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Rise velocity of single circular-cap bubbles in two-dimensional
beds of powders and liquids
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Abstract

An expression for the rise velocity of single circular-cap gas bubbles in two-dimensional (2D) beds consisting of powders or
liquids is developed with the aid of experimental data and computational fluid dynamics. Experiments were performed in a
two-dimensional rectangular column of width DT=0.3 m by injecting air bubbles in fluidised beds of silica (mean particle size,
dp=38 mm) and polystyrene (mean particle size, dp=570 mm) and in water. The rise velocity of single gas bubbles in the size
range db=0.015–0.12 m were found to decrease significantly with increasing ratio of bubble diameter to bed width, db/DT.
Computational fluid dynamics simulations of single gas bubbles rising in water, carried out using the volume-of-fluid (VOF)
method, showed good agreement with experiment and were used to develop a common expression for the rise velocity of single
gas bubbles in gas–solid fluidised beds and bubble columns. The 2D circular-cap bubble rise velocity is found to �10–30% lower
than that of a 3D spherical-cap bubble having the same equivalent diameter. © 2000 Elsevier Science S.A. All rights reserved.
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1. Introduction

Experimental work to study bubbling behaviour and
hydrodynamics is often carried out using two-dimen-
sional rectangular gas-solid fluidised beds [1,2] and
gas–liquid bubble columns [3]. In order to be able to
translate the information from 2D beds to columns of
cylindrical cross-section, it is important to be able to
inter-relate the single bubble rise velocity in these two
column configurations.

For a single gas bubble of equivalent diameter db

rising in a liquid inside a cylindrical column of diameter
DT, Collins [4] gives the following expression for the
rise velocity (see also Clift et al. [5], Davidson et al. [6],
Fan and Tsuchiya [7], Wallis [8]) wherein a scale factor
SF is introduced into the classical Davies–Taylor [9]
relation:

Vb=0.71 
gdb(SF) (1)

The expression derived empirically by Collins [4] for
the scale factor SF is

SF=1 for
db

DT

B0.125

SF=1.13 exp
�

−
db

DT

�
for 0.125B

db

DT

B0.6

SF=0.496 
DT/db for
db

DT

\0.6 (2)

Eqs. (1) and (2) are valid for spherical cap bubbles
rising in inviscid flow; this condition is satisfied when
the Eötvos number, Eö\40 [5]. The same expression is
valid for a single bubble rising in a gas–solid fluidised
bed [1,5–7]. Bubbles in a smaller diameter column tend
to rise slower than bubbles in a larger diameter column
due to the restraining effects of the column walls. Such
wall effects can be expected to diminish with increasing
column diameter. A corresponding set of relations for
bubbles, of circular-cap shape, rising in 2D columns is
not available in the literature.

The experimental data of Pyle and Harrison [10] for
2D gas bubbles in rectangular gas–solid fluid beds of
Ballotini, sand and iron shots lie significantly below
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that calculated from the Davies–Taylor–Collins rela-
tion for 3D spherical cap bubbles; see Fig. 1. Pyle and
Harrison [10] correlated their experimental data with
the following expression

Vb=0.48 
gdb (3)

where db is the diameter of a bubble having the same
area as the 2D bubble. The experimental data of Pyle
and Harrison [10], however, shows considerable scatter
and their developed relation in Eq. (3) is not very
convincing.

There have been some attempts to develop funda-
mental relationships for the rise velocity of 2D circular
cap bubbles. Collins [11] modelled the effect of the
constraining walls in terms of the known potential flow
due to a doublet in a uniform stream between two walls
and applied the classical Davies–Taylor analysis to
obtain the rising velocity in terms of the radius of
curvature of the nose. The expression for the rise

velocity is given in terms of the radius of curvature of
the nose and the half-width of the channel. This work
was extended by Hills [12], who replaced the doublet by
a separated source and sink to give an ellipse-like
closed streamline. Garabedian [13] has derived the theo-
retical slug flow limit, valid for narrow columns. Gera
and Gautam [14] have attempted a theoretical analysis
of the rise of 2D gas bubble in a gas–solid fluidised bed
as a parallel to the Davies–Taylor [9] treatment but the
influence of the wall is not taken into account.

The aim of the present paper is to develop an expres-
sion for the rise velocity of single circular-cap gas
bubble in 2D columns, in terms of the equivalent
bubble diameter, to parallel Eqs. (1) and (2). Both
experimental data and computational fluid dynamics
(CFD) are used to develop this expression.

2. Experimental

Single bubble rise velocities were measured in a
rectangular column made up of two parallel glass plates
of 0.3 m width and 4 m height; see Fig. 2. The distance
between the glass plates was 5 mm. A sintered plate
distributor (of 50 mm pore size) ensured uniform gas
distribution at the bottom. Additionally, there was
provision to inject gas bubbles via a central tube of 2
mm diameter. The column was filled with either water,
porous silica particles (Geldart A powder with skeleton
density=2100 kg m−3; pore volume=1.05 ml g−1;
particle size distribution, dp: 10%B27 mm; 50%B38
mm; 90%B47 mm) or porous polystyrene particles (Gel-
dart B powder with particle density=1073 kg m−3;
particle size distribution, dp: 10%B480 mm; 50%B570
mm; 90%B630 mm). For measurements with powders,
the bed was maintained under minimum fluidisation
conditions before injecting single gas bubbles through
the central nozzle. The bubble trajectories were
recorded on video at 25 frames per second using the
image capturing set-up described in an earlier study [3].
Accurate determination of the bubble size and rise
velocity was obtained by frame-by-frame analysis of the
captured video images. The bubble sizes used in the
air–water experiments ranged from 0.017–0.10 m. A
circular cap shape was obtained in all cases. Bubbles
larger than 0.12 m were found to be unstable. The
bubble size range used in the air–silica experiments
were in the range 0.01–0.03 m; larger sized bubbles
were unstable. In the air–polystyrene experiments the
bubble sizes ranged from 0.06 to 0.16 m.

The experimental data on the rise velocities in water,
silica and polystyrene are shown in Fig. 3. The experi-
mental data lie about 10–30% below the values calcu-
lated from the Davies–Taylor–Collins model. Based on
the experimental data alone, it is difficult to set up a
relation to parallel Eqs. (1) and (2) because the range of

Fig. 1. Experimental data of Pyle and Harrison [10] for rise velocity
of gas bubbles in 2D rectangular columns as a function of bubble
diameter to column diameter. Also shown in the figure are the
calculations from the Davies–Taylor–Collins model for single spher-
ical-cap bubbles.

Fig. 2. The experiment set-up for measurement of rise velocities of
single gas bubbles in water and in fluidized beds of silica and
polystyrene.
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Fig. 3. Comparison of experimental data on rise velocity in air–solid
and air–water systems with the Davies–Taylor–Collins relationship
for spherical cap bubbles. Also shown in the figure is the curve
according to Eq. (11) derived in this work for 2D circular cap
bubbles.

completely occupied by gas, and 1, if the cell consists
only of the liquid phase. The location of the bubble
interface is tracked in time by solving a balance equa-
tion for this function:

(c(x, t)
(t

+9 · (uc(x, t)=0 (4)

The liquid and gas velocities are assumed to equili-
brate over a very small distance and essentially uk=u
for k=L, G at the bubble interface. The mass and
momentum conservation equations can be considered
to be homogenous:

9 · (ru)=0 (5)

(ru
(t

+9 · (ruu)= −9p−9 · t+rg+Fsf (6)

where p is the pressure, t is the viscous stress tensor, g
is the gravitational force. The density and viscosity used
in Eqs. (6) and (7) are calculated from

r=oLrL+oGrG; m=oLmL+oGmG (7)

where ok denotes the volume fraction of the phase
k=L, G. The continuum surface force model, origi-
nally proposed by Brackbill et al. [23], is used to model
the force due to surface tension acting on the gas–liq-
uid interface. In this model the surface tension is mod-
elled as a body force Fsf, that is non-zero only at the
bubble interface and is given by the gradient of the
colour function

Fsf=sk(x) 9c(x, t) (8)

where k(x) is the local mean curvature of the bubble
interface:

k(x, t)= −9 ·
� n

�n�
�

(9)

where n is the vector normal to the bubble interface

n=9c(x, t) (10)

The set of Eqs. (4)–(10) were solved using the com-
mercial flow solver CFX 4.1c of AEA Technology,
Harwell, UK. This package is a finite volume solver,
using body-fitted grids. The grids are non-staggered and
all variables are evaluated at the cell centres. An im-
proved version of the Rhie-Chow [24] algorithm is used
to calculate the velocity at the cell faces. The pressure–
velocity coupling is obtained using the SIMPLEC al-
gorithm [25].

Table 1 summarises the details of all the 2D simula-
tions that were carried out using the parallel version of
CFX 4.1c running on Silicon Graphics Power Chal-
lenge machine with six R8000 processors run in paral-
lel. The simulations were carried out using a uniform
2D Cartesian coordinate grid with a grid size of 1 mm.
The front of the 2D rectangular grid is formed by the

db/DT values in the experiments is restricted to below
0.5. To develop a reliable correlation would require us
to carry out experiments in rectangular columns of
varying width. In an earlier experimental study on the
rise velocity of spherical cap bubbles in liquids, we had
carried out measurements in cylindrical columns of
diameters 0.05, 0.1, 0.174 and 0.63 m (Krishna et al.
[15]). In this study, we had established the validity of
the Davies–Taylor–Collins relations in Eqs. (1) and (2)
to describe the rise velocity of single spherical-cap
bubbles for systems conforming to the criterion Eö\
40. Furthermore, we had demonstrated that the vol-
ume-of-fluid (VOF) method is able to provide an
accurate description of the bubble rise velocity. Our
strategy in the present study is to use the VOF tech-
nique as supplement to our experimental data in the 2D
rectangular column in our efforts to develop a relation
to parallel the Davies–Taylor–Collins model.

3. Volume-of-fluid simulations

The VOF model [15–22] resolves the transient mo-
tion of the gas and liquid phases using the Navier–
Stokes equations, and accounts for the topology
changes of the gas–liquid interface induced by the
relative motion between the dispersed gas bubble and
the surrounding liquid. The finite-difference VOF
model uses a donor–acceptor algorithm, originally de-
veloped by Hirt and Nichols [17], to obtain, and main-
tain, an accurate and sharp representation of the
gas–liquid interface. The VOF method defines a frac-
tional volume or ‘colour’ function c(x, t) that indicates
the fraction of the computational cell filled with liquid.
The colour function varies between 0, if the cell is
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xz-plane. At the two walls, the no-slip boundary condi-
tion is imposed. The column is modelled as an open
system, so the pressure in the gas space above the initial
liquid column is equal to the ambient pressure (101.325
kPa). For the convective terms in the equations hybrid
differencing was used. Upwind differencing was used
for the time integration. The time step used in the
simulations was 0.0004 s. To counteract excessive
smearing of the liquid–gas interface by numerical diffu-
sion, a surface sharpening routine was invoked. This
routine identifies gas and liquid on the ‘wrong’ side of
the interface, and moves it back to the correct side,
while conserving volume of the respective phases. In
order to avoid ‘dissolution’ of the bubble due to
surface sharpening we found it necessary to ensure
that each bubble area encompassed a few hundred cells.
For simulation of the rise of spherical cap bubbles,
typically found with sizes above 17 mm, a grid size of 1
mm was found to be adequately small; in this case the
number of grid cells per bubble cross-section was in
excess of 300. For all simulations reported here a
bubble neither gained nor lost more than �10% area
during its rise. Animations of the simulations carried
out to study the scale effects in 2D rectangular geome-
try can be viewed our web site http://ct-
cr4.chem.uva.nl/cartesian/.

For all the simulations listed in Table 1 circular cap
shaped bubbles were obtained. To give an indication of
the required CPU time, the simulation of the rise of a
0.031 m diameter bubble for 0.5 s in a column of 0.3 m
width and 0.5 m height, involving 150 000 grid cells,
required �9 days. Snapshots of a simulation of a
typical 2D simulation of the rise of a 0.033-m bubble in
a 0.1-m wide column are shown in Fig. 4. The total
column was 0.5 m in height with a gas cap of 0.03 m at
the top. As initial condition a semi-circular shaped
bubble, of equivalent diameter 0.033 m, was placed
near the bottom of the column. To ensure convergence
in the initial period when the bubble ‘adjusts’ itself to
its surrounding and begins its ascent, the following time
stepping strategy was used: 50 steps at 5×10−5 s, 50
steps at 2.5×10−5 s, 50 steps at 5×10−5 s and 2000
steps at 4×10−4 s. For each time step about 40
iterations were typically required to obtain convergence
of the governing equations. A bubble typically attains
its terminal velocity after �0.15 s from the start of the
simulation. The bubble rise velocity was determined by
a linear regression of the z-coordinates of the nose of
the bubble during steady-rise. Fig. 5 compares the
z-coordinates of the nose of 0.033 m bubbles rising in
columns of 0.1 and 0.051 m diameters; this figure shows
that the bubble rises faster in the wider column. The

Table 1
Results of two-dimensional VOF simulations in Cartesian geometrya

Column diameter, DT (m) Grid size, Dx (=Dz) (mm) Time step, Dt (s)Bubble diameter, db (m) Rise velocity, Vb (m s−1)

0.4 1 0.0004 0.2770.020
0.60.0203 0.2751 0.0004
0.0510.021 0.0004 0.161
0.3 10.031 0.0004 0.317
0.051 10.033 0.0004 0.163
0.051 10.0359 0.0004 0.1605

10.046 0.00040.051 0.168
0.1 1 0.0004 0.22350.033

a In all cases the gas phase was air (rG=1.29 kg m−3, mG=1.7×10−5 Pa s) and the liquid was water (rL=998; mL=10−3; s=0.072 N m−1).

Fig. 4. Snapshots of VOF simulations of rise of a 0.033-m diameter air bubble in a column of 0.1 m width filled with water. Animations of this
VOF simulations can be viewed on our web site http://ct-cr4.chem.uva.nl/cartesian.
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Fig. 5. Comparison of the rise trajectories of a 0.033-m diameter
bubble rising in columns of 0.051 and 0.1 m width filled with water.
Animations of these VOF simulations can be viewed on our web site
http://ct-cr4.chem.uva.nl/cartesian.

Fig. 7. Rise velocities determined from VOF simulations for air–wa-
ter system are compared with the correlations given by eq (2) for 3D
spherical cap bubbles and Eq. (11) for 2D circular cap bubble. For
3D spherical cap bubbles the VOF simulations were performed in
cylindrical coordinates assuming axisymmetry; these simulations have
been reported earlier by Krishna et al. [15].

reason for this is the restraining effect of the walls. Fig.
6 shows the computational snapshots for these two
simulations. We notice that the 0.033-m bubble assumes
a flatter shape in the 0.1-m wide column and is less
influenced by the wall than the same bubble placed in a
0.051-m wide column. Put another way, the drag be-
tween the bubble and the liquid is higher in the column
of smaller width due to the higher downward liquid
velocity near the bubble.

The rise velocity data from VOF simulations were
combined with our experimental data (air–water, air–
silica, air–polystyrene) and regressed to obtain the
following correlation:

Vb=0.62 
gdb(SF)

SF=1 for
db

DT

B0.07

SF=1.1 exp
�

−1.55
db

DT

�
for 0.07B

db

DT

B0.4

SF=0.38 
DT/db for
db

DT

\0.4 (11)

Fig. 7 compares the calculations from Eq. (11) with
VOF simulations. For comparison purposes, we have
also plotted the Davies–Taylor–Collins model calcula-
tions (using Eqs. (1) and (2)), along with the VOF
simulations for a 3D spherical cap bubble we had
published earlier [15]. The rise velocity of a 2D circular
cap bubble is �10–30% lower when compared with a
3D spherical cap bubble having the same equivalent
diameter. We also note from Eq. (11) that for narrow
columns (slug flow) the value of the rise velocity is
Vb=0.236 
gDT which matches closely with the value
derived theoretically by Collins [11] (who gives Vb=
0.23 
gDT) and Garabedian [13] (who has derived
Vb=0.238 
gDT).

In order to provide further verification of the conclu-
sion that the rise velocity of circular-cap bubbles in 2D
gas–solid and gas–liquid systems is described by an
identical relationship, we undertook to compare CFD
simulations of a the formation and rise of a single gas
bubble in a 2D rectangular gas–solid fluidised bed and
in an identical bed filled with water. For simulation of

Fig. 6. Comparison of the snapshots of the VOF simulations of a 0.033-m diameter bubble rising in columns of 0.051 and 0.1 m width. Animations
of these two VOF simulations can be viewed on our web site http://ct-cr4.chem.uva.nl/cartesian.
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Fig. 8. Snapshots of the simulation of a formation of a gas bubble in a gas–solid fluidised bed of powder and water carried out respectively with
the granular theory and VOF technique. The bubble contours are drawn at various time steps. Note the change in the scales between the upper
and bottom rows. For a gas–solid system the contours of a bubble are defined by the requirement that the voidage is greater than 0.85.
Animations of these simulations can be viewed on our web site http://ct-cr4.chem.uva.nl/analogies.

a gas–solid system, the kinetic theory of granular flow
is well-established [26–35]. The variety of formulations
of the kinetic theory of granular flow differ mainly with
respect to the description of (a) the solids shear viscos-
ity, (b) the drag coefficient describing the interaction
between the solid particles and the gas phase, and (c)
the radial distribution function g0 at contact between
the gas and the solid. A comparison of the various
treatments is given by Van Wachem et al. [35].

We carried out axisymmetric granular theory simula-
tions of a gas jet entering a 0.57 m wide rectangular
fluid bed consisting of a powder of mean particle size of
500 mm with a skeletal density of 2660 kg m−3. The gas
jet enters the bed with a velocity of 10 m s−1 and is
maintained for 0.18 s from the start of gas injection.
The system geometry is the same as the one used by
Kuipers et al. (1992). The granular theory was imple-
mented within the CFX 4.1c code of AEA Technology,
Harwell using a variety of models for the drag coeffi-
cient, radial distribution function g0 and the solids
shear viscosity. Snapshots of the bubble formation and
rise are shown in Fig. 8 for a particular choice of
models (Ergun [36], Wen and Yu [37] drag relation,
Gidaspow [29] g0 function and Syamlal and O’Brien
[32] solids shear viscosity relation). Also shown in Fig.
8 are VOF simulations of an air–water system under
identical conditions. The equivalence of the bubble
formation and rise phenomena is evident in the initial

stages. For a gas–solid system there is no surface
tension and the bubble break-up phenomenon is differ-
ent; this is evident towards the latter stages of bubble
rise (see snapshot at t=0.48 s). Animations of the
granular theory and VOF simulations can be viewed on
our web site http://ct-cr4.chem.uva.nl/analogies,
wherein further computational details are available.
The time trajectories of the nose of the bubble in Fig. 8
are compared in Fig. 9. It is clear that the rise velocity
is identical in the initial stage of bubble rise. The
agreement between the VOF simulations of G–L sys-
tems with the granular theory shown in Figs. 8 and 9 is

Fig. 9. Comparison of the rise trajectories of the bubble in the
granular and VOF simulations shown in Fig. 8.
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Fig. 10. Comparison of bubble contours calculated our specific choice
of sub-models (Ergun [36], Wen and Yu [37] drag relation, Gidaspow
[29] g0 function and Syamlal and O’Brien [32] solids shear viscosity
relation) with the original simulation of Kuipers et al. [31] for a
gas–solid fluid bed. Also shown are VOF simulations for the same
system. The simulations are for gas–solid fluid bed of 0.57 m width
at time t=0.24 s after gas injection.

(3) The rise velocity for air bubbles in water ob-
tained from VOF simulations agree very well with our
experimental data.

(4) The rise velocity of a 2D circular cap bubble is
�10–30% lower when compared with a 3D spherical
cap bubble having the same equivalent diameter.

(5) A comparison of simulations using the granular
theory for gas–solid fluid beds and VOF simulations
for air–water systems underlines the analogies in bub-
ble formation and bubble rise in gas–solid and gas–liq-
uid systems.
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Appendix A. Nomenclature

c(x, t) colour function, dimensionless
equivalent bubble diameter (m)db

dp particle diameter (m)
DT column diameter (m)

Eötvös number, g(rL−rG)db
2/sEö

Fsf surface tension force (N m−3)
g acceleration due to gravity (9.81 ms−2)
g0 radial distribution function, dimensionless
n vector normal to the interface,

dimensionless
p pressure (N m−2)
SF scale correction factor, dimensionless
t time (s)

velocity vector (m s−1)u
Vb rise velocity of the bubble (m s−1)

position coordinate (m)x
x x-coordinate in cartesian geometry (m)

distance coordinate along height ofz
column (m)

Greek letters
volume fraction of phase, dimensionlesso

curvature of bubble interface,k(x)
dimensionless

m viscosity of phase (Pa s)
density of phases (kg m−3)r

s surface tension of liquid phase (N m−1)
t viscous stress tensor (N m−2)

Subscripts
b referring to bubble

referring to gas phaseG
L referring to liquid phase

not specific to the choice of the chosen sub-models with
respect to drag, g0 and solids shear viscosity. Other
choices of the sub-models lead to substantially same
results and conclusions. To emphasise this, we have
compared in Fig. 10 our particular choice of sub-mod-
els used in Fig. 8 with the granular theory calculations
of Kuipers et al. [31].

The results in Figs. 8 and 9 underline the analogies in
the bubble rise phenomena in powders and liquids and
go some way in explaining the reason behind a com-
mon rise velocity relationship in Eq. (11) which has
been developed in this work.

4. Conclusions

The following conclusions can be drawn:
(1) The rise velocity of circular-cap bubbles in pow-

ders and liquids decreases with increasing ratio of bub-
ble diameter to column width, db/DT. This wall-effect is
described quantitatively by the empirical relation in Eq.
(11). Eq. (11) is the 2D analogue of the Davies–Tay-
lor–Collins relation describing the rise velocity of
spherical cap bubbles.

(2) VOF simulations for air–water systems in 2D
rectangular columns provide some insight into the
physics underlying the wall-effects. The downward
flowing liquid near the walls influences the drag experi-
enced by the bubbles; this drag reduces as the bubble is
further removed from the walls.
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p referring to particle
tower or columnT
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