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Diffusion of binary mixtures in zeolites: molecular dynamics
simulations versus Maxwell–Stefan theory
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Abstract

The Maxwell–Stefan formulation of diffusion in multicomponent mixtures is used to obtain explicit formulae for
calculating the diffusivities of binary mixtures within a zeolite matrix. The theoretical development allows the estimation of
the mixture diffusivities on the basis of the pure component diffusivities at zero loadings. The applicability of the
Maxwell–Stefan model is demonstrated by comparison with published molecular dynamics simulations for mixtures of
methane–perfluoromethane, methane–xenon, and methane–n-butane in silicalite. q 2000 Elsevier Science B.V. All rights
reserved.

1. Introduction

The proper description of diffusive transport within zeolitic materials is of considerable importance in
w xpractice because of the many applications in catalytic reaction and separation processes 1–3 . A variety of

models and techniques have been used to describe diffusion within zeolites, ranging from phenomenological
w x Ž . w xmodels such as the Fick’s law of diffusion 1,2 and the Maxwell–Stefan MS formulation 4–7 to Monte

Ž . w x Ž . w xCarlo MC simulations 8–11 and molecular dynamics MD 12,13 . In recent years, increasing attention has
w xbeen paid to the description of diffusion of mixtures 14–18 using MD techniques. The computational expense

involved in the use of MD techniques for mixtures is considerable. In this Letter, we show that the published
MD simulation results for mixture diffusivities obey simple mixture rules which can be derived from MS

w xdiffusion formulation that has its roots in the theory of non-equilibrium thermodynamics 4 .

2. Maxwell–Stefan theory of diffusion in zeolites

The essential concepts behind a general constitutive relation for diffusion in multicomponent mixtures were
w xalready available more than a century ago following the pioneering works of James Clerk Maxwell 19 and

) Fax: q31-20-5255604; e-mail: krishna@its.chem.uva.nl

0009-2614r00r$ - see front matter q 2000 Elsevier Science B.V. All rights reserved.
Ž .PII: S0009-2614 00 00846-0



( )R. KrishnarChemical Physics Letters 326 2000 477–484478

w xJosef Stefan 20 . These ideas have been applied to describe diffusion of n species within a zeolite matrix using
w xthe following set of equations 4,5 :

nu Q N yQ N Ni j i i j i
yr =m s q ; is1,2, . . . n 1Ž .ÝiRT Q Q P Q Pi ,sat j ,sat i j i ,sat ijs1

j/i

where r is the zeolite matrix density expressed as unit cells per m3, Q represents the loading expressed ini

molecules of sorbate per unit cell of zeolite, Q is the saturation loading of species i, R is the gas constanti,sat

and T is the temperature. =m is the gradient of the chemical potential of species i, which is the fundamentali

driving force for diffusion. The fractional occupancy u of the sorbate within the zeolite matrix is defined asi

u 'Q rQ ; is1,2, . . . n . 2Ž .i i i ,sat

In general, the saturation loadings of the various species Q in the mixture will be different from onei,sat

another. The N are the molecular fluxes expressed in terms of molecules transported per square meter peri

second.
Ž Ž ..In the MS formulation for zeolite diffusion Eq. 1 , we have to reckon in general with two types of MS

diffusivities: O and O . The O are the diffusivites which reflect interactions between species i and the zeolitei j i i

matrix. Mixture diffusion introduces an additional complication due to sorbate–sorbate interactions. This
interaction is embodied in the coefficients O . We can consider this coefficient as representing the facility fori j

counter-exchange, i.e. at a sorption site the sorbed species j is replaced by the species i. The net effect of this
counter-exchange is a slowing down of a faster moving species due to interactions with a species of lower
mobility. Also, a species of lower mobility is accelerated by interactions with another species of higher
mobility.

Ž .The MS formulation of single component diffusion, can be derived from Eq. 1 by setting ns1:

u1
N syrQ P =m 3Ž .1 sat 1 1ž /RT

where m is the chemical potential of the sorbed species 1. Assuming equilibrium between the sorbed species1

and the bulk fluid phase we have the following relationship for the chemical potential m1

m sm0 qRT ln f 4Ž . Ž .1 1 1

where m0 is the chemical potential in the chosen standard state and f is the fugacity. For not too high system1 1

pressures the component partial pressure, p , can be used in place of the component fugacity, f , i.e. f fp .1 1 1 1

The chemical potential gradients may be expressed in terms of the gradients of the fractional occupancy, =u ,1

1 1 Eln p1
=m s G =u ;G'u 5Ž .1 1 1RT u Eu1 1

Ž . Ž .where G is the thermodynamic correction factor. Introducing Eq. 5 into Eq. 3 we obtain

N syrQ D =u syrQ P G =u 6Ž .1 1 ,sat 1 1 1 ,sat 1 1 1

where D is termed the transport or Fick diffusivity. O is variously called the MS, ‘corrected’ or ‘jump’1 1
w xdiffusivity 1,4 . These two diffusivities are inter-related:

D sP G . 7Ž .1 1

Often in experiments and simulations, the self-diffusivity of species 1 is determined under conditions where
there is no net gradient, =u '0. The self diffusivity shows a decreasing trend with molecular loading; see Fig.1

1a,b for MD simulation results of CH , CF and Xenon in silicalite. MC simulations have been used recently to4 4
Ž .show the inter-relationship between self-, MS and transport diffusivities see Fig. 1c . The self-diffusivity is



( )R. KrishnarChemical Physics Letters 326 2000 477–484 479

Ž . w x Ž .Fig. 1. a Self-diffusivities of pure components CH and CF in silicalite-1 at 200 K. MD simulations of Snurr and Karger 14 . b¨4 4
w x Ž .Self-diffusivities of pure components CH and xenon in silicalite-1 at 300 K. MD simulations of Jost et al. 15 . c MC simulations of self-,4

w xMS and Fick diffusivities of 2-methylhexane in silicalite at 300 K 11 . The saturation capacity of 2MH is 4 molecules per unit cell.

influenced by correlation effects whereas such correlation effects do not affect the MS and Fick diffusivities.
We note that the MS diffusivities follow the simple linear relationship:

P sP 0 1yu 8Ž . Ž . Ž .1 1 1

Ž .where O 0 represents the MS diffusivity in the limit of zero loading. At zero loading, all three diffusivities,1

self-, MS and Fick equal one another. This zero loading diffusivity can be determined experimentally or by use
w xof transition state theory 21 .

w xKarger and Pfeifer 22 have shown that experimental data on pure component diffusivities can exhibit five¨
Ž .different types of loading dependencies; the model described by Eq. 8 represents one such behaviour. The

w xmixture relations to be derived below are valid for all the five cases described by Karger and Pfeifer 22 ,¨
provided the loading dependence of the MS diffusivity can be described by a functional relation P s1

Ž .P 0 f u .Ž .1 1
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Ž .For a binary mixture, ns2, Eq. 1 may be cast into 2-dimensional matrix notation to give

y1w x w x w x w x w xN syr Q B G = u syr Q D = u 9Ž . Ž . Ž . Ž .sat sat

w x w xwhere D is the two-dimensional Fick diffusvity matrix and Q is a diagonal matrix with the saturationsat
w xloadings Q . The matrix B has the elementsi,sat

n1 u uj i
B s q ; B sy ; i , js1,2 . . . n . 10Ž .Ýi i i j

P P Pi i j i jjs1

j/i

w x w xTaking the inverse of matrix B and denoting this as R , we obtain

P P P P1 2 1 2
P qu u1 1 1

P P1 12 12y1w x w xB ' R s . 11Ž .
P P P PP P 1 2 1 22 1

u P qu1qu qu 2 2 21 2ž / P PP P 12 1212 12

A procedure for the estimation of the counter-exchange coefficient O has been suggested by Krishna and12
w xWesselingh 4 :

u1 u 2

u qu Ž .u quŽ .1 2 1 2w x w xP s P P . 12Ž .12 1 2

w xThe matrix G is the thermodynamic correction factor matrix, which can be determined from the mixture
isotherm

Q Q Epj ,sat i i
G ' ;i , js1,2 . . . n . 13Ž .i j ž /Q p EQi ,sat i j

When the saturation loadings of the two components, Q , are equal to each other, and the isotherms of thei,sat

pure components can be described by a single-site Langmuir isotherm, the matrix of thermodynamic correction
factors can be determined from

1yu u2 1

u 1yuG G 2 111 12w xG s s . 14Ž .
G G 1yu yu21 22 1 2

In the general case, when the saturation loadings of the two components are different we must use the ‘ideal
w xadsorbed solution’ theory to calculate the mixture isotherms 5 .

Ž .We could force-fit Eq. 9 for the two fluxes N into the form of Fick’s law for each species with effectivei

diffusivities:

N syrQ D =u ; is1,2 15Ž .i sat i ,e f f i

where the effective Fick diffusivities of components 1 and 2 are given by

=u2
D sD qD , 16Ž .1 ,eff 11 12

=u1

=u1
D sD qD . 17Ž .2 ,eff 21 22

=u2
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For self-diffusivity measurements or simulations, the sum of the gradients vanishes, i.e.

=u q=u s0 18Ž .1 2

and therefore the expression for the self diffusivities of components 1 and 2 simplify to

D D yD R G qR G yR G yR G1 ,eff 11 12 11 11 12 21 11 12 12 22s s . 19Ž .ž / ž / ž /D D yD R G qR G yR G yR G2 ,eff 22 21 21 12 22 22 21 11 22 21

Ž . Ž .For the situation in which Eq. 14 applies, Eq. 19 further simplifies, yielding

1D R yR P1 ,eff 11 12 1s s . 20Ž .ž / ž / ž /D R yR PP P2 ,eff 22 21 22 1
1qu qu1 2ž /P P12 12

Ž .Eq. 20 represents a remarkably simple result which shows that the self-diffusivities in a binary mixture are
not affected by thermodynamic factors and can be determined purely from knowledge of O , O and O .1 2 12

Ž .Extending Eq. 8 to binary mixtures we take

P sP 0 1yu yu ; P sP 0 1yu yu 21Ž . Ž . Ž . Ž . Ž .1 1 1 2 2 2 1 2

Ž .and use Eq. 12 for determination of the counter-exchange coefficient O .12

( )3. Verification of Eq. 20 using MD mixture simulations

w x Ž . Ž .We first consider the MD simulations of Snurr and Karger 14 for CH 1 and CF 2 at 200 K in silicalite¨ 4 4

at a total mixture loading of 12 molecules per unit cell. The pure component self-diffusivities are shown in Fig.
1a. Methane being a smaller molecule has a higher saturation loading than that of CF ; we therefore take4

w xQ s22 and Q s12 on the basis of information on mixture isotherms 23 . The pure component1,sat 2 ,sat
Ž . y9 2 Ž . y9 2diffusivites at zero loading are estimated from Fig. 1a as O 0 s6=10 m rs, O 0 s3=10 m rs. The1 2
Ž . Ž . Ž .calculations of the diffusivites D and D using Eqs. 20 , 21 and 12 show excellent agreement with1,eff 2 ,eff

w x Ž .the MD simulations of Snurr and Karger 14 see Fig. 2 .¨

w xFig. 2. Comparison of MD mixture simulations of Snurr and Karger 14 for CH and CF in silicalite-1 at 200 K with estimations using Eq.¨ 4 4
Ž .20 .
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w x Ž . Ž .Jost et al. 15 have published MD simulations for CH 1 and Xenon 2 at 300 K in silicalite at total4
Ž .mixture loadings of 4, 8, 12 and 16 molecules per unit cell see Fig. 3a–d . The pure component self-diffusivi-

ties are shown in Fig. 1b. The saturation loadings are estimated as Q s22 and Q s16. The pure1,sat 2 ,sat
Ž . y9 2 Ž . y9component diffusivites at zero loading are estimated from Fig. 1b as O 0 s12=10 m rs, O 0 s4=101 2

m2rs. The calculations of the diffusivites D and D show good agreement with the MD simulations of1,eff 2 ,eff
w x Ž .Jost et al. 15 for the whole range of total loadings studied see Fig. 3 .

w x Ž .Gergidis and Theodorou 17 have performed two sets of MD simulations for the mixture of CH 1 and4
Ž . Ž .n-butane 2 at 300 K in silicalite see Fig. 4a,b . The saturation loadings are estimated as Q s22 and1,sat

Ž . y9 2 Ž .Q s12. The pure component diffusivites at 300 K are taken as O 0 s11=10 m rs and O 0 s5=2,sat 1 2

10y9 m2rs. The calculations of the diffusivites in the mixture, D and D , show excellent agreement with1,eff 2 ,eff
w x Ž .the MD simulations of Gergidis and Theodorou 17 for the both sets of simulations reported see Fig. 4a,b .

w xMore recent MD simulations were carried out by these authors for the same mixture at 200 K 18 . Taking pure
Ž . y9 2 Ž . y9 2component diffusivites at 200 K to be O 0 s4.5=10 m rs and O 0 s1.5=10 m rs, the effective1 2

w x Ž .Fig. 3. Comparison of MD mixture simulations of Jost et al. 15 for CH and Xenon in silicalite at 300 K with estimations using Eq. 20 .4
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w x Ž . Ž .Fig. 4. Comparison of MD mixture simulations of Gergidis and Theodorou 17,18 for the mixture of CH 1 and n-butane 2 in silicalite4
Ž . Ž . Ž . Ž . Ž .with estimations using Eq. 20 . The data in a and b are at 300 K. The data in c and d are at 200 K.

diffusivities can be calculated in the mixture. Comparison of the MD simulation results with the estimations of
the MS theory are shown in Fig. 4c,d. Again the agreement is excellent.

4. Conclusions

Ž .Using the MS theory for binary mixture diffusion in zeolites we have developed explicit formulae, Eqs. 16
Ž .and 17 , for calculation of the diffusivities of the components in the mixture. For situations in which the sum of

Ž .the gradients of the two species is maintained as zero, these expressions simplify considerably to yield Eq. 20
Ž .which, when used in conjunction with Eq. 12 for estimation of the counter-exchange coefficient O , allows12

Ž .the estimation of the mixture diffusivities purely on the basis of the zero-loading diffusivities O 0 . The validityi
Ž .of the Eq. 20 has been demonstrated by comparing with published MD mixture simulations for mixtures of

methane–xenon, methane–perfluoromethane and methane–n-butane in silicalite.
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