

z

D t
.  The UNIQUAC parameters for calculation of the phase 

equilibrium thermodynamics are provided in Table S12. 
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Figure S26. Transient equilibration trajectories followed during equilibration of homogenous mixtures 

of two different compositions for the system water(1)/acetone(2)/ethyl-acetate(3) mixture. The 

UNIQUAC parameters for calculation of the phase equilibrium thermodynamics are provided in Table 

S12. 
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Figure S27. (a) Transient equilibration trajectories for the system water(1)/ethanol(2)/ethyl-acetate(3) 

at 298 K. (b) Transient composition profiles in ethylacetate-rich phase B plotted as function of the 

dimensionless distance coordinate 
4 ref

z

D t
.  The UNIQUAC parameters for calculation of the phase 

equilibrium thermodynamics are provided in Table S13. 

  

Ethylacetate0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Ethanol

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

water

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

equilibration trajectory

binodal 
curve

spinodal 
curve

tie-line

water(1)/
ethanol(2)/
ethylacetate (3) mixture;
T = 298.15 K

Mole fraction of water, x1

0.00.20.40.60.81.0

M
ol

e 
fr

ac
tio

n 
of

 a
ce

tic
 a

ci
d,

 x
2

0.00

0.05

0.10

0.15

0.20

equilibration trajectory

spinodal 
curve

binodal 
curve

tie-line

a

Dimensionless distance, z/(4Dreft)
1/2

-2.0 -1.5 -1.0 -0.5 0.0

C
om

po
ne

nt
 m

ol
e 

fr
ac

tio
ns

0.0

0.2

0.4

0.6

0.8

1.0

water
ethanol
ethylacetate

Dref= 10-9 m2 s-1

B*

B

A
A*

B*

B

A

A*

b



Emulsification in partially miscible ternary liquid mixtures 
   

S129 
 

 

Figure S28. Transient equilibration trajectories for the system water(1)/acetic acid(2)/1-hexanol(3) at 

298 K. The NRTL parameters for calculation of the phase equilibrium thermodynamics are provided in 

Table S14. 
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Figure S29. Transient equilibration trajectories followed during equilibration of homogenous mixtures 

of two different compositions for the system water(1)/acetic acid(2)/1-hexanol(3) at 298 K. The NRTL 

parameters for calculation of the phase equilibrium thermodynamics are provided in Table S14. 
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Figure S30. (a) Transient equilibration trajectories for the system water(1)/acetic-acid(2)/MTBE(3) at 

298 K. (b) Transient composition profiles in MTBE-rich phase B, as function of the dimensionless 

distance coordinate 
4 ref

z

D t
. The NRTL parameters for calculation of the phase equilibrium 

thermodynamics are provided in Table S15. 
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Figure S31. (a) Transient equilibration trajectories followed during equilibration of homogenous 

mixtures of two different compositions for the system water(1)/ethanol(2)/cyclohexane(3) at 298 K. (b) 

Transient composition profiles plotted  as function of the dimensionless distance coordinate 
4 ref

z

D t
.  

The NRTL parameters for calculation of the phase equilibrium thermodynamics are provided in Table 

S16. 
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Figure S32. (a) Transient equilibration trajectories followed during equilibration of homogenous 

mixtures of two different compositions for the system water(1)/acetontrile(2)/toluene(3) at 293.15 K. (b) 

Transient composition profiles plotted as function of the dimensionless distance coordinate 
4 ref

z

D t
.   

The NRTL parameters for calculation of the phase equilibrium thermodynamics are provided in Table 

S17. 
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Figure S33. (a) Transient equilibration trajectories followed during equilibration of homogenous 

mixtures of two different compositions for the system water(1)/acetontrile(2)/toluene(3) at 293.15 K. (b) 

Transient composition profiles plotted as function of the dimensionless distance coordinate 
4 ref

z

D t
.   

The NRTL parameters for calculation of the phase equilibrium thermodynamics are provided in Table 

S17. 
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7 Nomenclature 

Latin alphabet 

ai   component activity, dimensionless 

[B]  matrix of inverse M-S coefficients, m-2 s 

ci  molar concentration of species i, mol m-3 

ct  total molar concentration of mixture, mol m-3 

Ð12  M-S exchange coefficient for binary mixture, m2 s-1 

Ðij  M-S binary pair diffusivity, m2 s-1 

V
ijÐ    modified M-S diffusivity for binary penetrant pair i-j, m2 s-1 

V
imÐ    modified M-S diffusivity for penetrant i in polymer m, m2 s-1 

Di,self  self-diffusivity of species i, m2 s-1  

D12  Fick diffusivity for binary 1-2 mixture , m2 s-1 

 D    Fick diffusivity matrix, m2 s-1  

D    Determinant of the Fick diffusivity matrix, m4 s-2  

2/1
D    Square-root of determinant of  D , m2 s-1  

 I   Identity matrix, dimensionless 

ji mass diffusion flux of species i with respect to v , kg m-2 s-1 

Ji molar diffusion flux of species i with respect to u , mol m-2 s-1 

V
iJ  volumetric diffusion fluxes with respect to Vu , mol m-2 s-1 

Mi   molar mass of species i, kg mol-1 

M   mean molar mass of mixture, kg mol-1 
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n number of species in the mixture, dimensionless 

 Q   two-dimensional square matrix, dimensionless 

R  gas constant, 8.314 J mol-1 K-1  

t  time, s  

T  absolute temperature, K  

xi  mole fraction of component i in bulk fluid phase, dimensionless 

Xi   generalized composition variable, dimensionless 

yi  mole fraction of component i in bulk vapor phase, dimensionless 

u   molar average mixture velocity, m s-1 

Vu   volume average mixture velocity, m s-1 

LL

L
Lu

21

2
2 




  relative volume fractions in bulk liquid mixture, dimensionless 

21

2
2 




u  relative volume fractions in polymer phase, dimensionless 

v   mass average mixture velocity, m s-1 

iV   partial molar volume of species i, m3 mol-1 

V    mean molar volume of mixture, m3 mol-1 

z  direction coordinate, m  

 
Greek alphabet 
 

i  activity coefficient of component i, dimensionless 

( )t   position of moving boundary, m 

 ij  Kronecker delta, dimensionless 

ij  thermodynamic correction factors, dimensionless 

    matrix of thermodynamic factors, dimensionless 
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2/1    Square-root of determinant of   , dimensionless  

i   eigenvalue of diffusivity matrix, m2 s-1 

    1 B  matrix of M-S diffusivities, m2 s-1 

2/1    Square-root of determinant of   , m2 s-1  

i  molar chemical potential, J mol-1 

i  volume fraction of penetrant i in polymer, dimensionless 

m  volume fraction of polymer, dimensionless 

L
i    volume fraction in bulk liquid mixture, dimensionless 

i  mass density of component i, kg m-3 

  interaction parameter in Flory-Huggins model, dimensionless 

i  mass fraction of component i, dimensionless 

 

 
Subscript 
 
i  referring to component i 

I  referring to the interface 

m refers to polymer  

n   referring to component n 

t  referring to total mixture 

 
 
Superscript 
 

mass  mass average reference velocity frame 

V  volume average reference velocity frame 
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Matrix notation 
 

( )  column matrix 

[ ]  square matrix 

  



References    

S139 
 

 

8 References 

 

 (1) PTC MathCad 15.0. http://www.ptc.com/, PTC Corporate Headquarters, Needham, 3 
November 2015. 
 (2) Taylor, R.; Krishna, R. Multicomponent mass transfer. John Wiley: New York, 1993. 
 (3) Leahy-Dios, A.; Bou-Ali, M. M.; Platten, J. K.; Firoozabadi, A. Measurements of molecular 
and thermal diffusion coefficients in ternary mixtures. J. Chem. Phys. 2005, 122, 234502.  
 (4) Alimadadian, A.; Colver, C. P. A New Technique for the Measurement of Ternary Diffusion 
Coefficients in Liquid Systems. Can. J. Chem. Eng. 1976, 54, 208-213.  
 (5) Maxwell, J. C. On the dynamical theory of gases. Phil. Trans. Roy. Soc. 1866, 157, 49-88.  
 (6) Stefan, J. Über das Gleichgewicht und die Bewegung insbesondere die Diffusion von 
Gasgemengen. Sitzber. Akad. Wiss. Wien. 1871, 63, 63-124.  
 (7) Standart, G. L.; Taylor, R.; Krishna, R. The Maxwell-Stefan formulation of irreversible 
thermodynamics for simultaneous heat and mass transfer. Chem. Eng. Commun. 1979, 3, 277-289.  
 (8) Krishna, R.; Low, C. Y.; Newsham, D. M. T.; Olivera Fuentes, C. G.; Paybarah, A. Liquid 
Liquid Equilibrium in the System Glycerol Water Acetone at 25 oC. Fluid Phase Equilib. 1989, 45, 115-
120.  
 (9) Krishna, R.; van Baten, J. M. Describing Diffusion in Fluid Mixtures at Elevated Pressures 
by Combining the Maxwell-Stefan Formulation with an Equation of State Chem. Eng. Sci. 2016, 153, 
174-187.  
 (10) Tuan, D. Q.; Zollweg, J. A.; Rizvi, S. S. H. Concentration Dependence of the Diffusion 
Coefficient of Lipid in Supercritical Carbon Dioxide. Ind. Eng. Chem. Res. 1999, 38, 2787-2793.  
 (11) Krishna, R.; van Baten, J. M. The Darken relation for multicomponent diffusion in liquid 
mixtures of linear alkanes. An investigation using Molecular Dynamics (MD) simulations. Ind. Eng. 
Chem. Res. 2005, 44, 6939-6947.  
 (12) Krishna, R.; van Baten, J. M. Unified Maxwell-Stefan Description of Binary Mixture 
Diffusion in Micro- and Meso- Porous Materials. Chem. Eng. Sci. 2009, 64, 3159-3178.  
 (13) Wesselingh, J. A.; Bollen, A. M. Multicomponent diffusivities from the free volume theory. 
Chem. Eng. Res. Des. 1997, 75, 590-602.  
 (14) Krishna, R. Serpentine Diffusion Trajectories and the Ouzo Effect in Partially Miscible 
Ternary Liquid Mixtures. Phys. Chem. Chem. Phys. 2015, 17, 27428-27436.  
 (15) Krishna, R. Diffusing Uphill with James Clerk Maxwell and Josef Stefan. Chem. Eng. Sci. 
2019, 195, 851-880. https://doi.org/10.1016/j.ces.2018.10.032. 
 (16) Wesselingh, J. A.; Krishna, R. Mass transfer in multicomponent mixtures. VSSD: Delft, 
2000. 
 (17) Ribeiro, C. P.; Freeman, B. D. Sorption, Dilation, and Partial Molar Volumes of Carbon 
Dioxide and Ethane in Cross-Linked Poly(ethylene oxide). Macromolecules 2008, 41, 9458-9468.  
 (18) Ribeiro, C. P.; Freeman, B. D. Solubility and Partial Molar Volume of Carbon Dioxide and 
Ethane in Crosslinked Poly(ethylene oxide) Copolymer. J. Polym. Sci.: Part B: Polym. Phys. 2010, 41, 
9458-9468.  
 (19) Mulder, M. H. V.; Franken, A. C. M.; Smolders, C. A. Preferential Sorpton versus 
Preferential Permeability in Pervaporation. J. Membr. Sci. 1985, 22, 155-178.  



References    

S140 
 

 (20) Yang, T.-H.; Lue, S. J. Modeling Sorption Behavior for Ethanol/Water Mixtures in a Cross-
linked Polydimethylsiloxane Membrane Using the Flory-Huggins Equation. J. Macromol. Sci., Part B: 
Phys 2013, 52, 1009-1029.  
 (21) Varady, M. J.; Pearl, T. P.; Stevenson, S. M.; Mantooth, B. A. Decontamination of VX 
from Silicone: Characterization of Multicomponent Diffusion Effects. Ind. Eng. Chem. Res. 2016, 55, 
3139-3149.  
 (22) Vrentas, J. S.; Duda, J. L. Molecular diffusion in polymer solutions. A.I.Ch.E.J. 1979, 25, 1-
24.  
 (23) Price, P. E.; Romdhane, I. H. Multicomponent Diffusion Theory and Its Applications to 
Polymer-Solvent Systems. A.I.Ch.E.J. 2003, 49, 309-322.  
 (24) Bearman, R. J. On the Molecular Basis of some Current Theories of Diffusion. J. Phys. 
Chem. 1961, 65, 1961-1968.  
 (25) Wesselingh, J. A.; Bollen, A. M. Multicomponent Diffusivities from the Free Volume 
Theory. Trans. Inst. Chem. Eng. 1997, 75, Part A, 590-602.  
 (26) Wilke, C. R.; Chang, P. Correlation of Diffusion Coefficients in Dilute Solutions. 
A.I.Ch.E.J. 1955, 1, 264-270.  
 (27) Reid, R.C.; Prausnitz, J. M.; Poling, B. E. The Properties of Gases and Liquids. 4th Edition, 
McGraw-Hill: New York, 1986. 
 (28) Zielinski, J. M. A Friction Factor Analysis of the Coupling between Polymer/Solvent Self- 
and Mutual-Diffusion: Pol ystyrene/Toluene. J. Polym. Sci.: Part B: Polym. Phys. 1996, 24, 2759-2766.  
 (29) Verros, G. D.; Malamataris, N. A. Estimation of Diffusion Coefficients in Acetone-
Cellulose Acetate Solutions. Ind. Eng. Chem. Res. 1999, 38, 3572-3580.  
 (30) Alsoy, S.; Duda, J. L. Modeling of Multicomponent Drying of Polymer Films. A.I.Ch.E.J. 
1999, 45, 896-905.  
 (31) Brun, J.-P.; Larchet, C.; Melet, R.; Bulvestre, G. Modelling of the Pervaporation of Binary 
Mixtures through Moderately Swelling, Non-Reacting Membranes. J. Membr. Sci. 1985, 23, 257-283.  
 (32) Ribeiro, C. P.; Freeman, B. D.; Paul, D. R. Modeling of Multicomponent Mass Transfer 
across Polymer Films using a Thermodynamically Consistent Formulation of the Maxwell-Stefan 
Equations in terms of Volume Fractions. Polymer 2011, 52, 3970-3983.  
 (33) Vrentas, J. S.; Vrentas, C. M. Restrictions on Friction Coefficients for Binary and Ternary 
Diffusion. Ind. Eng. Chem. Res. 2007, 46, 3422-3428.  
 (34) Zielinski, J. M.; Hanley, B. F. Practical Friction-Based Approach to Modeling 
Multicomponent Diffusion. A.I.Ch.E.J. 1999, 45, 1-12.  
 (35) Cussler, E. L.; Lightfoot, E. N. Multicomponent Diffusion Involving High Polymers. I. 
Diffusion of Monodisperse Polystyrene in Mixed Solvents. J. Phys. Chem. 1965, 69, 1135-1144.  
 (36) Strathmann, H.; Kock, K. The Formation Mechanism of Phase Inversion Membranes. 
Desalination 1977, 21, 2411-2255.  
 (37) Radovanovic, P.; Thiel, S. W.; Hwang, S.-T. Formation of asymmetric polysulfone 
membranes by immersion precipitation. Part I. Modelling mass transport during gelation. J. Membr. Sci. 
1992, 65, 213-229.  
 (38) Radovanovic, P.; Thiel, S. W.; Hwang, S.-T. Formation of asymmetric polysulfone 
membranes by immersion precipitation. Part II. The effects of casting solution and gelation bath 
compositions on membrane 
structure and skin formation. J. Membr. Sci. 1992, 65, 231-246.  
 (39) Reuvers, A. J.; van den Berg, J. W. A.; Smolders, C. A. Formation of membranes by means 
of immersion precipitation Part II. The mechanism of formation of membranes prepared from the 
system cellulose acetate - acetone - water. J. Membr. Sci. 1987, 34, 45-65.  
 (40) Reuvers, A. J.; Smolders, C. A. Formation of membranes by means of immersion 
precipitation Part II. The mechanism of formation of membranes prepared from the system cellulose 
acetate - acetone - water. J. Membr. Sci. 1987, 34, 67-86.  



References    

S141 
 

 (41) van den Berg, G. B.; Smolders, C. A. Diffusional phenomena in membrane separation 
processes. J. Membr. Sci. 1992, 73, 103-118.  
 (42) Tsay, C. S.; McHugh, A. J. Mass Transfer Modeling of Asymmetric Membrane Formation 
by Phase Inversion. J. Polym. Sci.: Part B: Polym. Phys. 1990, 28, 1327-1365.  
 (43) van de Witte, P.; Dijkstra, P. J.; van den Berg, J. W. A.; Feijen, J. Phase separation 
processes in polymer solutions in relation to membrane formation. J. Membr. Sci. 1996, 117, 1-31.  
 (44) Guillen, G. R.; Yinjin Pan, Y.; Li, M.; Hoek, E. V. Preparation and Characterization of 
Membranes Formed by Nonsolvent Induced Phase Separation: A Review. Ind. Eng. Chem. Res. 2011, 
50, 3798-3817.  
 (45) Wang, D.-M.; Lai, J.-Y. Recent advances in preparation and morphology control of 
polymeric membranes formed by nonsolvent induced phase separation. Curr. Opin. Chem. Eng. 2013, 2, 
229-237.  
 (46) Krishna, R. Describing Mixture Permeation across Polymeric Membranes by a 
Combination of Maxwell-Stefan and Flory-Huggins Models. Polymer 2016, 103, 124-131.  
 (47) Krishna, R. Using the Maxwell-Stefan formulation for Highlighting the Influence of 
Interspecies (1-2) Friction on Binary Mixture Permeation across Microporous and Polymeric 
Membranes. J. Membr. Sci. 2017, 540, 261-276. https://doi.org/10.1016/j.memsci.2017.06.062. 
 (48) Krishna, R. Highlighting Diffusional Coupling Effects in Ternary Liquid Extraction and 
Comparisons with Distillation. Ind. Eng. Chem. Res. 2016, 55, 1053-1063.  
 (49) Altinkaya, S. A.; Ozbas, B. Modeling of Asymmetric Membrane Formation by Dry-casting 
Method. J. Membr. Sci. 2004, 230, 71-89.  
 (50) Grossmann, T.; Winkelmann, J. Ternary Diffusion Coefficients of Glycerol + Acetone + 
Water by Taylor Dispersion Measurements at 298.15 K. J. Chem. Eng. Data 2005, 50, 1396-1403.  
 (51) Tsay, C. S.; McHugh, A. J. An Improved Numerical Algorithm for Ternary Diffusion with 
a Moving Interface. Chem. Eng. Sci. 1991, 46, 1179-1187.  
 (52) Crank, J. The Mathematics of Diffusion. 2nd Edition, Clarendon Press: Oxford, 1975. 
 (53) Krishna, R. Uphill Diffusion in Multicomponent Mixtures. Chem. Soc. Rev. 2015, 44, 2812-
2836.  
 (54) Materials for Separation Technologies: Energy and Emission Reduction Opportunities. U.S. 
Department of Energy, Energy Efficiency and Renewable Energy, 2005. 
 (55) Tkacik, G.; Zeman, L. Component Mobility Analysis in the Membrane-Forming System 
Water/N-methyl-2-pyrrolidone/Polyethersulfone. J. Membr. Sci. 1987, 31, 273-288.  
 (56) Altena, F. W.; Smolders, C. A. Calculation of Liquid-Liquid Phase Separation in a Ternary 
System of a Polymer in a Mixture of a Solvent and a Nonsolvent. Macromolecules 1982, 15, 1491-1497.  
 (57) Yip, Y.-L. Modeling of dry-casting and non-solvent vapor induced phase separation. 
Theses and Dissertations, Lehigh University, Lehigh, 2005. 
http://preserve.lehigh.edu/cgi/viewcontent.cgi?article=1888&context=etd  
 (58) Matsuyama, H.; Teramoto, M.; Nakatani, R.; Maki, T. Membrane Formation via Phase 
Separation Induced by Penetrationof Nonsolvent from Vapor Phase. I. Phase Diagram and Mass 
Transfer Process. J. Appl. Polymer Sci. 1999, 74, 159-170.  
 (59) Kim, J. Y.; Lee, H. K.; Baik, K. J.; Kim, S. C. Liquid–Liquid Phase Separation in 
Polysulfone/Solvent/Water Systems. J. Appl. Polymer Sci. 1997, 65, 2643-2653.  
 (60) Fernandes, G. R.; Pinto, J. C.; Nobrega, R. Modeling and Simulation of the Phase-Inversion 
Process During Membrane Preparation. J. Appl. Polymer Sci. 2001, 82, 3036-3051.  
 (61) Miller, C. A. Spontaneous Emulsification Produced by Diffusion - A Review. Colloids Surf. 
1988, 29, 89-102.  
 (62) Sitnikova, N. L.; Sprik, R.; Wegdam, G.; Eiser, E. Spontaneously Formed trans-
Anethol/Water/Alcohol Emulsions: Mechanism of Formation and Stability. Langmuir 2005, 21, 7083-
7089.  
 (63) Vitale, S. A.; Katz, J. L. Liquid Droplet Dispersions Formed by Homogeneous Liquid-
Liquid Nucleation: “The Ouzo Effect”. Langmuir 2003, 19, 4105-4110.  



References    

S142 
 

 (64) Ganachaud, F.; Katz, J. L. Nanoparticles and Nanocapsules Created Using the Ouzo Effect: 
Spontaneous Emulsification as an Alternative to Ultrasonic and High-Shear Devices ChemPhysChem 
2005, 6, 209-216.  
 (65) Ruschak, K. J.; Miller, C. A. Spontaneous Emulsification in Ternary Systems with Muss 
Transfer. Ind. Eng. Chem., Fundam. 1972, 11, 534-540.  
 (66) Jackson, R. Diffusion in Ternary Mixtures with and without Phase Boundaries. Ind. Eng. 
Chem., Fundam. 1977, 16, 304-306.  
 (67) Krishna, R.; Low, C. Y.; Newsham, D. M. T.; Olivera-Fuentes, C. G.; Standart, G. L. 
Ternary mass transfer in liquid-liquid extraction. Chem. Eng. Sci. 1985, 40, 893-903.  
 (68) Califano, F.; Mauri, R. Retardation of the Phase Segregation of Liquid Mixtures with a 
Critical Point of Miscibility. A.I.Ch.E.J. 2018, 64, 4047-4052.  
 (69) Pertler, M. Die Mehrkomponenten-Diffuson in nicht vollständig mischbaren Flüssigkeiten. 
Technische Universität München, München, 1996.  
 (70) Othmer, D. F.; Ku, P. L. Solubility Data for Ternary Liquid Systems. Acetic Acid and 
Formic Acid Distributed between Chloroform and Water. J. Chem. Eng. Data 1960, 5, 42-44.  
 (71) Resa, J. M.; Goenaga, J. M. Liquid-Liquid Equilibrium Diagrams of Ethanol + Water + 
(Ethyl Acetate or 1-Pentanol) at Several Temperatures. J. Chem. Eng. Data 2006, 51, 1300-1305.  
 (72) Fahim, M. A.; Al-Muhtaseb, S. A.; Al-Nashef, I. M. Liquid-Liquid Equilibria of the 
Ternary System Water + Acetic Acid + 1-Hexanol. J. Chem. Eng. Data 1997, 42, 183-186.  
 (73) Zhang, H.; Wang, T. Measurement and Correlation of Liquid-Liquid Equilibrium Data for 
Water + Acetic Acid + Methyl tert-Butyl Ether + NaCl. J. Chem. Eng. Data 2009, 54, 945-949.  
 (74) Springer, P. A. M.; Baur, R.; Krishna, R. Composition trajectories for heterogeneous 
azeotropic distillation in a bubble-cap tray column: Influence of mass transfer. Chem. Eng. Res. Des. 
2003, 81, 413-426.  
 (75) Di Cave, S.; Mazzarotta, B. Liquid-Liquid Equilibria for Ternary Systems Formed by 
Acetonitrile, Water, and Aromatic Hydrocarbons. J. Chem. Eng. Data 1991, 36, 298-303.  
 
 

 

 

 

 


	krishna ACS Omega 2020
	krishna ACS Omega 2020 SI

