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Abstract-Surface diffusion of II sorbed species is described using the generalized Maxwell-Stefan (GMS) 
formulation of irreversible thermodynamics. The approach treats the vacant sites (V) as the (n + 1)th 
component in the diffusing mixture. The diffusion coefficients defined in the GMS treatment are basically of 
two kinds: (i) the coefficients Di,, signifying the facility for diffusive exchange between species i and the 
vacant sites; and (ii) the coefficients D,, describing the facility for counter-exchange between the sorbed 
species i and j. The GMS counter-sorption diffusivity is, in turn, relatable to the coefficients Di, and Djv; 
the latter are estimated from single-sorbent diffusivity data. The direct influence of the fractional surface 
occupancies 8: on the transfer rates is made transparent in the analysis. Several special cases have been 
analysed. For diffusion of a single sorbed species the Fick surface diffusivity DIy is related to the GMS 
diflusivity D,, by 

D 1” = ~IVl(l - 0,) 

a known result; the GMS coefficient D, y is commonly referred to as the “‘intrinsic” or “corrected” diflusivity 
while the Fick coefficient D,, is usually termed the “apparent” diffusivity. The expression for the tracer 
diffusivity: 

D* = 1 

derived from the GMS formulation is a convenient new result; its utility in interpretation of tracer diffusion 
data is demonstrated using the experiments of Pope (1967, Trans. Faraday Sot. 63, 734-742). Surface 
diffusion of multicomponent (n 2 2) sorbed species is described by a matrix of Fick diffusivities 
CD] = [B] - ’ [r]. The elements of [B] are explicitly related to the GMS coefficients Di, and D,, while the 
matrix of thermodynamic factors [r], derivable from the adsorption isotherm, portrays the direct influence 
of the surface occupancies Bi on surface transport. The results of the prediction of [D] for binary sorption 
are in broad agreement with the Monte Carlo simulations of Palekar and Rajadhyaksha (1986, Chem. 
Engng Sci. 41,463-468). For constant value of the Fick matrix [D], analytical solutions for transient uptake 
of multicomponent mixtures are obtained as n-dimensional matrix analogs of the corresponding solution 
for single-component sorption. The application of the suggested solution technique is demonstrated by 
simulation of the transient uptake of n-heptane and benzene on NaX zeolite. The model is capable of 
reproducing the maximum in the n-heptane kinetic sorption curve, as experimentaliy observed by Kirger 
and Biilow (1975, CAern. Engng Sci. 30, 893-896). Analysis of binary counter-sorption using the GMS 
approach helps to explain the experimental observation that adsorption and desorption rates may be 
significantly different; the rationale is to be found in the dependence of the GMS counter-sorption 
diffusivity on surface composition. It is concluded that the GMS formulation provides the most convenient 
practical formulation of multicomponent surface diffusion. 

INTRODUCTION 

The understanding and modelling of the diffusion 
process inside the micropores (typically having pore 
sizes smaller than 2 run) of adsorbent and catalyst 
particles poses many challenges for the experi- 
mentalist and theoretician alike [cf. Ruthven (1984) 
for a recent summary of developments in this area]. 
With an upsurge of applications involving zeolites, 
the proper description of intracrystalline diffusion 
assumes enhanced importance because of its influence 
on the selectivity of separations and reactions. 

There are several factors which make the descrip- 
tion of microporous diffusion distinguishable from 
diffusion in macropores (typically having pore sizes 
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exceeding 20 nm) (Weisz, 1973). Firstly, diffusion in- 
side micropores, especially those for which the chan- 
nel sizes approach molecular dimensions, is strongly 
affected by the parallel occurrence of surface diffusion; 
indeed it is difficult to separate the contributions of 
these two phenomena in most conventional experi- 
ments. Secondly, viewed at a molecular level, the 
transferring species inside the micropores never really 
leave the force field exerted by the surface and in this 
sense the phenomenon is distinct from Knudsen diffu- 
sion. Haag et al. (1981) have demonstrated, for 
example, that the diffusivity of a molecule inside a 
narrow zeolite channel could be significantly higher 
than would be expected if one were to use the 
Knudsen theory. Thirdly, the diffusivity inside micro- 
porous structures like zeolites exhibits a strong de- 
pendence on the surface occupancy and shows a strong 
exponential temperature dependence characteristic of 
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an activated process; this is not the case in macropo- 
row transport. 

Our overall objective in this paper is to develop a 
generally applicable formulation of microporous, or 
surface, diffusion of multicomponent (n 2 2) sorbed 
species and specifically to provide a methodology for 
prediction of multicomponent surface transfer rates 
from information on the transfer rates of the indi- 
vidual components. While there are several ap- 
proaches to the prediction of sorption equilibrium of 
a mixture from sorption equilibrium of individual 
components [cf. Ruthven (1984)], a parallel approach 
for prediction of multicomponent surface transfer 
rates is lacking. 

Published treatments of multicomponent surface 
diffusion use either the generalization of the Fickian 
concept [cf. Marutovsky and Biilow (1982) and 
Palekar and Rajadhyaksha (1986)] or the Onsager 
formulation of irreversible thermodynamics [cf. Ash 
and Barrer (1967), Barrer (1978) and KLirger and 
Billow (1975)]; neither approach offers a methodology 
for prediction of multicomponent transport from in- 
formation on single-species transport. Now, for the 
case of diffusion in non-ideal “bulk” fluid phases it is 
now generally well recognized that the generalized 
Maxwell-Stefan (GMS) formulation, which has its 
basis in irreversible thermodynamics (Krishna, 1987; 
Lightfoot, 1974; Standart et al., 1979), provides the 
most convenient and practical description. Its superi- 
ority over the alternative, but equivalent, Onsager 
formalism lies in the fact that the transport coeffi- 
cients defined in the GMS formulation are more easily 
amenable to physical interpretation and, equally im- 
portantly, the GMS formulation provides a basis for 
prediction of multicomponent transfer behaviour on 
the basis of the corresponding information for the 
binary pairs in the mixture (Krishna, 1977; Krishna- 
and Standart, 1979; Krishna and Taylor, 1986). In 
this paper multicomponent diffusion of sorbed species 
is formulated by appropriate adaptation of the 
Maxwell-Stefan approach. The utility of the 
Maxwell-Stefan approach is demonstrated by consid- 
ering several special cases and comparing the results 
of the theoretical analysis with published information. 

DEVELOPMENT OF MAXWELL-STEFAN FORMULATION 

FOR DIFFUSION OF SORBED SPECIES 

Let us consider an n-component mixture diffusing 
inside a microporous sorbent. Diffusion inside the 
micropores is pictured as being primarily caused by 
surface diffusion of adsorbed species and it is further 
assumed that equilibrium prevails between the ad- 
sorbed species and the bulk fluid. If we now concen- 
trate our attention on the surface of the sorbent it is 
clear that, even if we retain our continuum picture of 
the diffusion process, we need to introduce into our 
formulation parameters which describe the interplay 
between the sorbed species and the sorbent, and in 
particular the ease with which the sorbed molecules 
move from one site to another. Drawing analogy with 
the dusty gas model for transport inside porous media 

[cf. Jackson (1977) and Mason and Malinauskas 
(198311, we view the vacant sites on the surface as the 
(n + 1)th component in the mixture. We assume all 
vacant sites to be equivalent and no further distinc- 
tion is made between the vacant sites at different 
locations in the sorbent. 

Let @ represent the surface concentration of com- 
ponent i measured in moles of i adsorbed on the 
surface per square metre of sorbent surface. The total 
surface concentration r$ is 

4= 5 n;. (1) 
i=l 

Let cat represent the total surface concentration of 
the mixture when all the sorption sites are covered, in 
other words n;_, reflects the saturation sorbent capa- 
city. The fraction of available sorption sites which is 
actually covered by the n species is therefore 

6, = &Yn:...,. (2) 

The fractional uncovered sites, or vacancy, is thus 

e” = 1 - 8, (3) 

where we use the subscript V to denote the (n + 1)th 
species or vacancy. The fraction of the total available 
sites occupied by each species is 

ei = ML, (4) 

and so, by definition: 

8, = i ei = 1 - 8,. 
i=i 

The n fractional coverages, or occupancies, f$ are 
analogs of bulk phase mole fractions xi in the descrip- 
tion of surface diffusion. The surface mole fractions $, 
commonly used in the literature on adsorption equi- 
libria, are related to the fractional coverages Bi: 

4 = 8,/e, (6) 
and these two parameters equal each other when the 
surface coverage is complete, i.e. 0, = 1. In the fore- 
going development we have defined the various terms 
with the monolayer adsorption mechanism in mind. 
However, the developed formalism is not restricted to 
this case; the interpretation of vacancies and the 
ensuing discussions on mechanisms of surface dif- 
fusion will need to be adapted for multilayer adsorp- 
tion. The formalism to be developed remains gen- 
erally valid. 

The vacancy solution model (VSM) of Suwanayuen 
and Danner (1980) for the description of adsorption 
equilibria also treats the vacancies as pseudo-species, 
ascribing to them thermodynamic properties such as 
chemical potential. The difference between the VSM 
approach and the other approaches to the description 
of the adsorption of phase equilibria emanating from 
the classic work of Myers and Prausnitz (1965) is 
essentially concerned with the choice of the standard 
states for calculation of the chemical potentials 
(Ruthven, 1984). In contrast. a mechanistic descrip- 
tion of surface diffusion phenomena must recognize 
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the properties of the sorbent, in particular the vacant 
sites, whose existence cannot be “ignored” by a judi- 
cious choice of a “reference” point. It is to be further 
emphasized that our explicit recognition of vacant 
sites as the (n + l)th component does not imply that 
we necessarily have to adopt the VSM approach for 
description of the equilibrium between the sorbed 
species and the adjoining bulk fluid phase; the de- 
scription of phase equilibria is a separate, parallel, 
exercise. We find it necessary to stress this point in 
view of the recent criticisms of the VSM for correla- 
tion of adsorption equilibria (Talu and Myers, 1988); 
these do not apply to our approach adopted here- 
under, which only utilizes the vacancy concept for 
surface transport. 

For surface diffusion in the (n + l)-component sys- 
tem consisting of n sorbed species and the vacancy 
(species n + 1) we may write the GMS equations in an 
analogous manner to diffusion in bulk fluid phases 
(Krishna and Taylor, 1986; Lightfoot, 1974; Standart 
et al., 1979): 

“+I OiNj - f?,Ni 
T,KlPi= C 

j=1 n: D, 
jti 

(i = 1, 2, . . . n + 1). (7) 

While the significance of the terms in GMS equations 
for bulk fluid phase diffusion is easy to comprehend 
[cf. Krishna and Taylor (1986)], some explanation is 
required here for the corresponding quantities in the 
surface analog eq. (7). Here pi represents the chemical 
potential of the sorbed species i and the driving force 
for transfer of species i is the (surface) potential 
gradient of species i, V,. =pi, at constant temperature 
and spreading pressure D. In view of the Gibbs- 
Duhem equation (Myers and Prausnitz, 1965; 
Ruthven, 1984): 

“+I 
C Oiv*.,Pi = O (81 

i=i 

only R of eqs (7) are independent. 
One peculiarity of surface diffusion which is distinct 

from bulk fluid phase diffusion is that since the total 
number of sorption sites is fixed we always have 
equimolar counter-diffusion in the (n + 1)-component 
system under consideration: 

It+1 

N, = c NI = 0 (9) 
i=l 

or, put another way, the vacancy flux N,, 1 balances 
the fluxes of the sorbed species. With inclusion of the 
vacant sites as the (n + 1)th component there is no 
“mixture as a whole” movement or “drift” analogous 
to the bulk fluid diffusion case (Bird et al., 1960). Now, 
in the case of the dusty gas model the “dust” compon- 
ents are assumed to have an infinitely large molar 
mass; for surface diffusion we demand that the va- 
cancy have a vanishingly small molar mass and, 
therefore, even though the vacancy flux is non-zero 

there is no corresponding contribution to the com- 
ponent mass balance. 

In view of the foregoing the surface diffusion fluxes 
Ji are identical to the N,: 

Ji = N,. (10) 

We discuss below, in turn, the estimation of the 
various parameters appearing in the GMS formula- 
tion. 

Sw$ace chemical potential gradients 
The surface chemical potential of species i, pi, is 

given by the equilibrium relation 

ri=&+RTln(x) (11) 

wheref,’ is the fugacity of component i in the bulk fluid 
phase in equilibrium with the sorbed mixture. Now, 
for one-dimensional transport the driving force on the 
left side of eq. (7) can be rewritten in terms of the 
gradients of the fractional coverages: 

= 2 ‘,z (i = 1,2,. . . n) (12) 
j=l 

where we have defined an n-dimensional matrix of 
thermodynamic factors El-1 with elements 

Tij = ei”‘“o (i,j= 1,2, . . . n). aej (13) 

Knowledge of the adsorption isotherm defines the 
relationship between the bulk fluid phase fugacity X 
and the surface mole fractions xf , or alternatively the 
surface occupancies Bi, of the adsorbed species (Myers 
and Prausnitz, 1965; Ruthven, 1984) which relation- 
ship can be utilized to calculate the elements of [r]. 
For example, the Langmuir adsorption isotherm for 
equilibrium between a ideal gas mixture (fi = pi) and 
a solid adsorbent is 

ei= 1 +$ipi(bipi= l-;;/j (14) 

and the elements Tij are found to be 

l-i, = 6, + ei 

l--i& 
(i, j = 1, 2,. . n). (15) 

i=l 

In the following discussions we shall use the 
Langmuir adsorption isotherm for elucidating the 
influence of surface coverage on surface diffusion; 
indeed all the essential qualitative features are con- 
tained in expression (15). It needs to be stressed here, 
however, that our formalism is not limited to this 
isotherm nor to ideal gas mixtures and for the general 
case we may use eq. (13) for calculation of [I-]. 
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GMS dImsion coescients 
The surface diffusivities D, defined in eq (7) are the 

GMS diffusion coefficients. The coefficients D,,” + i , or 
equivalently D,, , reflects the facility for exchange 
between sorbed species i and vacant sites. In order to 
explain this further we consider the mechanism for 
surface diffusion. 

Diffusion of sorbed species is an activated process 
and for the movement of a species it has to cross the 
potential barrier. Assume that the sorbed species 
under consideration has been activated and is ready 
to execute a jump. One of the following three possibil- 
ities arise: 

(A) An adjoining site is vacant; in this case the 
activated species will move to this site; if more than 
one adjoining site is vacant the species can jump to 
any one of these sites with equal probability. 

(B) All adjoining sites are occupied; in this case the 
activated species must return to its original position 
(the activated jump has been in vain!). 

(C) The activated species i arrives at a site which is 
just being vacated by another activated sorbed species 
j; if j and i are identical species the interchange 
between i and j is also futile and does not contribute to 
net transport. 

The transfer of species i by mechanism (A) occurs 
with a certain characteristic frequency and displace- 
ment associated with it; this is reflected in the GMS 
diffusivity: 

Di, = ;qvi (16) 

where & is the mean displacement distance,-and vi is 
the jump frequency of sorbed species i; u priori es- 
timates of these parameters are possible with the aid 
of specific assumptions as has been achieved, e.g. for 
the hopping model (Gilliland et al., 1974) and for the 
transition state theory for zeolite diffusion (Ruthven 
and Derrah, 1972). It may be noted here in passing 
that the inverse of the GMS diffusivity D,, has been 
used in the formulations of Ruthven and Derrah 
(1972) and is referred to by them as the drag coeffi- 
cient. The interpretation of molecular diffusion pro- 
cess in bulk fluid phases in terms of the drag experi- 
enced by the diffusing species is the basis of the 
derivation of the Maxwell-Stefan relations [cf. 
Krishna and Taylor (1986)] and it is interesting to 
note the analogy in this particular respect with respect 
to surface transport. 

The frequency with which an adsorbed species will 
execute a jump also depends on the degree of surface 
occupancy. For low surface coverages the adsorbed 
species will not experience interactions because, stat- 
istically speaking, these species will be far removed 
from one another; an adsorbed species is for the 
greater part surrounded by vacancies. The interac- 
tions between adsorbed species could become import- 
ant at high surface coverages, affecting the frequency 
with which an adsorbed species attempts a jump, 

because now the adsorbed species will be surrounded 
by other adsorbed species (Reed and Ehrlich, 1981). 
Whether or not the adsorbed species will interact with 
one another depends on the type of species. For 
vanishingly small surface coverages the coefficients 
D$, distinguished by a superscript 0, can be expected 
to be the same for both single-sorbate and multi- 
component surface diffusion; this provides the basis 
for prediction of multicomponent behaviour from 
single-sorbate behaviour. Our treatment does not 
provide further light on the composition dependence 
of the D,,; we shall return to this point later in the 

paper. 
Let us examine the situation corresponding to 

mechanism (C) above. Here species i exchanges with 
species j; this counter-sorption of two species has a 
greater probability of occurrence at high surface 
coverages. Indeed, at saturation occupancy only 
counter-sorption (exchange) is possible. The counter- 
sorption facility is reflected in the GMS coefficient 
DdJ (j # V). The Onsager reciprocal relations shows 
that these coefficients are symmetric (cf. Appendix A): 

D,,=D, (i,j= 1,2,. . .n)_ (17) 

If j and i are identical then the exchange is futile and 
no net flux results, as is evidenced from eq. (7) which 
shows that for j = i the right-hand side vanishes 
identically. 

While the GMS coefficient D,, can be interpreted 
in terms of mean displacements and jump frequencies, 
a similar interpretation of the counter-sorption diffus- 
ivity D, is not quite so straightforward. For the case 
that the surface is fully covered (0, + 1) and occupied 
almost completely by species j (0, + 1) the counter- 
sorption coefficient D, will reflect, in terms of the 
jump frequency and mean displacement, the facility of 
transfer of species j, i.e. 

Lt D, = Dj,. (1% 
8,-rl 

Conversely, when the surface is predominantly 
covered by species i then the counter-sorption coeffi- 
cient D, must reflect the ease of transfer of species i: 

Lt Djj = D,,. (19) 
.9,-l 

The coefficient D, must exhibit a continuous depend- 
ence on the surface coverages between the two ex- 
tremes represented by eqs (18) and (19). If we examine 
the corresponding problem encountered in the multi- 
component diffusion in non-ideal liquid mixtures, it is 
seen that the variation of the GMS diffusivity D, with 
composition has also evaded a fundamental analysis 
[cf. Reid et al. (1977)] and experimental data generally 
appear to follow the empirical trend suggested by 
Vignes (1966); the Vignes dependence applied to our 
case yields 

Dij = [Dji,]%M% + 4’[Di”]&l(B + 0,). (20) 

Recalling that counter-sorption starts playing a signi- 
ficant role when the surface coverage is high, the 
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values of D,, and DIy to be used in eq. (20) are most 
logically the ones corresponding to high surface 
coverages. Equation (20) must be viewed as an empir- 
ical rule, to be checked by experiment. Our model 
development however does not hinge on the appli- 
cability, or otherwise, of the Vignes relationship (20); 
any model must recognize the composition depend- 
ence of D, and the physical constraints demanded by 
eqs (18) and (19). 

In proceeding with our analysis it is convenient to 
define, in analogy with the corresponding bulk diffu- 
sion case [cf. Krishna (197711, an n-dimensional ma- 
trix of inverted GMS diffusivities [B] with elements 
defined by 

Bii = & + “2 JL (i = 1,2, . . . n) (21) 
iV 5;: D, 

B,= -Oi($--&)[i,j (i#j)=l,2,...n]. 

(22) 
With the definitions of matrices [r] and [B] [cf. 
eqs (15), (21) and (22)], the GMS eqs (7) may be cast 
into convenient n-dimensional matrix notation: 

which is the final working form of the GMS formula- 
tion of surface diffusion. 

The Fickian formulation of multicomponent sur- 
face diffusion [cf. Marutovsky and Billow (1982) and 
Palekar and Rajadhyaksha (1986)] utilizes an n-di- 
mensional matrix of Fick diffusivities CD] defined by 

but the Fick approach, on its own, provides no clue to 
estimation of [D]; Palekar and Rajadhyaksha (1986), 
therefore, had to resort to Monte Carlo simulations to 
estimate [D]. Comparing eqs (23) and (24): 

CD] = [B] - I [I-) (25) 
which relation allows estimation of CD]. 

Ash and Barrer (1967) use the Onsager formulation 
of irreversible thermodynamics to describe surface 
transport; this is discussed in Appendix A, along with 
the interrelationships between the Fick, Onsager and 
GMS formulations. 

We now examine several special cases to demon- 
strate the application of the GMS formulation of 
surface diffusion. 

DIFFUSION OF SINGLE SORBED SPECIES 

For this case n = 1 eqs (23)-(25) collapse to the 
scalar form 

.f, = - n;D,,rS = de, - nfD,,-- 
dz PI 

and from eq. (15) we see that the thermodynamic 

factor r is 

l- = l/(1 -e,) (27) 
and so the Fick diffusivity D,, is related to the GMS 
diffusivity D,, by 

D 1Y = WV/U - 4). (28) 

In the extensive literature on microporous diffusion, 
the Fick diffusivity is also referred to as the “appar- 
ent” difusivity while the GMS diffusivity is identifi- 
able with the “corrected” or “intrinsic” diffusivity [cf. 
Ruthven (1984)]. Equation (28) shows that the Fick 
diffusivity must increase sharply as the surface cover- 
age approaches unity. We may expect the GMS dif- 
fusivity D,, to display a relatively weak dependence 
on surface occupancy; this expectation is indeed met 
in the case of diffusion of benzene in NaX zeolite for 
which Eic et al. (1988) have observed that DIY is 
practically independent of surface occupancy. 

The Fick surface diffusivity of SO, in a micro- 
porous plug has been measured by Pope (1967) and 
his data shows a pronounced increase in D,, with 
surface occupancy. The GMS diffusivity D,,, calcu- 
lated from the Fick diffusivity data using eq. (28), is 
however not constant but is found to be dependent on 
the surface coverage, decreasing with increasing sur- 
face coverage (cf. Fig. 2). It is apparent that the ad- 
sorbed SO2 species interact with each other, causing a 
reduction in the GMS diffusivity with increasing sur- 
face coverage; from Fig. 2 it can be seen this variation 
can be represented adequately by the Vignes relation- 
ship 

D 1y = (DYy)l -sc(D:“)e1 (29) 
where the superscripts 0 and 1 refer to the coefficients 
at zero and total coverages, respectively. Equa- 
tions (27j(29) provide a complete description of Fick 
diffusivity D,, and the smooth curve in Fig. 1 has 
been obtained by taking Diy = 1.7 x 10-s m2sef, 
which is the extrapolated value in Fig. 2. The GMS 

16 - 

Fig. 1. Variation of the. Fick surface diffusivity with surface 
occupancy, 0, of SO, in a microporous plug of spheron 
6(2700) [data from Pope (1967)]. (0) Fick surface diffusivity 
at O”C, ( -) calculations using eqs (27)-(29), taking 
WY = 8 and 0:” = 1.7 x 10-s m* s-l. The surface occu- 
pancy 0, has been calculated from the reported value of the 
surface concentrations and the saturation surface concentra- 

tion. The units for the y-axis are 10-s m3 s-l. 
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Data: Pope (1967) 
8 eqn (28) 

Fig. 2. Variation of the GMS diffusivity, D,,, with surface 
occupancy, 8, for diffusion of SO, in a microporous plug; 
values calculated from the Fick diffusivity data at 0°C 
(Pope, 1967) using eq. \~j..8~$s~pits used for y-axis are 

Fig. 3. Variation of Fick diwusivity, D,,, with surface occu- 
pancy, 0, for Dyy = 20 and Diy = 2 (arbitrary units): calcu- 

lations using eq. (29). 

formulation, together with the empirical Vignes de- 
pendence, describes the behaviour of the Fick diffus- 
ivity quite well, and in particular the observed min- 
imum is properly modelled. When interactions be- 
tween adsorbed molecules become more important, as 
will often be the case for intracrystalline diffusion in 
zeolites, the reduction in the GMS diffusivity with 
surface coverage will be large and the minimum in the 
Fick diffusivity will become more pronounced. This is 
illustrated qualitatively in Fig. 3, taking the values 
Dly = 20 and Diy = 2 (arbitrary units); similar pro- 
nounced minima for the dependence of the Fick dif- 
fusivity on surface concentration has been reported by 
Ruthven and Doetsch (1976) for diffusion of hydro- 
carbons in 13X zeolite. 

TRACER DIFFUSION 

This is an extension of the case of a single sorbed 
species considered above but a fraction of the mole- 
cules of component 1 is tagged or traced. In describing 
the diffusion process we need to differentiate between 
untagged species (component 1) and the tagged 
species (component 2); tracer diffusion is thus a special 
case of binary sorption. The experimental conditions 
are invariably maintained such that the total concen- 

tration of tagged and untagged species remains con- 
stant which implies that the sum of their respective 
gradients vanish, i.e. 

de, de, -- 
dz= dz 

(30) 

and also that we have equimolar counter-diffusion 
between 1 and 2: 

N, = -N,, Jl = -J,. (31) 

The equimolar condition (31) is in addition to the 
general equimolar requirement of surface diffusion 
given by eq. (9). This implies that the vacancy flux 
vanishes, i.e. 

N,=O. (32) 

This essentially means that the total surface coverage 
8, remains constant, which conclusion is consistent 
with eq. (30). 

Imposing constraints (3Oj(32) on the general rela- 
tionships for binary sorption, the tracer diffusion 
fluxes are 

Ji = - $(D,l - Dij)zm (i = 1,2). (33) 

The species 1 and 2 transfer with equal facility, re- 
ferred to as the tracer diffusivity D* 

D* ZE D,, - D,, = D,, - D,,. (34) 

D* can be expressed explicitly in terms of the GMS 
diffusivities DIY and D,* (see Appendix B for de- 
rivation): 

D* = 1 

Pope (1967) has also reported tracer diffusivity data 
for the diffusion of SO, in the microporous plug; the 
data for D* at 0°C are plotted in Fig. 4. Comparison 
of the data in Figs 1 and 4 shows that, unlike the Fick 

S,~.-:.- 

, _y“--____~_ . .- Eqn (38) 

6 - ‘\\ *.._._ 

5- ‘w,. .._-=.._ ____ .!. Eqn (37) 

4- 
3- ‘ ‘y---__*______ ‘..--.._./ 

.k_ 
2- _.._ 

1. 

Eqn (*~~~(35)““-~-----------.-~~~~I__.______. 

-._ 
0 

__.__. 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

wiace oc-ncy 

Fig. 4. Tracer diffusion (D*) data (0) at 0°C for SO, in a 
microporous plug (Pope, 1947) as a function of surface 
occupancy 8. Also shown are predictions of the Riekert 
model [eq. (3711, Palekar and Rajadhyaksha model [eq. (38)] 
and GMS formulation Eeqs(29) and (35)], taking 
DIt=D:,=1.7 x 10-smZs-’ and W&=8x 10-s 

rn’~-~. The units used for the y-axis are 10-8m”s-‘. 
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D ry, the tracer D* decreases with increasing surface 
occupancy 9,. To elucidate this behaviour we recast 
eq. (35) in the form 

1 l-f$ 1 1 0, ------_--_--__---_. 
L?” DiY D+ Dly DlZ 

(36) 

The concentration dependence of D,, must be ex- 
pected to be negligibly small as both 1 and 2 refer to 
the same species, one tagged and the other untagged. 
Put another way, D,, is concentration-independent 
because it does not really matter whether species 1 is 
surrounded by species 2 or vice versa. For constant 
D,, a plot of the left side of eq. (36) vs the surface 
occupancy should be linear; Fig. 5 provides veriflca- 
tion of this prediction. 

Taking D,, = Diy = 1.7 x lo-* m2s-i thecalcu- 
lation of D* from eq. (35), using the Vignes depend- 
ence eq. (29), are shown in Fig. 4. The GMS simu- 
lation of tracer diffusion is found to be very good. 
Also shown in Fig. 4 are two other models for tracer 
diffusivity from the published literature: (i) due to 
Riekert (1971): 

D* = D&(1 - #,) 

and (ii) due to Palekar and Rajadhyaksha (1985): 

D* = @,(l - e:,. (38) 

Neither of these two models is able to even qualitat- 
ively reproduce the observed variation of D* with 
surface occupancy. 

Hitherto, the interpretation of tracer diffusion has 
largely followed the classic work of Ash and Barrer 
(1967) which used the Onsager formulation of irre- 
versible thermodynamics. This approach leads to the 
following expression for the tracer diffusivity (see 
Appendix B for derivation): 

which suffers from the disadvantage that no proced- 
ure for estimation of the cross-coefficient L,, is given 
by the treatment. In view of this shortcoming of the 
Onsager formulation, Palekar and Rajadhyaksha 
(1985) have ventured to state that “a general reIation- 
ship between tracer diffusivity and intrinsic diffusivity 

Data from 
Pooe ( 1967)?'=, 

. 

Fig. 5. Plot of (l/D* - l/DLy) v8 the surface occupancy: 
data (e) from Figs 1 and 4. The units used for the y-axis are. 

lOam-*s. 

cannot be derived from Irreversible Thermodynam- 
ics”. Our eq. (39, derived from the Maxwell-Stefan 
formulation of irreversible thermodynamics, provides 
the aforementioned relationship and, furthermore, the 
treatment developed here helps to resolve the argu- 
ments concerning the concentration dependence of 
the tracer diffisivity (Palekar and Rahadhyaksha, 
1985; Riekert, 1971). 

When the adsorbed species do not interact with 
each other then we should expect D,, to be independ- 
ent of surface coverage, and also D,, = D,,. In this 
case the tracer diffusivity D* equals D,,, the “car- 
rected” or GMS diffusivity (cf. Appendix B); for diffu- 
sion of C8 aromatics in NaX zeolite, the experimental 
data of Goddard and Ruthven (1986) confirm this 
expectation. 

SURFACE DIFFUSION OF BINARY SORBED SPECIES 

We now consider diffusion of two sorbed species in 
some detail because this binary system exhibits all the 
essential features of the general multicomponent case. 
The system behaviour is characterized by three GMS 
diffusivities: the intrinsic diffusivities D,, and D,, of 
components 1 and 2 and the counter-sorption diffus- 
ivity D1 2. Algebraic expressions for the elements of 
LB]-‘, [I] and CD] are derivable for this case and 
given in Appendix B. We shall explore some of the 
features of binary surface diffusion by examining the 
structure of [D], for the case where the GMS diffusi- 
vities D,, and Dzv are concentration-independent. 
We take species 1 to be the faster moving species and 
evaluate the counter-sorption coefficient D,, using 
the Vignes relationship (20). 

Figure 6 shows the variation of the elements of [D] 
with increasing (surface) mole fraction of the more 
mobile species 1, X: (Drv/D2,, = 2, 8, = 0.4). It is in- 
teresting to note that both the coefficients D,, and 
D, 2 increase with increasing x;. Similarly, the coeffi- 
cients D,, and D,, increase with increasing Y2. This 
implies that species i will tend to diffuse faster when it 
is present in a larger proportion (higher mole fraction 
4). The cause of this “acceleration” is the behaviour 

Fig. 6. Variation of the elements of Fick surface diffusivity 
matrix [D] with surface mole fraction of faster moving 
species 1, 9, : calculations using cq. (B3), taking DiY/DZY 
= 2; f3, = 0.4. The elements D,, are normalized with respect 

to the value of D,, corresponding to X; = 1. The y-axis is 
dimensionless. 
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TRANSIENT UPTAKE OF MULTICOMPONENT MIXTURES 

1.2 - -•__ 

1.0 - 

Fig. 7. Variation of (D,, + D,,) and (D,, + D,,) with the 
ratio D,,&,. The total surface occupancy 0, = 0.4 and 
dZ = 0.25: (0) and ( n ) Monte Carlo simulation results of 
Palekar and Rajadhyaksha (1986), ( -) GMS model 
calculations with the counter-sorption diffusivity D,, calcu- 
lated using the Vignes relationship (20), (- - - -) GMS 

The determination of the transient uptake profiles 
for multicomponent mixtures is important in a host of 
industrial separation applications including ad- 
sorptive separations and desorptive regeneration us- 
ing a solvent. If an analytic solution to the problem 
involving diffusion of a single sorbed species is avail- 
able, then the solution to the corresponding multi- 
component surface diffusion problem can be simply 
obtained as matrix analogs of the corresponding bi- 
nary solution provided we assume that the matrix of 
Fick diffusivities [D] is constant over the surface 
concentration range of interest; this follows by ap- 
plication of the linearized theory of multicomponent 
mass transfer (Stewart and Prober, 1964; Toor, 1964); 
Krishna and Standart (1979) give a detailed account 
of the required computational procedures. 

model calculations taking %I,* = D,,. 

of the matrix [r]; both PII and PI2 increase with 
increase in YI. Results similar to that presented in 
Fig. 5 were obtained by Palekar and Rajadhyaksha 
(1986) (cf. Fig. 2 of their paper), who employed Monte 
Carlo simulations to obtain CD]. A careful com- 
parison of the results of the predictions of the GMS 
formulations with the Monte Carlo simulations of 
Palekar and Rajadhyaksha (1986) reveals that though 
similar trends are obtained for the variation of the 
elements of [D] with system parameters, there are 
some differences in the actual calculated values. This 
is illustrated in Fig. 7 for the variation of (Dl 1 + D, 2) 
and (D,, + D,,) with D,,/D,,, for a fixed total 
surface occupancy 0, = 0.4 and x; = 0.25. The full 
lines represent the calculations of the GMS model 
with D,, calculated from eq. (20) and the broken lines 
represent our model calculations taking a constant 
value of D,, = D,,, the diffusivity of the slower 
moving species. The results of Palekar and 
Rajadhyaksha (1986) show excellent agreement with 
the latter assumption, suggesting that their algorithm 
makes some such implicit assumption, not explicitly 
stated in their published paper. We are of the opinion 
that the counter-sorption diffusivity D,, must bc 
dependent on the surface mole fractions in the general 
case; we shall return to this point later when we treat 
transient binary counter-sorption. 

Considering the totally different bases in the calcu- 
lation procedures adopted by Palekar and 
Rajadhyaksha (1986) and ourselves, it must be conclu- 
ded that the agreement between the two approaches is 
remarkably good, even with the GMS model in which 
D,, is variable. The statement of Palekar and 
Rajadhyaksha (1986) that “irreversible thertnodyn- 
amics can give only the dependence of the diffusion 
coefficients on sorbate concentration and offers little 
information regarding their magnitude” is refuted by 
the results presented here; the Maxwell-Stefan ap- 
proach has been shown to provide fairly complete 
information on the magnitude of the matrix of Fick 
diffusion coefficients [D]. 

To iliustrate the application of this linearization 
technique let us consider transient uptake of a multi- 
component mixture on to a sorbent. For single-sorb- 
ate (component 1) uptake on to a microporous ad- 
sorbent, limited by intracrystalline (surface) diffusion, 
the transience is described by [cf. eq. (6.4) of Ruthven 
(19W] 

0, - @IO 
- et, = 

1 -- 
(3 I sat 

z2 mgI --$exp( - m2x~~D1vf) 

(40) 

where the surface of the adsorbed particles is main- 
tained at the concentration, or coverage, O,,,,, and fI1,, 
is the initial sorbate occupancy. D,, is the (intra- 
crystalline) Fick diffusivity and rc is the crystallite 
radius. 

The corresponding expression for the transient up- 
take of n sorbed species is simply the n-dimensional 
matrix analog of eq. (40): 

(e - f?,) = 
[ 
m -fmZ1$ 

m2d [D] t 
2 >I OL, - 4 1. (41) 

r, 

The matrix calculations in eq. (41) can be carried out 
using Sylvester’s theorem [cf. Krishna and Standart 
(1979)]; the procedure is demonstrated for binary 
diffusion in Appendix C. Since the eigenvalues of [D] 
are positive definite (cf. Appendix A), the solution to 
the multicomponent surface diffusion problem is al- 
ways real and stable. 

Let us consider a specific example of transient 
uptake of n-heptane (1) and benzene (2) by NaX 
zeolite at 359 K. The zeolite crystals are exposed to 
a bulk vapour mixture maintaining the surface at 
the saturation concentration values of 0.18 and 
1.65 mmol/g for n-heptane and benzene, respectively 
(KBrger and Billow, 1975), i.e. olsa, = 0.098 and I&,, 
= 0.902. The intrinsic diffusivities of n-heptane is 

much higher than that of benzene; we take D,v/D2v 
= 50 [cf. KZrger et al. (1978)]. For the initial condi- 

tions eIo = 0,, = 0, the transient uptake profiles, 
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Fig. 8. Transient uptake profiles for n-heptane and benzene 
on NaX zeolite at 359 K, as function of the Fourier number 
(Fo = DIYf/rf). Initial conditions: B,, = &, = 0; saturated 
surface conditions: e,,,, = 0.098, et,,, = 0.902; diffusivity 
ratio D,,/D,, = 50, D,, calculated using eq. (20). CD] ma- 
trix at any Fo interval is calculated at the terminal 8, for the 

previous Fo interval. 

using the procedure outlined in Appendix C, are shown 
in Fig. 8. In the calculations D,, and DZY were 
assumed to be constant and the counter-sorption 
diffusivity D,, was calculated usingeq. (20). Since [n 
is a strong function of the surface coverages [cf. 
eq. (B2)], the matrix calculations were performed for 
small intervals of Fo = 0.0006, and the surface occu- 
pancies 8, and fJ1 calculated at the end of an interval 
were used for the calculation of [DJ for the next time 
interval. Figure 8 shows a dramatic difference in the 
uptake profiles of n-heptane (which moves much 
faster but has a much lower saturation occupancy 
than benzene) and benzene (slower moving but with a 
much higher saturation occupancy). Of note is the 
maximum in the n-heptane profile with @I = 0.65 at 
Fo = 0.01, much higher than the final equilibrium 
value Ol,,t = 0.098. It is only beyond Fo = 0.01 that 
the n-heptane gets (slowly) displaced by benzene to 
reach the final equilibrium. The experimentally ob- 
served uptake profiles reported by Kiirger and Billow 
(1975) show remarkable agreement to the profiles in 
Fig. 8. Our simulations correctly reproduce the ex- 
perimentally reported observation that the maximum 
in the n-heptane profile is reached at about a sixth of 
the time it takes to reach a plateau in the occupancy 
profiles. 

The transient sorption of the n-heptane-benzene 
system considered above is typica of a binary mixture 
of fast moving-less strongly adsorbed species with a 
slow moving-more strongly adsorbed component; 
analogous behaviour in the n-hexane-benzene system 
has been reported by KIrger et al. (1975). The reason- 
ing behind the observed maximum in the profile for 
the faster moving species is as foltows. Initially the 
surface concentration of the faster moving species (1) 
increases at a much higher rate than that of the slower 
moving species (2) due to its higher intrinsic diffus- 
ivity. As the surface coverage @I increases, the ele- 
ments D, 1 and D,, also increase (cf. Fig. 6), accelerat- 
ing the uptake of component 1 and taking it beyond 
the saturation coverage 0,,; this is poisible because of 

finite and large value of D,, which moves species 1 in 
the direction dictated by the driving force of compon- 
ent 2. This acceleration continues till a situation is 
reached where the tendency for 0, to increase (caused 
due to the cross-term D,,) balances the tendency for 
8, to decrease to its equilibrium value Biart (dictated 
by the main term D,,) and a maximum is reached. 
Beyond this point the intrinsic driving force predom- 
inates and species 1 decreases to its final equilibrium 
value. In summary, the unusual behaviour is to be 
ascribed to two factors: (i) the higher intrinsic diffus- 
ivity of component 1 and (ii) the dependence of the 
[D] matrix on [r], whose elements rll and r12 
increase with increasing occupancy of component 1. 
This point is emphasized further by the simulations 
presented in Fig. 9 where [I-] and [B] are both calcu- 
lated at the initial condition of 8,, = 19,~ = 0; [r] 
equals the identity matrix for this case. The calculated 
profiles for uptake of n-heptane and benzene are 
monotonous and represent the behaviour as though 
each component is sorbed in the absence of the other. 
Since experimental results conform to the behaviour 
depicted in Fig. 8, WC conclude that coupling between 
surface fluxes of sorbed species, portrayed by non- 
diagonal matrices [BJ, [I-] and [D], is a characteristic 
feature of multicomponent diffusion. 

Beyond the point at which n-heptane reaches a 
maximum counter-sorption of n-heptane and benzene 
dominates: in fact, when the surface occupancy is 
complete (0, z 1,8, = 0), D,, is the only diffusivity of 
consequence and the GMS eqs (7) rightly recognise 
that the contributions of the terms involving D,, 
identically vanish. We illustrate some of the essential 
features of binary counter-sorption by carrying out 
simulations of the transient uptake profiles for the 
case where species 1 moves faster than species 2 
(D,,/D,, = 20) for the following two sets of condi- 
tions. 

Case A. Uptake of species 1; the initial coverage 
8,, = 0.1 and at time t = 0 the exterior surface of the 
microporous adsorbent is maintained at conditions 
corresponding to elaa, = 0.9. 

benzene 

Fig. 9. Transient uptake profiles for n-heptane and benzene 
on NaX, as function of the Fourier number (Fo E DZYt/rz), 
for conditions specified as in Fig. 8. The matrix CD] is 
assumed to be constant and calculated at the initial condi- 

tions 0,. 
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Fig. 10. Transient counter-sorption of species I and 2 where 
~,v/%v = 20. Case A: 0,, = 0.1, elSSt = 0.9, case B: 
810 = 0.9, elrst = 0.1. Calculations performed using eq. (40) 
with El,, replacing D, ,, Equation (20) used for calculation of 

D12. 

Case B. Desorption of species 1; the initial coverage 
(?I0 = 0.9 and at time t = 0 the exterior surface is 
maintained at conditions corresponding to Blmt = 0.1. 

The transient surface coverage profiles for the (mir- 
ror-image) adsorption+lesorption cases A and B are 
shown in Fig. 10. It is interesting to note that the 
approach to equilibrium in the case of uptake is much 
faster than the case where the species with the higher 
intrinsic diffusivity is being desorbed. The reason for 
the dependence in the observed equilibration rates on 
the direction of transfer is to be found in the composi- 
tion dependence of D, 2. In the case of uptake of the 
faster moving species 1, this counter-sorption diffus- 
ivity increases with increasing uptake (“acceleration” 
effect). Conversely, when species 1 is being d-orbed, 
the reducing concentration of species 1 reduces the 
counter-sorption diffusivity D,,. Satterfield et al. 
(1971) and Moore and Katzer (1972) have experi- 
mentally observed that the direction of transfer af- 
fected the rates of adsorption and desorption of hy- 
drocarbon mixtures in zeolites; our model formula- 
tion provides a theoretical basis with which these 
observations can be rationalized. Also, the analysis of 
binary counter-sorption emphasizes the need to take 
proper note of the composition dependence of the 
counter-sorption diffusivity DIz; this parameter can- 
not be assumed to be constant, as has already been 
stressed in earlier remarks concerning the Monte 
Carlo simulation results of Palekar and 
Rajadhyaksha (1986). 

CONCLUSIONS 

Surface diffusion of II sorbed species has been de- 
scribed using the GMS formulation of irreversible 
thermodynamics. The approach treats the vacant sites 
as the (n + 1)th component in the diffusing mixture, 
drawing on the analogy with the dusty gas model for 
diffusion in porous media. The treatment defines two 
types of diffusivities: (i) the “intrinsic” diffusivities Div, 
signifying the facility for diffusive exchange between 
species i and the vacant sites, and (ii) the D,, describ- 
ing the facility for counter-exchange between the 

sorbed species i and i_ For negligible interactions 
between sorbed species, the intrinsic diffusivities f),, 
can be identified with the single-sorbate diffusivity. 
The GMS counter-sorption diffusivity, in turn, is 
relatable to the coefficients D,, and DJy; the empirical 
Vignes relation (20), strictly outside the scope of the 
GMS treatment, provides a usable procedure for 
calculation of D,. 

The GMS approach clearly brings out the influence 
of the fractional surface coverages Bj of the sorbed 
species on the transfer behaviour; this influence is 
portrayed by the matrix of thermodynamic factors 
[l-J, defined by eq. (12). For the Langmuir isotherm 
the elements of [r] are given by eq. (15). 

For diffusion of a singb sorbed species the Fick 
surface diffusivity D,, has been shown to be related to 
the GMS diffusivity D,, by eq. (28), which is well 
established in the literature; D,, is identifiable with 
“intrinsic” or “corrected” difiusivity. 

The expression for the tracer diffusivity D*, eq. (34), 
is a new contribution of the GMS formulation and 
this result is verified by comparison with experimental 
data of Pope (1967). Some of the apparent contro- 
versies in the published literature on the dependence 
of the tracer diffusivity on the surface coverage, high- 
lighted by Palekar and Rajadhyaksha (1985), have 
been resolved by the GMS formulation. 

The GMS model calculations of the Fick surface 
diffusivity matrix [D] for binary sorbed phases reveal 
some interesting features of multicomponent trans- 
fers, e.g. the increase in the coefficients D, 1 and D,, 
with increasing surface concentration of species 1; this 
amounts to acceleration of species 1 and has rami- 
fications in transient uptake processes. For a constant 
value of the Fick matrix CD], analytical solutions for 
transient uptake of multicomponent mixtures are ob- 
tained as n-dimensional matrix analogs of the corres- 
ponding solution for single-component sorption. The 
application of the suggested solution technique is 
demonstrated by simulation of the kinetic sorption 
curve for n-heptane-benzene on NaX zeolite. T_he 
GMS formulation is capable of reproducing the max- 
imum in the n-heptane kinetic sorption curve, as 
experimentally observed by Kgrger and Billow (1975). 

Analysis of binary counter-sorption using the GMS 
approach helps to explain the experimental observa- 
tion that adsorption and desorption rates may be 
significantly different. 

The advantages of GMS formulation over altem- 
ative Fick and Onsager formulations have been 
underlined in the discussions and the results presented 
in this paper suggest that the GMS approach provides 
the most convenient practical formulation of multi- 
component surface diffusion. 
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NOTATION 6 fractional surface occupancy by total mix- 
inverted matrix of GMS diffusion coelli- ture 
cients with elements defined by eqs (21) and (0) n-dimensional column vector of fractional 

(22), rn-‘s surface cover-ages of the n species 
coefficients in Langmuir isotherm (14), co1 n-dimensional diagonal matrix with ele- 
N-i m2 ments ~5,~/8, 
Fick surface diffusivity for species, m2 s- ’ A mean displacement, m 
tracer diffusivity, mz s-r Pi surface chemical potential of species i, 
matrix of Fick diffusivities with elements D,, J mol-r 
m2 s-l crp standard surface chemical potential of spe- 
= [B] - ’ with elements for binary sorption ties i, J mol - ’ 

given by eq. (Bl), m2 s - ’ vi jump frequency, s-r 
eigenvalues of the Fick diffusivity matrix II spreading pressure, N m- ’ 
[D], m2 s-l 
GMS diffusivity for counter-sorption of Subscripts 
species i and j, m* s - 1 i, j species i, j 
GMS diffusivity for sorption of species i, nfl refers to vacant sites (also denoted by V) 
m2 s-l 0 initial value at time t = 0 
fugacity of component i in the bulk fluid t refers to total mixture 
phase, N m - ’ sat refers to saturation value; also refers to sur- 
eigenvalues of [F] defined by eq. (C2) face conditions in eqs (40) and (41) 
matrix giving fractional approach to equi- T, ff refers to gradient obtained under conditions 
librium [cf. eq. (C3)] of constant temperature and spreading 
Fourier number [ = (D2,,t/r~)] pressure 
matrix defined by eq. (A4) V refers to vacancy ( = component n + 1) 
identity matrix with elements 6, 
surface diffusion fiux of species i, Superscripts 
mol m-l s-l 

: 
standard state 

n-dimensional column vector of surface dif- parameter at vanishingly small surface occu- 
fusion fluxes, mol m-l s-r panty 
matrix of Onsager coefficients defined by I parameter at total surface occupancy 
eq. (Al), m2 s-r s refers to surface 
number of species in mixture 
surface concentration of species i, molm-2 Matrix notation 
total mixture surface concentration, C 1 square matrix of dimension n x n 
mol mm2 
total surface concentration of mixture at REFERENCES 
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APPENDIX A: COMPARISON OF FICIC, ONSAGER AND 
GMS FORMULATIONS 

An alternative formulation of surface diffusion is based on 
the Onsager formulation of irreversible thermodynamics 
(Ash and Barrer, 1967; Barrer, 1978; Klrger, 1973; KIrger 
and Biilow, 1975) relating the surface diffusion fiuxes to the 
chemical potential gradients: 

(J) = - eELI VT,,(POI~T (Al) 

where we use n-dimensional matrix notation. The Onsager 
reciprocal relations show that the matrix [L] is symmetric, 
i.e. 

Lij = L#. (A2) 

Further, from considerations of the second law of thermo- 
dynamics (Krishna and Taylor, 1986) it can be shown that 
the matrix [L] is positive definite. 

The column vector of surface chemical potential gradients, 
Vr,n(p), is related to the gradients of surface coverages by 

T.rlP’i = c 
’ a?!.!! = j& Gijz 

,=I ~33~ dz 

(i = 1, 2, . . . n) (A31 

where the Hessian matrix of the Gibbs surface free energy, 
[G], with elements 

G, = (a/.t&W,)/RT = (a/.@f&)/RT = Gji (A4) 

is symmetric and from thermodynamic stability considera- 
tions it can be shown to be positive definite [cf.-Model1 and 
Reid (1983)]. Combining eqs (Al) and (A3) yields the work- 
ing form of the Onsager formulation of surface diffusion: 

(J) = - #CL] [G]? (A5) 

If we define an n-dimensional diagonal matrix [O], with 
elements 6,/e,. then we have the relation 

WI = CQlCrI. WI 

The interrelationships between the GMS, Fick and Onsager 
formulations follow from the above: 

[D] = [B] - ’ [l-l = [D] [I-] = CL] CGI = &I [@l Cl-1 

(A7) 

where we have further defined the matrix [ID] = [B] - I. 
We note that since [D] is a product of two symmetric 

positive definite matrices [L] and [G], the eigenvalues ai of 
[D] are always positive and real. Also, application of the 
Onsager reciprocal relations (A2) to the right equalities in 
eq. (A7) verifies the symmetry property of GMS diffusivities 
given by eq. (17). 

For diffusion of a single sorbed species eq. (A7) collapses 
to the scalar relations 

D IV = W”/(l -gI) = LIV/@,(l - @I). (A81 

For the general multicomponent case the matrix of 
Onsager coefficients [L] is obtained from eqs (A6) and 
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(A7) in the form 

[L] = [B]-l[O] = [rrP][@J (A9) 

which relation gives an explicit procedure for calculation of 
[L] from the GMS diffusivities D, and 0,. 

APPENDIX B: DIFFUSION OF BINARY SORBED SPECIES 
AND TRACER DIFFUSION 

For diffusion of binary sorbed species the n-dimensional 
matrix form of the GMS reduces to a 2 x 2 matrix and 
explicit algebraic expressions can be derived for the matrices 
[l-J and CD]; these are derived hereunder along with further 
simplifications which describe tracer diffusion. 

The matrix [D] = [B]-’ has the elements Dij given by 

D 11 = DIYC%DZY + (1 - ~,)D,,l/(%D*, 

+ &D,, + &DI,) 

6D 12 = ~,D,v(D,, - D,,)l(~,D,, + &D,Y + eVDI,) 

D,, = WXY(DW - D12)/(0, D,, + %D,v + &D,z) 

6D - DzvC&D,, + (1 - Q,)D,,l/@,D,y + %Dw 22 - 

+ e,D,,). (Bl) 

The elements of the thermodynamic factor matrix [l-j 
assuming a Langmuirian sorbed phase [cf. eq. (15)] are 

r,, = 
0, 

1-e8,-ee,’ 
l- 11 = 1 + r.12 

I-21 = % 
l-e8, -0*’ 

l-22 = 1 +r,,. (B2) 

The elements of the matrix of Fick diffusivities [D] are 

For the special case of tracer diffusion, species 1 and 2 are 
identical (D,, = D,,), and the tracer diffusivity D* defined 
by eq. (34) reduces to [cf. eqs (Bl)-(B3)] 

D* = D,, - D,, = D,, -D,, = D,, - ID,, 

1 
(B4) 

Use of the alternative Onsager formulation, eq. (AS), leads 
to the following expression for t,he tracer diffusivity: 

D*=Dll -D,, = L,,(G,, - G,,) - L,,(G,, - G,,) 

= Ld~,, - r,,w, - Li2u-22 - r, 1 w, 

= L,,/e, - L,,fe2 = wvu - eILl,fe2LlI~ 

= DadI - e1L12/~2Lllw- U35) 

where we have invoked equalities (A6) and (A8). From 
eqs (A9) and (Bl) we can obtain the following expression for 
the cross-coefficient L, a: 

L 12 = m,b = mwlY~~lV - ~dwl 

+ em,, + eadi. W) 

Relation (B6) shows that when D,, = DIy and is independ- 
ent of surface occupancy, then L,, = 0; under these circum- 
stances we have the following simple expression for the 
tracer diffusivity: 

D* = DIY = L,,/e, (B7) 

or in other words the tracer diffusivity is equal to the 
“corrected” diffusivity D, y. 

APPENDIX 42 TRANSIENT UPTAKE PROFILES FOR 
BINARY DIFFUSION 

The first step is the calculation of the eigenvalues of [D]; 
these are given by 

x Cl + 4D,,D,,/(D,, - D,,)211’2. (Cl) 

The fractional approach to equilibrium is then calculated for 
each of the two eigenvalues calculated above: 

J= 1 -smz,$exp( -F), (C2) 

The fractional approach matrix [q is given by Sylvester’s 
theorem [cf. Krishna and Standart (197911: 

^ 
[F] = & (CD1 -&PI) + & (CD1 - O^I [II). 

1 2 * 1 
(C3) 

The transient uptake profiles are given by [cf. eq. (41)] 

(0 - 0,) = EF](e,., - 0,). (C4) 

The solution matrix [F] is generally non-diagonal and 
eq. (C4) shows that the uptake of components 1 and 2 are 
coupled to each other. 


