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Abstract--In this paper attention is focused on intraparticle diffusion of multicomponent gaseous mixtures 
ia macroporous and microporous media. Bulk, Knudsen and surface diffusion will bc handled using 
a unified, consistent, approach, borrowing ideas and concepts developed more than a century ago by James 
Clerk Maxwell and Josef Stefan. The diffusion equations for bulk and Knudsen equations coincide with the 
dusty gas model, rediscovered already about five times in history. The walls of the porous adsorbent arc 
modelled as giant dust molecules and in this theory they are accorded the status of pseudo-species. One 
advantage of this procedure is that the kinetic gas theory may now be used to predict the Knudsen diffusion 
coefficients. For the description of surface diffusion of multicomponent mixtures a new approach is 
developed in which the vacant sites are modelled, additionally, as pseudo-species (craters on the dust 
‘molecules”). The practical application of the crated dusty gas model is illustrated by considering a number 
of studies, including (1) single-component sorption; (2) uptake of binary mixtures by zeolites and activated 
carbon; (3) multicomponent diffusion and chemical reaction within catalyst pellets. The examples discussed 
in this paper support the contention that the Fick formulation is hopelessly inadequate because it will fail 
even at the qualitative level to describe the observed experimental phenomena. The Maxwell-Stefan 
formulation provides a useful tool for solving practical problems in intraparticle diffusion. 

INTERPARTICLE AND INTRAPARTICLE DIFFUSION 

Most commercial adsorbents consist of small micro- 
porous crystals (e.g. zeolites) formed into a macro- 
porous pellet (Ruthven, 1984). The molecular species 
constituting the fluid mixture have first to be trans- 
ported from the bulk fluid phase to the external sur- 
face of the adsorbent. Within the particle there are 
two distinct diffusional resistances to mass transfer: 
the macropore (intercrystalline) diffusional resistance 
of the pellet and the micropore (intracrystalline) dif- 
fusion resistance. A schematic picture of a catalyst or 
adsorbent particle is shown in Fig. 1. In the discussion 
to follow in this paper the focus is on intruparticle 
diffusion phenomena. The relative importance of 
macropore and micropore diffusion resistances de- 
pends inter alia on the pore size distribution within 
the catalyst or adsorbent particle. Figure 2 shows 
typical pore size distributions for three commonly 
adsorbent particles. Micropores have diameters 
smaller than 2 nm; macropores have sizes greater than 
50 nm and mesopores are in the size range 2-50 nln. 

DIFFUSION MECHANISMS 

Within a pore we may, in general, distinguish three 
fundamentally different types of diffusion mechanism, 
as depicted pictorially in Fig. 3: 

Bulk, “free space” or free molecular diffusion that 
becomes significant for large pore sizes and high 
system pressures; here molecule-molecule eolli- 
sions dominate over molecule-wall collisions. 
Knudsen diffusion that becomes predominant 
when the mean free path of the molecular species 

is much larger than the pore diameter and, hence, 
molecul~wall collisions become important. 
Surface diffusion of adsorbed molecular species 
along the pore wall surface; this mechanism of 
transport becomes dominant for micropores and 
for strongly adsorbed species. 

Bulk and Knudsen diffusion mechanisms occur in 
series and it is always prudent to take both mechan- 
isms into account rather than assume that one or 
other mechanism is “controlling”. Surface diffusion 
occurs in parallel to the other two mechanisms and its 
contribution to the total species flux may be quite 
significant in many cases, as we shall see later in this 
paper. Within the micropores the dominant mechan- 
ism is surface diffusion. It is for this reason that 
surface diffusion is also referred to as micropore dif- 
fusion in the literature (e.g. Ruthven, 1984). 

FICK FORMULATION FOR INTRAPARTICLE DIFFUSION 

In the design of an adsorber or catalytic reactor an 
essential step is the calculation of the fluxes inside the 
pellet depicted in Fig. 1. For any diffusing species i the 
equations of continuity take the form (cf. Bird et al., 

1960) 

acj x+V-Njdt, 

where ci is the molar concentration of species i, N, 
molar flux of species i in a stationary coordinate frame 
of reference, and li is the rate of production of i due 
to chemical reaction within the pellet. The molar 
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Fig. 1. Schematic diagram of adsorbent or catalyst Particle 
depicting the three main diffusion resistances (after Ruthven, 

1984). 
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Fig. 2. Pore size distribution of zeolite X, molecular sieve 
carbon and activated carbon (after Yang, 1987). 

fluxes, Ni, are 

N, = clvI = cxivI, 5 Ni = N, (2) 
i=1 

where vi is the velocity of the transferring species 
i inside the pellet, c is the total mixture molar concen- 
tration, xi is the mole fraction of species i, and n is the 
number of diffusing species. We may define the molar 
average mixture velocity as follows: 

v= i: x;vi. (3) 
i=i 

The diffusion flux of species i relative to this molar 
average reference velocity, v, is 

Ji = ci(vi - v) = Ni - xiN,. (4) 

The simplest constitutive relation for the diffusion 
flux, J,, is that due to Fick: 

Ji = - cDVxi (5) 

where D is the Fick diffusivity and Vx, the gradient of 
the component mole fraction can be regarded as the 

driving force for diffusion. The Fick diffusivity D is, in 
general, composition-dependent and, within the con- 
fines of the original Fick development, this coefficient 
is positive definite. Intraparticle diffusion processes 
within adsorbent and catalyst particles are usually 
interpreted in terms of the Fick formulation repres- 
ented by eq. (5) for each of the three diffusion meehan- 
isms represented in Fig. 3. 

Within the framework of the Fick formulation, it is 
always to be expected that the diffusion flux of any 
species i, Ji, will be down the composition gradient. In 
other words, the sign of J, will be the same as that of 
- Vx;. It is one of the objectives of this paper to show 

that the Fick formulation will fail, even at the qualitat- 
ive level, to describe the observed diffusion behaviour 
for each of the three diffusion mechanisms: bulk, 
Knudsen and surface. We begin by demonstrating the 
inadequacy of the Fick formulation for bulk diffusion 
in ideal gas mixtures. 

~A~ONS OF THE FICK FO RMULATION FOR BULK 

DIFFUSION 

Let us consider a simple and illuminating set of 
experiments conducted by Duncan and Toor (1962). 
These authors examined diffusion in an ideal ternary 
gas mixture: hydrogen (lbnitrogen (2barbon diox- 
ide (3). The experimental set-up consisted of a two- 
bulb diffusion cell, pictured in Fig. 4(a). In an experi- 
ment that we shall highlight here the two bulbs, bulb 
1 and bulb 2, had the initial compositions (expressed 
in mole fractions) as given below: 

Bulb 1: 

xi = 0.50121, x2 = 0.49879, x3 = o.clOOoa 

Bulb 2: 

xi = O.OOOOO, xp = 0.50086, x, = 0.49914. 

The two bulbs were connected by means of a long 
capillary of 2.08 mm diameter. At time t = 0, the stop- 
cock separating the two composition environments at 
the centre of the capillary was opened and diffusion of 
the three species was allowed to take place. From the 
information given in the paper by Duncan and Toor 
(1962) it is verifiable that the diffusion mechanism 
prevalent in the capillary is bulk diffusion. Further, 
the pressure differences between the two bulbs were 
negligibly small implying no occurrence of viscous 
flow. Since the two bulbs are sealed there was no net 
transfer flux out of or into the system, i.e. we have 
conditions corresponding to equimolar diffusion: 

v=O, N1+Nf+N3=0. (6) 

The composition-time trajectories for each of the 
three diffusing species in either bulb has been pres- 
ented in Fig. 4(b). Let us first examine what happens 
to hydrogen (1) and carbon dioxide (3). The composi- 
tion-time trajectories are as we should expect; hydro- 
gen diffuses from bulb 1 to bulb 2 and the two com- 
positions approach each other, albeit slowly. Carbon 
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/ acant site on surface 

Fig. 3. Three distinct mechanisms by which molecular species get transported within an adsorbent or 
catalyst particle: (a) bulk diffusion; (b) Knudsen diffusion and (c) surface diffusion of adsorbed species along 

the surface of the pores. 

carbon dioxide 
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Fig. 4. Two-bulb diffusion cell experiment of Duncan and 
Toor (1%2): (a) the experimental set-up; (b) composition- 
time trajectories for the species hydrogen (1)-nitrogen 

(2)-carbon dioxide (3). 

dioxide diffuses from bulb 2 to bulb 1 in the expected 
normal fashion. The diffusion behaviour of these two 
species, hydrogen and carbon dioxide, may be termed 
to be Fickian, i.e. down their respective composition 
gradients: nothing extraordinary here. 

If we examine the composition-time trajectory of 
nitrogen (2), we see several curious phenomena oc- 
curring. Initially, at time t = 0, the composition of 
nitrogen in bulb 2 is higher than in bulb 1 and we 
should expect, following our Fickian ideas, that dif- 
fusion should take place from bulb 2 to bulb 1, de- 
creasing the composition in bulb 2 and consequently 
increasing the composition of nitrogen in bulb 1. This 
expectation is indeed fulfilled during the time interval 
from t = 0 to t = tl z 1 h; see Fig. 4(b). At 
t = tl z 1 h the composition of nitrogen in the two 
bulbs is identical and, therefore, at this point the 
composition gradient driving force for nitrogen must 
be zero. At t = t 1, it was observed experimentally by 
Duncan and Toor (1962) that the diffusion of nitrogen 
did not cease but, contrary to the Fickian expec- 
tations, continued further implying that 

Vx2=0, J2#0, t=tl. (7) 

The bulb 1 composition continued to increase at the 
expense of bulb 2 composition of nitrogen beyond the 
point t = tl and this diffusion of nitrogen is in an 
uphill direction, i.e. 

Jz 
- vvx, ’ 0, tlctit2. (8) 
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Uphill diffusion of nitrogen continued to take place 
till the time t = t2 is reached when the composition 
profiles in either bulb tend to reach a plateau. This 
plateau implies that the diffusion flux of nitrogen is 
zero at this point despite the fact that there is a large 
driving force existing. At t = t2 we have 

Vx2 # 0, J2 =0, t = t2. (9) 

Beyond the point t = t2, the diffusion behaviour of 
nitrogen is “normal”, i.e. the composition of nitrogen 
in bulb ‘1 with a higher concentration decreases while 
the composition of nitrogen in bulb 2 with the lower 
concentration increases. 

Toor (1957) in a classic paper anticipated the three 
curious phenomena described above and assigned the 
following names to them: 

l Osmotic diffusion: This is the phenomenon ob- 
served at t = tl and described by eq. (7). Here 
diffusion of a component takes place despite the 
absence of a constituent driving force. 

l Reverse d$%sion: This phenomenon is observed 
for nitrogen in the time interval cl < t < t2 and 
described by eq. (8). Here diffusion of a compon- 
ent takes place in a direction opposite to that 
dictated by its driving force. 

l LX&ion barrier: This phenomenon is observed 
at t = t2 and is described by eq. (9). Here a com- 
ponent diffusion flux is zero despite the existence 
of a large driving force. 

It should be clear that the use of the Fick formula- 
tion, eq. (5), will be totally inadequate to describe the 
three curious phenomena described above because in 
order to rationalise the experimental observations we 
must demand the following behaviour of the Fick 
diffusivity for nitrogen: 

l D + 00 at the osmotic diffusion point, cf. eq. (7), 
l D < 0 in the region where reverse diffusion oc- 

curs, cf. eq. (8), and 
l D = 0 at the diffusion barrier, cf. eq. (9) 

It must not be forgotten that this strange behaviour of 
the Fick diffusivity for nitrogen has been observed 
experimentally for an ideal gas mixture at constant 
temperature and pressure conditions and for a situa- 
tion corresponding to equimolar diflusion. It is clearly 
necessary to abandon the Fickian mode of thinking 
and to adopt a more fundamental and mechanistic 
approach to diffusion. The most useful and practical 
approach to bulk diffusion was developed inde- 
pendently more than a century ago by Maxwell (1866) 
and Stefan (1871). We develop this approach first for 
bulk diffusion of fluid mixtures. 

THE MAXWELL-STEFAN APPROACH TO BULK 

DIFFUSION OF MULTICOMPONENT MIXTURES 

Before proceeding to the general multicomponent 
case, let us start with a simple two component system, 

made up of species denoted by 1 and 2, To effect 
relative motion between the molecular species 1 and 
2 in the mixture, we must exert a force on each of the 
two species. To calculate this force that is exerted on 
any molecular species i, let us consider z-directional 
diffusion in the system and write down the force 
balances for the control volume shown in Fig. 5. The 
cross-sectional area available for diffusion is 1 m* and 
the length of the diffusion path is dz. If the change in 
the partial pressure of component i across the dif- 
fusion distance dz is dp,, the force acting per m3 is 
dp,/dz. The concentration of species i in the mixture is 
c! and, therefore, the force acting per mole of species 
i is (l/~,)(dp~/dz). For an ideal gas mixture we have 
c1 = p1 /R T and, therefore, the force per mole of species 
i can be written as (RT/pl) (dp,/dz) = R Td In p, /dz or, 
expressed in terms of the chemical potential of species 
i, this force is dpul/dz. This force is balanced by friction 
between the diffusing species 1 and 2 in the binary 
mixture; see the pictorial representation in Fig. 6. The 
force balance on the species 1 takes the form 

dpt (VI - vz) --=RTx,-. 
CL? B iz 

(10) 

For transport of species 1 in the positive z-direc- 
tion, i.e. positive velocity ul, we must have a positive 
value for - dpl /dz and, therefore, the left member of 
eq. (10) must be viewed as the driving force for trans- 
port in the positive z-direction. This force is balanced 
by the friction experienced between the species 1 and 

2 z+dZ 

Fig. 5. A simple fora balance on a control volume contain- 
ing an ideal gas mixture. 

. . . ..______________ T: :..._ .._......_........_. _ . . . . . . . 

j Force exerted or! 5 Friction between i 

.._............................. i 

Fig. 6. The basis of the development of the Maxwell-gtefan 
diffusion equations is the simple mechanical picture here. 
The force exerted on species 1 is balanced by the friction 

between speciea 1 and 2. 
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2. We may expect the frictional drag to be propor- 
tional to the velocity difference (or - vl) and to the 
concentration of the mixture, expressed in eq. (10) as 
the mole fraction of component 2, xs. The term 
RTfB,, on the right-hand side of eq. (10) may be 
interpreted to be the drag coefficient. With this defini- 
tion, the Maxwell-Stefan diffusivity B12 has the units 
(m2 s-r) and the physical significance of an inverse 
drag coefficient. 

Multiplying both sides of eq. (IO) by x1 /RT 

xi dpl X1X2~1- XlXZt’2 ---= 
RTdz 912 

(11) 

Re-arranging eq. (11) using the definition for the 
fluxes Ni = cxivi [d. eq. (2)] we obtain, after vector 
generalisation, 

--Tvp’ = x2Ni - x1N2 cD . 
12 

(12) 

For a non-ideal fluid mixture we may introduce the 
component activity coefficients to express the left 
member of eq. (12) as 

$Tvpl = 
( 

alny, 
1 +x1--- 

8x1 > 
vx, = 1-vx, (13) 

where r is the thermodynamic correction factor por- 
traying the non-ideal behaviour. For highly non-ideal 
mixtures the thermodynamic factor r is usually 
a strong function of the mixture composition and 
vanishes in the region of the critical point (Krishna, 
1987). This behaviour has been illustrated in Fig. 7 for 
the system methanol (I)-n-hexane (2). For the tem- 
perature under consideration the system tends to 
undergo phase splitting at xi z 0.5; at this mole frac- 
tion we note that r tends towards zero. Combining 
eqs (12) and (13), after introducing x2 = 1 - x,, we 
obtain, using eq. (4), 

Jt = N, - xtN, = - cB121-Vxr. (14) 

Comparison of eq. (14) with Fick’s law [eq. (S)] 
yields the following relationship between the Fick 
diffusivity D12 and the Maxwell-Stefan diffusivity, 
f),,: 

D12 = D,2 r. (15) 

0 0.2 0.4 0.6 0.8 1 

mole fnclion of mcthmlol 

Fig. 7. The therrnodynamicfaetor r decreases sharply as the 
critical point is approached. This strong variation of r 
largely explains the behavioar of the Fick diffusivity D (seen 

in Fig. 8). 

Because of the strong composition dependence of the 
thermodynamic factor r we should expect the Fick 
diffusivity to also exhibit a strong, corresponding, 
composition dependence; this is indeed borne out by 
experimental evidence available in the literature and 
is illustrated in Fig. 8 for the system methanol (l)-n- 
hexane, for which we note that the Fick diffusivity 
tends to approach zero in the region of the phase 
transition point near x = 0.5. The Maxwell-Stefan 
diffusivity, BIZ, calculated from the Fick diffusivity 
and the thermodynamic data, shows only a mild com- 
position dependence. An empirical formula for the 
composition dependence is due to Vignes (1966) [see 
also Wesselingh and Krishna (1990)]: 

where the bracketed terms are, respectively, the infi- 
nitely dilution values of the Maxwell-Stefan dif- 
fusivity at either ends of the composition range. The 
Vignes relation (16) implies that the logarithm of 
Ot2 should be linear in the mole fraction x1. From the 
data in Fig. 8 we see that this empirical model of 
Vignes holds remarkably well, considering the large 
variation of the Fick diffusivity. For further informa- 
tion regarding the prediction of the Maxwell-Stefan 
diffusivity for gaseous and liquid mixtures the reader 
is referred to the introductory book by Wesselingh 
and Krishna (1990). 

For gaseous mixtures at low to moderate pressures 
and for thermodynamically ideal liquid mixtures, the 
thermodynamic factor r = 1 and the Maxwell-Stefan 
diffusivity is independent of composition; for this lim- 
iting case the Fick and Maxwell-Stefan diffusivity are 
identical to each other. The Maxwell-Stefan diffus- 
ivity has a fundamental physical meaning of an in- 
verse drag coefficient and is more easily interpretable 
and predictable than the Fick diffusivity; the latter 
parameter is a conglomerate of two separate concepts: 
drag effects and thermodynamic non-ideality effects. 

The mechanistic picture developed above for dif- 
fusion in a two component system can be extended to 
the general multicomponent cases quite easily, The 
force exerted on species 1 is balanced by the friction 
between species 1 and each of the other species in the 
mixture. For a ternary mixture, the simplest multi- 

100 

Fick : :---p-.=p”.- ._....I. ry . . . . . . _.. 
diffusivity *. . 

__._____ _..‘;“‘~ 
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1 
0 0.2 0.1 0.6 0.8 1 
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Fig. 8. The Fick diffusivity for the system methanol-n- 
hexane. Data from Clark and Rowley (1986). The Fick D de- 

creases sharply as the critical point is reached. 
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component system, for example, the Maxwell-Stefan 
diffusion equations are pictured in Fig. 9. 

The generalisation of eq. (10) to the general multi- 
component case is, therefore, 

Combining eqs (18)-(20) we obtain, in a manner 
analogous to eq. (13), 

- c[T](Vx) = [B](J) or (J) = - c[B]-‘[II 

dm @I - b) 
- - = RTx3- 

(Vi - v3) 

dr 012 

+ RTx 
5- 

D 13 

+ RTx (Q - 04) + . . . . 

4 914 

The terms on the right-hand side of eq. (17) represent, 
respectively, the friction between l-2, l-3,1-4 and so 
on. Equation (17) can be written in terms of the fluxes 
Ni to obtain the following equation analogous to eq. 
(12) for the binary case 

Only n - 1 of eq. (18) are, independent because of the 
Gibbs-Duhem restriction‘ 

2 XfV/li = 0. (19) 
i=1 

It is helpful to express the left member of eq. (18) in 
terms of the mole fraction gradients by introducing an 
(n - 1) x (n - I) matrix of thermodynamic factors 

cn 

i,j= 1,2,. ..,n-1. (20) 

Friction t-2 1 

Friction 1-3 1 

r_ ____.__ 
i Force 

+ Friction l-3 

Fig. 9. The development of the Maxwell-Stefan diffusion 
equations for a ternary mixture. The force exerted on mo- 
lecular species 1 is balanced by the friction between species 

1 and 2 and between species 1 and 3. 

(21) 

where we use (n - 1)-dimensional matrix notation; (J) 
represents the column vector of (n - 1) diffusion 
fluxes defined by eq. (4). The elements of the matrix 
[B] can be derived from eq. (18) in terms of the 
Maxwell-Stefan diffusivities D, as follows: 

(22) 

The above derivations for multicomponent mix- 
tures may seem to be quite formal and dry. In order to 
get a better feel for the parameters and numbers 
involved, let us take two typical systems. 

Firstly, let us consider bulk diffusion at 25°C in 
a non-ideal liquid mixture made up of the compon- 
ents acetone (itbenzene (2)-carbon tetrachloride (3). 
At the composition of x1 = 0.35, x1 = 0.35 and 
xj = 0.30 the Maxwell-Stefan diffusivities f)#, are es- 
timated to be 

D12 = 3.4 x 10-9, 913 = 2.5 x 10-s 

92s = 1.7 x 1o-9. 

The matrix [B] can be calculated from the pair 
Maxwell-Stefan diffusivities using eq. (22): 

x 109. 

The matrix of thermodynamic factors is estimated 
from activity coefficient data to be 

The two independent diffusion fluxes for components 
1 and 2 can now be expressed explicitly in terms of the 
composition gradient driving forces using eq. (21) as 

- 0.13 VXl 

1.05 x vxs I( > 
= -_c 

[ 

_;:g -~:;;]xlo-9x(~::> 
which shows that there is a strong influence of the 
driving force of component 2 on the fIux of compon- 
ent 1. This coupling is caused by two effects: (i) the 
thermodynamic non-idealities in the system (note that 
[r] is significantly non-diagonal) and (ii) the differ- 
ences in the Maxwell-Stefaa diffusivities (this implies 
that the frictional drag of the pairs l-2, l-3 and 2-3 
are all significantly different from one another). 

It is common to define a matrix of Fick diffusivities 
[O] analogous to the binary case [cf. eqs (14) and 
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(15)] by using (n - 1) x (n - 1) matrix notation: 

WI = cw 'In (23) 

For the system acetone (l)-benzene (2barbon tet- 
rachloride (3) the elements of the matrix for the speci- 
fied composition have the values 

CD1 = 
1.92 - 0.58 

- 0.28 2.25 x1o-g 1 
For the general multicomponent mixture it is difficult 
to ascribe simple physical interpretations to the ele- 
ments of CD]; it is for this reason we prefer the 
Maxwell-Stefan formulation that also aids in the pre- 
diction of the elments of [D]. Specifically, the advant- 
age of the M-S formulation is that we decouple the 
drag effects (portrayed by [B]) from thermodynamic 
effects (portrayed by [r]). 

Let us now consider the case of an ideal gas mixture 
for which the matrix of thermodynamic factors [I-] 
reduces to the identity matrix [I]; eq. (18) reduces to 

, i = 1,2,. . . , n. 

(184 

We shall explain the curious diffusion phenomena 
observed by Duncan and Toor (1962) for the system 
hydrogen (l)-nitrpgen (2)-carbon dioxide (3) as seen 
in Figs 4(a)-(c). For this ternary mixture the 
Maxwell-Stefan diffusivities of the three binary pairs 
can be estimated from the kinetic gas theory to be 

5 DiZ = 8.33 x lo- , B13 = 6.8 x lo- 5 

&5 = 1.68 x lo-‘. 

At the equilibrium composition the elements of the 
matrix [Et] are estimated to be 

WI = 
0.134 0.007 

0.237 0.476 1 x lo5 

and the matrix of Fick diffusivities is, therefore, 

PI = 
7.68 - 0.11 

- 3.832 2.15 1 x 10-S. 

If we write down explicitly the flux relation for nitro- 
gen, component 2, we see that J1 = - cD2,VxI 
- cDz2Vx2 = - c( - 3.83 x Vxl + 2.15 x VxJ x lo- 5. 

This implies that the flux of nitrogen is strongly 
coupled to the driving force of the component 1. 
When the driving force of nitrogen Vxz = 0, we see 
that the flux of nitrogen remains non-zero and equals 
J3 = - cDZIVxt = - ~(3.83 x Vxt) x lo-‘. This non- 
zero flux causes the diffusion of nitrogen beyond 
the point t = tl (the osmotic diffusion point) in 
Fig. 4(b). Between t = tl and t = t2 we have 
13.83 x Vxi 1 > 12.15 x Vx,l and, therefore, the direc- 
tion of nitrogen is against its intrinsic gradient (re- 
verse or uphill diffusion). At the point t = t2, we have 
13.83 x Vxl I= 12.15 x Vx,l and, since these two terms 
have opposite signs, J2 = - (- ~3.83 x Vxl + 2.15 x 

VxJ) x lo-’ = 0 and nitrogen experiences a diffusion 
barrier. 

What we did above was to transform the 
Maxwell-Stefan diffusion equations into a matrix 
generalisation of Fick’s law to explain the curious 
effects observed by Duncan and Toor (1962). The path 
via matrix algebra lacks the physical insight provided 
by the Maxwell-Stefan formulation, on the basis of 
which it is possible to explain the behaviour of 
nitrogen in Fig. 4(b) simply by using forc+friction 
arguments. The driving force of nitrogen is much 
smaller compared to that of hydrogen and carbon 
dioxide. The frictional drag exerted by carbon dioxide 
(3) on nitrogen (2) transport is considerably larger 
than the frictional drag exerted by hydrogen (1) on 
nitrogen (2) transport; this can be seen from the fact 
that (1/BZ3) + (l/O,,). During the time interval 
t = tl and t = t2, the direction in which the driving 
force of carbon dioxide acts is opposite to that in 
which the driving force of nitrogen acts. The much 
larger flux of carbon dioxide drags nitrogen against its 
intrinsic gradient, uphill. From this reasoning it 
should be clear that if the components hydrogen and 
carbon dioxide were switched in the two bulbs, i.e. 
with driving forces of carbon dioxide and nitrogen in 
the same direction, no reverse diffusion of nitrogen 
would have been observed. 

From the above discussions it should be cleir that 
multicomponent mixtures exhibit transfer character- 
istics that are quite different from binary mixtures and 
a proper treatment of bulk diffusion in such mixtures 
must proceed along more mechanistic lines. The 
MaxwellStefan diffusion equations are ca#able of 
explaining all the curious phenomena that have heen 
observed. The coupled diffusion effects observed by 
Duncan and Toor (1962) are not only of academic 
interest; such effects can have profound effects on the 
design of separation columns; see Krishna and Taylor 
(1986) and Taylor and Krishna (1992). 

COMBINED BULK AND KNUDSEN DIFFUSION 

For gaseous mixtures at operating conditions 
under which the mean free path of the molecule is 
much larger than the pore diameter, molecule-wall 
collisions become more predominant than mo- 
lecule-molecule collisions; the latter mechanism of 
transport is called the Knudsen diffusion. In the other 
limit when the mean free path of the molecule is much 
smaller than the pore diameter, molecule-molecule 
collisions predominate and bulk diffusion controls the 
diffusional transport. For the general case we need to 
take both molecule-wall and molecule-molecule col- 
lisions into account. Bulk and Knudsen diffusion pro- 
cesses occur in series (Fig. 10). The equations describ- 
ing bulk diffusion have already been considered 
above. How do we combine the two distinct phe- 
nomena in a consistent manner? It is now generally 
agreed that the most convenient approach is to use 
the dusty gas model [see Jackson (1977), Mason and 
Malinauskas (1983) and Wesselingh and Krishna 
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Bulkdiffusion Knudsen difhrsion 

Fig. 10. Schematic picture of the dusty gas model in which 
the pore wall is modelled as giant dust molecules held 

motionless in space. 

Fig. il. The derivation of the dusty gas model. Note the 
similarity with the derivation of the Maxwell-Stefan dif- 

fusion equations fbr a ternary mixture (Fig. 9). 
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(1990)]. The principle behind the dusty gas model is 
quite simple indeed and is really a straightforward 
application of the Maxwell-Stefan diffusion equations 
developed earlier. What we do is to consider the pore 
wall (“medium”) as consisting of giant molecules 
(“dust”) uniformly distributed in space. These dust 
moleculesare considered to be a dummy, or pseudo, 
species n + 1 in the n-component gaseous mixture (see 
Fig. 10). To develop the transport relations, we rely on 
our trustworthy Maxwell-Stefan diffusion equations 
(see Fig. 11). The force exerted on any species i in the 
multicomponent mixture is balanced by friction be- 

tween two molecular species i and j (i.e. bulk diffusion) 
together with the friction between the molecular spe- 

cies i and the dummy species n + 1 (dust): 

@) 

Ap=-5kl’a 
T=5OOK 
p=LXKIkPa 

Fig. 12. Transport of the mixture styrene (l)-ethyl benzene 
(2)-hydrogen (3) across a porous membrane consisting of 
parallel capillaries. (a) The compositions at either end of the 
membrane, along with the temperature, pressure and mem- 
brane thickaess. (b) Calculations of the fluxes of styre.ne, 
ethyl benzene and hydrogen as a function of the diameter of 

(vi - vj) Vpi=RTc x~~+RTx,+~ 
(9 - v.+1) - 

I=1 li D i.“+l 

i = 1,2, . . . ) ?I. (24) 

We may define the Knudsen diffusivity reflecting 
the molecule-wall (= dust) collision process as 
Di.r.n = %n+l/Xn+I; this diffusivity can be estimated 
from the kinetic gas theory. For a cylindrical pore 

of diameter do the Knudsen diffusivity is Di,x. = 

(d, /3)dm where M, is the molar mass of spe- 
cies i. The dust molecules are held stationary in space 
and, therefore, v, + 1 = 0. Equation (24) may be re- 
written in terms of the fluxes Ni and we obtain the 
following extension of eq. (Ha): 

j*i 
i=l,2 ,_.., n. (25) 

In order to get a feel for the dusty gas model for 
combined bulk and Knudsen diffusion, let us consider 
an example of diffusion in the gaseous mixture styrene 
(l)-ethyl benzene (2khydrogen (3) through an inert 

the capillaries. 

porous membrane made up of a bundle of parallel 
capillaries. Each capillary may be assumed to be cy- 
lindrical. The diagram of the membrane is shown in 
Fig. 12(a) along with the operating conditions. For 
steady-state diffusion across the membrane the fluxes 
N1 can be calculated by integrating the dusty gas 
model [es. (25)]; details of the calculation procedure 
can be found in the worked example no. 25 of 
Wesselingh and Krishna (1990). These calculations 
have been carried out for various choices of the capil- 
lary pore diameter and the results are presented in 
Figure 12(b). The behaviour of ethyl benzene and 
hydrogen is as is to be expected; increase of the pore 
diameter increases the fluxes in a monotonic manner. 
The behaviour of styrene (1) is, on the other hand, 
quite remarkable. For pore diameters smaller than 
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0.4 pm, the styrene flux increases in magnitude as the An interesting phenomenon occurs for intraparticle 
pore diameter increases. For pore sizes in the range diffusion with heterogeneous chemical reaction within 
0.4-2 F the magnitude of styrene decreases with catalyst pellets. The flux ratio Ni/Nj of components 
increasing pore size. For pore sixes larger than 2 q i and i participating in the reaction is dictated by the 
the styrene flux changes direction and behaves reaction stoichiometry. When the total mixture flux is 
“normally”. The explanation of the curious behaviour non-zero (net production or consumption due to 
of styrene is quite simple. For small pore diameters, chemical reaction) there will be a finite pressure gradi- 
towards the left side of the x-axis of Fig. 12(b), trans- ent developed inside the catalyst particle. This is illus- 
port is in the Knudsen regime. In the Knudsen regime trated in Fig. 13 for cracking and polymerisation-type 
the relation between the flux and the driving force is reactions. Sometimes the pressure build-up as a con- 
[cf. eq. (25)]: N, = - (-Oi, xn/RT)Vpl; each of the three sequence of reaction stoichiometry is large enough to 
species diffuses independent of the others. As the pore cause concerns on mechanical strengths of the cata- 
diameter is increased, there is increased bulk diffusion lyst. Jackson (1977) has given a detailed discussion on 
contribution. In the bulk diffusion regime each species influence of reaction stoichiometry on the developed 
experiences a frictional drag with each of the other pressure gradient. To give an illustration, if the reac- 
diffusing species. As already demonstrated by the tion is a simple irreversible one involving two species 
Duncan and Toor example it is possible for a species A and B, A 2 mB, where m is the stoichiometric coef- 
tc be literally dragged up its composition gradient due ficient, the pressure at the centre of the catalyst pellet, 
to frictional drag with a heavy species moving in the 
opposite direction. For pore sizes greater than 2 pm, 

assuming complete conversion of A, is p,, = ,/&p, 
where p is the pressure on the outside of the catalyst. 

the bulk diffusion contribution is substantial enough Thus form = 2, we have a 40% increase in pressure as 
for styrene to be transported against its composition we proceed towards the centre of the pellet (Jackson, 
gradient driving force. 1977). 

In the literature on intraparticle diffusion within 
catalyst pellets it is common to use the Fick formula- 
tion, eq. (5), to describe intraparticle diffusion for 
combined bulk and Knudsen diffusion with the effect- 
ive Fick diffusivity defined by 

In the discussions above we have questioned the 
wisdom of using the Fick formulation for intraparticle 
bulk and Knudsen diffusion using the effective diffus- 
ivity 

1 1 __=_ 
D elf 

++. 
%n xm 

For any particular component in the multicomponent 
mixture we may, of course, force fit eq. (25) into the 
Fick form [eq. (5)] to obtain an expression for the 
effective dilhrsivity of that particular component. The 
effective diffusivity thus defined will be a strong func- 
tion of the composition and also the flux ratios of all 
the species participating in say a chemical reaction 
within the pellet. Schnitzlein and Hofmann (1988) 
have presented calculations for the effective diusivity 
for hydrogen in a gaseous mixture undergoing cata- 
lytic reforming (see Fig. 14). Use of the dusty gas 
model and the classic Wilke formula leads to sign&- 
antly different effective diffusivity values for hydrogen. 
We also note that neglect of the viscous flow contribu- 
tion is not very serious; this result is rather typical. 

1 -=- 
D cff 

It can be verified from eq. (25) that this simplification 
is valid only in the limiting case when the bulk dif- 
fusivities of all the binary pairs are equal to one 
another D, = D and if we have equimolar transfer 
N, = 0. For all other cases use of the simple Fick 
formulation can lead to difficulties; it would be im- 
possibie, for example, to model the behaviour of 
styrene in Fig. 12(b). 

The numerical calculations in Figs 12(a) and (b) 
were carried out for cylindrical pores. For the general 
cast of porous catalysts and adsorbents, each of dif- 
fusivities, bulk and Knudsen, will have to be corrected 
for the medium properties. This correction factor 

(= porosity x constriction jactor/tortuosity) 

can be determined from appropriate experiments. 
A further complication which needs to be taken 

into account for diffusion in porous media is that the 
pressure gradient within catalysts and adsorbents is 
rarely negligible. Finite pressure gradients within 
catalysts and adsorbents engender an additional vis- 
cous flow contribution to the fluxes. The mixture 
velocity due to viscous flow is 

where B. is the medium permeability, 11 is the mixture 
viscosity and Vp is the pressure gradient. For a cylin- 
drical pore B, = dg/32. 

For multicomponent mixtures containing compon- 
ents of widely varying molar masses it is usually not 
justified to assume that either bulk or Knudsen dif- 
fusion “controls” the diffusional transport because of 
coupling between species diffusions. The use of the 
dusty gas model routinely is suggested for all calcu- 
lations, especially for intraparticle diffusion with 
chemical reaction with selectivity considerations. 

SURFACE DIFFUSION OF ADSORBED MOLECULAR 

SPECIES 

Let us now turn our attention to diffusion of ad- 
sorbed molecular species on the surface of an ad- 
sorbent or catalyst pellet. In developing our formula- 
tion for surface diffusion it is convenient to have 

cl3 48:sc 
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(a) 

pressure 

Fig. 13. Pressure profiles within porous catalyst particle for (a) cracking, and (b) “polymerization”-type 
reactions. 

Fig. 14. Dependence of the effective diffusivity of hydrogen 
on the spatial position inside the catalyst particle for cata- 
lytic reforming of C, hydrocarbons (after Schnitzlein and 

Hofmann, 1988). 

a simple physical picture for surface diffusion in mind. 
A simple physical model is depicted in Fig. 15 that 
shows molecules hopping from one adsorption site to 
another. A description of the hopping model can be 
found in Gilliland et al. (1974). If the adsorption sites 
are considered to be pseudo-species in the mixture, we 
may use the Maxwell-Stefan formulation to write the 
following expression for the driving force acting on 
the adsorbed species 1: 

i = 1,2, . _ . , n. (27) 

Here the Bt and O~,vp, are the Maxwell-Stefan sur- 
face diffusivities. The coefficients DiY_ are the single- 
component surface diffisivities and represent the 
facility of exchange between the sorbed species and 
the vacant sites, denoted by the subscript Vat. The 
Maxwell-Stefan formulation also allows the exchange 
between adsorbed species i and j at any adsorption 
site; thus, a site occupied by i may be replaced by 

d acant site on surface 

surface occupancy 

J J 
counter vacant 

surface 
diffusion sites J 
coefScient Maxwell-stefan 

chemical Surface diffusivitv 
potenHa1 = 
bulk fluid 
potential 

Fig. 15. The physical picture behind the Maxwell-Stefan 
formulation for surface diffusion. The vacant sites are pic- 

tured as pseudo-species in the treatment. 

spfziesj or uice versa. The facility for counter-sorption 
is reflected by the coefficient Bt_ The OS in eq. (27) 
represent the fractional occupancies of the adsorbed 
species. Thus, Bi represents the fractional occupancy 
of the sites by the adsorbed species i and Ovac repres- 
ent the fraction of unoccupied, vacant, sites 
e “*= = I - 8, - e2 - * * * - 0.. The surface chemical 
potential pi of species i is given by the equilibrium 
relationship: 

fir = & + RTlnJ (28) 

where pp is the surface chemical potential of adsorbed 
species at the chosen standard state and f is the 
fugacity of species i in the bulk fluid mixture (we 
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assume equilibrium between the bulk fluid and the 
surface in this discussion of surface diffusion alone). 

The surface fluxes, Nf , of the diffusing adsorbed 
species are defined as 

N; = c’tlIvl. (29) 

where C’ is the total saturation concentration on the 
surface. With this definition the Maxwell-Stefan sur- 
face diffusion [eq. (27)] may be recast in terms of the 
surface fluxes into the form analogous to eq. (18): 

i = 1,2,. . . , n. (30) 

The surface chemical potential gradients may be 
expressed in terms of the gradients of the surface 
occupancies by introduction of the matrix of thermo- 
dynamics factors: 

i,j=1,2 ,..., n. (31) 

For the Langmuir isotherm, for example, the elements 
of [F] are: 

ei riJ = 6ij + B, i,j= 1,2,. . . . ,n (32) 
VW 

Krishna (1990) has argued that one consequence of 
according the status of a pseudo-species to the ad- 
sorption sites (subscrpt Vat) is that the vacancy flux 
NC., must balance the fluxes of the diiusing species 
1,2,..., n. In other words, for surface diffusion 
we always have equimolar diffusion, i.e. N; + 
N; + s * a + N;, = 0. Other authors have not ex- 
plicitly addressed the question of the status of the 
vacancy flux. We shall take up this point once again 
for discussions later in the paper. 

Surface difision of single component 

For the limiting case of single-component sorption 
eqs (30-(32) simplify to yield in a manner analogous 
to eqs (12)-(14), 

J”1 = N; - 0, (N; + NS,,,) = - PO!,v,, l-V&. 

(33) 

It is common in the literature on surface diffusion [see. 
Ruthven (1984) and Yang (1987)] to define a Fick 
surface diffusivity 

D;.v.o = 
J"1 ~ = a”l V.J (34) - me, * 

The thermodynamic factor F = I/( 1 - fl, ) for 
Langmuir adsorption and this factor shows a strong 
dependence on the surface coverage (see Fig. 16). 

Mechanistically, the Maxwell-Stefan surface dif- 
fusivity may be related to the displacement of the 
adsorbed molecular species, 1, and the jump fre- 
quency, v1 (6, ), which in general can be expected to be 

Th.?mlo- 

drumic 
Factor. I- 

Fig. 16. The thermodynamic factor F for single-component 
sorption, calculated for the Langmuir adsorption isotherm. 

dependent on the surface coverage (Reed and Ehrlich, 
1981; Zhdanov, 1985): 

%V.c = A%(&). (35) 

If the jump frequency v1 (0,) = vi (0) remains constant, 
independent of surface coverage, the MaxwellStefan 
surface diffusivity D+i.V.s is also independent of sur- 
face coverage. The Fick surface diffusivity in this case 
shows a strong increase with increased surface cover- 
age. Figure 17, by way of illustration, shows the 
strong increase of the Fick surface diffusivity with 
surface coverage as experimentally observed by Pope 
(1967). 

Another possibility is that due to interactions be- 
tween adsorbed species the jump frequency decreases 
with surface coverage. If we assume that a molecule 
can migrate from one site to another only when the 
receiving site is vacant (see Barrer, 1978), the chance of 
this happening is proportional to (1 - 0,) so that 

vdw = ~dw - 0,) 

~b.~ = ~b.~~~,+o,(~ - e1 )- (36) 

For the behaviour of the Maxwell-Stefan surface dif- 
fusivity given by eq. (36), use of the Langmuir iso- 
therm for calculation of the thermodynamic factor 
shows that the Fick surface diffusivity must remain 
constant and independent of surface coverage: 

%.v.e = %.V.C(B,-.O, = A%(O). (37) 

Krishna (1990) assumed a V&es-type relationship 
(16) to describe the decrease of the Maxwell-Stefan 
digusivity with surface coverage: 

Ds1,v.c = (~~,v~~~B~~~~)~‘(~~,v.~~B,-o,)~-~’. (38) 

Tracer di&sion 

In tracer diffusion experiments we consider ex- 
change between 

J”1=-J”z, Vt&=-V&. (39) 

We may apply the Maxwell-Stefan equations (30) and 
(31) with the above simplifications (39) to obtain the 
following explicit expression for the tracer diffusivity 
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Fig. 17. Fick surface diffusivity as function of surface cover- 
age for the system sulphur dioxide-microporous spheron 

6 (data from Pope, 1967). 

[see Krishna (1990) for detailed derivation]. 

1 01 + @2 J”I = -c=DTVB,, -=p &alc 

D: a”12 +zx- 

If the counter-exchange coefficient Ds12 = D7,vac 
= D; vIC then we have the equality between the tracer 
diffusivity and the Maxwell-Stefan surface diiisivity: 

which equality has been verified experimentally 
(cf. Goddard and Ruthven, 1986). When the 
Maxwell-Stefan surface diffusivity is surface coverage 
independent (i.e. constant jump frequency), the tracer 
diffusivity is also independent of surface coverage. 
When the Maxwell-Stefan surface difiusivity is pro- 
portional to (1 - e,), i.e. follows the relationship (361, 
the tracer diffusivity also shows this dependence; this 
is the model of Riekert (1971). 

Binary sorption kinetics 
For uptake of two components we need to reckon 

with the complete set of Maxwell-Stefan diffusion 
equations; Krishna (1990) has worked out the details 
of this procedure using matrix algebra and obtained 
explicit expressions for the Fick matrix of surface 
diffusivities defined by 

(J”) = - c”[D”](V#) = - c’[B”]-l[r](ve) 

(42) 

where the surface diffusion fluxes Jf are defined, as in 
the rest of the paper, with respect to the molar average 
mixture velocity v; cf. eq. (4). The value of the Fick 
diffusivity depends on the choice of reference velocity 
frame. The explicit expression for the matrix [B”] is 
consequently also dependent on the choice of the 
reference velocity frame. For the molar average refer- 
ence velocity frame the elements of [B’] for binary 
sorption are given by eq. (22) using the surface cover- 
ages Bi in place of the mole fractions Xi and the 
Maxwell-Surface diffusivities D$ in place of the 0,. 

In case of diffusion inside the pores of a zeolite there 
is no possibility of two different molecules undergoing 
counter-exchange at an adsorption site. In other 

words, the =drag” contributions, reflected by the tirst 
right members of eqs (27) and eq. (30), are not present. 
In the literature on binary sorption kinetics within 
zeolites it is common to assume such a “single-tile 
diffusion” mechanism. On close examination of the 
literature on this subject [e.g. Qureshi and Wei 
(1990)], it appears that most authors define the matrix 
of Fick surface diffusivities not in the molar average 
reference frame (as for single-component sorption) but 
in a reference velocity frame relative to the vacant 
sites (“solvent” 6xed reference frame in the termino- 
logy of the literature on bulk fluid diffusion). The 
expression for the Fick surface diffusivity matrix used 
by Qureshi and Wei (1990) [cf. their eq. (6)] is 

(43) 

along with the equation of continuity in the form [cf. 
their eq. (5)] 

a(e) - = v - [[D”] v(e)]. 
at 

It is an interesting and instructive exercise to try to 
derive the relations (43) and (44) used by Qureshi and 
Wei using our general approach; in this manner we 
make transparent all the tacit assumptions made by 
these authors. The first point concerns the choice of 
the reference velocity frame for surface diffusion. Use 
of eqs (43) and (44) implies the use of a reference 
velocity frame with respect to the vacant sites. Fur- 
ther, Qureshi and Wei assume a vanishing vacancy 
flux N;,, = 0. With these assumptions we obtain 
from eqs (30) and (31) 

i = 1,2, . . . , n. (45) 

If the MaxwellStefan surface diffusivities, DZV.c, 
decrease with the surface occupancy, following the 
relations (35) and (36) we get 

qvac = w.v.c(e,+3) (1 - e,) = n2v,(o)(i - e,) (46) 

where 0, = 1 - &,, is the total occupancy of the spe- 
cies 1,2, . _ . , n. The explicit expressiarr for the matrix 
of Fick surface diffusivities follows from eqs (42), (45) 
and (46): 

CD”] A2 ‘f) olo, 1 & 1 - 8, 1 = 
v 2 1 - e1 - 8, 

(47) 

where the second term on the right-hand side of eq. 
(47) is the thermodynamic factor. A close examination 
of eqs (43)-(47) shows that in order to derive the 
expression of Qureshi and Wei (1990), eq. (43), we 
need to adopt the model vi = v,(O)(l - et)‘, i.e. 
f)iv.= = ~~~~~~~~~~~~~~ - 0,)s. 

In order to compare the result (47) with the model 
used by Habgood (19583 and Round et al. (1966), we 
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define effective surface diffusivities for each of the 
components 1 and 2 in the binary mixture by the 
relations 

d@i - = v-(D;,,rrve,), at i = 1,2. 

On comparison with eqs (44) and (47), we obtain the 
following expressions for the effective diffusivities: 

D?,.ff = 
W.Vao(ec-O) 
1 - 81 - e2 

(l-&)+e,$ 
> 

(49) 
1 . 

and 

DLrr = 
~~.v*o(ec-o~ 
1 - 0, - 0, 

(1 - e,) + e$ 
> 

. (50) 
Z 

The above expressions for the effective surface dif- 
fusivities in a binary mixture coincide precisely with 
those given by Habgood (1958) and Round et al. 
(1966). It is clear from eqs (49) and (SO) that the 
effective surface diffusivities are strong functions of 
surface concentrations and surface concentration 
gradients. Farooq and Ruthven (1991) have used the 
expressions (49) and (50) to simulate, with consider- 
able success, a kinetically controlled pressure swing 
adsorption process. 

It is important not to lose track of the major benefit 
of the Maxwell-Stefan formulations for surface dif- 
fusion: we are able to predict binary sorption kinetics 
on the basis of information on single-component 
sorption, along with multicomponent equilibrium 
thermodynamics (i.e. the adsorption isotherm). This 
should be clear from the expression (47). The first 
member on the right-hand side can be obtained from 
single-component sorption kinetics. The second mem- 
ber on the right-hand side reflects multicomponent 
adsorption equilibria. The element of the Fick surface 
diffusivity matrix [P] portrays a conglomerate of 
these two effects namely: (i) the surface mobility of the 
adsorbed species 1 and 2, and (ii) the fluid-solid ad- 
sorption equilibrium (“isotherm”). This matrix is al- 
most always non-diagonal with large off-diagonal ele- 
ments. In order to illustrate the consequence of a non- 
diagonal matrix CO”], let us consider the example of 
the uptake of a mixture of benzene (1) and n-heptane 
(2) by NaX zeolite. The zeolite crystals are exposed to 
a bulk vapour mixture maintaining a constant com- 
position environment of benzene and n-heptane and 
the uptake of these components by the ze.olite is 
monitored as a function of time. The observed transi- 
ent uptake profiles as measured experimentally by 
KHrger and Biilow (1975) are shown in Fig. 18(a). The 
profile for n-heptane (2) exhibits a remarkable max- 
imum at t = 50 min in the uptake profile, with the 
surface concentration reaching a value significantly 
higher than the final (low) equilibrium surface concen- 
tration value. The results can be explained physically 
as follows. The surface mobility, reflected in the 
Maxwell-Stefan surface diffusivity, of n-heptane 
f%V~C(B,-.O) is about 50 times larger than the corres- 
ponding mobility of benzene, O;,vac(e,_,o,, due to mo- 
lecular configurational considerations. Initially, there- 

fore, n-heptane quickly penetrates the pores of the 
zeolite’occupying the adsorption sites. The adsorption 
strength of n-heptane is, however, considerably lower 
than that of benzene due inter alia to differences in 
polarity. Beyond t = 50 min, the adsorbed n-heptane 
gets (slowly) displaced from the active sites by benzene 
and the surface concentration. of n-heptane decreases 
from its maximum value to reach, eventually, its tial 
low equilibrium concentration. At equilibrium, 
achieved after about 5 h, the pores of the zeolite are 
occupied predominantly by the strongly adsorbed 
benzene. From the point of view of developing a sep- 
aration process to separate benzene from n-heptane it 
appears that two type of processes are possible. The 
first one is based on equilibrium selectivity requiring 
about 5 h; here the zeolite pores contain predomin- 
antly benzene. The other alternative is to use diffusion 
selectivity and terminate the uptake process at 
r = 50 min; here the pores of the zeolite contain n- 
heptane to a predominant extent. Diffusion selectivity 
requires significantly shorter residence times and may 
offer some technological advantages. 

The transient uptake process can be simulated by 
solving the equations of continuity, eq. (l), together 
with the constitutive equation for binary sorption: eqs 
(42). Simulations using eq. (47) for the Fick surface 
diffusivity matrix are shown in Fig. 18(b); it is clear 
that the constitutive equations (42), (46) and (47) are 
able to reflect all the features of the measured profiles. 
The use of uncoupled surface diffusion equations 
would lead to monotonic equilibration of both species 
[cf. Krishna (1990)] confirming the need to properly 
separate kinetic “drag” and thermodynamic factors. 

In an attempt to verify the applicability of the 
Maxwell-Stefan diffusion equations for diffusion in- 
side zeolites, van den Broeke et al. (1992) have re- 
sorted to Monte Carlo simulations. A sample of their 
simulation results for binary uptake of benzene and n- 
heptane is shown in Fig. 19(a), which is comparable 
with the Maxwell-Stefan simulations presented in 
Fig. 18(b). 

It is proper to point out here that Round et al. 
(1966) were probably the first to present a detailed 
analysis of diffusion of binary sorbed species. Their 
treatment is essentially equivalent to the one pres- 
ented here. 

Ternary sorption kinetics 
The set of eqs (30) and (3 1) is valid for n-component 

surface diffusion. Thcconstitutive equations for single 
diffusion are given by eqs (45) and (46) and the solu- 
tion of the constitutive equations (1) yields the de- 
scription of ternary sorption kinetics. In an attempt to 
verify the applicability of the Maxwell-Stefan su$ace 
(micropore) diffusion formulation for multicom- 
ponent mixtures, van den Broeke et al. (1992) have 
also carried out Monte Carlo simulations for uptake 
of a ternary mixture within a zeolite pore; a sample of 
their results is shown in Fig. 19(b). We see that a tem- 
ary mixture exhibits two maxima. It should, therefore, 
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Fig. 18. Transient uptake of benzene and n-heptane by 
zeolite X. Comparison of (a) experimental results of Kiirger 
and Billow (1975) with (b) simulations using the 

Maxwell-Stefan surface diffusion model. 

I 
surface 
concentratlln Ternary Mixture 

Fig. 19. Monte. Carlo simulations for transient uptake of 
binary and ternary mixtures within pores of a zeolite. The 
simulations were carried out using the single-file diffusion 

model (after van den Broeke et af., 1992). 

be possible, in principle, to develop a separation pro- 
cess for separating the three components by relying on 
diffusion selectivity and “tapping” off at time intervals 
corresponding to the respective maxima. A good ap- 
preciation of the fundamental mechanisms of surface 
(micropore) diffusion will, we believe, lead to the de- 

velopment of new separation processes based on dif- 
fusion selectivity. 

COMBINED BULK, KNUDSEN AND SURFACE DIFFUSION 

Within the pores of a sorbent we have, in general, 
a combination of the three dilTusion mechanisms, pit- 
tured in Fig. 3, along with the additional non-separ- 

ative contribution of viscous flow. The total flux of 
any spccics is obtained by combining the separate 
contributions; it is helpful in this regard to keep the 
electric analogue circuit in mind (see Fig. 20). For 
diffusion inside macropores all contributions may be 
important. In order to demonstrate this, we present 
the experimental results of Sloot (1991) on the total 
flux of H2S through a catalytic membrane made up of 
a-alumina with a mean pore diameter of 350 nm, 
impregnated with y-alumina, the catalyst for the 
Claus reaction (see Fig. 21). The experimental results 
of Sloot (199 1) show that, despite the relatively large 
pore size, there is a very significant contribution due 
to surface diffusion, amounting to about 60-80% of 
bulk and Knudsen contributions. The high surface 
diffusion contribution is to be attributed to the strong 
adsorption of HZS. 

Setting up of the Maxwell-Stefan diffusion equa- 
tions for combined bulk, Knudsen and surface dif- 
fusion is a straightforward combination of the formal- 
isms developed earlier in this paper. It is helpful to 

Fig. 20. Electric analogue circuit picturing the flux of the 
diffusing species within a porous medium (after Mason and 

Malinauskas, 1983). 

catalytic membrane 

Fig. 21. Contributions of bulk, Knudsen and surface djf- 
fusion for transfer of H,S across a catalytic membrane carry- 
ing the Claus reaction: 2H,S + SO,+& + 2H,O (after 

Sloot, 1991). 
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have a physical picture of the combined phenomena 
in mind. Towards this end we propose the crated 
dusty gas model. The large dust molecules, of infinite 
molar mass, representing the medium have craters on 
its exterior surface representing the adsorption sites 
(see Fig. 22). Molecule-molecule collisions and mo- 
leculedust collisions occurring in series, result, re- 
spectively, in bulk and Knudsen diffusion. In addition 
each of the molecular species may be adsorbed on the 
active sites of the medium. These vacant sites are also 
accorded the status of pseudo-species, of vanishing 
molar mass, and may be thought of as being akin to 
craters on a golf ball. The adsorbed species move 
(“hop” or “jump”) from one crater to another and 
may undergo desorption to the bulk fluid phase. 

Hu and Do (1992) present experimental results for 
transient uptake of ethane and n-butane on to ac- 
tivated carbon at 30°C and 101.35 kPa. Their experi- 
mental results are presented in Fig. 23, wherein it is to 
be noted that the fractional uptake of each of the 
species is normalised with its own final equilibrium 
concentration. It is for this reason that the fractional 
uptake of each species approaches unity at equilib- 
rium. The uptake profile for ethane exhibits a max- 
imum at t = 40 s; this maximum concentration is 
about three times larger than its equilibrium concen- 
tration. We note the striking similarity of the transient 
uptake profiles in Fig. 23 with the results presented in 
Fig. 18 for uptake of benzene and n-heptane in NaX 
zeolite. The smooth curves presented in Fig. 23 rep- 
resent the simulations of Hu and Do (1992) using 
a combined model with bulk, Knudsen and surface 
diffusion. For the Fick surface diffusivity matrix Hu 

Fig. 22. The three mechanisms of bulk, Knudsen and surface 
diffusion can be. integrated into a common physical picture 
in which the porous medium is modelled as giant dust 
molecules (golf balls), with craters representing the adsorp- 

tion sites. 

Fractional 

a 100 200 300 

time ls] ’ 

Fig. 23. Transient uptake of ethane and n-butane by ac- 
tivated carbon, in which both micropore and macropore 

resistances are significant (after Hu and Do, 1992). 

and Do (1992) use the relation 

For the calculation of the thermodynamic factor 
matrix [r], Hu and Do (1992) make use of the rela- 
tion (31). The simulations are able to reproduce the 
essential character of the experimentally observed 
profiles. 

CLOSING REMARKS 

In this paper we have attempted to model intrapar- 
title diffusion inside a porous medium in a unified 
consistent manner using a simple mechanistic picture 
of diffusion: To move a species with respect to other 
species (i.e. to allow a species to diffuse), we must exert 
a force on it; this force is the gradient of the chemical 
potential. During species diffusion, drag is encoun- 
tered with other molecular species and we have a bal- 
ance between the applied force and frictional drag 
with the other molecular species. Using this simple, 
hydrodynamic, model, i.e. the Maxwell-Stefan formu- 
lation, we set out to model, in turn, bulk, Knudsen 
and surface diffusion. Throughout the discussions we 
have tried to point out the shortcomings of the com- 
monly used Fick formulation to describe each of the 
three diffusion mechanisms inside porous particles. 
The Fick formulation has been shown to fail even at 
the qualitative level to explain the observed diffusion 
phenomena such as osmotic diffusion, diffusion bar- 
rier and reverse diffusion. 

The major advantage of the Maxwell-Stefan for- 
mulation is that it is possible, in principle, to predict 
the hehaviour of a multicomponent mixture on the 
basis of the following information: 

(i) Maxwell-Stefan binary pair diffusivities: O,,, 
%,xn and Otv+, which may be obtained from binary 
experimental data; and 

(ii) multicomponent solution thermodynamics; in 
particular, the matrix of thermodynamic factor [I] in 
the bulk fluid mixture [cf. eq. (20)] and on the surface 
cd. eq. (3111. 
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For bulk and Knudsen diffusion of ideal gas mix- 
tures in porous media, the theory (the dusty gas 
model) is almost fully developed but there are still 
a few unanswered questions in the development of the 
theory of multicomponent surface diffusion of ad- 
sorbed species, including those concerning the choice 
of the reference velocity frame. The crated dusty gas 
(golf ball) model has been suggested as a tenable 
physical picture to be used for combining all three 
diffusion mechanisms. 

It has been suggested in the discussions that 
a proper understanding and modelling of the diffusion 
processes may provide new ideas for the development 
of diffusion-selective adsorption processes. 

Acknowledgement-The author expresses his gratitude to the 
referee for drawing attention to the basis of the derivation of 
eq. (43). 
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NOTATION 

permeability, m2 
matrix of inverted Maxwell-Stefan dif- 
fusivities defined in eq. (22), mm2 s1 
molar concentration of the mixture, 
molme3 
molar concentration of species i, mol mm3 
total saturation concentration of surface, 
molm-’ 
pore diameter, m 
Fick diffusivity in binary mixture, m2 se1 
matrix of Fick diffusivities for multicom- 
ponent system, m2 s- 1 
Maxwell-Stefan diffusivity in bulk fluid 
phase, m2 s- ’ 
Knudsen diffusivity of component i, 
mZs-’ 
counter-sorption Maxwell-Stefan diffus- 
ivity, m2 s-l 
single-component surface diffusivity, 
rn’s-l 
tracer diffusivity of component 1, m2 s-l 
effective surface diffusivity, mz s- 1 
fugacity of species i; 5 = pi for ideal gases, 
Pa 
identity matrix with elements 6,, dimen- 
sionless 
column vector of diffusion fluxes, 
molmm2 s-l 
diffusion flux of species i relative to the 
molar average reference velocity, v, mol 
m-2s-1 

stoichiometric coefficient of reaction, di- 
mensionless 
molar mass of species i, kg mol- 1 
number of diffusing species, dimensionless 
molar flux of species i in a stationary co- 
ordinate frame of reference, mol mol -2 s- ’ 
surface flux, mol m- ’ s- ’ 
system pressure, Pa 
partial pressure of species i, Pa 
gas constant, 8.314 J mol-‘K-l 

t 

T 

Vi 

Vl,V2 

V 

Xi 

VXi 

z 

is the rate of production of i due to chem- 
ical reaction within the pellet, mol m- ’ s- ’ 
time, s 
absolute temperature, K 
is the velocity of the diffusing species i, 
ms-’ 
z-coordinate velocities of species 1 and 2, 
ms-’ 
molar average mixture velocity, ms-’ 
/ I \ 
( = $, Xivi) 

. , 
mole fraction of species i 
gradient of the component mole fraction 
can be regarded as the driving force for 
diffusion. 
direction coordinate, m 

Greek letters 

Yi 

l- 

cr1 

4.i 

d 

tl 

Pi 

Vl 

Subscripts 

i,j 
eff 
Kn 
t 
viscous 
x1 -0 

Xl + 1 

activity coefficient of species i in mixture, 
dimensionless 
thermodynamic correction factor for bi- 
nary mixture, dimensionless 
matrix of thermodynamic factors, dimen- 
sionless 
Kronecker delta (= 1 if i = j; = 0 if i z j), 
dimensionless 
fractional surface occupancy of compon- 
ent i, dimensionless 
lateral displacement during surface dif- 
fusion, m 
fluid mixture viscosity, Pas 
molar chemical potential, J mol- 1 
jump frequency of component 1, s-l 

components in mixture 
effective parameter 
Knudsen coefficient 
total mixture 
viscous flow parameter 
for vanishing small concentration of spe- 
cies 1 
for almost pure component 1 

Superscripts 

s, 
surface 
standard state 
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