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An examination is made as to whether an ex- 
plicit method can be obtained for calculation 
of the transfer fluxes of individual species Ni 
during steady-state diffusion of an ideal gas 
mixture across a planar film. 

It is shown that the transfer fluxes can be 
calculated explicitly, without an iterative pro- 
cedure, for the following three cases: 

(i) all cases of binary mass transfer, 
(ii) multicomponent mass transfer with 

equal constituent binary pair diffusivi- 
ties, and 

(iii) multicomponent mass transfer with 
small driving forces. 

It is demonstrated that for the general case 
of multicomponent mass transfer with high 
transfer fluxes an itemtive procedure is inev- 
itable. An improved iterative procedure for 
the calculation of Ni is suggested and argu- 
ments, including a numerical example, are 
presented to support it. 

Introduction 
In the closing paragraph of their recent article, 
Pratt and Tuohey [l] state: “The Krishna- 
Standart model represents the best available 
method of computing multicomponent mass 
transfer in the absence of a method giving the 
total flux (i.e. including bulk flow) directly.” 
The purpose of the present communication is 
to examine whether it is possible to obtain 
the total fluxes Ni explicitly, i.e. without 
employing an iterative procedure. 

*Present address: Koninklijke/Shell-Laboratorium, 
Badhuisweg 3,103l CM Amsterdam, The Netherlands. 

During the course of our analysis, which 
complements our work in earlier publications 
[ 2 - 61, we note further parallels, and con- 
trasts, between binary (n = 2) and multicom- 
ponent (n > 3) mass transport phenomena at 
high transfer rates. Though the treatment in 
the present article is restricted to steady-state 
diffusion in ideal gas mixtures across a planar 
film, extension to other geometries and to 
non-ideal mixtures can be carried out in a 
straightforward manner using the generalized 
approach developed earlier [ 31. 

Analysis 
Let us consider steady-state diffusion in an 
n-component mixture across a film of thick- 
ness 6. Let the compositions at either end of 
the diffusion path be denoted as yie (at r = 0) 
and yis (at F = S), where r represents the CO- 

ordinate along the direction of diffusion. We 
have basically two types of diffusion problems 
in chemical engineering. In the first type, 
encountered in, for example distillation, ab- 
sorption, and evaporation, the compositions 
yic and yis can be identified with the bulk 
and interface compositions respectively in 
either of the fluid phases; the bulk composi- 
tions are specified by column material balances 
and the interface compositions are either 
known or can be ‘eliminated’ by use of overall 
transfer coefficients. In this class of problems 
the total fluxes Ni are further constrained by 
a linear relationship of the form 

5 XiNi ~0, 
i=l 

(1) 

n-1 Xk 
N,,=--- -Nk 

k=lhn 

Equation (1) covers, for example, equimolar 
diffusion (Nt = 0; hI = h2 = . . . = X,),.Stefan 
diffusion (N, =O;X,fO;Al=ha=...=h,-l 
= 0) and Graham diffusion inside porous cata- 
IJ&S (Xi z dilli). For distillation of a mixture 
in which the components have unequal molar 
heats of vaporization, an energy balance at 



252 

the vapour-liquid interface leads to the 
constraint 

and therefore Xi in the general linear constraint 
equation (1) can be identified with the molar 
heat of vaporization of component i in the 
mixture (see ref. 6 for a detailed analysis of 
non-equimolar distillation). In problems of this 
first type there will be n - 1 independent 
fluxes Ni to be determined (N, being deter- 
mined by eqn. (l)), given the compositions at 
either end of the diffusion path. 

In the second class of problems encountered 
in chemical engineering, the ratios of fluxes 

zi G Ni/N+, i = 1, 2, . . . . n (2) 

are specified. An example is when we have 
diffusion with heterogeneous chemical reac- 
tion: the reaction stoichiometry determines 
the ratios of the fluxes. Thus for the catalytic 
dehydrogenation of ethanol to acetaldehyde, 

C2HbOH (1) --, CHsCHO (2) + Hs (3) 

the flux ratios are z1 = -1, z2 = 1, z3 = 1. In 
this case there is only one independent flux 
to be determined. Typically in problems of 
this type the bulk-phase compositions, Yi6 
say, are known or are accessible from material 
balances. The compositions at the catalyst 
surface, Yio, are unknown. The reaction rate 
expression at the catalyst surface connecting 
the transfer fluxes Ni to the compositions 
Yio makes the diffusion problem determinate. 
In the dehydrogenation problem cited above, 
we may, for example, have a first-order reac- 
tion rate expression for the rate of production 
of ethanol: 

Nl = -k,Y,o 

Again here, in the second class of problems, 
we have n - 1 unknowns to be determined. 
These unknowns can be chosen to be either 
yjo (i = 1, 2, . . . . n - 1) orN1, YZO, YSO, . . . . 

Yn-1.0. 
Another example where the flux ratios zi 

are specified by the physics of the problem is 
during condensation of mixed vapours (no 
inerts) when Nj/Nj = Xi/Xj, the. ratio of mole 
fractions of the condensed liquid phase. (See 
ref. 7 for a discussion on this topic.) 

In either class of problems discussed above, 
there is a total of n - 1 unknowns to be deter- 
mined and we need n - 1 relations to make 
the problem determinate. The determinancy 
is provided by the constitutive relations and 
for ideal-gas mixtures these are best written as 
121 

dYi n YiNj - YjNi -= z 
dV k= I 41 

i=l,2 , . . . . n - l(3) 

k#i 

where Rij .E CtQij/S are the binary pair mass 
transfer coefficients in the multicomponent 
mixture. 

The solution to the diffusion problem can 
be represented in n - 1 dimensional matrix 
notation as [3] 

(N) = Do1 PoI-~~~oI(Yo -YS) = 

w3(Yo -Ys) (4) 

where we have evaluated the gradient dYi/dn 
at r = 0. Analogously it is easy to derive the 
following in terms of the gradients at P = 6 : 

09 = [Ssl PP[~:sl(Yo -Ys) = 

[@l(Yo -Ya) 
(5) 

Equation (4) or (5) can be used to calculate 
the fluxes Ni but these are not explicitly deter- 
mined because the correction factors for 
finite mass transfer rates, 

[a,] E [@)I [exp[*] - ‘1~1-l 

and 

[Es] = [@I exp[@] [exp[@] - rl~]-l = 

[Zo] exp[Q] = exp[@] [Zo] 

are functions of the mass transfer fluxes Ni. 
To reiterate our objective: we wish to examine 
whether it is possible to claculate the fluxes 
Ni explicitly. We first analyse the binary case 
before proceeding to the general treatment of 
multicomponent mixtures. 

Binary mass transfer 
In this case all the matrices in eqns. (4) and 
(5) reduce to scalar quantities and we have 

Cp = N@‘, B. = l/k 

Xl N2=-- 

x2 
N; or N2 = ?N, 

21 
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Equations (4) and (5) can be combined to 
give 

’ ’ = p& e;pT”l (Ylo-Yld 

(6) 

whence we obtain, on equating the right-hand 
sides of eqn. (6), 

@ = ~(Po/&-J) (7) 

Equation (7) gives the mass transfer rate 
factor @ directly in terms of the bootstrap co- 
efficients PO and Pa; knowledge of @ can be 
used to evaluate N1 explicitly from either one 
of the equalities (6). 

Various special cases may be recognised. 
For equimolar diffusion we have 

Nt = 0, PO =&j = 1, Cp = 0 

z. = z:6 = 1, Nl =~(Y,o -yld = --N, 

For diffusion of component 1 through stag- 
nant 2 (Stefan diffusion) we have 

Nz = 0 

PO = l/Y, = l/(1 -Y10) 

Ps = l/Y26 = l/U - YlS) 

Q, = WY26 lY2d = 1W - YIS Ml - YIO)) 

N1 =&Q 

When the flux ratios z1 and z2 are fixed by 
the physics (or chemistry) of the problem we 
have 

PO = l/(1 - Ylola 

Multicomponent mass transfer. Equal binary 
diffusivities 
We now consider the case in which the n com- 
ponents in the mixture are all similar in size 
and nature, giving & = Afor all binary pairs 
in the mixture. With this simplification the 
matrix of mass transfer rate factors [a] re- 
duces to a scalar times the identity matrix: 
ch ‘1~ with Q, = N&I?. The correction factor 
matrices also reduce to the form of scalar 
times identity matrix: 

[Zo] = @/(exp@ - 1)‘1~ 

[a,] = Qexp@/(expQ, - l)rl~ 

Equations (4) and (5) can be reduced to 

(8) 

where we note that the bootstrap matrices 
[&,] and [p,] are non-diagonal in general. The 
mass transfer rate factor Q, can be obtained by 
equating the right-hand sides of equations (S), 
yielding the n - 1 dimensional matrix relation 

e%, -x5) = [PSI-~ [PoI(Yo - Ys) (9) 
For equimolar diffusion we have, of course, 
@ = 0 and Ni =R(Yic -Yis). For Stefan dif- 
fusion, N, = 0, we have flij = 6 ij + Yi/Yn, and 
it can easily be seen that eqn. (9) leads to 
@ = ln(y,g/y,e). The fluxes Ni for this case 
can be evaluated explicitly from either one of 
the right-hand members of eqn. (8). When the 
flux ratios Zi are fixed, it can be seen that 
eqn. (9) leads to 

@ = ln((l -Yi6/zi)/(l -YiOlzi)) 

for each of the n components; the fluxes Ni 
are then given by 

Ni = ZiR~. 

Multicomponen t mass transfer. Small driving 
forces 
Let us now consider the case in which the 
driving forces for mass transfer are small, i.e. 
AYi + 0 and SO Yio e Yi6. This would lead to 
the following: Ni + 0, [Ba] z [&I, [@I + 
[0], [PO] = [06],and [Zo] 1 [&I -r&, the 
identity matrix. Therefore 

Ml = [Pol[~ol-l[~ol = [%I 

= ELM r&r1 Ed 
(10) 

If we assume e uality of overall mass transfer 
coefficients [ I& o] and [ fl], then it is easy to 
see that the dimensionless mass transfer rate 
factor [@I is given by (see eqns. (4) and (5)) 

PI = W&l EiW’M01 WOI-~I (11) 
which can be evaluated by means of Sylvester’s 
theorem. If we further have the restriction of 
equimolar diffusion then eqn. (11) reduces to 
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Ml = W&l BJ-ll (12) 

The satisfaction of eqn. (11) for the rate 
factor matrix [@I, could serve as a definition 
for the condition of small fluxes, a previously 
imprecisely defined situation. From the 
knowledge of [@I, the fluxesN, could be ex- 
plicitly determined from either eqn. (4) or (5). 

Multicomponent mass transfer. Large driving 
forces 
For conditions of large driving forces (yie - 
yis), the transfer fluxes will be large and the 
matrix of dimensionless rate factors [a] will 
show large deviations from the null matrix 
[ 01. In this case the two overall transfer co- 
efficient matrices [ w;fJ and [ fl] will be sig- 
nificantly different from each other. The in- 
equality of these two coefficient matrices is 
in direct, striking, contrast to a corresponding 
binary system for which we must have Wt = 
@. This last equality was in fact used earlier 
to derive an explicit relation for the mass 
transfer rate factor (see eqn. (7)). It may be 
noted here that, even though (N) = [l+$] 
(Ay) = [ fl] (Ay), there is no requirement in 
matrix algebra that [ @] = [ fl]. In other 
words, there is no unique set of overall trans- 
fer coefficients E$. It follows that if measure- 
ments are made in a ternary system, of Ni, 
Ns and Ns, and of Ayl and Aya, it is not 
possible to have a unique determination of 
the four elements of the system transfer co- 
efficients, I!$ (i, j = 1, 2). The interpretation 
of ternary and, in general, multicomponent 
mass transfer data must therefore proceed via 
a model relating the multicomponent transfer 
behaviour to that of the constituent binary 
pairs. This latter approach was used by Krishna 
et al. [ 81 to validate the film model for multi- 
component mass transfer [ 2 - 61 by analysing 
experimental data obtained for both Stefan 
diffusion and equimolar distillation in wetted- 
wall columns. 

Since [ I!$] f [@I, it is not possible to 
evaluate the matrix [@I explicitly as was 
possible for the three cases examined earlier, 
so that a trial-and-error solution is inevitable. 
In previous papers [ 2 - 81, it has been suggested 
that a head-to-tail iterative procedure could 
be employed using either eqn. (4) or (5) with 
the starting guess [Z,] = ‘1~ or [&J = ‘IJ, 
respectively. This suggestion has been used in 
a variety of problems [ 2 - 81 with success and 

convergence has been fast. Taylor and Webb 
[ 91 have recently presented a numerical pro- 
blem involving vapour-phase diffusion- 
controlled condensation of butane (1) and 
octane (2) in the presence of hydrogen (3) to 
show that, then the eigenvalues of the matrix 
[@I differ greatly in magnitude from one 
another, either eqn. (4) or eqn. (5) may ex- 
hibit oscillations during the head-to-tail itera- 
tion procedure. In the example cited by Taylor 
and Webb [ 91, convergence using eqn. (5) 
with the starting assumption [&I = ‘1~ is 
extremely slow and requires about one hun- 
dred iterations. On the basis of this evidence 
we are now of the opinion that the starting 
guess given by eqn. (11) (by eqn. (12) for the 
case of equimolar diffusion) for the matrix 
[@I is to be preferred to the one starting with 
[a ] = [ 01. We discuss below the arguments 
leading up to this reasoning. 

Consider the case of Stefan diffusion in a 
ternary mixture (the case considered also by 
Taylor and Webb [9]). For i’Va = 0, we have 
Pij = 6, + yi/ys (i, j = 1, 2), and it CZXI be 

shown that one of the eigenvalues of the right- 
hand member of eqn. (11) is 

(13) 

determined purely by the boundary conditions 
imposed on the system. This eigenvalue also 
corresponds to the eigenvalue of the final con- 
verged value of the matrix [ @ ] (see ref. 2 and 
Gilliland’s first solution, i.e. Toor’s eqn. (11) 
[lOI): 

h = ~1/43 + ~243 = ln(y3dy20) (14) 
Put another way, one of the eigenvalues of 

the matrix [a] determined by eqn. (ll), 
derived for vanishingly small fluxes, is also the 
correct eigenvalue of the final converged solu- 
tion [a 1. The second eigenvalue of the finally 
converged value of [a 1, i.e. [ 21 * 

42 = Wl + N2)/42 (15) 

is a function of the ratios of the transfer fluxes 
21 and 22, as can be seen from Gilliland’s 
second solution given by Toor’s eqn. (12) 
[lo]. Consequently, eqn. (ll), obtained for 
vanishingly small transfer fluxes Ni, cannot 
estimate this eigenvalue G2 correctly. 

Since_eqn. (11) predicts one of the eigen- 
values, al, from eqn. (14), correctly we may 
expect iterations to proceed faster with this 
starting assumption as compared to the earlier 
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recommended [2 - 61 iterative procedure of 
starting with the assumption [a] = [ 01. This 
was indeed found to be the case in a wide 
variety of examples tested. The numerical 
example given by Taylor and Webb [9] is 
used below to illustrate the dramatic improve- 
ment in the speed of convergence obtained by 
using the procedure recommended in this 
paper. 

Taylor and Webb [ 91 considered condensa- 
tion of butane (1) and octane (2) in the pre- 
sence of hydrogen (3) with the boundary con- 
ditions: ylo = 0.05, yzo = 0.05, y16 = 0.2, and 
y2s = 0.6. The binary pair mass transfer coef- 
ficients A$j have the values (units: mol mP2 
s-l) RI2 = 0.304,& = 4.27 andk2s = 2.91. 
One of the eigenvalues of the matrix deter- 
mined by the right-hand side of eqn. (11) is 
-1.504, which value corresponds to $r = 
ln(ysB/y,). Iterations starting with the esti- 
mate of [a] from eqn. (11) and using eqn. (5) 
for the calculation of the fluxes proceeded as 
follows (units of Ni: mol me2 s-l): 

Iteration number *1 *2 

1 -1.342 -3.462 
2 -1.201 -3.553 
3 -1.198 -3.560 
4 -1.198 -3.561 
5 -1.198 -3.561 

One of the eigenvalues of [a] throughout 
the iterations above corresponds to -1.504 
and convergence is obtained in four iterations. 
It is int.eresting.to note that with the starting 
guess [@ ] = [ 01, the solution obtained by 
Taylor and Webb: N1 = -1.198, N2 = -3.563, 
does not appear to have fully converged even 
after 104 iterations. 

Finally, it is interesting to note that the 
converged [ fl] for the example given above 
has the elements (units: mol rnw2 s-l) till = 
1.711, flX2 = 1.711, @21 = 5.086 and 
fizz = 5.086, leading to the conclusion that 
the example coined by Taylor and Webb is 
probably a very special one. 

For conditions of equimolar diffusion, one 
of the eigenvalues of the final solution [a] 
must be zero, as shown by Krishna and 
Standart [ 21. It can again be checked that the 
starting guess given by eqn. (12) has one van- 
ishing eigenvalue: 

L 

‘PI = 0 (16) 

The other eigenvalue [ 21, 
,. 
@2 =NlUI~2 -l/R,) +N2<1/!~2 - l/R,,) 

(17) 

is a function of the transfer fluxes N,, as can 
be seen from eqn. (10) of Toor [lo]. This 
latter eigenvalue does not correspond with the 
second, non-vanishing, eigenvalue of the right- 
hand side of eqn. (12), obtained for small 
fluxes. A variety of examples in equimolar 
diffusion was tested by the author with the 
starting assumption given by eqn. (12) and 
convergence was obtained within about five 
iterations. 

When conditions correspond to neither 
Stefan diffusion nor equimolar diffusion, 
general analytic expressions for the eigenvalues 
(such as the Toor and Gilliland solutions [lo]) 
have not been published and it is not possible, 
at this stage, to comment on the eigenvalues 
of eqn. (11) for this case. However, it is inter- 
esting to note that in one numerical example 
tested involving non-equimolar distillation 
(this example can be found in ref. 5), the 
combination of eqn. (11) with either eqn. (4) 
or (5) leads to the correct final values of the 
fluxes Ni (i = 1,2,3), obtained earlier by an 
exact iterative method [ 51. The reason that 
the starting guess given by eqn. (11) is so suc- 
cessful in this case is because the example on 
non-equimolar distillation considered in ref. 5 
corresponds to a small driving force (thus low 
mass transfer fluxes) case. 

Concluding remarks 
For steady-state diffusion in ideal gas mixtures 
we have examined the possibility of obtaining 
the total fluxes Ni explicitly. Explicit solutions 
have been shown to be obtainable in the fol- 
lowing three cases: 

(1) for binary mass transfer (all cases), 
(2) multicomponent mass transfer with all 

binary pair diffusivities equal to one another, 
(3) multicomponent mass transfer with 

vanishingly small fluxes. 
For the general case of multicomponent 

mass transfer, no explicit solution is possible. 
In view of some recently reported complica- 
tions [9] possible with the starting assump- 
tion [a ] = [ 0] in the head-to-tail iterative 
procedure suggested earlier [ 2 - 81, we have 
now proposed in this communication that 



256 

iterations be started with the matrix [@I esti- 
mated from eqn. (11) (which reduces to eqn. 
(12) for equimolar diffusion). Arguments in 
support of this suggestion have been presented 
in the text. The choice between eqns. (4) and 
(5) may be made following the recommenda- 
tions given by Taylor and Webb [ 91. 

The ideal gas treatment given in this paper 
can be extended straightforwardly to the case 
of non-ideal fluid mixtures following the treat- 
ment given earlier [3]. 

Finally, it must be mentioned that the treat- 
ment above is restricted to the case in which 
the eigenvalues of the matrix [@ ] are all real. 
For diffusion with heterogeneous chemical 
reaction, the possibility of complex eigen- 
values exist (see ref. 11) and deserves further 
study. 

Nomenclature 
Ml matrix of inverted mass transfer coef- 

ficients, mole2 m2 s, with elements 
given by 

Bii =g + ktlz, i = 1, 2, . . . . n - 1 

kfi 

Bij = --Yi(llASj -l/kin), 

i, j = 1, 2, . . . . n - 1 
i#j 

mixture molar concentration, mol me3 
diffusivity of binary pair i-j, m2 s-l 
partial molar enthalpy of component i 
in mixture, J mol-’ 
identity matrix with elements S,, 
dimensionless 
mass transfer coefficient in binary sys- 
tem mol rnw2 s-l 
ma& transfer coefficient of binary pair 
i-j in multicomponent mixture, mol 
m-2 s-l 

heterogeneous reaction rate constant, 
mol rnw2 s-l 
molar mass of component i, g mol-l 
number of components in mixture 
molar flux of component i in a station- 
ary coordinate reference frame, mol 
m-2 s-1 

= iil Ni? mixture molar flux, mol mP2 

S-l 

r 

[WI 

xi 

Yi 

AYi 

zi 

distance coordinate along diffusion 
path, m 
mass transfer coefficient matrix defined 
in terms of total fluxes Nip mol me2 s-l 
mole fraction of component i in liquid 
phase 
mole fraction of component i in gas 
phase 
= YiO - Yia , mole fraction difference 
ratio of flux of i to total molar flux of 
mixture 

Greek symbols 
bootstrap coefficient matrix. For the 
linear constrrlint given by eqn. (l), the 
elements fiij are given by 

Pij = 6, -Yi 

i, j = 1, 2, . . . . n - 1 

When the fluix ratios are fixed (eqn. 
(2)), the elements /3ij are given by 

Pij = 6ij/(l -Yilzi) 

length of diff 
Kronecker d e! 

sion path, m 
ta 

= r/6, dimensionless distance along 
diffusion path 
coefficients in linear constraint, eqn. (1) 
matrix of correction factors, dimension- 
less 
matrix of dimensionless rate factors 
with elements given by 

@&+ i !ji i = 1, 2, . . . . 
rn 

3 ik 
n-l 

@ii = -Ni(l/AQ - l/&) i,i= 1, 2, . . . . 
n-l 

ith eigenvalue 1 of the matrix [ @ ] 

Matrix notation 
0 column matrix with n - 1 elements 
[I n - 1 dimensional square matrix 
r 1-l n - 1 dimensional inverted square 

matrix 
‘J diagonal matrix with vanishing off- 

diagonal elements 

Subscripts 
i, j, k referring to components i, j and k or 

summation indices 
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n referring to component n 
t referring to total mixture 
0 referring to position r = 0; parameter 

. . 
evaluated at composltlon yio 

6 referring to position r = 6 ; parameter 
evaluated at composition Yi6 

Superscripts 
X referring to liquid phase 
Y referring to vapour phase 
0 coefficient corrected for finite rates of 

transfer 
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