
dimensionless adiabatic temperature defined by 
Equation (12b) 
maximum of e reached at T~~~ 

initial guess of B needed for computational pur- 
Po== 
frequency factor 
vibrational frequency at the interface of the new- 
016 phase 
density of the new phase 
density of the reacting mixture 
Stefan constant 
dimensionless time defined by Equation (5a)  
dimensionless time needed for completion of the 
reaction 
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A Mu Iticom ponent Film Model Incorporating 

a General Matrix Method of Solution 
to the MaxweIJ-Stefan Equations 
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and 

G. L. STANDART 
Convenient expressions for calculating multicomponent gas phase mass 

transfer coefficients and transfer rates are obtained by use of an exact matrix 
method of solution to the Maxwell-Stefan equations. The results are seen 
to be exact matrix analogues of classical binary relations and may also be 
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applied as an approximation to describe liquid -phase transport. Manchester M60 lQD, England 

SCOPE 

Many chemical engineering operations such as distilla- 
tion, absorption, condensation, and evaporation involve 
steady state transfer of three or more species, and it is 
important in such cases to calculate the rates of transfer 
in either phase. Often in practice one has to rely on 
some theory of mass transfer which in almost all cases 
is based on a model involving molecular diffusion. Al- 
though binary molecular diffusion theory is well under- 
stood, the interesting transfer characteristics of multi- 
component systems-systems for which n 5 3-have only 
relatively recently been recognized and studied (Toor, 
1957, 1964; Stewart and Prober, 1964). Thus, in multi- 
component systems it is possible to obtain various inter- 

Correspondence concerning this paper should be addressed to R. 
Krishna. 
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action phenomena such as osmotic diffusion (transfer of 
a component in the absence of a composition gradient 
for that species), diffusion barrier (no transfer of a com- 
ponent even though a composition gradient exists for it), 
and reverse diffusion (diffusion of a species against its 
composition gradient). The correct description of multi- 
component transport phenomena is obtained by using a 
matrix of mass transfer coefficients with nondiagonal co- 
efficients. This work is concerned with the development 
of a film model for multicomponent mass transfer for 
calculating the matrix of transfer coefficients and is based 
on an exact matrix method of solution to the Maxwell- 
Stefan equations. The method developed in this work does 
not make the assumption of constant matrix of diffusion 
coefficients as required in the linearized theory develop. 
ment of Toor (1964) and Stewart and Prober (1964). 
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CONCLUSIONS AND SIGNIFICANCE 

The matrix of mass transfer coefficients under condi- 
tions of finite transfer rates is obtained as a product of 
two matrices: one, a matrix of zero flux mass transfer 
coefficients (which may be evaluated from binary trans- 
port data) and a correction factor matrix, which accounts 
for finite rates of transfer of the individual species. The 
expressions obtained are the exact matrix analogues of 
classical binary transfer rate relations at high rates of 
transfer (Bird, Stewart, and Lightfoot, 1960). The matrix 
formulation developed here is particularly convenient 

because the correction factor matrix has the proper limit- 
ing behavior (it reduces to the identity matrix for vanish- 
ing transfer rates), and the calculations of the transfer 
fluxes involve a simple and stable iteration procedure. 
The matrix method may be considered exact for mixtures 
of ideal gases; for dense gases and liquid mixtures, the 
analysis holds to a reasonable degree of approximation. 

The results obtained in this work are directly applic- 
able in the calculation of transfer rates for many separa- 
tion processes and also for obtaining the external mass 
transfer resistances in heterogeneous reacting systems. 

The rate relations for interphase mass transfer in 
n-component systems are properly formulated in terms 
of an n - 1 dimensional square matrix of (diffusive) 
mass transfer coefficients in either phase (Stewart and 
Prober, 1964; Toor, 1964). For the gas phase, for ex- 
ample, the diffusion fluxes are given by 

where (yb  - yI) represents an n - 1 dimensional column 
matrix of composition driving forces. In many practical 
chemical engineering operations, the compositions in 
the bulk phase are known and remain constant at a 
given position in the equipment for steady state condi- 
tions. The compositions at the interface are either known 
or can be eliminated by use of overall driving forces and 
mass transfer coefficients. For discussions in this paper, 
we shall assume that the interface compositions are 
specified. The superscript on the matrix of mass transfer 
coefficients [k*y] serves as a reminder that these co- 
efficients are themselves dependent on the interfacial rates 
of transfer of the n species Ni (Stewart, 1973). 

Only n - 1 of the diffusion fluxes ]iy are independent, 
for we have the requirement 

n c JiY = 0 
i = 1  

The phase invariant total fluxes Ni are calculated from 

Ni = Jiu + yiNt i = 1,2, . . . n (3)  
with an additional determinancy condition (Standart 
et al., 1974). For transport within a liquid phase, we 
have expressions analogous to equations (1) to (3)  above. 

The calculation of the diffusion fluxes ]i requires the 
knowledge of the (n  - 1)2 elements of the matrix [k.]. 
The linearized theory of multicomponent mass transfer, 
pioneered by Toor (1964) and Stewart and Prober 
( 1964), may be used to obtain the multicomponent trans- 
fer coefficients from information on binary transport 
parameters. The linearized theory relies for its develop- 
ment on the assumption that the matrix of diffusion 
coefficients [ D ]  remains constant along the direction of 
transfer; this assumption has been shown to be adequate 
for many cases (Arnold and Toor, 1967; Johns and 
DeGance, 1975). 

It is the purpose of this paper to develop an exact 
film model for multicomponent gas phase mass trans- 
port without making the assumption of constant matrix 
of diffusion coefficients. The development is based on an 
exact matrix method of solution to the Maxwell-Stefan 
equations. The limitations of the linearized theory of 
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multicomponent mass transfer are explored. The prob- 
lems associated with estimating the matrix [k’,] for 
liquid mixtures are discussed, and some improved ap- 
proximate procedures are suggested. 

MULTICOMPONENT FILM MODEL FOR GAS PHASE 
MASS TRANSPORT 

Consider mass transfer in an ideal gas mixture, con- 
sisting of n species, at constant temperature and pressure 
(with suitably averaged properties, the analysts below 
will hold for nonisothermal conditions as well). The 
total molar density of the gas mixture is therefore con- 
stant and given by 

The composition of the gaseous mixture in the bulk 
gas core is assumed to remain constant at the vdues tj& 
while the interface compositions are similarly held con- 
stant at yLl .  The transition between the bulk vapor com- 
positions to the interface vapor compositions is assumed 
to take place through a thin film of thicknilss 6 by 
molecular transport mechanism. 

The correct description of molecular diffusion in an 
n-component system under isothermal-isobaric conditions 
is given by the Maxwell-Stefan equations, mhich for 
steady state unidirectional transfer reduce to 

c = p / R T  (4) 

k#i 

Only n - 1 Equations (5) are written, for we have 
composition gradient for the nth species determined by 

The representation (5)  is particularly convenient be- 
cause the coefficients &, which represent the diffusivities 
of the binary pairs i - k in the mixture, are virtually 
composition independent for ideal gas mixtures; these 
coefficients can be calculated to a high degree of accuracy 
from the molecular parameters of the Chapman-Enskog 
kinetic theory (see, for example, Chapman and Cow- 
ling, 1970). Analytic solutions to ( 5 )  are available for 
ternary gas mixtures in special cases (Gilliland, 1937; 
Toor, 1957; Hsu and Bird, 1960; Johns and DeGance, 
1975). Here we seek a convenient general solution to 
the n-component case. 

It is convenient to define a dimensionless distance 
coordinate in the film 7 as 
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7]  = z/$ (7) 

Ka = cD& i, k = 1,2,. . . n ( 8 )  

and the coefficients 

i f k  

These coefficients Kik  are the binary mass transfer co- 
efficients of the pairs i - k in the n-component mixture, 
corresponding to zero-flux conditions (Bird, Stewart, and 
Lightfoot, 1960). 

With definitions (7) and (8) above, the Equations 
(5) may be rewritten as 

k#i 

or, in terms of the diffusion fluxes Jig, as [see Equation 
(3) 1 

k f i  

The diffusion fluxes J i ~  of course change in value across 
the film, while the total fluxes N i  are phase invariant. 
We shall return to Equations (10) at a later stage; here 
we develop the integrations of Equations (9).  

I t  is convenient to write Equations (9)  in n - 1 di- 
mensional matrix notation as 

where the elements of the square matrix [a] are given by 

kf i  

(pij = - N p i j  i ,  j = 1, 2, . . n - 1 (13) 
i # i  

with the aij defined as 

aij = l/Kij - l/Kin i, j = 1,2 , .  . n - 1 (14) 
i # j  

The elements of the column matrix ( 5 )  are given by 

[ i  = - Ni/Kin i = 1,2, . . , n - 1 (15) 
The total molar fluxes N i  and the coefficients Kik are 

independent of the position r )  within the film, and there- 
fore the linear matrix differential Equation (11) can be 
solved with the condition 

at z = 0, 7 = 0, (bulk gas), (9) = (yb) (16) 

to give the composition profile within the film as (Amund- 
son, 1966) 

Substituting the condition 

at z = 6, -q = 1, (interface), (9) = ( y ~ )  (18) 

in Equation (17), we get 

(YI-yb) = {exPC@] - ‘IJ}{(Yb) + [@1-’(6)} 
(19) 

A combination of Equations (17) and (19) gives the 
composition profiles within the film in terms of the total 
fluxes and the compositions at either end of the diffusion 
path as 
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(yq - gb)  = {exp[@].? - ‘zJ}{exp[@] - ‘IJ}-’(YI - y b )  

(20) 

which is the exact matrix analogue of the well-known 
composition profile for a binary system (Bird, Stewart, 
and Lightfoot, 1960) 

(21) 
yl - Y l b  - e x p h  - 1 
ylI - y l b  - 1 

- 

with the dimensionless rate factor @ given as 

4 = (N1+ N2)/KlZ (22) I 

Now, for binary systems the diffusion flux for com- 
ponent 1 in the bulk gas is given by 

and we obtain in view of Equation (21) 

(23) 

It is convenient to define the finite flux binary mass 
transfer coefficient in the bulk gas phase by 

Jlb’ = K’bl2 ( y l b  - YlI) (25) 

which gives the film theory estimation of these finite flux 
coefficients as [see Equations (24) and (25)] 

(26) 
4 

exp4 - 1 K’bl2 = K12 

In proceeding with the matrix analysis of multicom- 
ponent mass transport rate relations, we shall seek proper 
matrix generalizations of the binary relationships (23) 
to (26). 

The first step is to define a matrix of zero flux mass 
transfer Coefficients in the bulk gas phase [kyb] by 

In order to calculate [kyb], we observe that the Equa- 
tions (10) can be written in matrix notation as 

where the elements of the square matrix [ B] (equivalent 
to the Stewart and Prober matrix [A]) are obtained as 

k f i  

Bii = - ypij  i, j = 1, 2, , , n - 1 (30) 
i # j  

The composition gradient in the bulk gas phase 17 = 0 
is obtained from Equation (28) as 

where the matrix [ B b ]  is evaluated from Equation (29) 
and (30) with all compositions yi taken as Yib, the bulk 
gas phase values. 

Comparison of Equations (27) and (31) shows that 
the matrix of zero flux mass transfer coefficients in the 
bulk gas phase [kub]  is just the inverse of the matrix 
[&I; that is 
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[ k y b l  = L B b 1 - l  (32) 
The matrix inversion can be carried out explicitly for 
a ternary system, and the results are 

k y b l l  = K13(ylbK23 + (1 - glb)XlZ)/S (33) 

kybl2  = ylbK23(K13 - xlZ)/S 

kyb21 = Y2bK13 (x23 - x12) /s 

s = YlbK23 + Y2bK13 + Y3bK12 

(34) 

(35) 
kyb22 = x23(YZbK13 + (1 - !-/2b)x12)/S (36) 

where 
(37) 

The composition gradient in the bulk gas phase can 
be obtained from the composition profile (20) as 

(38) 
A combination of Equations (27) and (38) gives 

(]by) = [kybl[@l{exp[@] - ‘Z,)-l(Yb - 91) (39) 
which is the matrix generalization of the binary rate 
relation (24).  The matrix of finite flux mass transfer co- 
efficients [k*yb]  is obtained by comparison of Equations 
(1) and (39) as 

[k*yb]  = [kybl[@]{exp[@,] - ‘IJ1-l (40) 

which is the matrix analogue of Equation (26) and is 
the result we sought; it allows calculation of the finite 
flux coefficients from information on zero flux binary mass 
transfer coefficients and the rates of transfer Ni. The de- 
termination of the diffusion fluxes ]tb’ and the total fluxes 
Ni is not explicit in the true sense because a prior know- 
ledge of the molar fluxes is required in the calculation 
of [k-yb] .  We shall, in fact, observe that the formulation 
(40) is a very convenient one, 

In proceeding with the discussions, it becomes con- 
venient to define a correction factor matrix 

[El = [~]{exp[@] - rZ,}-1 (41) 
Consider the limiting case in which all the total fluxes Ni 
tend to vanish; the matrix [Q] tends to the null matrix 
[O] ; that is 

limit 
i =  1 , 2 , . . n  [@I = LO1 (42) 
N i +  0, 

and the correction factor matrix tends to the identiiy 
matrix ‘IJ ; that is 

limit 

i =  1 , 2 , . . n  
Ni+ 0, [El = ‘I, (43) 

and therefore 
limit 

Ni+ 0, Ck’ybl = “ h b l  (44) 
i =  1 , 2 , . . n  

For finite but low rates of mass transfer, the relation 
(44) provides a good estimate of the transfer coefficient 
matrix [Ic’,~]; this, in fact, suggests a stable iteration 
procedure for calculating the total fluxes for fixed two- 
point boundary value problems. 

1. Estimate the zero flux binary mass transfer coefficients 
K,rc from the binary diffusivity in the gas phase Dtk by 
using the knowledge of the film thickness or from an 
appropriate mass transfer correlation, say of the i factor 
type. 

2. Calculate the matrix of zero flux mass transfer co- 
efficients at the bulk gas phase conditions, [kyb], from 
relation (32) .  

3. Assume the correction factor matrix [El to be the 
identity matrix and hence use relation (44). 

4. With this estimate of the matrix [k’,b], calculate 
the diffusion fluxes Jib’ from Equation (1). The total 
fluxes Ni are obtained from Equations (3) with an ad- 
ditional determinancy condition. 

5. This estimate of the fluxes Ni allows calculation 
of the elements of [a] and therefore of the correction 
factor matrix [El from Equation (41). The correction 
factor matrix [El is most simply evaluated l)y use of 
Sylvester’s expansion theorem, details of which can be 
found in, for example, Amundson (1966). 

6. A new estimate of [k*,b] is obtained from the rela- 
tion 

and steps 4 to 6 are repeated till convergence i5 obtained 
for each individual flux Ni. 

[ k y b l  = [ k y b l  [El (45) 

SPECIAL CASES 

For a ternary mixture, the correction factor matrix [El 
can be evaluated explicitly by using Sylvester’s theorem; 
the result is 

A A A A 

(46) 
B1(@11 - @2)  - 22(@11 - @d 

($1 - $2) 
211 = 

A A  
(El - 2 2 )  

1 - 2 )  
212 = @12 (47) 

A A A  A 

(49) 
% ( a 2 2  - @2) - E2(@22 - @l> 

($1 - $2) 
E22 = 

and Q~ are the eigenvalues of the matrix [@I, 
A A 

where 

and El and E2 are defined as 
A A 

For the special case of equimolar counter transfer in 
a ternary mixture 

N t  = N1+ N2 + N3 = 0 (51) 
A 

the eigenvalues @i are determined as 

A 
@I = Nia21 + N z ~ z  (52) 

@2 = 0 (53) 

and 
A 

The elements of the correction factor matrix for this 
case are obtained as 

A A 
811 = (I*1@11 + @22)/@1 

212 = (81 - 1)@12/@1 

221 = (81 - 1)@21/@1 

(54) 

(55) 

i56) 

A A 

A A 
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h A 
Ezz = (Bl@ZZ + @ll) /@l 

For transfer of two species through a 
component 

and for this special case the eigenvalues 
[@I are obtained as 

N3 = 0 

A 
a1 = N1/K13 + N d K 2 3  

and 
A 
@z = ( N i  + Nz)/Kiz 

The Equations (46) to (49) simplify to 

(57) 
third stagnant 

(58) 
of the matrix 

(59) 

(60) 

A A  A A  
El2 = ( E l  - Ez)@12/ (@I - @ z )  

A A  A A  
EZl = (81 - 8 2 )  CPZJ ((a1 - (a,) 

For the special determinancy conditions (51) and 
(58), analytic solutions in parametric form are available 
in the literature (Gilliland, 1937; Toor, 1957). These 
solutions, however, suffer from a major drawback that 
multiple roots are possible (Sherwood, 1937; Toor, 1957). 
The matrix method presented here is very stable, and 
convergence is obtained in a small number of iterations 
for a variety of problems tested (Krishna, 1375). The 
stability of the matrix method of solution presented here 
is due to the fact that all peculiarities of multicomponent 
transport phenomena are essentially lumped into the 
form of the correction factor matrix [El which has the 
proper limiting behavior. Further, the Gilliland and Toor 
solutions involve taking the logarithm of a quotient; it is 
possible for either term in the numerator or denominator 
to vanish or assume negative values during the course of 
an iteration procedure. These solutions will therefore fail 
under these circumstances. The matrix method does not 
have this drawback. 

where [PI is the modal matrix of [D]. The pseudo 
finite flux mass transfer coefficients are related to the 
pseudo zero flux mass transfer coeffiicents by 

V 
v v & k * . - k .  yt - ya- i =  1,2 , .  . .n - 1 (66) 

exp#Ji - 1 
where 

and 

V V 

(67) 

(68) 

+i = Nt/k,i 4. = 1,2, . . . n - 1 

k,i = cD& i = 1 ,2 , .  . . n - 1 
V V 

From Equations (66) and (67) we note that it is 
only the net total mixture flux N t  and not the individual 
species fluxes Ni which appear in the flux corrections. 
The vanishing of the total mixture flux (Nt  + 0) is 
sufficient to give a unity correction factor [see Equations 
(66) and (67)]. By contrast, the exact matrix analysis 
presented here shows that each individual total flux Ni 
will offer its own intrinsic contribution to the correction 
factor matrix [El ,  which reduces to the identity matrix 
when every individual flux vanishes [see Equations (54) 
to (57) for the equimolar counter transfer case]. We 
might expect the linearized theory to be in error when 
the transferring species have widely different rates of 
transfer in addition to having widely different mobilities. 
This is found to be the case as shown in the example 
below. 

Consider steady state transfer of acetone (1) and 
benzene ( 2 )  through stagnant helium (3)  with the fol- 
lowing boundary conditions: 

at 7) = 0, ylb = 0.10; 9 2 b  = 0.00 
(69) 

at 7) = 1, ylI = 0.02; yz1 = 0.28 

The diffusivities of the binary pairs are estimated to be 

D12 = 4 mm2/s; 0 1 3  = 41 mm2/s; 

The calculation of the finite flux mass transfer coefficients 
and transfer rates by the matrix method and the linearized 
theory method are summarized below: 

9 2 3  = 39 mm2/s 

N1 NZ 
C / S  C/6 

mmZ/s mm2/s 

Exact matrix method - 0.39 -9.43 
Linearized theory ( [k,.] -0.90 - 8.95 

- - 

calculated at average 
composition) 

k*ybll keyb12 k'yb21 k'yb22 

C / 6  C / 6  C/6 C/6 
mm2/s mmz/s mm2/s mmz/s 

78.85 20.41 -31.05 24.81 
27.54 7.57 17.56 36.98 

COMPARISON OF MATRIX METHOD WITH LINEARIZED 
THEORY APPROACH 

It is interesting to compare our exact matrix method of 
solving the Maxwell-Stefan equations with the linearized 
theory approach of Stewart and Prober (1964) and 
Toor ( 1964). Basically, in the linearized theory approach 
one assumes that the matrix of diffusion coefficients [D] 
stays constant across the film; this linearization and sub- 
sequent diagonalization of the coupled diffusion equa- 
tions allows solution of the differential equations in terms 
of pseudo compositions and eigenvalues of the diffusion 
coefficient matrix. The solution in terms of the original 
variables is recovered by applying the reverse transforma- 
tion. The matrix of finite flux mass transfer coefficients 
is obtained as (Stewart, 1973) 

V 

[k'J = [PI rkay, [PI -1 (65) 
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The assumption of constant matrix of diffusion co- 
efficient matrix of diffusion coefficients is clearly inadequate 
for the above example, and the molar flux of acetone 
calculated by the linearized method is subject to a large 
error. 

MULTICOMPONENT MASS TRANSPORT IN LIQUID 
MIXTURES 

For nonideal liquid mixtures, the correct description 
of the diffusion process is given by the generalized Max- 
well-Stefan equations. For unidirectionai diffusion in an 
n-component mixture at constant temperature, these equa- 
tions take the form analogous to Equations (9)  as 

dln yixi ~ i N k  - ~ k N i  
xi- - i = 1 ,2 , .  . . n - 1 

Ksik 
- F  4 k = l  

k#i 
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where y i  is the activity coefficient in solution, and the 
coefficients K x i k  are defined by 

K z i k  = c D i k / 8  i, k = 1, 2, . . . n (71) 
i # k  

where the coefficients D i k  are the generalized Maxwell- 
Stefan diffusion coefficients. For ideal gas mixtures, we 
have, of course, yi  = 1 and 

Dk = D i k  i, k = 1,2, . . . . n (72) 
i z k  

Unlike the gas phase diffusion coefficients, the general- 
ized Maxwell-Stetan diffusion coefficients are functions 
of composition in addition to being functions of tempera- 
ture and pressure. Further, the Z)ik are parameters de- 
scribing the i - k pair interactions, essentially kinetic, 
in the multicomponent mixture; they cannot therefore 
be identified with the binary liquid phase diffusion co- 
efficient &k. If we assume that the &ik and yi are es- 
sentially constant over the diffusion path, then Equations 
(70) essentially reduce to Equations (9) and may there- 
fore be solved by using the matrix method developed 
in this work. The above assumptions are better approxima- 
ions than the assumption of a constant matrix of diffusion 
coeffiicents in the liquid phase [ O x ]  made by the linear- 
ized theory development of Stewart and Prober (1964) 
and Toor (1964). 

CONCLUSIONS 

A general matrix method for solving the Maxwell- 
Stefan equations describing isothermal-isobaric diffusion 
in multicomponent ideal gas mixtures has been developed. 
The resulting expressions for the diffusion fluxes and 
matrix of transfer coefficients are exact matrix analogues 
of classical binary relations. The advantages of the ma- 
trix method over published analytic solutions for special 
cases (Gilliland, 1937; Hsu and Bird, 1960; Toor, 1957; 
Johns and DeGance, 1975) are as follows. 

1. The matrix method is applicable to the general 
n-component case, while published analyses are essen- 
tially restricted to ternary systems. 

2. The formulation of the solution in terms of matrix 
of finite flux mass transfer coefficients, which is further 
expressed in terms of a product of a zero flux transfer 
coefficient matrix and a correction factor matrix, is par- 
ticularly convenient because it affords a simple film theory 
estimation of the multicomponent transport coefficients. 

3. The matrix method is stable and does not have the 
drawbacks of the Gilliland and Toor solutions, which 
give rise to multiple roots in some cases. 

The matrix method is simple to use and must be con- 
sidered preferable to the linearized theory method for 
the general case. 

NOTATION 

[ B ]  = inverted matrix of multicomponent mass transfer 
coefficients, [kmole/ ( s )  ( m2) (mole fraction) ] -1, 
elements of which are defined by Equations (29) 
and (30) 

c = molar density of fluid mixture, kmole/m3 
[D] = matrix of diffusion coefficients, m2/s 
D i k  = generalized Maxwell-Stefan diffusion coefficient 

D)ik = diffusion coefficient of binary pair i - k, m2/s 
V 
Di = characteristic roots (eig-nvalues) of [D], m2/s 
‘ I J  = identitv matrix with elements Sik 
Ji = molar diffusion flux of species i, kmole/(s) (m2) 
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for pair i - k in multicomponent mixture, mz/s 

[k] = matrix of zero flux multicomponent mass transfer 
coefficients, kmole/ (s) ( m2) (mole fraction) 

[PI = matrix of finite flux multicomponent mass trans- 
fer coefficients, kmole/ (s )  ( m2) (mole fraction) 

= eigenvalues of matrix [ k ] ,  h o l e / ( s )  (m2) (mole 
fraction) 

= eigenvalues of matrix [ k . ] ,  h o l e /  ( s )  (m2) (mole 
fraction) 

= zero flux mass transfer coefficient in binary mix- 
ture of 1 and 2, kmole/ (s) (m2) (mole fraction) 

= zero flux mass transfer coefficient of pair i - k 
in multicomponent mixture, h o l e /  (s) ( m2) 
(mole fraction) 

V 

ki 

V 
kSi 

KI2 

K , k  

n 
N ,  
N t  
p 
[ P I  
R 
T = absolute temperature, K 
x i  

yl 
z 

Greek Letters 

= number of species in mixture 
= total molar flux of species i, kmole/ (s) (m‘) 
= total mixture molar flux, kmole/ ( s )  ( m2) 
= total system pressure, N/m2 
= modal matrix of [ D ]  
= gas constant, 8 314 J/(kmole) ( K )  

= mole fraction of species i in the liquid mixture 
= mole fraction of species i in the gas mixture 
= position along film, m 

parameters defined by Equations (14), [kmole/ 
(s) ( mz) (mole fraction) ] -1 
activity coefficient of species i in solution 
film thickness, m 
Kronecker delta 
column matrix with elements given by Equations 

dimensionless distance within the film 
matrix of correction factors 
dimensionless rate factor for binary system, de- 
fined by Equation (22) 

dimensionless rate factor for pseudo species i, 
defined by Equation (67) 
matrix of dimensionless rate factors for multi- 
component system, with elements given by Equa- 
tions (12) and (13) 

(15) 

Matrix Notation 

( ) 
[ ] 
[ ] - l =  inverted matrix 
r , = diagonal matrix 

Subscripts 
b = bulk phase property 
i, i, k = indexes 
Z = interfacial property 
x = liquid phase 
y = vapor phase 
t 

Superscripts 
= pseudo property 

A = eigenvalue of corresponding matrix 
x = liquid phase property 
y = vapor phase property 
0 
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Evaluation of a Rapid Technique for 
Measuring the Diffusion Coefficients 
of SmaII Molecules 

The diffusion coefficients of sucrose, glycol, and glycine in water have 
been measured at 25.OoC by using the schlieren optical system of a pre- 
parative ultracentrifuge. The schlieren optical system was modified by the 
incorporation of a 35 mm single lens reflex camera. The values obtained 
were well within 2% of values found in existing literature and had an 
intrinsic precision of better than 2%. 

MARC LEMAGUER 
F. H. WOLFE 

and 
T. G. SMYRL 

Department of Food Science. 
University of Alberta 

Edmonton, Alberta, Canada 

SCOPE 
The measurement of diffusion coefficients of small in aqueous solution. Independently of Chandrasekhar and 

molecules has traditionally been restricted to well-known Hoelscher (1975), we have been studying the applicability 
classical techniques such as those employing the Tiselius of the ultracentrifugal technique to the measurement of 
cell in conjunction with interference optics or those diffusion coefficients of low molecular weight compounds 
using the Stokes type of diaphragm cell. Although the using a preparative ultracentrifuge of which the schlieren 
reliability of these techniques is well established, they optical attachment has been adapted to 35 mm photog- 
tend to require substantial amounts of time to obtain a raphy. By using a double sector capillary synthetic bound- 

sucrose, glycol, and glycine in water have been deter- 1950). 
For many years the ultracentrifuge with schlieren, ab- mined, and the results are compared to those obtained sorption, or interference optical systems has been used 

from interferometric techniques. In view of the fact that in diffusion and sedimentation studies of macromolecular 
species in aa_ueous solution. Recently, however, Chandra- such Preparative are used, the 
sekhar and Hoelscher (1975) have extended the use rapid, simple, and accurate determination of diffusion co- 
of an analytical ultracentrifuge to the measurement of efficients of low molecular weight compounds is thus made 
the diffusion coefficients of glycerol, glycol, and n-butanol available to a greater number of investigators. 

diffusion meaWIX%IWnt (Holm% 1g60; and Dole, ary cell as the diffusion cell, the diffusion coefficients of 

CONCLUSIONS AND SIGNIFICANCE 
A preparative ultracentrifuge equipped with a schlieren schlieren optical column has been modified so that a 35 

optical system has been used to obtain diffusion co- mm single lens reflex camera can be used to record the 
efficients of sucrose, glycol, and glycine in water. The schlieren patterns. With this apparatus, the diffusion 

coefficients were found to vary by less than 2% from 
Maguer. values obtained by interference techniques. Replicate 
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