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ABSTRACT 

The generalized Maxwell-Stefan diffusion 
equations have been used to model mass 
diffusion in multicomponen t electrolyte sys- 
tems. The Nernst-Planck equation, often used 
in practice, is shown to be a special limiting 
case of the generalized model. A simplified 
general procedure is suggested for the estima- 
tion of the diffusion fluxes. This simplified 
procedure is obtained by casting the diffusion 
equations in n-dimensional matrix notation 
where n represents the number of species 
present in the system (including solvent). 
The interesting effects obtained with mixed 
electrolyte systems are adequately reflected 
by the developed model. Comparison of the 
predictfons of the simplified model with some 
experimental data shows that the suggested 
procedure is of acceptable engineering 
accuracy. 

1. INTRODUCTION 

There are many applications in chemical 
engineering where diffusion of charged ionic 
species is encountered. Examples are ion 
exchange, metals extraction, electrochemical 
reactors and membrane separations. The mass 
transfer process in such systems is usually 
described by the use of the Nernst-Planck 
relationship; see, for example, the excellent 
text by Newman [l]. The Nernst-Planck 
relationship is valid for dilute electrolyte 
systems, and for concentrated systems it is 
well recognized that the generalized Maxwell- 
Stefan equations provide the most convenient 
starting point [ 2,3]. Though the formalism 
for dealing with concentrated electrolyte 
systems is available, no general procedure for 
the calculation of the mass fluxes, valid for 
multicomponent electrolyte systems, appears 
to have been presented. This is the objective 
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of the present communication. A convenient 
general procedure for the calculation of the 
fluxes is developed by casting the diffusion 
equations in compact matrix notation. 

2. DIFFUSION IN ELECTROLYTE SYSTEMS 

The appropriate starting point for a general 
description of mass transport in electrolyte 
systems is afforded by the generalized 
Maxwell-Stefan (GMS) equations which can 
be written in the following form [ 2,3] 

di E 3ci vT,ppi + 
RT 

1 
-- 

c,RT i 
CiFi - Wig CjFj 

i 

= f: xiNitiiyNi i=l,2,...,n (1) 
j=l 
jfi 

where di is the generalized driving force for 
transfer of species i. 

Now, in many cases of practical interest 
the pressure gradients are negligibly small and 
this term may therefore be neglected in 
eqn. (1). For diffusion of charged species the 
external body force Fi is given by 

J’i = --z~TV~ 
Except in regions close to electrode sur- 

faces where there will be charge separation 
(double layer phenomena), the condition of 
electroneutrality 

n-1 

z ZiCi = 0 
i=l 

is met and therefore the expression for the 
driving force di simplifies to 
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di = “i vT,Ppj + x.2.9 vq5 
RT ’ 'RT 

(4) 

In many cases of practical interest the nth 
species (solvent) is stationary, i.e. N, = 0. It is 
convenient to work in terms of diffusion 
fluxes with respect to the solvent 

Ji” E Ni -xiN, = ci(Ui -u,) (5) 

Using the diffusion fluxes Ji” in place of 
Ni in the GMS eqns. (1) we obtain 

di = 2 XiJjn -XI Ji" i= 1,2, . . ..n-1 
j=l ctDij 
j#i (6) 

where we write only n - 1 independent 
equations in view of the fact that Jnn = 0 and 
the n driving forces are not all independent 
(Zdi = 0). The set of eqns. (6), n - 1 in 
number, may be conveniently cast into n - 1 
dimensional matrix notation 

c,(d) = -[Bl(J”) (7) 

where the elements of the matrix of inverted 
diffusion coefficients [B] are given by 

Bii = 5 3ci 
j=l Dij 

i=l,2,...,n-1 (8) 

j+i 

Bij = -Xi/Dij i,j = 1,2 , . . ..n-1 (9) 
(i +j) 

A convenient procedure for estimation of 
the diffusion fluxes Jj” follows from eqns. 
(7) - (9) by assuming that the matrix [B] is 
constant along the diffusion path. Further, 
the driving forces di are approximated by 
linear composition and electrostatic potential 
profiles over the range of interest 

-(d) = [I-] (F + (xz) ; 7 (10) 

where the matrix of thermodynamic correc- 
tion factors [r] is 

a In yj 
rij = 6, +Xj - 

axj 
i,j=l,2 ,..., n-l 

(11) 

and can be estimated (at an averaged com- 
position) provided data on the activity 
coefficients in the electrolyte system are 
available. 

With the above simplifications the fluxes 
Jin are calculated from 

(J”) = -c,[B]-‘(d) (12) 

Information on the velocity of the solvent 
U, is required before the fluxes Ni can be 
calculated from 

Ni = Ji” + XiNn = Ji” + CiU, (13) 

i=l,2,...,n-1 

The procedure outlined above is not 
restricted to dilute systems. For such dilute 
electrolyte systems the treatment is very 
much simplified because we have 

& vTsp& = vxi (dilute electrolyte) (14) 

rij = 6ij or [I”] = [I] 

(dilute electrolyte) (15) 

Bii = l/Din’ i=l,2,...,n-1 

(dilute electrolyte) (16) 

Bij = 0 i,j= 1,2 , . . ..n-1 

(i #j) 
(dilute electrolyte) (17) 

With the above simplifications the GMS 
diffusion equations collapse to the form 

Ni= -CtDin"VXi-CiZiDino ?V@ + CiU, 
RT 

i=l,2,...,n-1 (13) 

which are the Nernst-Planck equations 
commonly used to describe mass transport in 
electrolyte systems [ 11. For concentrated 
electrolyte systems the matrix [B] has signi- 
ficant non-diagonal elements. Further, the 
matrix of thermodynamic correction factors 
also has significant non-diagonal elements for 
concentrated systems. The general approach 
to the estimation of the fluxes is by use of 
eqn. (12). 

Now, eqn. (12) can be used, provided the 
n - 1 independent driving forces di can be 
calculated (say, by use of eqn. (10)). In many 
practical chemical engineering applications 
such as in ion exchange etc, no external 
potential is applied to the system and there 
is no flow of current, i.e. 



n-l n-1 

C ZiNi = C ZiJi” = 0 (19) 
i=l i=l 

In this situation there is a finite electro- 
static potential gradient created due to the 
motion of the charged species. The V$ term 
is not known a priori and the formal proce- 
dure given above cannot be applied as such. 
For such cases we proceed somewhat dif- 
ferently . 

Equations (6) are written in the form 

n-l 

x BijJi” + CiZi RT %@ 

j=l 

i=l,2 n-l , -**7 (20) 

There are n unknowns (Jln, Jzn, . . . , J,_ In 
and V$). Equation (19), when used in con- 
junction with the n - 1 eqns. (20) is suf- 
ficient for the calculation of the n unknowns. 

A convenient method of solution of the 
set of n eqns. (19) and (20) is to cast these 
into n-dimensional matrix notation. This is 
done by defining the following matrices: 

(i) an augmented matrix of inverted dif- 
fusion coefficients [B] with elements given by 

Bij = Bij i,j=1,2 ,..., n-l (21) 

Bin = CiZi i=l,2,...,n-1 (22) 

Bnj = q j=l,2,...,?2-1 (23) 

B,, = 0 (241 

(ii) an augmented vector of driving forces 
(VY) 

vq = xi vT,ppi, i=l,2 n-1 
RT 

, ***, (25) 
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vu,=0 (26) 

(iii) an augmented vector of “unknowns” 
(J) 
Ji = Ji” i=l,2,...,n-1 (27) 

J, = 
sr 

iiF+ w3) 

With the above definitions, the “unknowns” 
can be determined by 

(J) = -ct[B-p( VU) (29) 

The assumption of constant matrix [B] and 
linear composition profiles allows the explicit 
evaluation of the fluxes Ji” and the “dif- 
fusion potential” A$. 

For dilute systems the approximations 
given by eqns. (14) - (17) are valid. It is 
interesting to note that even in dilute systems 
of electrolytes the rates of diffusion of ionic 
species are “coupled” to one another. This 
coupling arises because of the constraints (3) 
and (19), the latter valid for “pure” diffusion. 
To illustrate this we have presented some 
calculations of the diffusion coefficients for 
the system Na+( l)-Cl-( 2)-HzO( 3); the data 
on the GMS diffusivities D, were obtained 
from Laity [ 41. The “effective” diffusivities 
of the ionic species, Di,eff, were calculated 
from 

D 
Ji” 

i,eff = -- i=l,2 
C,VXj 

(30) 

using eqn. (29); these values are also given in 
Table 1. It is to be noted that the effective 
ionic diffusivities for the binary electrolyte 
system are equal to each other. This is despite 
the fact that the diffusivities of Na+ and Cl- 
in Hz0 (i.e. D13 and D& are different from 

TABLE 1 

Diffusion coefficients in the system Na+(l)-Cl-(2)-HzO(3) at 25 “C!. The data on the generalized Maxwell-Stefan 
diffusion coefficients Dij have been recalculated from the paper of Laity [ 4 1. 

=Na Cl 
(kmol md3) 

0.01 
0.02 
0.05 
0.10 
0.20 

Generalized Maxwell-Stefan Dij 
( 10Wg m2 5-l) 
013 O23 012 

1.333 2.065 0.0078 
1.333 2.083 0.0113 
1.325 2.083 0.0197 
1.312 2.083 0.0302 
1.298 2.101 0.0468 

Elements of [B]-’ Effective ion 
(10-gm2sA1 ) diffusivity 
%I-’ B12-’ B21 -1 B22- 1 (lOdg m2 s-l) 

D Leff = D2,eff 

1.295 0.059 0.059 1.974 1.621 
1.283 0.080 0.080 1.960 1.627 
1.258 0.109 0.109 1.915 1.623 
1.231 0.136 0.136 1.875 1.615 
1.204 0.167 0.167 1.845 1.616 
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each other. The electrostatic potential acts in 
a manner to slow down the Cl- ion and speed 
up the Na+ ion such that the requirement of 
electroneutrality is maintained and there is 
no net current flowing through the system 
(cf. eqn. (19)). Examination of the values 
of the elements of [B]-i in Table 1 shows 
that as the concentration of the electrolyte 
increases the value of the cross-coefficients 
Bij’ (i # j) increases and for salt concentra- 
tions above about 0.2 kmol me3 it will be 
necessary to use the generalized Maxwell- 
Stefan formulation in place of the commonly 
used Nernst-Planck relationship (16). Put 
another way, the Nemst-Planck relationship 
can be used for salt concentrations below 
about 0.1 kmol rne3. 
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Fig. 1. Effective diffusivities in the mixed electrolyte 
system HCl-BaClz-H20. The experimental data are 
taken from Vinograd and McBain [ 31. The theoretical 
predictions are based on eqns. (29) and (30). 

For an electrolyte system containing three 
or more ions there is no requirement that the 
effective diffusivities of the individual ionic 
species Di, eff be equal to one another. In fact 
it is possible to accelerate, or decelerate, a 
particular ion to a significant extent above 
its “intrinsic” mobility, i.e. mobility un- 
hindered by the other ionic species. Figure 1 
shows the calculations for the effective 
diffusivities for the system H+(l)-Cl-(2)- 
Ba++(3)-HzO(4) using eqns. (29) and (30). 
The intrinsic mobility values Din0 were 
obtained from Newman [ 11. The theoretical 
calculations are compared with the experi- 
mentally determined effective diffusivity 
values reported in Vinograd and McBain [ 51. 
The agreement for Cl- and Ba++ ions is 
extremely good, while there is a systematic 
deviation for the diffusivity values for H+ ion. 
This systematic deviation could be due to 
experimental inaccuracies inherent in measur- 
ing extremely high diffusivity values. For all 
three ions the correct experimental trends 
with ion concentrations are predicted by the 
linearized GMS approach. 

Figure 2 presents a similar comparison 
between theoretical predictions and experi- 
mentally measured effective diffusivities for 
the system H’(l)-Cl-(2)-K’(3)-H,O(4). 
Again the agreement between linearized 
theory and experiment is good for Cl- and 
K+, while there is a larger deviation for H+ 
effective diffusivity, especially at higher 
diffusivity values. The deviation is signifi- 
cantly reduced for low values of H+ dif- 
fusivity. The correct experimental trends are 
reproduced by the theoretical model based 
on a linearized GMS approach. 

3. CONCLUDING REMARKS 

The generalized Maxwell-Stefan equations 
have been used as a basis for modelling the 
mass transport process in electrolyte systems. 
The set of equations describing the mass 
transfer process is conveniently cast into 
matrix notation and a simplified solution 
procedure has been suggested for the calcula- 
tion of the diffusion fluxes and “effective” 
diffusivities. The linearized procedure has 
been shown to be of acceptable engineering 
accuracy by comparisons of theoretical 
predictions with experimental effective dif- 
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Fig. 2. Effective diffusivities in the mixed electrolyte 
systems HCl-KCl-H20. The experimental data are 
taken from Vinograd and McBain [ 31. The theoretical 
predictions are based on eqns. (29) and (30). 

fusivity values. Some of the interesting 
features of multicomponent electrolyte - i.e. 
mixed ion - systems have been pointed out in 
the discussions. 

There are many applications in chemical 
engineering where mixed ion diffusion effects 
can have significant consequences; some 
examples are ion exchange [6,7], metals 
extraction [ 8,9] and neutralization reactions 
[lo]. The model formulation developed in 
this paper could be profitably used to calcu- 
late the fluxes in these cases. 
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APPENDIX A: NOMENCLATURE 

WI 

VI 

ci 

Ct 

di 

Dij 

Di, eff 

9 

Fi 

ii 

Ji” 

(J) 

P 
R 
T 
ui 

u -?J 
vi 

xi 

matrix of inverted diffusion coeffi- 
cients with elements defined by 
eqns. (8) and (9) (me2 s) 
rr dimensional augmented matrix with 
elements given by eqns. (21) - (24) 
molar concentration of species i 
(kmol mh3) 
mixture molar concentration (kmol 
mW3) 
generalized driving force defined by 
eqn. (1) (m-l) 
generalized Maxwell-Stefan diffusivi- 
ties for the pair i-j in multicomponent 
mixture (m2 s-l) 
effective diffusivity of ionic species i 
in mixture (m2 s-l) 
Faraday’s constant (9.65 X lo7 C kg- 
equiv-‘) 
external body force acting on species i 
(N kmol-‘) 
mass diffusion flux of component i 
with respect to mass average reference 
velocity of mixture (kg mA2 s-l) 
molar diffusion flux of species i with 
respect to nth component (solvent) 
velocity (kmol mP2 s-l) 
augmented column matrix of dimen- 
sion n with elements given by eqns. 
(27) and (28) 
number of species in system 
molar diffusion flux of species i in 
fixed coordinate reference frame 
(kmol me2 s-l) 
pressure (N mP2) 
gas constant (8314.4 J kmol-r K-l) 
absolute temperature (K) 
velocity of diffusing species i in fixed 
coordinate reference frame (m s-l) 
nth component velocity (m s-r) 
partial molar volume of species i 
(m3 kmol-‘) 
mole fraction of species i 
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(VY) n dimensional augmented column 
matrix of driving forces defined by 
eqns. (25) and (26) 

Zi charge on species i 

Greek symbols 
Yi activity coefficient of species i in 

solution 
UT matrix of thermodynamic factors 

defined by eqn. (11) 
6 length of diffusion path (m) 

6ij Kronecker delta 
Pi molar chemical potential of species i 

(J kmol-‘) 
+ electrostatic potential (V) 
Oi mass fraction of species i 

Subscripts 
i, j reffering to species i, j in multicom- 

ponent mixture 
n referring to species II (solvent) 
T at constant temperature conditions 
T, P at constant temperature and pressure 

conditions 

eff 
conditions 
“effective” parameter 

Superscripts 
0 infinite dilution value 
n referred to solvent 

overbar denotes partial molar quantity 
tilde denotes specific quantity 

Matrix no tation 
[I square matrix of dimension n - 1 X 

n-1ornXn 
[ 1-l inverted matrix 
0 column matrix 

Vector notation 
V gradient operator (m-l) 
. dot product between vectors 

Operators 
A difference operator 
Iz summation 
dldt substantial time derivative 


