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An alternative linearized theory of multicomponent mass transfer 

(Received 18 September 1979; accepted I6 June 1980) 

There has been increasing interest in the area of multicomponent 
mass transfer because of the many practical applications in 
distillation[l. 21, condensation[3] and extraction[4]. The 
linearized theory of Toor[S] and Stewart and Prober[6] paved 
the way to the practical solution to a host of multicomponent 
diffusion problems. With their linearization technique solutions 
to multicomponent diffusion problems can bc written down as 
straightforward matrix generalizations of standard binary solu- 
tions. It may be noted here that for steady-state diffusion in ideal 
gas mixtures linearization is unnecessary and an exact solution is 
possible[71. 

Multicomponent film models have been used to form the basis 
of design procedures for distillation[2] and condensation[3.8] 
equipment. Hoiuever, one possible reason why rigorous multi- 
component models have not gained widespread usage in industrial 
practice may be Ihe fact that even for the simplest case of the film 
model a trial and error procedure is required for the calculation of 
the transfer fluxes Ni at any position in the equipment. The 
interative procedure is necessary because of the influence of the 
transfer fluxes themselves on the mass transfer coefficients P-71. 

In the present communication we develop an alternative to the 
Too-Stewart-Prober linearized theory with the objective of 
providing a simpler, yet accurate, procedure for calculation of 
interfacial transfer fluxes. The notations used coincide with those 
used in our previous publications[2,7] and only newly introduced 
symbols are defined in the text. 

PRELIMINARIES 

The differential continuity relations can be written for an 
n-component non-reacting system as 

where Ni is the molar flux of component i with respect to a 
stationary coordinate reference frame and is given by 

N; = ci ui, i=l,2 ,.... n. (2) 

The mixture total flux is obtained by summing eqn (2) over the 
n species: 

where u is the molar average mixture velocity. 
The molar diffusion flux of component i with respect to the 

molar average mixture velocity, J;, may be defined as: 

Ji.ci (II, - u)EN, -xi N,. (4) 

With the definitions (2)-(4), the differential continuity relations 
(I) may be rewritten as 

i=l,2,....n-1 

where only n - 1 of the equations are independent due to the 
constraints on the mole fractions’ 

and on the molar diffusion fluxes 
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To allow calculation of the n molar fluxes N;. which appear in 
the mass balance relations for processing equipment, from solu- 
(ion of eqn (5) we require two additional pieces of information: 
(I) an additional determinancy condition which usually takes the 
form of a linear dependence between the fluxes N, and (2) 
constitutive relations for the diffusion fluxes Ji. 

We consider these in turn. 

DETERMINANCY CONDITION 

In most practical situations such as those existing in dis- 
tillation, absorption, condensation. extraction and diffusion with 
heterogeneous chemical reactions, the additional determinancy 
condition required may be expressed as a linear constraint on the 
fluxes N,: 

2 Ai N, = 0. (8) 

Equations (3). (4) and 1&(g) may be combined to express the 
molar fluxes N; in terms of the diffusion fluxes J, in n-l 
dimensional matrix notation as 

(N) = [PI (J) (9) 

where the elements & of the “bootstrap” matrix are given 
by ~2-71 

&=S,-xi :;-A* ,i,j=l,2 ,... n-1. 

[ 1 m) 2 & & k-1 
The nth flux N, can be obtained from 

n-1 
N,, = - I: AI Ni/A,,. (ItI 

;=I 

Various special cases may be identified: 
(i) Equimolar difusion 

N,=O;A,=A2=Lq= . . . =A,;&=SiP (12) 

(ii) Diflusion of n - I species through stagnant species n (Ste- 
fan diffusion): 

N,=O;A,=AZ=A1=...=A,_,=O;~ii=~ji+x;/x.. (13) 

(iii) Non-equimolar distillation [2]: 

A;& - &. (14) 

(iv) Diffusion with heferogenous chemical reaction with flux 
rations NJN, specified by fke sfoickiometry of the reaction: 

fl;, = 6,1( 1 - Ot/Ni). 0% 

Equations (9)-(I I) allow the calculation of the n molar fluxes 
N, from knowledge of the n - I diffusion fluxes J;. The latter can be 
obtained from the composition gradients in the diffusion path 
provided we have the pmper constitutive relations. These con- 
stitutive relations are considered next. 

CONSTlTUTlVE RELATIONS FOR n-COMPONENT DlFmrSlON 

For non-ideal mixtures, one of the most convenient forms of 
the constitutive relations are the generalized Maxwell-Stefan 
diffusion equations[7]. These may be written as 

The eqns (16) may be recast into n - I dimensional matrix 
notation as follows (see Ref.171 for detailed derivation and 
definitions of the various coefficients): 

(I) = -c, [El-’ It-1 (VI) 07) 

from which we see that the matrix of Fickian diffusion coefficients 
[r>] is given by 

[Dl = [VU?. (18) 

The matrix of thermodynamic factors[r] reduces to the iden- 
tity matrix for thermodynamically ideal fluid mixtures. 

Combination of eqns (9) and (17) gives the constitutive rela- 
tions for the n - I molar fluxes N, as 

00 = - c,[B1~B1-‘Kl(v*) = - [WHY*) (19) 

where we have additionally defined a matrix of transfer 
coefficients [WI, defined in terms of the molar fluxes Ni: 

[WHSI [BlY Kl. (20) 

LlNEAIUZATlON OF THE MULTICOMPONENT 
DIFFUSION EquATlONS 

The Toor-Stewart-Prober approach is essentially to assume 
that c, [D] is independent of the composition. With this assump- 
tion the n - I differential continuity relations (S), together with 
eqns (17) and (18), may be written in matrix notation (n - I 
dimensional) as 

+) tu (0.x) = [Dl.@%) (21) 

where the subscript a on the matrix of Fickian diffusion 
coefficients serves as a reminder that the elements of the matrix 
have to be evaluated at some averaged composition, normally 
chosen as the arithmetic average. 

The equations (21) can be diagonalized by use of the similarity 
transformation[S, 61, reducing the multicomponent diffusion 
equations to a series of uncoupled equations, n - I in number, 
each of which corresponds to an equivalent binary problem but 
with the binary diffusivity replaced by Q, the ith eigenvalue of 
the matrix [II],,. Thus if the binary solution exists, the multi- 
component solution can be written straightforwardly. 

For steady state diffusion along a film of thickness S with the 
boundary conditions 

r=O xi = xi,, 
r= 8, xi = Xi& (22) 

the molar fluxes Ni are obtained using the Toor-Stewart-Prober 
technique as 

(N) = [Bl, VI& - sa) (23) 

where the matrix of finite flux mass transfer coefficient [k? is 
given by 

[kl= [PI [k’l IPI-’ (24) 

where the diagonal matrix of pseudo-binary finite flux mass 
transfer coefficients is given by 

4i k~=k;- 
exp df- I’ 

i=1,2,...n-1 (25) 

with the pseudo-binary zero flux mass transfer coefficients given 

by 

k+c,D;,/S, i = I,2 ,... n - 1 (26) 

and the pseudo-binary dimensionless mass transfer rate factors: 

@+N,IkI, i=1,2 ,... n-l. (27) 

Unless conditions of equimolar diffusion (N, = 0) prevail the 
calculation of the fluxes Ni requires a trial and error procedure. 
The same problem exists for unsteady state mass transfer under 
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conditions of finite mass transfer rates. The crux of the problem 
is the convective mass transfer term, the second term of the left 
hand side of eqn (21). 

In developing our proposed linearization technique, we note 
that the assumption of constant [D] in the Toor-Stewart-Prober 
approach is approximate even for ideal gas mixrures. The ele- 
ments Dti are strong functions of composition for highly non- 
ideal fluid mixtures. At this stage in the theoretical development 
there is no reason to suppose that the elements Dii are any less 
composition dependent than the elements I+$, defined by eqn (20). 
We shall proceed further and explore the consequences of 
assuming constant Wii (in practice the elements will have to 
be evaluated at some averaged composition). 

The assumption of constant Wi, allows the eqns (I) to be 
written as 

9 = [ W].(Vx) 

where the subscript a on the matrix [Wj again serves as a 
reminder that the elements have to be evaluated at some average 
composition. The differential eqn (28) can be diagonalized in 
exactly the same manner as descnid by Toot and Stewart and 
Prober but the solution is much simpler than for the correspond- 
ing eqn (21) resulting from the Too-Stewart-Prober treatment. 

For steady-state ditfusion along a film of thickness 6, the fluxes 
Ni can be calculated from 

(N) = ;I%(*, -~a) =$%LSl;‘Ifl.(x, --G). (29) 

The penetration model for finite transfer rates is obtained as 

(N) = 2c, (p)“’ (x, - xs) 

where t, is the contact time between the phases. The square root 
of the matrix [ W’j, can be evaluated by the use of Sylvester’s 
theorem. 

It is clear on comparison of eqn (29) and the corresponding set 
of relations for calculation of Ni using the Toor-Stewart-Prober 
technique, eqns (23)-(27), that the current linearization technique 
gives an explicit expression for the transfer fluxes without the 
need for iterations. 

NLMFRICAL EXAMPLE 
To test the accuracy of the linearization technique developed. 

in this paper we shall consider a numericai example involving 
nonequimolar distillation in the system pentane-2 (Ij-ethanol 
(2)water (3). The problem is to calculate the interfacial transfer 
fluxes Ni at a point in a vapour-liquid contacting apparatus under 
the conditions of vapour phase diffusion controlled transfer. The 
specified conditions are as follows: 

Compositions (mole fractions) of either ends of difiusion path: 
x,.=0.630;x,,=0.590;x*,=0.165:x~~=0.095. 

Vapour phase d&ion coeficients of binary pairs: 91,~ = 
7.27 mm%; B13 = 14.4 mm%; 9z3 = 20.9 mm% 

Film thickness. 6 = IO pm 
Temperature T = 346 K; Pressure p = I00 kPa 
Partial molar entha_lpies in t&e vopour_xand Ii&i phases 

(A//k?/). Hi = 38; H$ = 50.6; Hy =47; H, = 15.5: Hq = 10.1; 
f- 
The fluxes Ni calculated using eqn (29), with the parameters 

evaluated at the arithmetic averaged composition, are as follows: 

Nr = 4.62 mollslm’; Nz = 3.04 mol/s/m2; NX = - 5.40 mol/s/m*. 

As a comparison to test the accuracy of the method, the exact 
solution to the problem was also obtained using the method 
described elsewhere[2,7]. The exact solution leads to the values 
given below: 

Nt = 4.6 mol/s/mz; NZ = 3.03 mol/s/m’: N3 = - 5.4 mol/s/m’ 

which shows that linearized solution if of excellent accuracy. In 
the two sets of calculations given above, the non-equimolar 
transport processes caused by differences in molar heats of 
vaporizations are properly taken into account. If on the other 
hand, we assume that conditions of equimolar diffusion prevail 
(as is traditionally done in text-book treatments of distillation 
mass transfer), the molar fluxes are obtained using the model 
given in Ref. [2] as: 

Nr = 3.23 mol/s[m*; N2 = 2.74 mol/s/m’; N, = - 5.97 mol/s/m2 

which shows that the assumption N, =0 significantly under- 
estimates the molar flux of volatile pentane-2, as might be 
expected from physical considerations. 

The example chosen above to demonstrate the accuracy of the 
linearization technique developed here is fairly typical of a large 
class of systems showing moderate to high diffusional interaction 
phenomena. The linearization technique was also tesled for a 
variety of other ternary gas diffusion problems involving Stefan 
diffusion. The results of these investigations have been reported 
in detail elsewhere[9]. These results confirm the conclusions 
reached above regarding the accuracy of the linearization tech- 
nique. 

CONCLUDING REMARKS 

We have considered a linearization technique for the solution 
of multicomponent diffusion problems. The technique consists in 
assuming that the product of the bootstrap matrix I@] and the 
matrix of Fickian diffusion coefficients ID] is constant along the 
diffusion path. Clearly if equimokv diffusion prevails (& = S,), 
then this assumption reduces to the Toor-Stewart-Prober 
assumption of constant [D]. Ii has been emphasized in the 
discussions that there is no theoretical or experimental reason to 
suppose that the matrix [w] is any less constant than the matrix 
[D]. The accuracy of the method has been demonstrated by 
means of numerical examples given in this paper and 
elsewhere[9]. Due to the fact that the current linearization tech- 
nique leads to a non-iterative procedure for the calculation of the 
fluxes Ni, the incorporation of the procedure into standard design 
procedures for processing equipment could take place easily. 

R. KRlSHNAt 
&patimenr of Chemical Engineering 
University of Manchester Institute of Science and Technology 
Manchester M60 1 QD, England 

NOTATION 

matrix of inverted diffusion coefficients with elements 
given by: 

molar concentration of species i 

mixture solar concentration, c, = 2 ci 

generalized MaxwelCStefan diffusion coefficient for 
binary pair i-j. For gas mixture, Bii = 4 

matrix of Fickian diffusion coefficients 
ith eigenvalue of Fickiin matrix [D] 
Vapuur phase diffusivity of binary pair i-j 
partial molar enthalpy of i in mixture 
molar diffusion flux of i with respect to molar average 

reference velocity 
WI matrix of finite flux mass transfer coefficients 
[k*] diziienatrix of pseudo-binary mass transfer 

ki pseudo-binary zero-flux mass transfer coefficients 
n number of components in mixture 
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N, molar flux of i with respect to stationary coordinate 
reference frame 

N, mixture total molar flux 
p total system pressure 

[PI modal matrix of [DI 
distance coordinate along diffusion path 
gas constant 
time 
temperature 
diffusion velocity of species i in mixture 
molar average mixture 
molar average mixture velocity 
matrix of total diffusion coefficients defined by eqn (20) 
mole fraction of i in mixture 

Greek symbols 
[B] bootstrap matrix with elements given by eqn (IO) 

activitv coefficient of species i in solution 
matrix-of thermodynamic factors with elements given by 

rji=$+$=,i,i=l,2 ,... n-l 

film thickness 
Kronecker delta 
coefficients in linear dependence relation (8) 
molar chemical potential of species i in mixture 
pseudo-binary dimensionless mass transfer rate factor 

tPresent address: Koninklijke/Shell.Laboratorium, Am- 
sterdam, Badhuisweg 3, 1031 CM Amsterdam, The Netherlands. 

Matrix notation 
( 1 column matrix with n - 1 elements 
[ I n - I dimensional square matrix 

I 1-l n - I dimensional inverted square matrix 
11 diagonal matrix with n - I non-zero elements 

Superscript 
x pertaining to liquid phase in vapour-liquid transfer 
J pertaining to vapour phase in vapour-liquid transfer 
l corresponding to conditions of finite transfer mass trans- 

fer rates 
’ pseudo-binary parameter 

Subscripts 
a coefficient evaluated at average composition 
n pertaining to nth species 
o parameter evaluated at position r = r, 
I pertaining to mixture 
S parameter evaluated at position r = S 
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Enhancement factor in gas-liquid reactions in presence of signhant gas side mass transfer 
resistence. for a second order reactiont 

(Received 20 December 1979; accepted 20 June 1980) 

Tbe relationship between the enhancement factor E for gas 
liquid reactions and various experimental conditions (hydro- 
dynamic and kinetic) has been investigated extensively for a 
variety of chemical reactions, as summariscd by Astarita[ I] and 
Danckwerts[3]. Here we shall restrict our attention to the second 
order reaction 

A(g) +zB(l)+producta 

with the intrinsic kinetics 

(1) 

paper, a new procedure is evolved for the latter case which 
makes it possible to calculate the gas absorption rate in a 
straightforward manner through the use of a single generalised 
graph. Such a procedure is valuable for a quick calculation of the 
gas absorption rates without recourse to machine computations. 

A brief outline of the iterative procedure is as follows. The 
concentration and the partial pressure of A at the gas liquid 
interface are related through Henry’s law as 

-r=kAB. (2) 

For this case, the computation of the numerical value of the 
enhancement factor is quite straightforward if the absorption 
process is liquid phase controlled, i.e. if the resistance to mass 
transfer lies entirely in the liquid phase. For cases where ap- 
preciable gas phase resistance is present, an iterative procedure 
has been suggested for calculating the rate of gas absorption[3] 
which is ideally suited for machine computation. In the present 

Pi = HA, (3) 

where H is the Henry’s law constant. Equating the transport of 
A across both the tilms we get the absorption flux as 

I? = k(Pb - Pi) = kLA,E. (4) 

The enhancement factor on the liquid side, E. is a known 
function of E, and M, and may bc expressed as 

where 
E = E(Ei, M) (5) 

4NCL Communication Number 2530. E; = I + Q&,l(zD,,Ai) (6) 


