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R. Krishna∗
Department of Chemical Engineering, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, Netherlands

Received 25 July 2000; accepted 25 July 2000

Abstract

The Maxwell–Stefan formulation for mixture diffusion, in principle, allows us to predict the diffusion characteristics of mixtures on the
basis of information of the pure component Maxwell–Stefan diffusivities at zero loading. The interaction between the diffusing, sorbed,
species is taken into account by introduction of an interchange coefficient–Dij, which is estimated using a logarithmic interpolation formula.
In the recent work of Kapteijn et al. [Chem. Eng. Sci. 55 (2000) 2923], the Maxwell–Stefan formulation has been extended to take account
of differences in the saturation capacities of the constituents in the mixture. In this paper we use published molecular dynamics simulations
for diffusion of mixtures of methane–perfluoromethane, methane–xenon, and methane–n-butane in silicalite to obtain direct verification
of Maxwell–Stefan formulation. It is shown that ignoring either differences in the saturation capacities or diffusional interchange lead to
significantly poorer predictions of mixture diffusion behaviour. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The proper description of diffusive transport within ze-
olitic materials is of considerable importance in practice
because of the many applications in catalytic reaction and
separation processes [1–4]. A variety of models and tech-
niques have been used to describe diffusion within zeolites,
ranging from phenomenological models such as Fick’s law
of diffusion [1,2,5,6], irreversible thermodynamics [7,8]
and the Maxwell–Stefan (MS) formulation [9–20] to Monte
Carlo (MC) simulations [21–29] and molecular dynamics
(MD) [30–42]. While MC and MD simulations are essential
tools for gaining insights into diffusive transport within ze-
olites, such techniques are too computationally expensive to
use in routine process simulations of say membrane trans-
port or adsorber breakthrough. For process simulations, we
still need to rely on phenomenological models [5–20].

The phenomenological models available in the literature
for mixture diffusion in zeolites vary considerably in their
complexity. The formulation of Habgood [5,6], for example,
ignores the diffusional interaction, or interchange, between
the constituent species. Recent experimental data on per-
meation of binary hydrocarbon mixtures across a silicalite
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membrane have emphasised the need for including the dif-
fusional interchange [43]. Earlier formulations of the MS
theory [11–16] do not account for the differences in the satu-
ration capacities of the constituents. In a more recent paper,
the MS model has been extended to include the influence of
differences in saturation sorbate loadings [18].

The objectives of the present communication are twofold.
Firstly, we aim to show that the published MD simulation
results for mixture diffusivities obey simple mixture rules
which can be derived from MS diffusion formulation. Sec-
ondly, we underline the influence of differences in saturation
sorbate loadings on mixture diffusion.

We begin with a refresher of the MS theory and de-
rive simple formula to describe self-diffusivities in mix-
tures; these formula are later compared with MD simulation
results.

2. The MS theory of diffusion in zeolites

The essential concepts behind a general constitutive rela-
tion for diffusion in multicomponent mixtures were already
available more than a century ago following the pioneering
works of Maxwell [9] and Stefan [10]. These ideas have
been applied to describe diffusion ofn species within a
zeolite matrix using the following set of equations [11–20]:
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Nomenclature

[B] square matrix of inverse Maxwell–Stefan
coefficients (m−2 s)

[D] matrix of Fick diffusivities (m2 s−1)
D1 Fick diffusivity of component 1 in

zeolite (m2 s−1)
D12 Fick diffusivity of 1–2 binary in fluid

mixture (m2 s−1)
–Di Maxwell–Stefan diffusivity of speciesi in

zeolite (m2 s−1)
Di,eff effective Fick diffusivity for componenti

diffusing in a zeolite (m2 s−1)
–Dij Maxwell–Stefan diffusivity describing

interchange betweeni andj (m2 s−1)
fi fugacity of speciesi; fi = pi for ideal

gases (Pa)
n number of diffusing species (dimensionless)
Ni molar or molecular flux of speciesi

(molecules m−2 s−1)
pi partial pressure of speciesi (Pa)
[R] matrix defined by Eq. (14) (m2 s−1)
R gas constant (8.314 J mol−1 K−1)
T absolute temperature (K)
z number of nearest neighbour sites

(dimensionless)

Greek letters
Γ thermodynamic correction factor

(dimensionless)
[Γ ] matrix of thermodynamic factors

(dimensionless)
θi fractional surface occupancy of componenti

Θi molecular loading (molecules per unit cell
or per cage)

Θi,sat saturation loading (molecules per unit cell
or per cage)

Θi,sat A maximum loading of site A (molecules
per unit cell)

Θi,sat B maximum loading of site B (molecules
per unit cell)

λ lateral displacement (m)
µi molar chemical potential (J mol−1)
ν jump frequency (s−1)
π spreading pressure (Pa m)
ρ density of zeolite (number of unit

cells per m3)

Subscripts
1 component 1 in binary mixture
2 component 2 in binary mixture
eff effective parameter
i, j components in mixture
max referring to maximum loading
sat referring to saturation conditions

Superscripts

0 pure component parameter

Vector and matrix notation
() component vector
[ ] square matrix

Operators
∇ gradient or nabla

− ρ
θi

RT
∇µi =

n∑
j=1
j �=i

Θj Ni − ΘiNj

Θi,satΘj,sat–Dij
+ Ni

Θi,sat–Di

,

i = 1, 2, . . . , n (1)

whereρ is the zeolite matrix density expressed as unit cells
per m3, θi represents the loading expressed in molecules of
sorbate per unit cell of zeolite,θi,sat is the saturation load-
ing of speciesi, R the gas constant andT the temperature.
∇µi is the gradient of the chemical potential of speciesi,
which is the fundamental driving force for diffusion. The
fractional occupancyθi of the sorbate within the zeolite
matrix is defined as

θi ≡ Θi

Θi,sat
, i = 1, 2, . . . , n (2)

In general the saturation loadings of the various species
Θi,sat in the mixture will be different from one another.Ni

are the molecular fluxes expressed in terms of molecules
transported per square meter per second.

In the MS formulation for zeolite diffusion, Eq. (1), we
have to reckon in general with two types of MS diffusivi-
ties: –Dij and–Di . The–Di are the diffusivities which reflect
interactions between speciesi and the zeolite matrix. Mix-
ture diffusion introduces an additional complication due to
sorbate–sorbate interactions. This interaction is embodied in
the coefficients–Dij. We can consider this coefficient as rep-
resenting the facility for counter-exchange, i.e. at a sorption
site the sorbed speciesj is replaced by the speciesi. The net
effect of this counter-exchange is a slowing down of a faster
moving species due to interactions with a species of lower
mobility. Also, a species of lower mobility is accelerated by
interactions with another species of higher mobility.

The MS formulation of single component diffusion, can
be derived from Eq. (1) by settingn = 1:

N1 = −ρΘsat–D1

(
θ1

RT
∇µ1

)
(3)

whereµ1 is the chemical potential of the sorbed species 1.
Assuming equilibrium between the sorbed species and the
bulk fluid phase we have the following relationship for the
chemical potentialµ1:

µ1 = µ0
1 + RT ln(f1) (4)

whereµ0
1 is the chemical potential in the chosen standard

state andf1 the fugacity. For not too high system pressures
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the component partial pressure,p1, can be used in place of
the component fugacity,f1, i.e. f1 ≈ p1. The chemical po-
tential gradients may be expressed in terms of the gradients
of the fractional occupancy,∇θ1,

1

RT
∇µ1 = 1

θ1
Γ ∇θ1, Γ ≡ θ1

∂ ln p1

∂θ1
(5)

whereΓ is the thermodynamic correction factor. Introducing
Eq. (5) into Eq. (3) we obtain:

N1 = −ρΘ1,satD1∇θ1 = −ρΘ1,sat–D1Γ1∇θ1 (6)

D1 is termed the transport or the Fick diffusivity.–D1 is
variously called the MS, “corrected” or “jump” diffusivity
[1,16]. These two diffusivities are inter-related:

D1 = –D1Γ (7)

Mechanistically, the MS diffusivity–D1 may be related to
the displacement of the adsorbed molecular species,λ, and
the jump frequency,ν, which in general can be expected to
be dependent on the total coverage [21]

–D1 = 1

z
λ2ν (8)

where z represent the number of nearest neighbour sites.
The jump frequencyν can be expected to decrease with
occupancy. If we assume that a molecule can migrate from
one site to another only when the receiving site is vacant, the
chance that this will occur will be a function of the fraction
of unoccupied sites. A general form of the MS diffusion
equation is therefore

–D1 = –D1(0)f (1 − θ1) (9)

where–D1(0) represents the MS diffusivity in the limit of
zero loading andf (1− θ1) is some function of the fraction
of unoccupied sites.

The simplest model for the dependence of the MS diffu-
sivity –D1 with occupancy is that it is independent of molec-
ular loading within the zeolite:

–D1 = –D1(0) (10)

This is indeed found experimentally to be true in several
cases [1].

Often in experiments and simulations, the self- or tracer
diffusivity of species 1 is determined under conditions
where there is no net gradient,∇θ1 ≡ 0. The self-diffusivity
shows a decreasing trend with molecular loading, see
Fig. 1(a) and (b) for MD simulation results of CH4, CF4 and
xenon in silicalite [32,33]. Monte Carlo simulations have
been used recently to show the inter-relationship between
self-, MS and transport diffusivities [29], see Fig. 1(c). The
self-diffusivity is influenced by correlation effects whereas
such correlation effects do not affect the MS and Fick diffu-
sivities. We note that the MS diffusivities follow the simple
linear relationship:

–D1 = –D1(0)(1 − θ1) (11)

where–D1(0) represents the MS diffusivity in the limit of
zero loading. At zero loading, all three diffusivities, self-,
MS and Fick are equal to one another. This zero loading
diffusivity can be determined experimentally or by use of
transition state theory [44–46].

For a binary mixture,n = 2, Eq. (1) may be cast into
two-dimensional matrix notation to give

N = −ρ[Θsat][B]−1[Γ ]∇(θ) = −ρ[Θsat][D]∇(θ) (12)

where [D] is the two-dimensional Fick diffusivity matrix
and [Θsat] is a diagonal matrix with the saturation loadings
Θi,sat. The matrix [B] has the elements

Bii = 1
–Di

+
n∑

j=1
j �=i

θj

–Dij
, Bij = − θi

–Dij
,

i, j = 1, 2, . . . , n (13)

Taking the inverse of matrix [B] and denoting this as [R],
we obtain

[B]−1 ≡ [R] = 1

(1 + θ1(–D2/–D12) + θ2(–D1/–D12)

×




–D1 + θ1
–D1–D2

–D12
θ1

–D1–D2

–D12

θ2
–D1–D2

–D12
–D2 + θ2

–D1–D2

–D12


 (14)

A procedure for the estimation of the counter-exchange co-
efficient–D12 has been suggested by Krishna and Wesselingh
[16]:

–D12 = [–D1]θ1/(θ1+θ2)[–D2]θ2/(θ1+θ2) (15)

The matrix [Γ ] is the thermodynamic correction factor
matrix, which can be determined from the mixture isotherm:

Γij ≡
(

Θj,sat

Θi,sat

)
Θi

pi

∂pi

∂Θj

, i, j = 1, 2, . . . , n (16)

When the saturation loadings of the two components,Θi,sat,
are equal to each other, and the isotherms of the pure compo-
nents can be described by a single-site Langmuir isotherm,
the matrix of thermodynamic correction factors can be de-
termined from

[Γ ] =
[

Γ11 Γ12

Γ21 Γ22

]
=
[

1 − θ2 θ1

θ2 1 − θ1

]
(1 − θ1 − θ2)

−1

(17)

In the general case, when the saturation loadings of the
two components are different we must use the ideal ad-
sorbed solution theory to calculate the mixture isotherms
[18]. However, we have established after several numerical
computations that Eq. (17) can also be used with acceptable
accuracy for the general case where the saturation loadings
of the constituents are different, provided the fractional
occupancies are calculated using Eq. (2).
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Fig. 1. (a) Self-diffusivities of pure components CH4 and CF4 in silicalite-1 at 200 K. MD simulations of Snurr and Kärger [32]. (b) Self-diffusivities
of pure components CH4 and xenon in silicalite-1 at 300 K. MD simulations of Jost et al. [33]. (c) Monte Carlo simulations of self-, MS and Fick
diffusivities of 2-methylhexane (2MH) in silicalite at 300 K [29]. The saturation capacity of 2MH is 4 molecules per unit cell.

We could force-fit Eq. (12) for the two fluxesNi into
the form of Fick’s law for each species with effective
diffusivities:

Ni = −ρΘsatDi,eff∇θi, i = 1, 2 (18)

where the effective Fick diffusivities of components 1 and
2 are given by

D1,eff = D11 + D12
∇θ2

∇θ1
(19)

D2,eff = D21
∇θ1

∇θ2
+ D22 (20)

For self-diffusivity measurements or simulations, the sum of
the gradients vanishes, i.e.

∇θ1 + ∇θ2 = 0 (21)

and therefore the expression for the self-diffusivities of com-
ponents 1 and 2 simplify to(

D1,eff

D2,eff

)
=
(

D11 − D12

D22 − D21

)

=
(

R11Γ11 + R12Γ21 − R11Γ12 − R12Γ22

R21Γ12 + R22Γ22 − R21Γ11 − R22Γ21

)

(22)

For the situation in which Eq. (17) applies, Eq. (22) further
simplifies, yielding(

D1,eff
D2,eff

)
=
(

R11 − R12
R22 − R21

)

= 1

1 + θ1(–D2/–D12) + θ2(–D1/–D12)

(
–D1
–D2

)
(23)

Eq. (23) represents a remarkably simple result which shows
that the self-diffusivities in a binary mixture are not affected

by thermodynamic factors and can be determined purely
from the knowledge of–D1, –D2 and–D12. Extending Eq. (11)
to binary mixtures we take

–D1 = –D1(0)(1 − θ1 − θ2),

–D2 = –D2(0)(1 − θ1 − θ2) (24)

and use Eq. (15) for determination of the counter-exchange
coefficient–D12.

If the interactions between the diffusing species are ig-
nored and the Habgood formulations [5,6] are used we obtain
the following simplified expressions for the self-diffusivities
in the mixture(

D1,eff
D2,eff

)
=
(

–D1
–D2

)
(25)

3. Verification of Eq. (23) using MD
mixture simulations

We first consider the MD simulations of Snurr and Kärger
[32] for CH4 (1) and CF4 (2) at 200 K in silicalite at a to-
tal mixture loading of 12 molecules per unit cell. They per-
formed MD simulations for mixtures in which the methane
loading is varied from 0–12 molecules per unit cell; their
simulation data are shown in Fig. 2. We will try to predict
the mixture behaviour from pure component data. The pure
component self-diffusivities are shown in Fig. 1(a). Methane
being a smaller molecule has a higher saturation loading
than that of CF4; we therefore takeΘ1,sat = 22 andΘ2,sat =
12 on the basis of information on mixture isotherms [35].
The pure component diffusivities at zero loading are esti-
mated from Fig. 1(a) as–D1(0) = 6×10−9 m2 s−1, –D2(0) =
3× 10−9 m2 s−1. The calculations of the diffusivitiesD1,eff
and D2,eff using Eqs. (15), (23) and (24) show excellent
agreement with the MD simulations of Snurr and Kärger
[32], see Fig. 2(a). The use of Eq. (15) for the interchange
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Fig. 2. Comparison of MD mixture simulations of Snurr and Kärger [32] for CH4 and CF4 in silicalite-1 at 200 K with estimations using MS theory.

coefficient, as suggested by Krishna and Wesselingh [16] is
therefore justified. In Fig. 2(b) the calculations are repeated
wherein the saturation capacities are forced to be equal to 22.
The calculations ofD1,eff andD2,eff are much worse than in
(a). This underlines the influence of differences in saturation
capacities on mixture diffusion. Also shown in Fig. 2(b) are
calculations in which the interchange coefficient is ignored;
in this caseD1,eff and D2,eff are given by Eq. (25). The
agreement with the MD simulations are very poor. Clearly,
it is important to take the interchange into account.

Jost et al. [33] have published MD simulations for the
self-diffusivities in mixtures of CH4 (1) and xenon (2) at
300 K. Their MD data for a total mixture loading of eight
are shown in Fig. 3. We now attempt to use the MS the-
ory to predict the mixture behaviour. The pure component
self-diffusivities are shown in Fig. 1(b). The saturation load-
ings are estimated asΘ1,sat = 22 andΘ2,sat = 16. The

Fig. 3. Comparison of MD mixture simulations of Jost et al. [33] for CH4 and xenon in silicalite at 300 K with estimations using MS theory.

pure component diffusivities at zero loading are estimated
from Fig. 1(b) as–D1(0) = 12× 10−9 m2 s−1, –D2(0) = 4×
10−9 m2 s−1. The calculations of the diffusivitiesD1,eff and
D2,eff using Eqs. (15), (23) and (24) show good agreement
with the MD simulations of Jost et al. [33], see Fig. 3(a).
The use of Eq. (15) for the interchange coefficient, as sug-
gested by Krishna and Wesselingh [16] is therefore justified.
In Fig. 3(b) the calculations are repeated wherein the satura-
tion capacities are forced to be equal to 22. The calculations
of D1,eff andD2,eff are much worse than in (a). This under-
lines the influence of differences in saturation capacities on
mixture diffusion. Also shown in Fig. 3(b) are calculations
in which the interchange coefficient is ignored; in this case
D1,eff andD2,eff are given by Eq. (25). The agreement with
the MD simulations are again much poorer.

Gergidis and Theodorou [38] have performed two sets of
MD simulations for the self-diffusivities in the mixture of
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Fig. 4. Comparison of MD mixture simulations of Gergidis and Theodorou [38] for the mixture of CH4 (1) andn-butane (2) in silicalite with estimations
using MS theory.

CH4 (1) andn-butane (2) at 300 K in silicalite, see Fig. 4.
In the first set (Fig. 4(a) and (b)) then-butane loading is
kept constant at 4 molecules per unit cell and the methane
loading is varied. In the second set (see Fig. 4(c) and (d)) the
methane loading is kept constant at 4 molecules per unit cell
and then-butane loading is varied. We now attempt to model
the self-diffusivities using the MS formulations developed
above. The saturation loadings are estimated asΘ1,sat = 22
andΘ2,sat = 12. The pure component diffusivities at 300 K
are taken as–D1(0) = 11× 10−9 m2 s−1 and–D2(0) = 5 ×
10−9 m2 s−1 on the basis of the data presented by Gergidis
and Theodorou [38]. The calculations of the diffusivities
in the mixture,D1,eff andD2,eff , using Eqs. (15), (23) and
(24) show excellent agreement with the MD simulations of
Gergidis and Theodorou [38] for the both sets of simulations
reported, see Fig. 4(a) and (c). In Fig. 4(b) and (d), we test
simpler models in which (i) the saturation capacities are
both taken to be 22 and (ii) the interchange is ignored. Both

these simplifications lead to substantially poorer predictions
of the mixture diffusion behaviour.

4. Conclusions

Using the MS theory for binary mixture diffusion in ze-
olites we have developed explicit formulae, Eqs. (19) and
(20), for calculation of the diffusivities of the components
in the mixture. For situations in which the sum of the
gradients of the two species is maintained as zero, these
expressions simplify considerably to yield Eq. (23) which,
when used in conjunction with Eq. (15) for estimation of
the counter-exchange coefficient–D12, allows the estima-
tion of the mixture diffusivities purely on the basis of the
zero-loading diffusivities–Di(0). The validity of Eq. (23)
has been demonstrated by comparing with published
MD mixture simulations for mixtures of methane–xenon,
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methane–perfluoromethane and methane–n-butane in
silicalite.

We have also established the importance of taking proper
account of the differences in the saturation capacities of the
constituents; taking these to be equal leads to significantly
poorer predictions of mixture diffusion performance. Ignor-
ing the interchange coefficient, embodied in–D12, also leads
to much poorer predictions. We conclude that the MS for-
mulations, including interchange, are sufficiently accurate
for use in chemical process design.
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