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Abstract—Expressions for calculating steady state mass transfer rates in n-component fllud mixtures across planar,
cylindrical and sphencal interfaces are presented 1n a common format using matrix formulations The resuiting
generahized multicomponent film model for non-ideal fluild mixtures 1s based on an analytic solution to the

Maxwell-Stefan equations

INTRODUCTION

In many interphase mass transfer processes the film
model affords a convenient and simple method for
estimating the transfer rates In the development of the
film model 1t 1s assumed that the mass transfer process 1s
governed by steady-state molecular diffusion across a
“film”, a thin layer adjacent to the interface Expressions
for the transfer coeflicients and transfer rates are obtamed
by solution of the equations of continuity m the
appropriate coordinate system For two component
muxtures, solution of the steady-state diffusion equations
have been discussed thoroughly in the hiterature (e g [11)
For systems with three or more species, multicomponent
systems, solutions are available for various special
cases [2-10] The object of the current work 1s to provide a
common format for representing the steady-state solu-
tions for diffusion of n-component non-ideal flurd
mixtures across planar, cylindrical and spherical inter-
faces The analysis 1s similar to that presented in Refs
[8-10] and 1s based on a matrnx method of solution to the
Maxwell-Stefan equations, suitably generalized for non-
1deal fllmd mixtures

ANALYSIS
For steady-state diffusion 1n n-component fliud mix-
tures, the equations of continuity reduce to[1]

V N, =0, 1=1,2, n (1)
where N, 1s the molar flux of species 1 in the diffusing
mxture with respect to a stationary coordinate frame of
reference and 1s given by

N, =cu, 1=1,2, n 2)
where u, 1s the velocity of the diffusing spectes ¢ The

muxture molar flux N, 1s obtained by summing eqn (2) over
the n species in the mixture

N, = zn: cu, = ci xu, =cu 3)
=1 =1
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where u 1s the molar average velocity of the diffusing
mixture Other choices for the mxture velocity are
possible[11-13] but for most applications m chemical
engineering the molar average velocity 1s convenient and
will be used here We may define diffusion fluxes relative
to the mixture velocity as
J=ca@-w, =12, n @
and therefore the molar fluxes N, can be written, i view
of eqns (2)-(4), 1n terms of the diffusive and convective
contributions as
N, =], +cu=17J, +xN,, 1=1,2, n (&)
The n diffusion fluxes J, are not all independent for on
summing (4) we find in view of eqn (3) that

2].=0 (6)

and therefore only n—1 of the diffusion fluxes are
mdependent

The diffusional transport process withm the fluid
mixture 1s correctly portrayed by the diffusion fluxes J,
whereas the molar fluxes N, are the ones which are
important from an engineering point of view and appear in
material and energy balance relationships The object of
our analysis will therefore be to obtain a convement
expression for calculation of the molar fluxes N,

For uni-r-directional diffusion, eqns (1) simphfy to give
for transfer across planar, cylindrical and spherical

mterfaces
Planar

dd_l\r’-r=o, 1=1,2, n @)
Cylindncal
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Sphenical

ar , 1=1,2, n

©)

Consistent with the film model, we assume that the
molecular diffusion process is restricted to a region
between the surfaces r =r, and r = r; The thickness of
the film 1s therefore given by

b=r—r (10)

Equations (7) imply that the molar fluxes N, are

mvariant across the thickness of the planar film

N, = N,p= N, 1=1,2, n (11
For cylindrical films we have from eqns (8)
N, = rgN,o = 1N, 1=1,2, =n (12)
and for spherical films, eqns (9) give
P°N,, = rN,o = 1’ N5, 1=1,2, n (13)

It 1s clear from eqns (11)-(13) that if the molar fluxes
N,, are calculated at the surface r = r,, then the fluxes at
any other surface can be obtamed straightforwardly In
order to calculate the fluxes N,, we requure to solve the
differential eqns (7)~(9) In many applications of chemical
engineering 1mportance the compositions (expressed
conveniently 1in terms of mole fractions) are known at
either end of the diffusion path, we thus have the
boundary conditions

1,2, n

1=1,2, n

r= r(h xl = xl(b 1= (14)

r= I X, = X, (15)

To determine the composition profiles across the film,
which will allow calculation of the fluxes, we need
constitutive equations relating fluxes to the compositions
and composition gradients For bimnary mxtures the

constitutive relations are given by the Fick’s law

dx,

Jir = *C@lz-(F (16)

where 2, 1s the binary diffusion coefficient of species 1 1n
2 We may write an analogous expression for component 2
as

== e, G2 an
but 1n view of eqns (6) and the constraint
n dx._
g =0 (18)
it 1s easy to check that
9]2 = @z] (19)
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and therefore there 1s only one independent diffusion
coefficient describing the diffusional transport mn a
two-component system

For an n-component mixture if we consider a naive
extension of (16) as

dx

Jr=—cDq 1=L2, n (20)

then 1t can be shown[14] that the constituent diffusivities
%, must all be identical
D, =D, 1=1,2, n—1 (21)

Equations (21) require that each species 1n the
n-component mixture to have equal faciity for transfer
wrrespective of 1ts molecular size and nature Clearly, this
simple description of diffusional transport can only be
expected to hold for ideal fllid mixtures For the general
case of non-ideal fluild mixtures we must allow for the

couphng between the various species transfers The
proper generalization of eqn (16) 1s
n—1
Jo=-cSD% 212 r-1 (@
k=1 dr

where D,, 1, k=1, 2, n — 1, are the generahzed Fick’s
law diffusivities The cross coefficients Dy (z# k) account
for the couphng between the various species transfers In
view of eqns (6) and (18) only n — 1 diffusion fluxes and
composition gradients are constdered 1n eqn (22) For
n =2, eqns (22) simplify to eqn (16)

A more fundamental formulation of the constitutive
relations for n-component diffusion 1s obtained by usmg
the principles of Irreversible Thermodynamics[11] For
Sisothermal-isobanic diffusion under conditions 1n which
mechanical equiibrium may be assumed we get the
expression for the rate of entropy production as

o1, da
o= T;I" dr

(23)
The molar chemical potential gradients du,/dr arise as the
proper driving forces for diffusion 1n non-ideal mixtures
However, the n chemical potential gradients are not all
independent because of the Gibbs-Duhem restriction

(24)

Incorporating the restraints (6), (18) and (24) n eqn (23)
we may write o 1n terms of independent fluxes and driving
forces as

o=2,1Y, (25)
where the modified driving forces are defined as
n_1
Y=—18 49 _12 a-1 @8
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where

Ay = 8y + Xl X, Lk=1,2, n—1 1))

If we postulate hnear constitutive relations of the form

a—1l
L= LY 1=1,2, n-1 (28)
k=1
then the matrix of coefficients [L] 1s symmetric
Ly = Ly, Lk=1,2, n-1 29)
1#k

according the Onsager Reciprocal Relations
Now, the n—1 mdependent chemical potential
gradients may be related to the mole fraction gradients as

d.u. 5 dxe _ 9 In (y.x.) dxe
,Z ox, dr TZ Xy dr’
1=1,2, n-1 (30)
We may write eqn (30) in the form
e oS dX - _
X g —RT,Z:II‘.,: 4 '=L2 n-1 Q@D

where we have defined thermodynamic factors I, by

X, dIny,

r'*=8‘*+xk dlnx’

Lk=12, n—-1 (32)

Combmation of eqns (26), (28) and (31) gives in matnx
notation

U)=-RiLIA] ¢ 12

(33)
which when compared with the eqn (22) shows the
relation between the generalized Fick’s law diffusivities
D, and the Onsager coefficients L,

D= RILIA]'§ [T] G4

The Onsager Reciprocal Relations (29) reduce the number
of independent diffusion coefficients D, describing
n-component diffusion from (n — 1)* to n(n — 1)/2

As an alternative to the Onsager formulation of the
constitutive relations, we may relate the chemical
potential gradients to the diffusion fluxes by the
generahized Maxwell-Stefan equations [12, 15, 16]

1 d”‘n erkr _ xk-NlI‘ xJkr xk]lr
RT®ar ,,2=1 by, ;‘;1 By
k#: k#1
1=1,2, n—1 (35)

where B, are the generalized Maxwell-Stefan diffusion
coefficients

If we define a matnx [B] with elements given by

X, Xy
B, ==+ =, =1,2, -
B ?:. B 1=1,2, n-1 36)
k=t
B.,=—x;(1"D.,“1/'Dm)a l’k=1’2’ n-1

1=k (37

we may write eqns (35) i view of eqn (31) as

d

o1 52 = —(B1) 38)

Comparison of eqns (22) and (38) shows that
[D1=[B] [l 39

and therefore the generalized Maxwell-Stefan equations
are consistent with the generahzed Fick’s law formulation
and (22) and also the Onsager formulation (28) From eqns
(34) and (39) we get

A

w-gmr L

(40)

It may be checked with the aid of eqn (40) that the
Onsager Reciprocal Relations (29) lead to the relationship
-le=.Dkl’ 'ak=1’2’ n

17k

“n

The generalized Maxwell-Stefan equations are par-
ticularly conventent because of the mbwlt symmetry
relation (41) and therefore only n(n—1)/2 diffusion
coefficients are used n (35) The coeflicients -B,. can be
related to the molecular transport processes occurring
within the fluud mixture and therefore the relation (39)
may be used for predicting the elements of the matnx of
Fick’s law diffusivities [D], as discussed m detail by
Cussler[17] Another advantage of the generalized Max-
well-Stefan formulation 1s that the composition gradients
can be related directly to the molar fluxes N,, (see eqn 35)
and therefore afford a convenient method for deter-
munation of the fluxes when combined with the continuity
relations (7)-(9)

In order to present the expressions for the molar fluxes
N, in a common format we define a dimensionless
distance along the direction of diffusion, 7, by

Planar
Cylindncal

7 =1n(riry) (43)
Spherical

n=1-rlr (44)
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With definitions (42)—(44) we may write eqns (35) mn
terms of the molar fluxes N,, at surface r =1, (3 =0) as

T d A XN~ %N
& Twdy =2~ Dl

k1

(45)

where [ 1s a characteristic distance, for planar interfaces
this charactenstic distance 1s the film thickness &, for
cylindrical and spherical interfaces the characteristic
distance 1s the radius r,

The boundary conditions required for the solution of
eqns (45) are obtained from (14), (15), (42)-(44) as
1=1,2, n (46)

r=r()’7' =09xl = X00

F=1I5M= Ngy X, = Xiss 1=1,2, n 47)
(plane m; =1, cylinder n; =1In(rs/r,), sphere 75 =1—
rol7s)

The first step 1n the calculation of the fluxes N, 1s the
determination of the composition profiles across the film,
to obtain these profiles i1t becomes convenient to represent

eqns (45) 1n matrix notation as

d(x)

175, = [P0+ 48)
where the elements of {®] are given by
_ N Nio _ 3
®"_cﬂnl1+k=lcﬂk/l’ =12, n—1 (49
k#1
1 1
q):J:—Mo(C_BH"C_Dn“’ I,]=1,2, n—1

I?é] (50)

and the elements of th column matnx ({) are given as

£ = N

e T2

n—1 1

Both-B,, and I'; are functions of the compositions x, in
the fllid mixture and therefore, strictly speaking, eqn (48)
represents a set of # —1 coupled non-hnear differential
equations If complete information on the activity
coefficients 1n solution are available together with data on
the B,, the eqn (48) may be solved using numerical
techniques However, a simple analytical solution 1s
possible if we make some sumplifying assumptions
Experimental data on diffusion 1n both bmary and ternary
muxtures[17-19] show that the generalized Maxwell-
Stefan diffusion coefficients show a predictable com-
position dependence and this dependence is less strong
than that exhibited by the generalized Fick’s law
diffusivities D, For the purposes of our analysis we
assume that the coefficients ¢B, are independent of
composition For small composition changes the activity
coefficient variation with composition may also be
assumed constant, 1 ¢ we assume that I, 1s independent
of composition In practice, we must use suitably

averaged values of ¢B, and I', For thermodynamucally
ideal fluid mixtures the matrix [I'] degenerates to the
identity matrix and therefore the assumption of constant
I'x. would seem to be a good one for not-too-nomdeal
mixtures Similarly, for mxtures of 1deal gases, the
Maxwell-Stefan diffusivities #,; become identical to the
diffusivities of the corresponding bmnary pairs, &,, which
are essentially composition mdependent

With the simplifying assumptions as discussed above,
the eqns (48) reduce to a set of n—1 coupled linear
differential equations, the solution to these equations may
be obtained straightforwardly as[8-10, 20]

(x — xo) ={exp [@]1n — "I} {exp [8)ns — "L} (x5 — X0)
(52)

where we further define a matrix [#] by

[8]1=[T1"[®] (53)
The composition gradient at the surface r=r, (17 = 0)
can be obtained by differentiating eqn (52), we get

d(x)

d'n =0 =T [0] {CXp [0]173 - rIJ}il(xo — xs)

(54)

Evaluating equation (38) at the surface r = r, (n = 0) we
obtain the column matrix of n — 1 diffusion fluxes (J,) as

d(x)

__c —1ry QLX)
Uy=-fBrme|

(55)

where the elements of [B,] are evaluated from eqns (36)
and (37) using the compositions x,o

Combining equations (54) and (55) we obtain and
expression for calculating the n — 1 diffusion fluxes J, as

(Jo) =7 [Bol[C1[8) {exp [81ms — "L} "(x0— %) (56)

It 1s clear from equations (5) that the knowledge of the
n —1 independent diffusion fluxes J, are msufficient by
themselves to allow calculation of the n molar fluxes Ny,
we need an additional prece of information
This additional relationship usually takes the form of a
linear dependence between the fluxes N,

> ANo=0 k0
=1
From eqns (2)-(6) and (57) we obtain
n—1
>, (A — Ao
No=—-*t—«—— (38)
z ArXxo
k=1
and
No=3 Buho, 1=1,2, n-—1 (59)
k=1
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where the elements of the matrix [8] are given by

.Blk = 8|k - xlOAks i k = la 2, n—1 (60)
with
Ak=’}+_~ﬁ, k=12, n-1 61)
2 l\xxno
=1
For conditions of equumolar counter diffusion
Nypy=0 (62)
we have
A=A A =0, 8s =84 1=1,2, n—-1 (63)
k=12, n—1

For diffusion of n —1 species through a stagnant nth
species

N,,=0 (64)
we get
A =0, A, =~ 1/x,, Bu = 8 + X0l Xos
1=1,2, n-1 (65)
k=1,2, n—1

For simultaneous heat and mass transfer processes i
vapour-ligmd systems 1n the absence of inert gases, the
parameters A, are obtamed from a material balance at the
interface giving[21]
A=H-HY 1=12, n (66)

where H’ and H* are the partial molar enthalpies of
species ¢ 1 the vapour and liquid phases

Combining eqns (56) and (59) we get the final expression
for the calculation of the molar fluxes N, as

(No) = % (BB, T'I0] {exp [81ms — "I} '(xo~x5)  (67)

The expression (67) 1s not truly explicit in the fluxes N,
and requires a trial and error solution as described in
[8,9] For the purposes of discussions 1t 1s convement to
define five further matrices

(1) A matrix of correction factors showing the effect of
fimite mass transfer rates on the transfer coefficients and
transfer rates

[E1=[6){exp [8]ns — "1} (68)

() A matnix of zero flux diffusive mass transfer
coefficients

(k1= [BoJ™'(T] (69)

(m) A matnx of finite flux diffusive mass transfer

coefficients

[k®)= [K)[E] (70)
The superscript black dot @ 1s used to remind us that the
coefficients k% are themselves dependent on the transfer
rates N,

(v) Matrix of zero flux total transfer coefficients

(%#]1=1{B1k] an

(v) A matnx of finite flux total transfer coefficients

(We)=[WIE] = [BIkI[E]=(BIk*™] (72)

The defimtions of the finite flux mass transfer
coeflicients 1s the generalization of this concept for binary
mass transfer discussed clearly by Bird, Stewart and
Lightfoot[1], who also show that 1t is the diffusive set of
mass transfer coefficients, k,, which correctly portray the
diffusional transport process taking place within the fimd
phase The total transfer coefficients %, reflect not only
the diffusive nature of transport but also contain the effect
of the bulk flow of the mixture

It 1s easy to check from eqns (49), (50), (53) and (68) that
for vamishingly low rates of mass transfer,1e N,,—>0, the
matrix of correction factors [E] reduces to the identity
matrx and the set of finite flux mass transfer coefficients
become equal to the set of zero flux mass transfer
coefficients

DISCUSSION OF SPECIAL CASES

The foregoing analysis applies to the general case of
diffusion 1n n-component non-ideal flmd mixtures For
special cases we recover many of the classic results
avallable 1n the hterature We discuss some of these
special cases below

For diffusion 1in bmary muxtures, all matrices above
degenerate to scalars and eqn (67)-(72) give

Nip= Wh(x10— %15) 73}

where

61

W = Buk®, k& = kB, Hiy = ———p o
11 = Buakil, ki = n exp (0ums)— 1

a4

The zero flux binary mass transfer coefficient k;; 1s
given by

75

where 9., 1s the binary diffusivity in the fllud mixture
related to the Maxwell-Stefan diffusivity -,, by

@12 = ﬂul"]l = B]Z (1 + a_!'w) (76)

(?lnxl

The Maxwell-Stefan diffusivity P,, can be predicted over
the entire composition range 1if the infimte dilute values



664

are known([18, 19], eqn (76) thus provides a method for
predicting 9,

For conditions of equmolar counter diffusion m a
binary mixture, egns (73) sumplifies to give (see eqns 62
and 63)

Nio = ky(x10— X15) an
where k,; 1s given by eqn (75)

For binary mixtures of ideal gases I';; = 1 and eqn (76)

gives

@ylz =Dy, (78)
1 ¢ the binary gas phase diffusivity, 9, ,,, 1s 1dentical to the
Maxwell-Stefan diffusivity and 1s essentially composition
mdependent

For bmary mass transfer to spherical bodses, 1t 1s easy

to check with the aid of eqn (75) that the Sherwood
number defined as

— k11 X (diameter of spherical body)

Sh <o,

(79

equals 2, a classical result
For diffusion of species 1 through stagnant 2, eqn (73)
simplifies to (see eqns 64 and 65)

<Dz (1 — xw)
=—=In |—
11"3 1-— X10
which represents another well-known result

For diffusion m n-component ideal gas mixtures eqn
(67) reduces to

Ny (80)

(No) = 7 IBILBol (@1 {exp [®]ms — "L} (o= ) (81)

which for planar interfaces (n; = 1, [ = §) 1s equivalent to
the expression derived by Krishna and Standart[9] and
for spherical “films™ (0, = 1 — /15, I = 1,), we recover the
result obtained by Krishna[10]

For ternary gas diffusion 1n 1deal gas mixtures, analytic
solutions to the Maxwell-Stefan equations in parametrnc
form are also available in the hiterature, thus Gilliland [4]
presents a solution for diffusion of two gases through a
stagnant third (N5, =0) and Toor[22] has presented a
solution for equumolar counter diffusion in three com-
ponent gas mxtures These analytic solutions are
however unstable and may give rise to multiple roots To
illustrate the problem of determimng the umiqueness of
solutions to ternary gas diffusion we consider a problem
first set by Sherwood[23], rewritten here in SI units

Ammona 1s diffusing from an air-ammonta mixture mto
water under a total pressure of 20265 N/m> Assume that
the diffusion takes place through a stagnant gas layer
0 001 m thick at an average temperature of 328 15K At
one point 1n the contacting apparatus the gas contains 3%
ammoma by volume and the concentration of ammonia 1n
the water 1s so low that the partial pressure of ammonia
over the solution may be neglected at the point under
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consideration The bulk gas 1s dry Allowing for water

vaponzation, calculate the rate of diffusion of ammoma
Label ammonia= 1, water=2, air=3

Data the vapour pressure of water at 328 15K 1s

7359 N/m® The diffusivities of the binary gas

parrs at the system pressure and temperature are

D12 = 0 0001470 m?/s, D,,; = 0 0001075 m*[s,
@,23 =0 0001245 mzls

From the given data the boundary conditions for steady
state diffusion across the interface, assumed to be planar,
can be wrntten

r=ro,ne=0, bulk gas, y,=003, y=000
(82)
r=rsns =1, mterface, y;; =000, y,; =036315

The diffusion problem requires N;, = N3;; =0 and
therefore we may apply the parametric solution obtamned
by Gilliland to calculate the fluxes N, and N, Gilliland’s
equations are

N1 Nz

.Y, ” In (yss/ y30) (83

Y15 @12 Yoz G — &2
N,%-l—uNz =1In ;1_0 - :_2 ;; - am"_uam (84)

Z X2y Z> az
where the following parameters have been defined

#, = ¢cD,,/8, y=12,13,23 (85)
z = NJ(N;:+ Ny), 1=1,2 (86)
a, = 1K, — 1/, iy =12,21 87

The solution to eqns (83), (84) requires a tnal and error
approach, depending on the starting guess values for N,,
N, three sets of solutions are obtained

SetI N,=-247x10"2kmol/(s)(m?),

N>= 247 %1072 kmol/(s)(m?)

SetIl N,= 446 10~*kmol/(s)(m?),
2 =—9 08 x 10~* kmol/(s}(m?)

Set III, N, = 2 11x 107 kmol/(s)(m?),

N, = —4 14 x 10~* kmol/(s)(m”)

By a process of physical reasoning, Sherwood[23]
concludes that the correct root 1s that given by Set III
Physical reasoning 1s not always possible, especially if the
solution to the equations form part of a computerized
step-wise design procedure for say an absorption column,
we require a stable solution which will always converge to
the correct solution The matrix solution (81) 1s stable in
its convergence, especially if the iterations are started
assuming the matrix of correctton factors [E] 1s the
identity matrix Thus, solution of (81) gives the Set III
fluxes
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APPLICATION TO INTERPHASE MASS
TRANSPORT PROCESSES

The analysis thus far has been concerned with the
dertvation of an analytical expression (67) for the
calculation of the transfer fluxes N,, within a single flimd
phase For flid—fllud interphase mass transport proces-
ses, the above analysis will hold for either phase if the
compositions (x,) and (x;) are identified with those
prevailing in the well-mixed core of bulk fluid and the
mterface respectively In view of the increased mterest in
the application of the theory of ureversible ther-
modynamics to mterphase transport processes[24-37], 1t
1s Interesting to examine the vahdity of the assumption
that symmetry relations analogous to eqn (29) hold for
fundamentally defined nterphase transfer coefficients, as
assumed 1n Refs [24, 31, 33-35]

In view of equation of eqn (31), we may express the
composition difference driving force (x,— x;) as

(o= X3) = o [Tt X (10— o) (88)

where "x,,, represents a diagonal matrix of averaged
compositions and [I'],, represents the matrix of ther-
modynamic factors with averaged elements

Thus if we define a matrix of fundamental transport
coefficients by

(o) = [k ) (po — p2a) (89)
then 1t 1s seen from eqns (56), (88) and (89) that
[k, = g [Bol (T IENT T2 e (50)

It can be checked with the aid of eqns (29), (40) and (90)
that the fundamental interphase transfer coefficient
matnx [k,®] will only be symmetric for vamishingly small
dnving forces and therefore vamshingly small fluxes N,

If we define total mass transfer coefficients [K,*] using

(Noy = [K.*)(1o — pts) on

then

(K.*]1=[B1lk.*] 92)
will only be symmetric for equumolar counter diffusion
under conditions of vamishingly small fluxes In the
analysis of the experumental data for interphase mass
transfer 1n the system water—acetone—glycerol, Standart et
al [35] assumed that the matrix [K,®] 1s symmetric Thewr
experimental data, showing very large diffusional interac-
tions, needs to be re-examined 1n the hght of the analysis
presented 1n this paper

In most interphase mass transport processes of
chemical engineering nterest, the transfer takes place by
both molecular and turbulent transport mechanism The
mass transfer coefficient for two-component systems 1s
found to be proportional to the diffusion coefficient to a
power ranging from 0 5 to 0 7 In such cases the analysis

presented 1n this paper may be used to calculate the
matrix of mass transfer coefficients 1 the multicom-
ponent systems from information on the mass transfer
coefficients of the constituent binary pairs in the mixture
For gas phase mass transfer, for example, we first
calculate the mass transfer coefficients %, from an
appropriate mass transfer correlation, say of the j-factor
type These binary mass transfer coefficients can be used
to generate the matrix of zero flux multicomponent mass
transfer coefficients [k] For a ternary system the
elements of [k] are given by (see eqns 69, 78 and 85)

kit = X is(310Han+ (1 — yi0))H ) S (93)
ki = y10Hos(His — K1)l S 94
k2 = yooH13(Hs — H1)l S 95
k22 = Has(y20¥ 13+ (1 — y20)#12)l S 96)
where
S = y10Has + Y2 His + Y2 H 12 N

For mass transfer in non-ideal fluud mixtures the
elements calculated above 1n eqns (93)-(96) will have to
be corrected for thermodynamic non-idealities by use of
eqn (69)

CONCLUSIONS

Using matrix analysis an analytic solution to the
generalized Maxwell-Stefan equations for steady-state
n-component diffusion mm non-ideal fluid mixtures has
been obtammed for the composition profiles and the
transfer rates In the development of the solution it has
been assumed that the generalized Maxwell-Stefan
diffusion coefficients B, and the elements I, are
independent of composition These assumptions are
generally true for mixtures of ideal gases, for non-ideal
hqud mixtures these assumptions may be taken as good
approxmmations The results have been shown to yield
many classical relationships 1 particular cases The
matnx formulation has been shown to be a convenient
one and free from convergence difficulties associated with
some particular solutions given in the uterature for
ternary gas diffusion

NOTATION
Ay elements defined by eqn (27)
B, mmverted matrix of diffusion coefficients with
elements defined by eqns (36) and (37)
¢ total molar concentration of the diffusing mixture
¢, molar concentration of species ¢ in diffusing
muxture
D, generalized Fick’s law diffusivities
Maxweli-Stefan diffusivity of pair 1 —k 1 mul-
ticomponent mixture
%P, diffusivity of bmary pair 1 —j
9,, diffusivity of bmmary pair i —j in 1deal gas mixture
%, pseudo-binary diffusivity of species : in mul-
ticomponent mixture
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H, partial molar enthalpy of species : 1n multicom-
ponent mixture
I, 1dentity matrix with elements &,
J. molar diffusion flux of species with respect to the
molar average reference velocity frame
X, binary mass transfer coefficient for parr 1 —;
[k] matrix of diffusive mass transfer coefficients

[k.*]1 matrix of fundamentally defined interphase mass
transfer coefficients
[K,®] matrx of fundamentally defined total interphase

mass transfer coefficients
! charactenistic length, /=8 for planar transport,
I = r, for transfer m cylindrical and spherical
films
L, fundamental or Onsager coefficients
n number of components in multicomponent mix-
ture
N, molar flux of species 1 1n stationary coordinate
reference frame
N, mixture molar flux m stationary coordinate re-
ference frame
r distance coordinate
ro coordmate at inner surface of film
coordinate at outer surface of film
gas constant
summation parameter defined i eqn (97)
Sh Sherwood Number
T absolute temperature
u, diffusion velocity of species ¢
u molar average velocity of diffusing mixture
[#1 matnx of total mass transfer coefficients
X, mole fraction of species ¢ 1n multicomponent fluid
mixture
“X,,, diagonal matnx of averaged compositions
y. mole fraction of species 1 1n 1deal gas mixture
Y, modified driving forces, given by eqns (26)
z, ratio of rth molar flux to mixture molar flux, eqn
(86)

U R

Greek symbols
a, parameters defined by eqn (87)
B. elements defined by eqn (60)
v, activity coefficient of species i in solution
[[1 matrix of thermodynamic factors defined by eqn
32
8 thickness of diffusion path or “film”, §=r —1r;
8« Kronecker delta
({) column matrix with elements given by eqn (51)
n dimensionless distance coordinate given by eqns
(42)-(44)
no distance coordinate corresponding to r = r,
ns distance coordinate correspondingtor=r;, n; = 1
for planar films, 75 =In(7/r) for cylindrical
films, ns = 1— ry/rs for spherical films
[6] matrix defined by eqn (53)
A, parameters defined in eqn (57)
A, parameters defined i eqn (61)
4, molar chemical potential of species ¢ 1In mixture
[E] matrix of correction factors defined by eqn (68)
o rate of entropy production

RajamMaNt KRISHNA

[®] matrix of dimensionless rate factors defined by

eqns (49) and (50)

() column matnx with n ~ 1 elements
[ 1 n—1xn~—1 square matrix
[ 17" mverted matrix of dimension n—1xn—1
"y diagonal matrix with n — 1 non-zero elements

Subscnipts
av parameters suitably averaged over the com-
position range encountered

n pertamning to nth species
0 atsurface r=1r,
y gas phase
& parameter at surface r=r;
4 fundamentally defined parameter
Superscripts
@® coefficients corresponding to finite mass transfer

rates
x pertamng to the hqud phase
y pertaimnng to the vapour phase
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