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Abstract 
This paper analyses steady-state multicom- 

ponent mass transfer between an interface 
and a turbulently flowing fluid phase. The 
molecular diffusion contribution to the 
transfer process is modelled by using a matrix 
of diffusion coefficients D, including off- 
diagonal elements. A turbulent eddy diffusivity 

f, is used to describe the turbulent mass 
transfer contribution. For cases (e.g. pipe 
flow) in which the variation of e, in the 
boundary layer region can be estimated, an 
analytic expression is derived for the matrix 
of multicomponent mass transfer coefficients 
k@. Appropriate correction factors to take 
account of the effect of high transfer fluxes 
on the transfer coefficients are derived in the 
analysis. 

level, an unlikely circumstance. It is concluded 
that the Chilton-Colburn analogy cannot be 
applied for describing mass transfer in strongly 
coupled multicomponent systems. For such 
systems a fundamental description of the 
mass transfer mechanisms, e.g. of the relative 
contributions of molecular diffusion, turbulent 
diffusion, interfacial turbulence etc. is essen- 
tial for the calculation of the individual fluxes. 

INTRODUCTION 

The analysis shows that increase in the 
level of turbulence in the system, for example 
by increasing the Reynolds number, Re, for 
flow inside a conduit, results in a diminished 
influence of molecular diffusion coupling on 
the system transfer behaviour. This is illus- 
trated by means of a numerical example 
involving mass transfer in the gaseous system 
acetone-benzene-helium in which, for the 
chosen conditions, increase in Re for flow 
along the interface alters the direction of 
transfer of acetone, a direct consequence of 
diminished diffusional coupling at increased 
turbulence levels; i.e. k r2 /k rI decreases as Re 
increases. 

The calculation of the interfacial mass 
transfer fluxes Ni, i = 1,2, . . . n, in multicom- 
ponent systems (n > 3) is important in many 
process applications [ 11, which include 
distillation, absorption, extraction, condensa- 
tion and heterogeneous reacting systems. 
These fluxes Ni can be written in terms of the 
diffusional and convective contributions 

Ni = Ji + OiNt, i= 1,2, . . . n (1) 

where Ji is the mass diffusion flux of com- 
ponent i relative to the mass average mixture 
reference velocity?. (Other choices for the 
mixture reference velocity are possible [l] 
and the reader will find it easy to carry out a 
parallel treatment in terms of the molar fluxes 
and molar average reference velocity.) 

There are only n - 1 independent mass 
diffusion fluxes Ji and it is usual to write 
these in the form 

Use of the multicomponent generalization 
of the Chilton-Colburn analogy, recom- 
mended in the literature, leads to the conclu- 
sion that the ratio k12/kll is independent of 
Re; thus the relative importance of diffusional 
coupling is not affected by the turbulence 

J = pk.@, - ob) (2) 

where we use n - 1 dimensional matrix 
notation. For many systems of practical 
interest the matrix of multicomponent mass 
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+This choice is governed by the need later on in the 
paper to solve the diffusion equations together with 
the equations of motion; the latter are best expressed 
using the mass average reference velocity frame. 
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transfer coefficients k’ contains sizeable off- 
diagonal elements h; (i # i) which may 
strongly influence the transfer of component 
i, and in some cases dominate its transfer 
behaviour [2, 31. The superscript black dot l 

on the coefficients k: serves as a reminder 
that these are influenced by the system 
transfer fluxes [l] . Whichever model one 
chooses to describe the interface mass transfer 
process, the coefficients k’ are expressible in 
the form: 

k* = kZ (3) 

where Z ’ 1s a matrix of high flux correction 
factors, reducing in the limit of vanishingly 
small transfer fluxes (Ni -+ 0, i = 1,2, . . . n) to 
the identity matrix I; in this circumstance 
km = k, the matrix of zero-flux mass transfer 
coefficients. Knowledge of k’ and the com- 
positions at either end of the diffusion path 
enables the calculation of the n - 1 diffusion 
fluxes Ji with the help of eqn. (2); the calcula- 
tion of the n fluxes iVi requires an additional 
determinancy condition which usually takes 
the form of a linear constraint on these fluxes 
[ 1, 4, 51. Defining a bootstrap coefficient 
matrix 8, it is possible to obtain the fluxes 
from the relation: 

N = pgk*(o, - w,,) (4) 

The elements of the bootstrap matrix g are 
known a priori for many cases of practical 
interest such as equimolar diffusion, Stefan 
diffusion, etc. [4, 51. 

The prediction of k” from information on 
the transport characteristics of the constituent 
binary pairs in the mixture has gained a lot of 
attention in recent years. One of the most 
significant advances in this area was made in 
1964 when Toor [6] and Stewart and Prober 
[7] independently put forward a linearized 
theory of multicomponent mass transfer 
based on the assumption that the matrix of 
molecular diffusion coefficients D is indepen- 
dent of composition. With the help of this 
assumption direct multicomponent generaliza- 
tions, in n - 1 dimensional matrix notation, 
of well-known binary mass transfer relation- 
ships [8] are possible and expressions for k 
and= may be written down straightforwardly 

[l, 6, 71. 

In a limited number of practical cases 
a priori estimates of the film thickness 6 and 
the contact time for mass transfer t, are 
available and the film and penetration models 
above can be used for calculating k*. How- 
ever, in a majority of examples of chemical 
engineering interest such a priori estimates are 
not possible and binary mass transfer data are 
usually correlated by use of dimensionless 
groups, such as: 

Sh = kd/q; St = k/ii; j, = St Sc213 (10) 

The Gilliland-Sherwood correlation for gas 
phase binary mass transfer in a wetted-wall 
column is, for example, 

Sh = 0.023 Re”.83 SC’.~ (11) 

For mass transfer from a pipe wall to a 
turbulently flowing fluid phase, the Chilton- 
Colbum analogy takes the form: 

j, = f/2 or St = f Sce213/2 (12) 

Provided the Fanning friction factor f is based 
on shear friction and not total ‘drag, eqn. (12) 
has been found to hold remarkably well for 
many types of flow systems and geometries 
[lo, 111. 

Thus the film model for multicomponent In the literature on multicomponent mass 
mass transfer gives: transfer it has been suggested that correlations 

k = D/S, 

Z = +[exp 9 -I]-’ 

(5) 

(6) 

where Cp is the dimensionless mass transfer 
rate factor, defined as 

@,= N”k-1 (7) . 
P 

A suitably averaged diffusion coefficient 
matrix D must be used. It may be remarked 
that for ideal gas mixtures the assumption of 
constant D is unnecessary and an exact 
solution is possible [ 91. 

The Higbie penetration model gives the 
following expression for the mass transfer 
coefficients k and the correction factor Z 

H=[I+erf ~]-1[exp(-*2/7r)] 

The dimensionless mass transfer rate factor 9 
is again given by eqn. (7). (See reference [l] 
for further details on the penetration model). 
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of the type given by eqns. (11) and (12) can 
be generalized by replacing the binary diffu- 
sivity 9 with D and the binary mass transfer 
coefficient h with k (see e.g. refs. 1, 2, 3, 
6, 71). Thus for mass transfer between a pipe 
wall and a multicomponent fluid mixture in 
turbulent flow we have 

St = k/u = f SC-~/~/~ (13) 

There is experimental evidence to support this 
matrix generalization procedure [ 1 - 3, 12 - 
151, albeit limited in number and restricted 
to ideal contacting devices e.g. wetted-wall 
columns, well mixed trays etc. 

Let us examine eqn. (13) in some more 
detail. The ratio of the off-diagonal element 
in k to the main one: 

kij/ki; (i f j) 

is independent off and hence independent of 
the Reynolds number. Now, we might expect 
that increasing the Re for fluid flow inside a 
conduit will have the effect of increasing the 
turbulent eddy transport relative to the 
molecular diffusion contribution. Since turbu- 
lent eddy transport is not species specific, we 
might expect a corresponding decrease in the 
influence of molecular diffusional coupling. 
This expectation is not fulfilled by the 
predictive model given by eqn. (13). Clearly, 
the resolution of this problem lies in the 
proper modelling of the molecular diffusion 
and turbulent eddy contributions to the 
interphase mass transfer process; this is the 
objective of the present communication. We 
shall restrict ourselves to fully developed 
turbulent flow inside a smooth conduit and 
assume steady-state conditions. 

TURBULENT FILM MODEL 

Consider mass transfer between the inter- 
face (subscript I) and the bulk fluid phase at 
any position z in the direction of flow. Let y 
represent the position coordinate along the 
direction of mass transfer, assumed uni- 
dimensional. No chemical reactions are 
c.onsidered in the ensuing analysis. 

The equations of continuity of component 
i reduce for steady-state conditions to: 

i= 1,2, . . . n (14) 

and therefore the mass flux Ni is y-invariant: 

Ni = Ni, = Nir = Nib, i= 1,2, . . . n (15) 

The mixture total flux Nt = N1 + N2 + 
N3 + . . . N, is also y-invariant. Let us define 
the mass diffusion flux with respect to the 
mass averaged reference velocity of the 
mixture Ji as: 

Ji g Ni - WiNt, i = 1,2, . . . n (16) 

Since the mass fractions Wi vary along y, SO 

do the mass diffusion fluxes Ji. For turbulent 
flow conditions we use time-smoothed fluxes 
and compositions. The constitutive relation 
for Jiy taking account of the molecular 
diffusion and turbulent eddy contributions, 
is given by (see ref. [16, 171 for a justifica- 
tion of this): 

J=--p[D+r,]$ (17) 

where E, is the matrix of turbulent eddy 
diffusivities. Since eddy mass transport is not 
species specific we must have the matrix E, 
reduce to the form of a scalar times the 
identity matrix, i.e. 

cm = emI (18) 

Let us define in the usual manner, the 
friction velocity: 

u* = (7&#‘s = (f/2)1’%, 09) 

the dimensionless distance parameter y+: 

y+ = yu*/v, (20) 

and the dimensionless velocity u’: 

U + = u/u* = (2/f)l’%/ii. (21) 

With these definitions, equation (17) may 
be re-written as 

SC-~ + sc;l: 1 _ I do 

V dy+ 

where we have additionally defined Set, the 
turbulent Schmidt number: 

SC, = E/E, (23) 

where E is the turbulent eddy kinematic 
viscosity. 

Combining equations (14 - 16) and (22) 
we obtain 
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iv= -pu* SC-l 
[ 

+ S&I x 
V I 

dw 
X - + UN, = constant 

dy+ 

In developing the integration of eqn. (24) 
we shall find it convenient to define a matrix 
9, which is position dependent: 

I 
-1 

dy+ (25) 

Let us denote by 9, the matrix evaluated by 
taking the upper integration limit as yb+, the 
position at which the bulk composition Oib is 
reached. With the above definitions it is easy 
to solve the matrix differential eqn. (24), with 
the boundary conditions: 

y+ = 0, Wi = Wir; Y+ = Yb+, Oi = mib, (26) 

to obtain the composition profile as (see 
Appendix I for derivation): 

.(o - w,) = [exp \k - I] [exp Cp -11-l X 

x ("b-oI) (27) 
Evaluation of the composition gradient at 
Y + = 0 enables the calculation of the inter- 
facial mass diffusion fluxes Jii with the help 
of eqn. (22). We may thus derive: 

Jr = N,[exp + - I]-l(ol - wb) (29) 

Comparing eqn. (2) with eqn. (29) we 
obtain an expression for the matrix of high 
flux mass transfer coefficients k* 

k*= s[exp9-I]P1 
P 

Inversion of eqn. (30) gives 

k’-’ = [ exp 9 - I] p/N, (31) 

Taking the limit of eqn. (31) for vanishing 
total flux (Nt -+ 0), we obtain 

Nt 44, 0 k*-1 E k-i = ’ 
N@ 

(32) 
t 

and therefore we may write eqn. (30) as 

k* = k@[exp Q - 11-l (33) 

whence we obtain, on comparing with eqn. 
(3), the matrix of high flux correction factors 
Z as: 

Z = cP[exp 4, -11-l (34) 

identical to the film theory result of eqn. (6). 
Since the matrix of correction factors depends 
on the total flux N,, a trial and error proce- 
dure is necessary for the calculation of the 
individual fluxes Ni [ 1 - 51; we concentrate 
now on the evaluation of the zero flux mass 
transfer coefficient matrix k. We shall find it 
convenient to proceed further with the 
evaluation of the inverse matrix of Stanton 
numbers, St-‘, which is given by the expression 
(cf. eqns. (lo), (25) and (32)): 

(35) 

A major difficulty in the calculation of St 
using eqn. (35) is that the position y: at 
which the bulk phase composition Wib is 
reached is not known precisely. We proceed 
further by adopting the approach used in the 
solution of the binary problem; the approach 
is well described in standard sources [ 10, 11, 
18, 191 and we shall only state the assump- 
tions made and present the final solution to 
the multicomponent problem. 

We divide the region 0 - yb+ into two sub- 
regions as follows: 
0 - y:: in which both molecular and turbulent 

contributions to mass transfer are im- 
portant, and 

y: - yb+: in which the turbulent eddy transport 
predominates over the molecular diffusion 
one. 

Further we assume, as is commonly done in 
heat and mass transfer analyses, that the 
turbulent Schmidt is unity, i.e. SC, = 1. With 
these assumptions and further taking the 
shear stress profile as: 

(36) 

we may derive the final working relationship 
for St-l : 

St-l = (2/f)I + (2/f)1’2 j’/[sc-l + tI1-l - 

++;I]-‘) Q dY+ (37) 

When y; and the eddy kinematic viscosity 
profile are specified, the right hand side of 
eqn. (37) can be evaluated and the matrix of 
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zero flux mass transfer coefficients obtained 
from k = St% There are many such models in 
the literature and these are discussed in the 
excellent reviews of Sherwood [lo, 111 and 
Sideman and Pinczewski [ 191. We discuss here 
only one such model, the classic one due to 
von KarmLn, in order to illustrate the use of 
the developed multicomponent turbulent film 
model. According to the von K&man model 
the position yl = 30 and the eddy kinematic 
viscosity profile is given by the following: 

E 
_= 0, o<y+<5 (38) 
V 

E Y+ _=- 
v 5 

-1, 5 y+ 30 (39) 

Equation (37) yields: 

St-l = Z I + 5 - 
2 r/s 

0 [ 
sc--I+ 

f f 

+ln 
( 
I+ i[Se-I] 

iI 
We note in passing that there appear to be 
typographical errors in the binary version of 
eqn. (40) given in the reviews of Sherwood 
[ 10,111; the correct binary form is available 
elsewhere [e.g. 201. Another observation 
concerns the Reynolds analogy for multi- 
component systems; when SC = I it is easy to 
check from eqn. (37) that St = (f/2)1. The 
requirement Sc = I for a multicomponent 
system is a much more special case than for 
the corresponding binary system for it requires 
that all the constituent binary pair diffusivities 
in the multicomponent system be equal to 
one another, avery stringent condition indeed. 

Equations (lo), (32), (33) and (37) re- 
present the final working relations of the 
turbulent film model developed in this paper 
and the consequences of the analysis are best 
illustrated by means of a numerical example 
in ternary mass transfer. 

ILLUSTRATIVE EXAMPLE 

Consider gas phase mass transfer in a 
wetted wall column; the system consisting of 
a downward flowing liquid film of the liquid 
mixture acetone(l) and benzene(2), in 
contact with co-current flow of a vapour 
mixture of acetone( 1)-benzene(2) in the 

presence of a non-transferring inert gas 
helium(3). Experiments with the objective of 
demonstrating the diffusional interactional 
effects in the gas phase were carried out by 
Modine [21] ; these experiments have been 
re-interpreted in terms of matrix formulations 
of multicomponent mass transfer by Krishna 
[2, 221. We,will compare the predictions of 
Ni by the developed turbulent film model, 
assuming a von K&rm&r universal velocity 
profile in the gas phase, with those of the 
Chilton-Colbum multicomponent model, 
given by eqn. (13) for the following set of 
conditions: 
compositions at the gas-liquid interface: 
0 1I = 0.1347; upI = 0.6478. 
composition of the bulk flowing gas phase: 
w Ib = 0.3102; ‘&, = 0.3188. 

Other relevant physical and thermodynamic 
data are as follows: 

total pressure = 1.3 bar; 
temperature = 35.0 “C. 
binary pair diffusivities: qr2 = 2.93 mm2 

s-l; cD13 = 31.8 mm2 s-l ; Q2s = 29 mm2 s-l 
(these values corresponding to 35 “C). 

mixture gas density: p = 0.641 kg m-3; 
gas mixture viscosity: p = 15.4 PPa s. 
friction factor: f/2 = 0.926(0.0007 + 

0.0625/Re0-32), correlation obtained from 
binary mass transfer data by Modine [ 211. 

diameter of conduit: d = 0.025019 m 
(= 0.985 inch). 

Now, since helium is non-transferring, i.e. 
N3 = 0, the elements of the bootstrap matrix 6 
will be given by (see Krishna [ 21): 

pij = 6ij + Wi/W3, i,j = 1,2 (41) 

Since the interfacial fluxes JiI will be calculated 
by use of eqns. (2) and (33), the elements of 
the bootstrap matrix will have to be calcu- 
lated using the interfacial mass fractions in 
eqn. (41). 

Next we need to calculate the elements of 
the matrix D in a mass averaged reference 
velocity frame from the binary pair diffu- 
sivities cz)ij. The estimation procedure for D 
in the molar average reference velocity frame 
is widely available in the literature [e.g. [l] ] ; 
we detail in Appendix II a step-by-step proce- 
dure for calculating D in the mass average 
reference velocity frame. For the set of 
conditions chosen above for the system 
acetone(l)-benzene(2)-helium(3), the ele- 
ments Dij have the values (calculated at the 
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TABLE 1 

Comparison of model predictions for gas phase mass transfer in the system acetone(lkbenzene(2)-helium(3) 

Reynolds Acetone flux, N1, mg mP2 s-l Benzene flux, N2, g mP2 s-l k/k11 
Number 

von K&-man Chilton-Colburn von Karman Chilton-Colburn von K&man Chilton-Colburn 

9000 169 388 11.8 11.8 0.162 0.189 
10000 164 419 12.7 12.7 0.160 0.189 
15000 130 566 17.2 17.2 0.152 0.189 
20000 85 701 21.3 21.3 0.147 0.189 
25000 34 829 25.2 25.1 0.143 0.189 
30000 -22 951 28.9 28.8 0.140 0.189 
40000 -141 1183 36.0 35.8 0.136 0.189 
50000 -268 1402 42.8 42.5 0.132 0.189 

arithmetic average compositions) (Units: 
mm2 s-l) 

D,, = 21.2; D,, = 5.97; D,, = 10.2; D,, = 23.5 

Table 1 presents the results of the calcula- 
tions of N,, N2 and the ratio k12/kll using the 
von K&man turbulent film model and the 
Chilton-Colburn model, for a range of values 
of the Reynolds number. 

Let us first discuss the ratio k12/kll; this 
ratio is predicted to be constant by the 
generalized Chilton-Colburn approach, eqn. 
(13). This because the model assumes that k 
is proportional to D2’3. The ratio k12/kll = 
0.189, as predicted by the model, is thus 
smaller than the ratio D,,/D,, ; this is because 
of the influence of the turbulent mass trans- 
port. Thus while the Chilton-Colbum model 
recognises that coupling effects are reduced 
due to eddy mass transport, the reduction is 
assumed to be independent of the Reynolds 
number. Since the eddy diffusivity increases 
with the Reynolds number we should really 
expect coupling effects to decrease gradually 
with increasing Re. Thus the extension, 
eqn. (13), of the classic Chilton-Colburn 
analogy is physically unrealistic. 

The turbulent film model using the von 
Karman universal velocity profile, eqn. (40), 
properly recognises that the turbulent eddy 
mass transport contribution should increase 
relative to the molecular contribution as Re is 
increased. This is reflected in the values of the 
ratio k12/kll decreasing from a value 0.162 at 
Re = 9000 to a value 0.132 at Re = 50 000. 

Let us now consider the flux predictions by 
the two models. Since the driving force for 
component 2, Aw2, is larger than that of 
component 1, Awl, and opposite in sign, the 

flux Nl is strongly linked with the driving 
force of component 2. At Re = 9000 both the 
von K&man and the Chilton-Colburn models 
predict that Nl is positive even though 
Awl E (alI - qb) is negutiue. In other 
words both models predict reverse mass 
transfer for component 1. The conditions 
chosen in the calculation at Re = 9000 cor- 
respond almost exactly with the conditions 
prevailing near the top of the wetted-wall in 
one particular run (Run 7) of the experiments 
carried out by Modine [2]. Reverse mass 
transfer was experimentally confirmed, lend- 
ing credence to coupled multicomponent 
mass transfer formulations; the experimental 
results cannot be explained even qualitatively 
if the cross coefficients in k are assumed to be 
zero, as is implied by effective diffusivity ap- 
proaches. Both the von Karman and Chilton- 
Colburn model predictions are not too far 
apart when Re = 9000, the predictions of N2 
being identical to each other. Therefore it is 
not surprising that we had, in an earlier 
analysis of the Modine experiments, con- 
cluded that eqn. (13) can be safely used in 
design calculations for design purposes [ 1, 21. 
The picture changes dramatically when the Re 
is increased. Due to the fact that in the 
Chilton-Colbum model k12/kll remains con- 
stant, the flux Nl monotonically increases 
with increasing Re. The turbulent von K&-man 
film model predictions are quite the reverse. 
Due to reduced coupling effects, the acetone 
flux is influenced to a lesser extent by the 
benzene flux as Re is increased. At Re = 
30 000 the coupling effect is reduced to such 
an extent that acetone(l) flux is directed 
from the bulk to the interface, a direction to 
be naturally expected from its driving force 



169 

(Au, = -0.1755). As Re is increased beyond 
30000, the absolute value of Nr increases and 
the component 1 behaves ‘normally’. Un- 
fortunately, no experiments were performed 
with varying Re to check the dramatic dif- 
ferences in the model predictions; Physical 
intuition would suggest that the predictions 
of the von K&man turbulent film model are 
more realistic. 

In many ways the sensitivity of multicom- 
ponent mass transfer calculations to the 
choice of the model, as noted above, is similar 
to our earlier published observation that 
under certain conditions the ‘film and penetra- 
tion models could predict different directions 
of mass transfer [26]. In one way this is 
unfortunate because for really interesting 
multicomponent systems where molecular 
diffusional coupling effects are large, the 
precise calculation of the mass transfer fluxes 
is very sensitive to the choice of the model. 
Looking at the bright side of the problem, we 
could use multicomponent mass transfer 
coupling effects as an experimental tool to 
discriminate between the many mass transfer 
models available in the literature; the study 
presented in this communication highlights 
the limitations of the Chilton-Colburn anal- 
ogy as applied to multicomponent systems. 
Of course, to a design engineer faced with the 
task of, e.g., designing vapour condensers this 
is somewhat worrying because of the doubtful 
applicability of the matrix generalization 
procedure of all types of binary correlations. 
On the basis of the evidence of this paper we 
consider it necessary to retract our statement 
that the multicomponent mass transfer 
problem is essentially ‘solved’, if the corre- 
sponding binary problem is [l] . 

For weakly coupled multicomponent sys- 
tems, all multicomponent mass transfer 
models will predict similar results, even 
models based. on the effective diffusivity 
[15]. In a way this also reflected in Table 1 
where both models are seen to predict identi- 
cal values of the benzene flux Nz ; benzene is 
only weakly coupled to the acetone driving 
force. 

CONCLUDING REMARKS 

In this paper we have developed a turbulent 
film model for multicomponent mass transfer. 

The major result of this communication is 
eqn. (37) which enables calculation of the 
zero-flux mass transfer coefficients. The 
correction factor for high mass transfer rates 
is given by eqn. (34), identical in form to the 
film model for multicomponent mass transfer 
[l, 21. The turbulent film model correctly 
describes the relative influences of the molec- 
ular and turbulent eddy contributions to mass 
transfer. Equation (37) can only be applied 
for the calculation of k if information on yl 
and e(y+) is available; this kind of information 
is available in the literature for only a limited 
number of cases e.g. flows inside tubes and 
over flat plates. One important practical 
problem which can be solved with the help of 
the turbulent film model is condensation of 
mixed vapours inside vertical tubes. Thus the 
design procedure published in the literature 
[24, 251 can be applied with the new recom- 
mendation that eqn. (37) be used instead of 
the earlier suggested eqn. (13) for estimation 
of k for gas phase transport. 

One worrying conclusion reached in this 
paper is that for strongly coupled systems, the 
calculation of the transfer fluxes is very 
sensitive to the chosen model. For strongly 
coupled systems, empirical binary correlations 
of the type given by eqns. (12) and (13) 
cannot be safely generalized. A deeper under- 
standing of the various mechanisms of mass 
transfer (molecular diffusion, turbulent eddy 
transport, interfacial turbulence etc.), with 
appropriate quantification of the various 
constituent mechanisms, is required. The 
turbulent film model developed in this paper 
is a step towards this end. 

NOMENCLATURE 

A(y+) matrix defined by eqn. (1.2) 
c total molar concentration of mixture, 

kmol rnd3 

G 
diameter of conduit, m 
molecular diffusion coefficient for 
binary mixture, m2 s-l 

DCn 11 Curtiss-Hirschfelder diffusion coef- 
ficients (eqn. (II.l)), m2 s-r 

D matrix of molecular diffusion coef- 
ficients in the mass average reference 
velocity frame, m2 s-l 

0;; coefficients given by eqn. (11.6), 
m2 s-l 
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f 
I 

j, 

Ji 

JI 

k 

k 

k’ 

Mi 

Li 

N 

Nt 

Fanning friction factor 
Identity matrix with elements &ih 
j-factor for mass transfer, defined by 
eqn. (10) 
mass diffusion flux of component i 
relative to the mass average reference 
velocity, kg mM2 s-l 
column matrix of mass diffusion 
fluxes evaluated at the interface, 
kg m-2 s-l 
binary zero-flux mass transfer coef- 
ficient, m s-l 
matrix of multicomponent zero-flux 
mass transfer coefficients, m s-l 
matrix of finite flux multicomponent 
mass transfer coefficients, m s-l 
molecular weight of component i, 
kg kmol-1 
number of components in mixture 
mass flux of component i in a station- 
ary coordinate reference frame, kg 
m-2 s-1 

column matrix of mass fluxes, kg rnp2 
S-l 

R 

SC 

SC 

Sc, 

Sh 

Sh 

St 
St 

mass transfer flux of total mixture 
relative to a stationary coordinate 
reference frame, kg mm2 s-l 
n dimensional matrix with elements 
given by eqns. (11.3) and (11.4), rnp2 s 
Schmidt number for binary system, 
SC = v/Q 
matrix of multicomponent Schmidt 
numbers, SC = vD_’ 
turbulent Schmidt number, defined 
by eqn. (23) 
Sherwood number for binary mass 
transfer, defined by eqn. (10) 
matrix of multicomponent Sherwood 
numbers Sh = kD-‘cl 
Stanton number for binary system 
matrix of multicomponent Stanton 
numbers 

t, 
U 

contact time between phases, s 
fluid velocity along conduit, function 
ofy,ms-l 

ii average flow velocity in conduit, 
-1 

U* 

U+ 

xi 

Y 

E&ion velocity defined by eqn. (19) 
reduced velocity defined by eqn. (21) 
mole fraction of component i 
position coordinate measured from 
the interface, m 

Y+ dimensionless distance coordinate de- 
fined by eqn. (20) 

Y: 

Yb’ 

zi 

position beyond which turbulent 
transport mechanisms predominate 
position at which bulk fluid composi- 
tion is reached 
i = 1,2 . . . ; dummy variables used in 
eqn. (1.5) 

Greek symbols 
bootstrap solution matrix relating 
total fluxes to diffusion fluxes defined 
by N = f&J, = f&J,, 
Kronecker delta 
turbulent eddy (kinematic) viscosity, 
m2 s-l 
turbulent eddy mass diffusivity, m2 
S-l 

column matrix of integration con- 
stants, see eqn. (1.3) 
fluid phase dynamic viscosity, Pa s 
= p/p, fluid kinematic (molecular) 
viscosity, m2 s-l 
matrix of correction factors to account 
for high transfer rates 
fluid mixture mass density, kg rnp3 
shear stress, N rnp2 
matrix of mass transfer rate factors 
defined by eqn. (25) taking y+ = yz 

+ matrix defined by eqn. (25) 
matrizant defined by eqn. (1.5) 

wi time-smoothed mass fraction of com- 
ponent i 

Wib bulk phase time smoothed mass 
fractions 

OiI interfacial time smoothed mass frac- 
tions 

Awi = Wir - Wib, mass fraction driving 
force 

Su bscrip ts 
b pertaining to bulk phase 
I pertaining to interface 
n pertaining to component n 

Superscripts 
+ non-dimensionalized property 
0 parameter corresponding to high mass 

transfer rate conditions 
- overbar denoting arithmetic averaged 

composition 

Y+ upper limit of intergral 

Matrix no tu tion 
Bold face (A) n - 1 X n - 1 dimensional 

square matrix 



Bold face italic (A) column matrix of dimen- 
sion n - 1 
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APPENDIX I 

Solution of the matrix differential eqn. (24) 
For simplicity let us rewrite the matrix 

differential eqn. (24) in the form 

dw 
- = A(y)+@ + s‘) 
dy+ 

(I.11 

where 

A(,,)+ = ?!k SC-~ + Sc,l f 1 1 
-1 

Pu* 
(1.2) 

V 

is dependent on the position y+. { is a column 
matrix of constants. It is not necessary to 
determine these constants tie We may rewrite 
eqn. (1.1) in the form 

d(o + t) 
dy+ 

= AO,)+(w + 5) (1.3) 

The solution to the matrix differential eqn. 
(1.3) can be found in the text by Amundson 
[ 271; here we follow closely the treatment by 
Taylor [28]. The solution to (1.3) can be 
written as 

(w + 0 = s%+(No, + f) (1.4) 

where &(A) is the matrizant defined by 

SZ~+(/l)=I+/+A(zl)dzl + 

+ 

+P s 

=1 
A@, ) A(z2) h2 hl + 

0 

Y+ 

+; J 

"I 

A@,) A@,) X 

0 0 

=2 

X 
s 

Azs dzs dzp dz1+ . . . (1.5) 
0 

where the Zi’s are dummy variables. 
wi is the column matrix of mass fractions 

at the wall, y+ = 0. Substituting w = oI when 
y+ = 0 in eqn. (1.4) and subtracting the result 
from eqn. (1.4) we obtain, after noting that 
@(A) = I, the identity matrix: 

(0 - 01) = r%+(A) - II (WI + 5) U-6) 

At the distance y+ = yb+, o = wi, and from 
eqn. (1.6): 
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twb - WI) = w$+u - II ((4 + f) (1.7) 

Combining eqn.s (1.6) and (1.7) we obtain 
the composition profile as 

(w -w*) = [a;+(A) -I] [c&4) - 11-l 

twb - (-4) (1.8) 

Let us now+consider the evaluation of the 
matrizant 528 (A). The matrix A(_v+) is given 
by eqn. (1.2) and it is easy to see that the 
inverse matrix [A@‘)]-’ exhibits a very 
simple dependence on the position coordinate 
y+ (recall that SC is assumed to be position 
independent in our model): only the diagonal 
elements of [A@‘)] -l are position dependent. 
Further, the position dependence is the same 
for all the principal diagonal elements because 
e/v is not species dependent. Thus the trans- 
formation matrix which diagonahzes SC-’ also 
diagonalizes [SC-’ + Sc;‘e/vI] , [A@')] -l and 
[A@‘)] . The transformation matrix then is 
independent of y+ and the four matrices 
listed above all commute with each other and 
with IA&‘) dy+. Thus the integrations 
required in eqn. (1.5) can be carried out by 
parts to give 

dy+ 1 (1.9) 
where \k is given by eqn. (25). By combining 
eqns. (1.8) and (1.9), after noting that 9 is 
obtained by taking y+ = yc as the upper limit 
of integration in eqn. (25), we obtain the 
composition profile given by eqn. (27). 

An alternative derivation of eqn. (27), 
without the use of matrizants, can be found 
in the paper by Standart and Krishna [29]. 

APPENDIX II 

Calculation of the matrix D in the mass 
averaged reference velocity frame 

The first step is to calculate the Curtiss- 

Hirschfelder diffusion coefficients [ 231, de- 
fined for purely molecular transport by: 

Ji = 5’ i MiMjDgHyxj 
P j=l 

(11.1) 

where Xi is the mole fraction of species i. The 
Curtiss-Hirschfelder diffusion coefficients are 
given in terms of the binary pair diffusivities 

by 

(11.2) 

Rij (i,j = 1,2, . . . n) are given by: 

Rii = 0 i = 1,2, . . . n (11.3) 

n 

(11.4) 

R” and R ii are the minors of the ji and ii 
elements of the R matrix. 

Since in the turbulent film model devel- 
oped here the matrix D is assumed constant, 
we need to evaluate the elements 0:” using 
the arithmetic average mole fractions 3ti. Once 
02” are calculated using eqn. (11.2) we need 
to calculate 0:; whose elements are given by: 

i,j = 1,2, . . . n (11.5) 

Finally the elements of the n - 1 X n - 1 
dimensional matrix D can be calculated from 

Dij = of:, -0;; i,j = 1,2 ,...n-1 (11.6) 


