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Abstract-Expresstons for calculatmg steady state mass transfer rates m n-component flmd mixtures across planar, 
cyhndncal and spherical interfaces are presented m a common format usmg matruc formulations The resultmg 
generalized multIcomponent film model for non-ideal flmd mixtures IS based on an analytic solution to the 
Maxwell-Stefan equations 

INTRODUCTION 

In many interphase mass transfer processes the film 
model affords a convement and simple method for 
estlmatmg the transfer rates In the development of the 
film model It 1s assumed that the mass transfer process 1s 
governed by steady-state molecular dtiuslon across a 
“film”, a thm layer adjacent to the Interface Expressions 
for the transfer coefficients and transfer rates are obtamed 
by solution of the equations of contmulty m the 
appropriate coordinate system For two component 
mixtures, solution of the steady-state dfiuslon equations 
have been dlscussed thoroughly m the literature (e g [l]) 
For systems with three or more species, multlcomponent 
systems, solutions are available for various special 
cases [2-lo] The ObJect of the current work is to provide a 
common format for representmg the steady-state solu- 
tions for dlffuslon of n-component non-Ideal fluld 
mixtures across planar, cyhndncal and spherical mter- 
faces The analysis 1s slmllar to that presented m Refs 
[S-lo] and 1s based on a matnx method of solution to the 
Maxwell-Stefan equations, suitably generahzed for non- 
ideal fluid mixtures 

ANALYSIS 
For steady-state ddfusion m n-component fhud mix- 

tures, the equations of contmulty reduce to [ l] 

V N,=O, r=1.2, n (1) 

where N, 1s the molar flux of species 1 m the diffusing 
nuxture with respect to a stationary coordmate frame of 
reference and IS gven by 

N, = c,u,, l=l,2, n (2) 

where u, 1s the velocity of the dlffusmg species 1 The 
mixture molar flux N, 1s obtained by summmg eqn (2) over 
the n species m the mixture 

II 

N,=~c,u,=c~x,u,=cu 
a=1 I=1 
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where u 1s the molar average velocity of the diffusing 
nuxture Other choices for the mixture velocity are 
possible [ 11-131 but for most apphcatlons m chemical 
engmeermg the molar average velocity 1s convenient and 
will be used here We may define dlffuslon fluxes relative 
to the mixture velocity as 

Jz = c,(u, - ~1, i=l,2, n (4) 

and therefore the molar fluxes N, can be wntten, m view 
of eqns (2)-(4), m terms of the dlffuslve and convective 
contibutlons as 

N, = J, + c,u = J, + x,N,, 1=1,2, n (5) 

The n diffusion fluxes J, are not all Independent for on 
summing (4) we find m view of eqn (3) that 

lgJt=O 

and therefore only n - 1 of the ddfuslon fluxes are 
independent 

The dtiuslonal transport process w&m the flmd 
mixture 1s correctly portrayed by the dlffuslon fluxes J, 
whereas the molar fluxes N, are the ones which are 
unportant from an enaneermg pomt of view and appear m 
matenal and energy balance relationshps The ObJect of 
our analysis will therefore be to obtam a convement 
expression for calcuIatlon of the molar fluxes N, 

For um-r-dlrectlonal diffusion, eqns (1) slmphfy to give 
for transfer across planar, cyhndncal and spherical 
interfaces 

Planar 

dN -rr=O 
dr ’ 

Cylrndncal 

do=0 
dr ’ 

1= 1,2, 

1 = 1,2, 

n 

n 

(7) 

(8) 

659 
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Spherical and therefore there 1s only one independent dfiuslon 

d(rZNr) _ O 
coefliclent descnbmg the dlffuslonal transport m a 

-- 
dr ’ 

1=1,2, n (9) two-component system 
For an n-component mixture If we consider a nave 

Consistent with the film model, we assume that the 
extension of (16) as 

molecular dlffuslon process 1s resticted to a region 
between the surfaces r = rO and r = rs The thickness of 
the film 1s therefore given by 

d& &=-C%,,, 1=1,2, II (20) 

S = r, - r, (10) 
then It can be shown [ 141 that the constituent dlffuslvltles 
gs must all be ldentlcal 

Equations (7) imply that the molar fluxes N, are 
mvanant across the thickness of the planar film 

% = %, 2 = 1,2, n-l (21) 

N,, = NC, = N,, r=l,2, n (11) 
Equations (21) requue that each species m the 

n-component mixture to have equal facility for transfer 

For cyhndncal films we have from eqns (8) 
lrrespectlve of Its molecular size and nature Clearly, this 
simple descnptlon of dtiuslonal transport can only be 

rX = r&L = r&L, 1=1,2, n (12) 
expected to hold for ideal fluid mixtures For the general 
case of non-ideal fluld mixtures we must allow for the 

and for spherical films, eqns (9) give 

r2N,, = r02N,0 = r,‘N,, r=l,2, n (13) 

It 1s clear from eqns (1 l)-(13) that rf the molar fluxes 
N,, are calculated at the surface r = ro, then the fluxes at 
any other surface can be obtamed stra&tforwardly In 
order to calculate the fluxes N,, we requue to solve the 
dtierentlal eqns (7)-(9) In many apphcations of chenucal 
engmeenng Importance the composltlons (expressed 
convemently m terms of mole fractions) are known at 
either end of the dtiuslon path, we thus have the 
boundary condltlons 

r = ro, x, = x,~, 1=1,2, n (14) 

r = rs, x, = x,, r=l,2, n (15) 

To determine the composltlon profiles across the film, 
which wdl allow calculation of the fluxes, we need 
constltutive equations relatmg fluxes to the compositions 
and composltlon gra&ents For binary nuxtures the 
constitutlve relations are given by the Flck’s law 

drl 
J,r = - cka,zhr 

couphng between the various species transfers The 
proper generahzatlon of eqn (16) 1s 

n-1 

I,,=-ccD,+, 1= 1,2, n-1 (22) !I=, 

where D,t, 1, k = 1, 2, n - 1, are the generalized Flck’s 
law tiuslvltles The cross coefficients Dtr (I # k) account 
for the coupling between the various species transfers In 
view of eqns (6) and (18) only n - I drffuslon fluxes and 
composltlon gradients are considered m eqn (22) For 
n = 2, eqns (22) simplify to eqn (16) 

A more fundamental formulation of the constltutlve 
relations for n-component dtiuslon 1s obtained by usmg 
the prmclples of Irreversible Thermodynamics [ 111 For 

‘isothermal-lsobanc diffusion under condltlons m which 
mechanical eqmhbrmm may be assumed we get the 
expression for the rate of entropy production as 

(23) 

The molar chemical potential gradients dpJdr arise as the 
proper drlvmg forces for dlffuslon m non-ideal mixtures 
However, the n chemlcaI potential gradients are not all 
independent because of the Gibbs-Duhem restrlctlon 

where CiJ12 IS the binary dlffuslon coefficient of species 1 m 
2 We may mte an analogous expression for component 2 
as 

J,, = - CC&, 9 (17) 
Incorporating the restramts (6), (18) and (24) m eqn (23) 

we may mte u m terms of independent fluxes and driving 
forces as 

but in view of eqns (6) and the constramt 

(18) 

n--l 

~=~JzrY, 
,=I 

It 1s easy to check that 
where the modtied driving forces are defined as 

(25) 
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If we define a matnx [B] wth elements gven by where 

AJ, = 6, -t xJx,,, r,k= 1,2, n-l (27) 

If we postulate hnear constrtutlve relations of the form 

n-l 

-4, =c LkYk, I = 1,2, n-1 (28) k-1 

B,, =$ + g, *:> I= 1,2, n-l (36) #?I I 
kiL 

B, = -x,(1/-Q - l/B& z,k= 1.2, n-1 
r#k (371 

we may wnte eqns (35) m view of eqn (31) as 
then the matrrx of coefficients [L] 1s symmetic 

L,k = Lk,, r,k=1,2, n-l (29) 
t#k 

accordmg the Onsager Reciprocal Relations 
Now, the n - 1 mdependent chenucal potential 

gradients may be related to the mole fraction gradients as 

We may ante eqn (30) m the form 

x,~=RT&$, I = 1,2, n-1 (31) 
k=l 

where we have defined thermodynamic factors r,k by 

r,k=l,2, n-1 (32) 

Combmatlon of eqns (26), (28) and (31) gves m matnx 
notation 

(Jr) = - R[L][A] ‘+, [r] y (33) 

which when compared with the eqn (22) shows the 
relation between the generalized Flck’s law dlffuslvltles 
D+. and the Onsager coefficients LA 

clDl= R[LIIAl ‘;, rl (34) 

The Onsager Reciprocal Relations (29) reduce the number 
of independent dlffuslon coefficients D,k descnbmg 
n-component dlffuslon from (n - l)* to n(n - 1)/2 

As an alternative to the Onsager formulation of the 
constitutlve relations, we may relate the chemical 
potential gradients to the ddiuslon fluxes by the 
generahzed Maxwell-Stefan equations [12,15,16] 

where+* are the generahzed Maxwell-Stefan dtiusion 
coefficients 

d(x) dri -Jy = - [BIVr) 

Comparison of eqns (22) and (38) shows that 

(38) 

[Dl = WI-‘[rl (39) 

and therefore the generahzed Maxwell-Stefan equations 
are consistent with the generahzed Flck’s law formulation 
and (22) and also the Onsager formulation (28) From eqns 
(34) and (39) we get 

[L] = 5 [B]-1 rl. -’ [A]-’ 
R XJ 

It may be checked with the aid of eqn (40) that the 
Onsager Reciprocal Relations (29) lead to the relationshIp 

*lk = a,, l,k=l,2, n (41) 
r#k 

The generahzed Maxwell-Stefan equations are par- 
ticularly convenient because of the mbullt symmetry 
relation (41) and therefore only n(n - 1)/2 tiuslon 
coefficients are used in (35) The coefficients *,I, can be 
related to the molecular transport processes occumng 
wlthm the fluid mixture and therefore the relation (39) 
may be used for predlctmg the elements of the matrvr of 
Flck’s law dlffuslvltles [D], as discussed m detail by 
Cussler [ 171 Another advantage of the generahzed Max- 
well-Stefan formulation IS that the composltlon gradients 
can be related directly to the molar fluxes N,, (see eqn 35) 
and therefore afford a convement method for deter- 
nunatlon of the fluxes when combmed with the contuuuty 
relations (7)-(9) 

In order to present the expressions for the molar fluxes 
N, m a common format we define a dunenslonless 
distance along the dlrectlon of dlffuslon, 7, by 

Planar 

r-r,_r-r. 
II=--- r, - r. S 

Cylmdncal 

7j = In (rlr,) 

Spherical 

q = 1-r,/r 

(42) 

(43) 

(44) 
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With defimtlons (42)-(44) we may write eqns (35) m 
terms of the molar fluxes N,, at surface r = r. (11 = 0) as 

(45) 

where I 1s a characterlstlc distance, for planar mterfaces 
this characteristic &stance 1s the film thickness S, for 
cyhndrlcal and spherical interfaces the characterlstlc 
distance 1s the radius r. 

The boundary conditions required for the solution of 
eqns (45) are obtamed from (14), (15), (42)-(44) as 

r = ro, 7~ = 0, x, = xto. r=1,2, II (4) 

r = ray 77 = Va, & = Aa, 1=1,2, n (47) 

(plane qs = 1, cylinder qa = In (rJro), sphere 78 = l- 
rolr,) 

The first step m the calculation of the fluxes N,, 1s the 
determmatlon of the composlhon profiles across the film, 
to obtain these profiles It becomes convenient to represent 
eqns (45) in matnx notation as 

[I-] d(x) dr, = [@l(x) + (5) 

where the elements of [@I are gven by 

W) 

@c, = *f&$&i, r=L2, n--l (49) 

at, = -NC0 &I = 1,2, n-1 

IfI (50) 

and the elements of th column matnx (C) are gwen as 

g_& 
C 3,ll’ 

1= 1,2, n-l (51) 

Both-D,,, and Ta are functions of the composltlons x, m 
the fluid mixture and therefore, strictly speakmg, eqn (48) 
represents a set of n - 1 coupled non-linear dtierentlal 
equations If complete mformatlon on the activity 
coefficients m solution are available together with data on 
the +A, the eqn (48) may be solved usmg numerical 
techniques However, a simple analytical solution 1s 
possible d we make some sunphfymg assumptions 
Expenmental data on diffusion in both bmary and ternary 
mixtures [17-191 show that the generahzed Maxwell- 
Stefan dtiuslon coefficients show a predlctable com- 
posltlon dependence and this dependence 1s less strong 
than that exhibited by the generahzed Flck’s law 
dlffuslvltles L& For the purposes of our analysis we 
assume that the coefficients ~0, are independent of 
composltlon For small composltlon changes the activity 
coefficient variation with composltlon may also be 
assumed constant, 1 e we assume that Ta IS independent 
of composition In practice, we must use suitably 
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averaged values of CO,, and rcr For thermodynamically 
ideal flmd mixtures the matnx [r] degenerates to the 
identity mamx and therefore the assumption of constant 
r,, would seem to be a good one for not-too-nomdeal 
mixtures Sumlarly, for mixtures of Ideal gases, the 
Maxwell-Stefan dtiuslvltles +D,r become identical to the 
dlffuslvltles of the correspondmg bmary pours, i&, which 
are essentially composltlon Independent 

With the slmphfymg assumptions as discussed above, 
the eqns (48) reduce to a set of n - 1 coupled linear 
dtierentlal equations, the solution to these equations may 
be obtained strarghtforwardly as [S-lo, 201 

(x - x0) = iexp l@l7j - ‘I,) {exp 1477, - ‘~J*(xa -X0) 

(52) 

where we further define a matix [19] by 

[e] = u-q-pi (53) 

The composltlon gradient at the surface r = r. (TJ = 0) 
can be obtamed by dtierentiatmg eqn (52), we get 

d(x) 
dr, I = - [@I {exp CWVa - ‘13-‘(Xo - Xa) (54) rl=o 

Evaluatmg equation (38) at the surface r = r, (q = 0) we 
obtain the column matrix of n - 1 dlffuslon fluxes (Jo) as 

(Jo) = - f I&-m $y n=. (55) 

where the elements of [Bo] are evaluated from eqns (36) 
and (37) usmg the composltlons x,0 

Combmmg equations (54) and (55) we obtam and 
expression for calcuiatmg the n - 1 tiuslon fluxes Jo as 

(JO) = 4 [&-‘PX01 (exp [@I 17s - ‘I$‘(x0 - xa 1 (56) 

It IS clear from equations (5) that the knowledge of the 
n - 1 independent dtiuslon fluxes Jo are msufficlent by 
themselves to allow calculation of the n molar fluxes N,,, 
we need an additional piece of mformatlon 
This additional relatlonshlp usually takes the form of a 
linear dependence between the fluxes N,, 

2 A,N,o = 0 
,=I 

From eqns (2)-(6) and (57) we obtain 

n--L 
N 

ID 
= _ z, (At - &l)JIO 

2 AkxkO 
k=1 

and 

(57) 

(58) 

n-l (59) 
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where the elements of the matrrx [@I are given by 

r,k= 1,2, n-l (60) 

with 

k = 1,2, n-1 (61) 

For con&tlons of equnnolar counter dlffuslon 

we have 

N,,=O (62) 

h,=h,,h,=O,/3*=&, z = 1,2, n - 1 (63) 
k= 1,2, n-l 

For dlffuslon of n - 1 species through a stagnant nth 
species 

we get 

N,,=O (64) 

h, = 0, A, = - llxllO, al = & + &JxnO, 

z = 1,2, n-l (65) 

k=l,2, n-1 

For simultaneous heat and mass transfer processes m 
vapour-hqmd systems m the absence of inert gases, the 
parameters At are obtamed from a materml balance at the 
interface gving [21] 

A, =fl:-H;, z=l,2, n (66) 

where R? and H, are the partial molar enthalples of 
species z m the vapour and liquid phases 

Combmmg eqns (56) and (59) we get the final expresslon 
for the calculation of the molar fluxes N,, as 

UG) = f U31[BolTl~~l {exp [@Ia - ‘I,I-‘CG -4 (67) 

The expression (67) 1s not truly explicit m the fluxes N,, 
and requires a trial and error solution as described m 
[S, 91 For the purposes of dlscusslons it 1s convenient to 
define five further matrices 

(1) A matrix of correctlon factors showing the effect of 
fimte mass transfer rates on the transfer coefficients and 
transfer rates 

@I= Eel {exp EOlw - rTJ-’ @) 

(II) A matnx of zero flux dlffuslve mass transfer 
coefficients 

[k] = f [B,]-‘[r] (69) 

(in) A matrw of fimte flux dtiuslve mass transfer 

coefficients 

[k-l = [k][Z] (70) 

The superscnpt black dot 0 1s used to remind us that the 
coefficients kz are themselves dependent on the transfer 
rates N,, 

(1~) Matrix of zero flux total transfer coefficients 

VU= [B11kl (71) 

(v) A matrix of fimte flux total transfer coefficients 

W-1 = W'-l[Zl = [BlIklEl= Wltk’1 (72) 

The definitions of the finite flux mass transfer 
coefficients 1s the generahzatlon of this concept for binary 
mass transfer discussed clearly by Bird, Stewart and 
Llghtfoot[l], who also show that it 1s the dlffuslve set of 
mass transfer coefficients, k,,., which correctly portray the 
diffusional transport process takmg place wlthm the fluid 
phase The total transfer coefficients w’, reflect not only 
the diffusive nature of transport but also contam the effect 
of the bulk flow of the mixture 

It 1s easy to check from eqns (49), (50), (53) and (68) that 
for vamshmgly low rates of mass transfer, 1 e N.,+ 0, the 
matnx of correction factors [E] reduces to the identity 
matnx and the set of finite flux mass transfer coefficients 
become equal to the set of zero flux mass transfer 
coefficients 

DISCUsslON OF SPECIAL CASES 

The foregoing analysis applies to the general case of 
diffusion 111 n-component non-ideal fhnd mixtures For 
specml cases we recover many of the classic results 
available m the Merature We discuss some of these 
special cases below 

For dtiuslon m binary nuxtures, all matrices above 
degenerate to scalars and eqn (67)-(72) give 

N,cl = %(&I - X18) (73) 

where 

The zero flux binary mass transfer coefficient k,, IS 
gven by 

k,, = f ga,, (75) 

where g,* 1s the binary dlffunvlty in the fluid mixture 
related to the Maxwell-Stefan dlffuslvlty D,, by 

912 = -%I-,, = B,* ( 
1+ 2) 

I (76) 

The Maxwell-Stefan dtiuslvlty -DIZ can be predicted over 
the entire composlhon range d the mfimte dilute values 
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are known[lS, 191, eqn (76) thus provides a method for 
predlctmg C& 

For condltlons of eqmmolar counter dtiuslon m a 
binary mrxture, eqns (73) simphfies to ave (see eqns 62 
and 63) 

N,, = k,,(X,o - xzs) (77) 

where k,, IS gwen by eqn (75) 
For binary nuxtures of ideal gases r,, = 1 and eqn (76) 

gives 

1 e the binary gas phase dfiuslvlty, gYlz, 1s identical to the 
Maxwell-Stefan dtiuslvlty and 1s essentially composltton 

r = r,, r),, = 0, bulk gas, y10 = 0 03, y, = 0 00 
(82) 

independent r=r,,7)6=1, mterface, y,, = 0 00, yZ8 = 0 36315 
For bmary mass transfer to spherical bodies, it IS easy 

to check with the ald of eqn (75) that the Sherwood 
number defined as 

The dlffuslon problem requires NXO = N,, = 0 and 
therefore we may apply the paramebc solution obtamed 
by Gdhland to calculate the fluxes N, and NZ Gdlrland’s 
equations are Sh ~ kr, X (diameter of spherical body) 

C3,Z (79) 

equals 2, a classlcal result 
For diffusion of species 1 through stagnant 2, eqn (73) 

simpldies to (see eqns 64 and 65) 

(80) 

which represents another well-known result 
For dtiuslon m n-component ideal gas mixtures eqn 

(67) reduces to 

(81) 

which for planar interfaces (Q = 1, 1 = S) 1s equivalent to 
the expression derived by Knshna and Standart[91 and 
for spherical “films” (qB = 1 - r,,/rs, I= ro), we recover the 
result obtained by Knshna[lO] 

For ternary gas dlffuslon m ideal gas mixtures, analmc 
solutions to the Maxwell-Stefan equations m parametnc 
form are also avadable m the hterature, thus GlUlIand[4] 
presents a solution for dfiuslon of two gases through a 
stagnant third (Nm = 0) and Toor[22] has presented a 
solution for equunolar counter dtiuslon m three com- 
ponent gas mixtures These analytic solutions are 
however unstable and may give nse to multiple roots To 
illustrate the problem of determmmg the umqueness of 
solutions to ternary gas dlffuslon we consider a problem 
first set by Sherwood[23], rewntten here m SI units 

Ammonia 1s dlffusmg from an au-ammoma nuxture mto 
water under a total pressure of 20265 N/m* Assume that 
the ddfuslon takes place through a stagnant gas layer 
0 001 m thuzk at an average temperature of 328 15 K At 
one point m the contacting apparatus the gas contams 3% 
ammonia by volume and the concentratron of ammonia m 
the water IS so low that the partml pressure of ammoma 
over the solutlon may be neglected at the pomt under 

conslderatlon The bulk gas 1s dry Allowmg for water 
vaponzahon, calculate the rate of dlffuslon of ammoma 
Label ammoma = 1, water = 2, a~ = 3 

Data the vapour pressure of water at 328 15 K IS 
7359N/m’ The dBuslvIfies of the bmary gas 
pairs at the system pressure and temperature are 

9Jl2 = 0 0001470 m*/s, C&,,, = 0 0001075 m*/s, 
9~~~~ = 0 0001245 m2/s 

From the @ven data the boundary condltlons for steady 
state dtiuslon across the mterface, assumed to be planar, 
can be wntten 

2 + 2 = In (YJY~ (83) 

v = In [F-g F-T] (84) 

where the following parameters have been defined 

% = c%ds, 1~ = 12, 13,23 (85) 

z = AC/W, + Nz), 1=1,2 (86) 

a, = l/X, - ll%,, ZJ = 12,21 (87) 

The solution to eqns (83), (84) reqmres a tnal and error 
approach, dependmg on the starhng guess values for N1, 
N2 three sets of solutions are obtained 

Set I N, = - 2 47 x lo-’ kmol/(s)(m*), 
N2 = 2 47 x lo-* kmol/(s)(m’) 

Set II N, = 4 46 x 10m4 kmol/(s)(m2), 
Nz = -9 08 x 10e4 kmol/(s)(m*) 

Set III, N1 = 2 11 x lo-’ kmol/(s)(m’), 
Nz = - 4 14 x 10M4 kmol/(s)(m*) 

By a process of physical reasonmg, Sherwood[23] 
concludes that the correct root IS that gven by Set III 
P hyslcal reasomng 1s not always posuble, especially d the 
solution to the eqnations form part of a computerized 
step-wise design procedure for say an absorption column, 
we reqmre a stable solution which wdl always converge to 
the correct solution The matrix solution (81) 1s stable m 
its convergence, especially d the lteratlons are started 
assuming the matrix of correction factors [E] IS the 
ldentrty matrw Thus, solution of (81) aves the Set III 
fluxes 
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APPLICATION TO INTWPBASEMASS 
TRANSPORT PROCESSES 

The analysis thus far has been concerned with the 
derlvatlon of an analytlcal expression (67) for the 
calculation of the transfer fluxes N,, within a single fled 
phase For fluid-fluid interphase mass transport proces- 
ses, the above analysis ~111 hold for either phase d the 
composltlons (x,,) and (x8) are Identied with those 
prevadmg m the well-mixed core of bulk fluid and the 
interface respectively In view of the increased mterest m 
the application of the theory of irreversible ther- 
modynamlcs to interphase transport processes [24-371, it 
1s interesting to examine the validity of the assumption 
that symmetry relations analogous to eqn (29) hold for 
fundamentally defined interphase transfer coefficients, as 
assumed m Refs [24.31,33-351 

In view of equation of eqn (31), we may express the 
composltlon dtierence driving force (x0 - x6) as 

where rx,, , represents a diagonal matnx of averaged 
composltlons and [I’],. represents the matnx of ther- 
modynamic factors wrth averaged elements 

Thus If we define a matnx of fundamental transport 
coefficients by 

(Jo) = w~%.b - Pd (89) 

then it 1s seen from eqns (56), (88) and (89) that 

Lt can be checked with the aid of eqns (29), (40) and (90) 
that the fundamental mterphase transfer coefficient 
matrix [kW*] WLU only be symmetnc for vamshmgly small 
driving forces and therefore vamshmgly small fluxes N,, 

If we define total mass transfer coefficients [KP*] using 

then 

wti only be symmetric for equlmolar counter diffusion 
under conditions of vannhmgly small fluxes In the 
analysis of the experunental data for interphase mass 
transfer m the system water-acetone-glycerol, Standart et 
al [35] assumed that the matnx [&.I IS symmetic Their 
experimental data, showing very large dtiuslonal mterac- 
tlons, needs to be re-examined m the hght of the analysis 
presented m this paper 

In most mterphase mass transport processes of 
chemical engmeermg interest, the transfer takes place by 
both molecular and turbulent transport mechanism The 
mass transfer coefficient for two-component systems is 
found to be proportional to the ddfuslon coefficient to a 
power rangmg from 0 S to 0 7 In such cases the analysis 

presented m this paper may be used to calculate the 
matrix of mass transfer coefficients m the multlcom- 
ponent systems from information on the mass transfer 
coefficients of the constituent binary paus m the mixture 
For gas phase mass transfer, for example, we first 
calculate the mass transfer coefficients X,, from an 
appropriate mass transfer correlation, say of the rfactor 
type These binary mass transfer coefficients can be used 
to generate the matrix of zero flux multicomponent mass 
transfer coefficients [k] For a ternary system the 
elements of [k] are gwen by (see eqns 69, 78 and 85) 

(93) 

(94) 

where 

(95) 

(96) 

For mass transfer m non-ideal fled mixtures the 
elements calculated above m eqns (93)-(96) wdl have to 
be corrected for thermodynamic non-ldeahtles by use of 
eqn (69) 

CONCLUSIONS 

Usmg matrix analyst an analytic solution to the 
generahzed Maxwell-Stefan equations for steady-state 
n-component dtiusion m non-ideal lhud nuxtures has 
been obtamed for the composition profiles and the 
transfer rates In the development of the solution It has 
been assumed that the generahzed Maxwell-Stefan 
diffusion coefficients D,, and the elements r,, are 
independent of composition These assumptions are 
generally true for mixtures of ideal gases, for non-ideal 
hqmd mixtures these assumptions may be taken as good 
approxunations The results have been shown to yield 
many classical relatlonshlps m particular cases The 
matnx formulation has been shown to be a convement 
one and free from convergence ddficultles associated with 
some part~ular solutions sven m the literature for 
ternary gas ddfuslon 

NOTATION 

elements defined by eqn (27) 
inverted matrix of dtiuston coefficients with 

elements defined by eqns (36) and (37) 
total molar concentration of the dtiusmg nuxture 
molar concentration of species I m diffusing 

nuxture 
generahzed FGck’s law dtiuslvlties 
Maxwell-Stefan diffuslvity of par I - k in mul- 

ticomponent nuxture 
dtiuslvlty of bmary pau I -J 
dtiusivlty of binary pau I -J 111 ideal gas mixture 
pseudo-bmary dtiuslvity of species I in mul- 

ticomponent mixture 
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partial molar enthalpy of species I m multlcom- 
ponent mvrture 

IdentIty matrix with elements S,,+ 
molar diffusion flux of species with respect to the 

molar average reference velocity frame 
binary mass transfer coefficient for pau I -J 
matm of dtiuslve mass transfer coefficients 
matnx of fundamentally defined interphase mass 

transfer coefficients 

KRISHNA 

[@,I matnx of dunenslonless rate factors defined by 
eqns (49) and (50) 

Matrtx 
0 column mamx with n - 1 elements 
[ 1 n - 1 X n - 1 square matrix 

[ 1-l Inverted matrix of drmenslon n - 1 X n - 1 
r J diagonal matrix urlth n - 1 non-zero elements 

[Ku*1 matnx of fundamentally defined total Interphase Subscripts 
mass transfer coefficients av 

characterlstlc length, I= S for planar transport, 
I = r,, for transfer m cylmdrlcal and spherlcal 
films 0” 

fundamental or Onsager coefficients 
number of components m multlcomponent nux- i 

ture LL 
molar flux of spectes I m stationary coordinate 

reference frame 
mixture molar flux m stationary coordinate re- 

ference frame 
distance coordmate 
coordmate at inner surface of film 
coordmate at outer surface of film 
gas constant 
summation parameter defined m eqn (97) 
Sherwood Number 
absolute temperature 
dlffuslon velocity of specres I 
molar average velocity of dlffusmg mixture 
matnx of total mass transfer coefficients 
mole fraction of species I in multicomponent fhud 

nuxture 
diagonal matrix of averaged composltlons 
mole fraction of species I m ideal gas mixture 
modified drlvmg forces, gven by eqns (26) 
ratio of Ith molar flux to mixture molar flux, eqn 

(86) 

Greek symbols 
parameters defined by eqn (87) 
elements defined by eqn (60) 
activity coefficient of species 1 In solution 
matrix of thermodynamic factors defined by eqn 

(32) 
thickness of dtiuslon path or “film”, S = rd - r, 
Kronecker delta 
column matnx with elements grven by eqn (51) 
drmenslonless distance coordinate gven by eqns 

(42)~(44) 
&stance coordmate correspondmg to r = r, 
distance coordmate correspondmg to r = r, , 7)s = 1 

for planar films, qa = In (ra/rO) for cylmhcal 
films, qs = 1 - To/r8 for spherlcal films 

matrix defined by eqn (53) 
parameters defined m eqn (57) 
parameters defined m eqn (61) 
molar chenucal potent& of species I m mixture 
matnx of correction factors defined by eqn (68) 
rate of entropy production 

parameters suitably averaged over the com- 
posItion range encountered 

pertammg to nth species 
at surface r = r, 
gas phase 
parameter at surface r = rd 
fundamentally defined parameter 

Superscnp ts 
0 coefficients correspondmg to fimte mass transfer 

rates 
x pertammg to the hquld phase 
y pertalmng to the vapour phase 

REFERENCES 
[I] Bird R B , Stewart W E and LIghtfoot E N , Transport 

Phenomena Wfiey, New York 1960 
[Z] BenedIct M and Boas A, Chem EngngProg 195147 51,111 
131 Cxhelh M T . Weatherford W D . Jr and Bowman J R _ _ _ 

Chem EngngProg 1951 47 63, 125 
[4] G&land E R , In Absorption and Extractron, T K Sher- 

wood 1st Edn MC Graw I-II& New York (1937) 
[S] Hsu, Hslen-Wen and Bird R B , A ICh E .I 1960 6 516 

551 
Johns L E and 
1975 14 237 

DeGance A E Ind Eww Chem Fundls 

[7] Keyes J J and Pigford R L, Chem Engng Scr 1957 6 215 
[8] Knshna R , Lbts Heat Mass Truns 1976 3 153 
191 Krishna R and Standart G L A ICh E J 1976 22 383 

[IO] Knshna R , Letts Heat Mass Trans 1976 3 257 
[ll] De Groot S R and Mazur P , Nonequrhbnum Ther- 

1121 

1131 
[I41 

[I51 

WI 

[I71 

[I81 
[I91 
r201 

Ml 

P21 
[231 

WI 

P51 

modynamtcs North Holland, Amsterdam 1962 
Llghtfoot E N and Cussler E L , Chem Engng Prog Symp 
Ser No 58 1961 61 66 
ToorH L,AZChEJ 19628561 
Toor H L and Arnold K R Ind Engng Chem Fundls 1965 
4 363 
LIghtfoot E N Cussler E L and Rettlg R L A I Ch EJ 
I%2 8 708 
Slattery J C , Momentum, Energy and Mass Transfer m 
Confrnua McGraw-Hdl, New York 1972 
Cussler E L , Multwomponent hffusron Elsevler, Am- 
sterdam 1976 
Cullman H T , Ind Engng Chem Fundls 1966 5 281 
Vlgnes A, Ind Engng Chetn Fundls 1966 5 189 
Amundson N R, Mathematwai Methods m Chernwal 
Engmeermg Prentice-Hail, Englewood Cltis, New Jersey 
1966 
Knshna R and Standart G L , L.etts Heat Mass Trans 1976 3 
173 
Toor H L, AIChEJ 1957 3 198 
Sherwood T K , Absorptron and Extractron, 1st Edn 
McGraw-Hdl, New York 1937 
Bornhorst W J and Hatsopolous G N , Trans ASME, J 
Appi Mech 1%7 34 84.0 
Bupara S S , Ph D I)lssertatlon, Umverslty of Mmnesota 
(1965) (avaIlable from Umverslty mcroiilms, Ann Arbor, 
Mtchlgan, Order No 65-7873) 



Mass transfer m non -Ideal fled mixtures 

[26] Clarke R, Ph D Dissertation, Rxe Umverslty (1970) 
(Available from Umversity Microfilms, Ann Arbor, MI- 
chlgan, Order No 70-23491) 

[27] Georgescu L and Moldovan R, Surface SCI 1970 22 149 
[28] Ghez R , S&ace Scl 1970 20 326 
1291 Hopke S W , Ph D nssertatlon, Northwestern Umverslty 

(1970) (Avadable from Umverslty Mlcrofdms, Ann Arbor, 
Mlchlgan, Order No 71-1871) 

[30] Kehlen H , Baranowslu B and Poplelawskl J , 2 Phys 
Chemre Neue Forge 1973 86 282 

[31] Keklen H , Baranowslu B and Poplelawskt I, 2 Phys 
Chemre (Leipplzg) 1973 254 337, 1975 256 713 

[32] Murphy C L , Ph D hssertatlon, Umverslty of Mmnesota 

667 

(1966) (Avdable from Umverslty Mxrolilms, Ann Arbor, 
&h&n, Order No 67-10454) 

1331 Pomelawsh J ~ Surface Scr 1970 19 355 
[34] S&dart G L ; Chein Engng Scr 1%7 22 1417,1627, I%8 23 

279 
[35] Standart G L , Cullman H T , Paybarah A and Lows N , 

AIChEJ i975 21 554 
[36] Swartz C M , Ph D Dlssertatlon, Umverslty of Minnesota 

(1972) (Avadable from Umverslty Mlcrofihns, Ann Arbor, 
Mlchlgan, Order No 72-20152) 

[37] Walker R, Ph D nssertation, Umverslty of Connecticut 
(1974) (Avadable from Umverslty MIcrofilms, Ann Arbor, 
Michigan, Order No 74-16800) 

CES Vol 32 No bG 


