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Abstract

We test the Maxwell–Stefan formulation for diffusion of multicomponent mixtures in zeolites and show that the

mixture transport behaviour can be predicted on the basis of information of the pure component jump diffusivities at

zero loading. The interaction between the diffusing, adsorbed, species is taken into account by introduction of inter-

change coefficients –Dij; these encapsulate the correlations in the molecular jumps. A logarithmic-interpolation formula

is suggested for estimating these interchange coefficients from information on the pure component jump diffusivities. To

verify the developed Maxwell–Stefan formulation we use published molecular dynamics simulation results for transport

diffusivities of CH4 and CF4 in Faujasite at 300 K. The predictions of the Maxwell–Stefan model are in very good

agreement with the MD simulation results. � 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

In the design of zeolite based adsorption or
catalytic processes, it is essential to have a proper
description of diffusion of mixtures within the
crystals of a zeolite (e.g. faujasite) [1–3]. For 2-
component diffusion the fluxes Ni, expressed in
molecules m�2 s�1, are related to the gradients of
the fractional occupancies rhi by the following
relation:

ðNÞ ¼ �q½Hsat�½D�ðrhÞ; ð1Þ
where [D] is the 2-dimensional square matrix of
Fick diffusivities, q is the zeolite matrix density
expressed as the number of supercages per m3 for
say faujasite, ½Hsat� is a diagonal matrix with ele-

ments Hi;sat, representing the saturation loading of
species i. The fractional occupancies hi are defined
as

hi � Hi=Hi;sat; i ¼ 1; 2; ð2Þ
where Hi represent the loading of species i ex-
pressed in molecules of sorbate per supercage.

For estimation of the fluxes Ni we need to es-
timate the 2	 2 elements of [D]. The elements of
[D] are influenced not only by the species mobili-
ties but also by the sorption thermodynamics [4].
For design purposes it is important to have a
mixture diffusion theory with the capability of
predicting the elements of [D] from pure compo-
nent transport data. Such mixture diffusion theo-
ries are almost invariably based on the theory of
irreversible thermodynamics (IT) [4–7]. In the
Onsager IT formulation, a linear relation is pos-
tulated between the fluxes and the chemical po-
tential gradients
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ðNÞ ¼ �q½Hsat�½L�
1

RT
ðrlÞ; ð3Þ

where R is the gas constant, T is the temperature,
ðrlÞ the column matrix of chemical potential
gradients, rli, which represent the correct driving
forces for diffusion, [L] is the square matrix of
Onsager coefficients having the units ðm2 s�1Þ. The
Onsager matrix [L] is non-diagonal, in general, and
the cross-coefficients portray the coupling between
species diffusion. The Onsager reciprocal relations
demand that the matrix [L] be symmetric, i.e.,

Lij ¼ Lji; i ¼ 1; 2: ð4Þ
The chemical potential gradients in Eq. (3) may

be expressed in terms of the gradients of the
occupancies by introduction of the matrix of
thermodynamic correction factors [C]

hi

RT
rli ¼

Xn

j¼1

Cijrhj; Cij �
hi

hj

o ln fi
o ln hj

;

i; j ¼ 1; 2; ð5Þ

where fi is the fugacity of component i in the bulk
gas phase. Knowledge of the sorption isotherm is
sufficient to allow estimation of [C] and ðrlÞ. If
the 2-component sorption can be described by the
multicomponent Langmuir isotherm, the elements
of [C] are given by

Cij ¼ dij þ
hi

1� h1 � h2

; i; j ¼ 1; 2; ð6Þ

where dij is the Kronecker delta.
Combining Eqs. (1), (5) and (6) we obtain

ðNÞ ¼ �q½Hsat�½L�
1=h1 0
0 1=h2

� �
½C�ðrhÞ: ð7Þ

Comparing Eqs. (1) and (7) we obtain the inter-
relation

½D� ¼ ½L� 1=h1 0
0 1=h2

� �
½C�: ð8Þ

The Fick matrix [D] can be estimated from
knowledge of the Onsager matrix [L]. Unfortu-
nately, the IT theory provides no fundamental
guidelines for estimating [L] from data on pure
component transport coefficients. For estimation
purposes, the Maxwell–Stefan (MS) approach
[4,7,10,11] is the most convenient approach.

The objectives of the present communication
are:
1. To demonstrate how to parameterize the MS

approach from single component diffusion data,
and multicomponent adsorption data.

2. To test the Maxwell–Stefan theory for estimat-
ing [L] and [D] by comparing with the published
MD simulation results of Sanborn and Snurr
[8,9] for diffusion of a binary mixture of CH4

and CF4 in faujasite at 300 K.
We begin with a review of the Maxwell–Stefan
theory for zeolite diffusion.

2. The Maxwell–Stefan theory of diffusion in
zeolites

In the Maxwell–Stefan formulation, entirely
consistent with the theory of IT, the chemical po-
tential gradients are written as linear functions of
the fluxes [4,7,10,11]

� q
hi

RT
rli ¼

Xn

j¼1
j 6¼i

HjNi � HiNj

Hi;satHj;sat–Dij
þ Ni

Hi;sat–Di
;

i ¼ 1; 2: ð9Þ

We have to reckon in general with two types of
MS diffusivities: –Di and –Dij. The –Di are the diffu-
sivities that reflect interactions between guest spe-
cies i and the zeolite matrix; they are also referred
to as jump or ‘corrected’ diffusivities in the litera-
ture [3,4]. For weakly confined guest molecules in
a zeolite host, such as CH4 in silicalite-1, the MS
diffusivities are practically independent of molec-
ular loading [12], and can be estimated from the
zero-loading diffusivity data

–Di ¼ –Dið0Þ; weakly confined guest molecules:

ð10Þ
For tightly confined guest molecules in zeolitic

hosts, the MS diffusivities decrease with molecular
loading, following [13]:

–Di ¼ –Dið0Þ 1ð � h1 � h2Þ;
strongly confined guest molecules: ð11Þ

Mixture diffusion introduces an additional
complication due to sorbate–sorbate interactions.
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This interaction is embodied in the coefficients –Dij.
We can consider this coefficient as representing the
facility for counter-exchange. The Onsager recip-
rocal relations require –Dij ¼ –Dji. The net effect of
this counter-exchange is a slowing down of a faster
moving species due to interactions with a species
of lower mobility. Also, a species of lower mobility
is accelerated by interactions with another species
of higher mobility. As shown by Paschek and
Krishna [14], –Dij encapsulates the correlation ef-
fects associated with molecular jumps. The inter-
change coefficient –Dij can be estimated by the
logarithmic interpolation formula that has been
suggested by Krishna and Wesselingh [4]

–Dij ¼ ½–Di�Hi=ðHiþHjÞ½–Dj�Hj=ðHiþHjÞ: ð12Þ
It is convenient to define a 2-dimensional square

matrix [B] with elements

Bii ¼
1

–Di
þ
X
j¼1
j 6¼i

hj

–Dij
; Bij ¼ � hi

–Dij
; i; j ¼ 1; 2:

ð13Þ
With this definition of [B], Eq. (9) can be cast

into n-dimensional matrix form

ðNÞ ¼ �q½Hsat�½B��1½C�rðhÞ ð14Þ
which gives the following expressions for the On-
sager and Fick matrices

½L� ¼ ½B��1 h1 0

0 h2

� �
; ½D� ¼ ½B��1½C�: ð15Þ

For single component diffusion, Eq. (15) sim-
plifies to

L1 ¼ –D1h1; D1 ¼
–D1

1� h1

: ð16Þ

If the MS diffusivity is independent of loading
(cf. Eq. (10)), the Fick diffusivity D1 increasing
strongly with occupancy

D1 ¼
–D1ð0Þ
1� h1

; weak confinement: ð17Þ

The strong increase in Fick D1 is typically ob-
served for weakly confined guest molecules; this is
exemplified by the MD simulation results for dif-
fusion of CH4 in silicalite-1 [11]. On the other
hand, if the MS diffusivity follows the loading

dependence given by Eq. (11) the Fick diffusivity
will be independent of the occupancy

D1 ¼ –D1ð0Þ; strong confinement: ð18Þ

Eq. (15) is the result that we have sought; it
allows prediction of the elements of the Fick ma-
trix from pure component transport data.

3. Verification of Eq. (15) using MD simulation

results

Sanborn and Snurr [8] have performed MD
simulations to determine the elements Dij of the
Fick matrix [D] for the binary mixture of CH4

(component 1) and CF4 (component 2) in
Faujasite at 300 K. A variety of total mixture
loadings, 1, 2, 4 and 6 molecules per supercage
were investigated for a range of mixture com-
positions.

The first step in the prediction procedure out-
lined above is to determine the saturation sorption
capacities of CH4 and CF4. This information is
contained in the MD simulation results for
o ln fi=o ln hj at a mixture loading H ¼ H1 þ H2 ¼
6 molecules per supercage, see Fig. 1. The con-
tinuous lines in Fig. 1 were drawn using eqs. (5)
and (6) taking the saturation capacities H1;sat ¼ 10
and H2;sat ¼ 6:1, respectively, for CH4 and CF4.
The agreement of the MD simulations with the
multicomponent Langmuir calculations for the
thermodynamics is very good.

The next step is to determine the M-S diffusiv-
ities –Di as a function of loading. Sanborn and
Snurr [8, Table 4] report fits of the MD simula-
tions for pure component Fick diffusivities, see
Fig. 2a. The Fick diffusivity of CH4 appears to
follow the weak confinement scenario described by
Eq. (17). We therefore take the MS diffusivity for
CH4 to be independent of loading (cf. Eq. (10))
with the value –D1ð0Þ ¼ 35	 10�9 m2=s. The be-
haviour of CF4 is more closely in line with the
strong confinement scenario of Eq. (18). For CF4
we take the zero-loading diffusivity –D2ð0Þ ¼
20	 10�9 m2=s and assume the loading depen-
dence given by Eq. (11). These two distinct be-
haviours can also be rationalized on the basis of
the differences in their molecular sizes.
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Fig. 1. Comparison of the MD simulated values of o ln fi=o ln hj with calculations using Eqs. (5) and (6) taking H1;sat ¼ 10 and

H2;sat ¼ 6:1 molecules.

 

 
 

 

 
 

 

 

 

 
 

 

 

 

Fig. 2. (a) Pure component Fick diffusivities of CH4 and CF4 in faujasite at 300 K. The lines are drawn using the fitted parameters

given in [8, Table 4], representing fits of MD simulations. (b) Self- and MS diffusivities of CH4. (b) Self- and MS diffusivities of CF4.

Self diffusivity MD data from Sanborn and Snurr [9].
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The self-diffusivities D�
i of the two components,

obtained from MD simulations by Sanborn and
Snurr [9] in a companion publication, are shown in
Fig. 2b, c. The MD simulated D�

i values agree
quite well with the relationship derived by Paschek
and Krishna [14] using the MS theory

D�
i ¼

–Di

1þ hi
¼ –Di

1þ Hi=Hi;sat
ð19Þ

and vindicates the chosen values of the saturation
capacities Hi;sat; these values have been chosen to
be 10 and 6.1 molecules per cage respectively for
CH4 and CF4 on the basis of the MD data for
o ln fi=o ln hj, see Fig. 1.

All the necessary data are now available to es-
timate the elements of the Fick matrix using Eq.

(15). The calculations of D11; D12; D21 and D22 for
a variety of compositions and loadings are pre-
sented in Fig. 3 along with the MD simulation
results following Eq. (15) with the interchange
coefficient being estimated using Eq. (12). The
predictions of the MS theory are seen to be in good
agreement with the MD simulations both with
respect to the influence of mixture loading
Hð¼ 1; 2; 4; 6Þ, and mixture composition H1=
ðH1 þ H2Þ. It is particularly encouraging to note
that both the values and composition trends of the
cross-terms D12 and D21 are predicted very well.

In order to appreciate the influence of the in-
terchange coefficient –Dij, we consider a limiting
case of facile molecule–molecule exchange, i.e.,
–Dij ! 1. This signifies vanishing correlation ef-

 
 

 
 

 
 

 
 

 

 

 
 
 
 

 
 
 
 

Fig. 3. Comparison of MD simulations of the Fick matrix [D] with calculations using Eq. (15). The interchange coefficients are

calculated using Eq. (12).
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fects during molecular jumps. We see from Eqs.
(13) and (15) that if –Dij ! 1, both [B] and [L]
matrices reduce to diagonal matrices and the flux
relations (9) simplify to give

Ni ¼ �qHi;sat
Lii

RT
rli

� �qHi;sat–Di
hi

RT
rli; i ¼ 1; 2; . . . ; n: ð20Þ

The off-diagonal elements of the Onsager ma-
trix are also a reflection of correlation effects and
the assumption of vanishing off-diagonal ele-
ments of [L] signifies vanishing correlation effects.
The predictions of the Fick matrix [D] for infinite
–Dij are shown in Fig. 4. These predictions are
much worse than those witnessed in Fig. 3, with

finite –Dij. In particular we note in Fig. 4 that the
D11 values are much higher than those from MD
simulations; signifying that the CH4 is not being
slowed down by CF4 when we take –Dij ! 1.
Put another way, the MD simulation results of
Sanborn and Snurr [8] point to a significant
slowing down of CH4, concomitant with speeding
up of CF4; these effects can only be accounted
for by inclusion of a finite interchange coefficient
–Dij.

4. Conclusions

We have tested the MS formulation for mixture
diffusion in zeolites that allows the estimation of
Fick transport coefficients on the basis of the pure

 
 

 
 

 
 

 
 

 

 
 

 

 
 

Fig. 4. Comparison of MD simulations of the Fick matrix [D] with calculations using Eq. (15), the interchange coefficient –Dij ! 1.
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component diffusivities at zero loading. This pre-
dictive capability has been verified by comparing
with the MD simulations for diffusion of CH4 and
CF4 in Faujasite at 300 K. The MD simulation
results also underline the necessity of taking ac-
count of molecule–molecule interchange in pre-
dicting mixture diffusion. Our earlier work had
performed a similar text for mixture diffusion
within MFI zeolite [11]; it is heartening to note the
same success with another zeolite topology, viz.
faujasite. We conclude that the Maxwell–Stefan
theory for multicomponent diffusion in zeolties
can be used to predict mixture behaviour with
good accuracy from pure component transport
data.
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