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ABSTRACT 

The Dusty Gas Model equations for diffu- 
sion of n-component mixtures in porous 
media have been conveniently cast into 
n-dimensional matrix notation. A simplified 
linearizedprocedure, involving the assumption 
of a constant matrix of transfer coefficients, 
is developed for the calculation of the steady- 
state fluxes in non-reacting systems. Published 
experimental data are used to test the 
accuracy of the linearized procedure and it is 
concluded that the linearized procedure is of 
good accuracy. 

The procedure can be extended to the 
analysis of diffusion of non-ideal liquid 
mixtures in porous media. 

1. INTRODUCTION 

In recent years the Dusty Gas Model has 
gained wide acceptance for application to the 
description of multicomponent ideal gas 
mixtures in porous media. The theory has 
been well discussed in two excellent texts by 
Jackson [ 11 and Mason and Malinauskas [ 21. 
Even for the simple case of steady-state 
diffusion in non-reacting systems, the Dusty 
Gas Model equations must be solved 
numerically, though exact analytic solutions 
are available for some very special cases [ 1 - 31. 

In this paper we cast the Dusty Gas Model 
equations into convenient n-dimensional 
matrix notation and develop a simplified, 
linearized procedure for the calculation of 
the steady-state diffusion fluxes. The devel- 
oped procedure is tested against published 
experimental data and also against an 
available exact analytical solution in a special 
case. 

The results of this study will be of use in 
design calculations for adsorptive and 
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membrane separations, catalytic reactors and 
other situations involving porous transport. 

The analysis is extendible to the descrip- 
tion of mass transport of non-ideal liquid 
mixtures in porous media. 

2. THEORETICAL DEVELOPMENT 

For diffusion in “open space”, the correct 
description of the diffusion process is given 
by the generalized Maxwell-Stefan diffusion 
equations [4, 51 

di z & VT, p/b + 

(di -wi) vp 

c,RT 

1 
-- 

c,RT ( 
CiFi -Wi kCil$ 

i 

= 5 xiN;ti7Ni i = 1,2, . . . . n (1) 
j=l 
j#i 

For ideal gas mixtures the following 
simplifications can be made: 

& VT, ppi = vxi (thermodynamic ideality) 

(2) 

$i = Xi (volume fraction = mole fraction) (3) 

ct = & (ideal gas law) 

and so the generalized Maxwell-Stefan diffu- 
sion eqns. (1) reduce to 

di s vxi + (xi- wi) VP- ’ 
P P 

= i xi:tii%Ni i = 1,2, . . . . n (5) 
i=l 
j#i 

@ Elsevier Sequoia/Printed in The Netherlands 



76 

In the Dusty Gas Model the “walls” of the 
porous material are modelled as the n + lth 
component in the mixture, the so-called 
“dust” species. These dust species are giant 
molecules (Af, + 1 + m), uniformly distributed 
in space ( Vc, + 1 = 0), and are held motionless 

(N,+l = 0) by unspecified external forces 
acting on them (c,+i F,, +1 = VP). With these 
model assumptions the set of it + 1 Dusty Gas 
eqns. (5) can be simplified to give (see 
Jackson [l] and Mason and Malinauskas [2] 
for detailed derivation) 

xi CiFi 
VXi+-- - 

RT vp- RT 

1 CiFi 
E _vpi- - 

RT RT 

n XiNP-xjNf’ 
=T 

Nf 
-- 

i = 1,2, . . . . n (6) 

We have introduced a superscript D on the 
fluxes Ni to emphasize the fact that only the 
diffusional contribution to the transport is 
being considered here; the parallel viscous 
contribution arising from the flow of the 
“mixture as a whole” through the porous 
medium must be added to NY to obtain the 
total fluxes 

Ni=Ny+Nj’ (7) 

The viscous contribution, which is non- 
separative, is 

Nj’ = -xi fg (VP- +4) 
For a cylindrical pore of radius ro, the 

permeability B. is 

2 
B”= 5 

(8) 

(9) 

In the Dusty Gas eqns. (6) we have 
introduced a superscript e on the diffusion 
coefficients because the diffusion coefficients 
have to be modified to take account of the 
porosity e and the tortuosity r of the medium 

The bulk gas phase Maxwell-Stefan diffu- 
sion coefficients D, can be estimated by semi- 

empirical procedures based on the kinetic gas 
theory [ 61. The Knudsen diffusion coefficient 
for a cylindrical pore is also obtained from 
the kinetic gas theory 

(11) 

Both the porosity and the tortuosity 
reduce to unity for a cylindrical pore 

c=l 7=1 (cylindrical pore) (12) 

We may combine eqns. (6) - (8) to obtain 
the working form of the Dusty Gas Model 
equations [l, 21 

j#i 

i=l,2 , . . . . n (13) 

For the usual cases of importance in 
chemical engineering the external forces 
acting on the species i = 1, 2, . . . . n, Fi, are 
absent and eqns. (13) reduce to [l, 21 

= i; xiNjixfNi 

j=l rj 
jfi 

i=l,2,...,n (14) 

There are n independent eqns. (14), 
n independent fluxes Ni, n independent 
gradients (driving forces): OX,, vx2, . . . , VX, _ 1, 
and VP. 

Summing over the n species, eqn. (14) 
yields 

(15) 

If the pressure gradients are absent or 
negligibly small, then eqns. (15) reduce in 
view of eqn. (11) to 

5 N&J2 = 0 
i=l 

(VP = 0) (16) 



and so equimolar diffusion is only possible if 
the transferring species all have the same 
molecular weight. 

The solution of eqns. (14) to obtain the 
n fluxes Ni requires to be carried out 
numerically in the general case though 
analytic solutions have been given for some 
very special cases [l - 3, 71. A convenient 
simplified procedure for the solution can be 
developed by first casting eqns. (14) into 
n-dimensional matrix notation 

(N) = - & [B]-l(d) (17) 

where (d) represents an n-dimensional column 
matrix of driving forces 

i=l,2,...,n (18) 

The IZ X IZ dimensional matrix of inverted 
diffusion coefficients [B] has the elements 

1 
Bii = _ 

Zx 
i=1,2 , ***, n (1% 

jfi 

i,j=l,2 , -*-, n (20) 

(i f j) 

The fluxes Ni can be calculated explicitly 
if we make the following simplifications: 

(i) assume that the elements of [B] are 
constant along the diffusion path; an averaged 
value for the mole fractions j2i must be used 
in eqns. (19) and (20). 

(ii) the gradients in eqns. (18) are estimated 
by assuming linear composition and pressure 
profiles along the length of the diffusion 
path 6: 

With the above simplifications, eqn. (17) 
yields the’ values of the n fluxes explicitly. 
It remains now to check the accuracy of the 
linearized procedure suggested above. 

3. TESTS OF THE LINEARIZED MODEL 

Mason and Malinauskas have carried out 
extensive experimental investigations to test 

the validity of the Dusty Gas Model; their 
work is conveniently summarized in ref. 2. 
We use their experimental data to test the 
accuracy of the linearized model developed 
above. 

In one series of experiments [ 21, the fluxes 
for diffusion of a mixture of helium and 
argon, across a porous septum of thickness 
4.47 mm, were measured. The pressure drop 
across the system was maintained at zero 
level, while the total system pressure was 
varied as shown in Fig. 1. The mole fraction 
driving force Ax, was maintained at 0.9628, 
with a mean composition X1 = 0.5. Figure 1 
compares the linearized model predictions 
with the experimental data. Except for the 
flux of helium at high system pressure J, the 
agreement between linearized theory and 
experimental data is extremely good. At high 
system pressures bulk diffusion is controlling 
and the discrepancy between experiment and 
theory could be due to an error in the estima- 
tion of the binary gas phase diffusivity D,,. 
The diffusivity values used in the model 
calculations correspond to those used by 
Mason and Malinauskas [2]. 

In a further set of experimental results 
with the system helium-argon, the total 
system pressure p was maintained constant at 

Fig. 1. Comparison of experimental data for the 
fluxes Ni with predictions of the linearized model, 
Experimental data given in Fig. 16 of ref. 2 for the 
system helium-argon. The experimental conditions 
are Ax1 = 0.9628; j;r = 0.5; T = 298.15 K; Ap = 0; 
length of diffusion path 6 = 4.47 mm. The model 
parameters used in the calculations are : B. = 2.13 x 

lo-l8 m2; pD& = 1.06 x lo@’ atm m2 s-l; D;K = 
3.93 X 10-s m2 s-l; D& = 1.24 X 10V8 m2 s-l; gas 
mixture viscosity p = 22.8 Pa s. 
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Fig. 2. Comparison of experimental fluxes N1, NT 
and Nr + Nz for the system helium (1)-argon (2) 
with predictions of the linearized model. The data 
are taken from Fig. 19 of ref. 2. The experimental 
conditions are: AxI = 0.9628; x1 = 0.5; T = 298.15 K; 
fi = 1.96 atm; length of diffusion path 6 = 4.47 mm. 
The model parameters used in the calculations are 
the same as those in Fig, 1. 

1.96 atm, while the Ap across the porous 
septum was varied over a wide range as shown 
in Fig. 2. The composition driving force was 
maintained at Ax1 = 0.9628. Figure 2 shows a 
comparison of the linearized model predic- 
tions with the experimental data. A positive 
Ap hinders the transport of helium and aids 
the transport of argon. The agreement between 
linearized theory and experiment is good for 
positive values of Ap. For negative Ap, the 

TABLE 1 

pressure gradient acts in a manner such as to 
aid the transfer of helium and counter the 
transfer of argon. Since the flux of helium is 
significantly greater than that of argon, the 
countering effect of Ap on the argon transport 
serves to introduce larger absolute deviations 
between model predictions and experiment 
in comparison with the situation for positive 
Ap. Put another way, the accuracy of the 
linearized model can be expected to be 
reduced when the Ap term serves to counter 
the smaller flux and aid the larger flux. The 
relative deviations between experimental data 
and linearized model predictions may still be 
of acceptable accuracy for chemical engineer- 
ing design calculations. 

A more stringent test of the linearized 
model would be to test this against experi- 
mental data for a true multicomponent 
system with species made up of widely differ- 
ent sizes. Remick and Geankoplis [8] have 
provided such data for the diffusion of 
helium-neon-argon in a capillary diffusion 
cell. The experiments were performed in such 
a way that Ap = 0 across the diffusion path. 
The system pressure p was varied and so were 
the composition driving forces Axi. The 
experimental data are summarized in Table 1. 
The predictions of the linearized model 
predictions for the fluxes Ni are given in 
Table 2. Also given in Table 2, for comparison 
purposes, are the predictions of the fluxes Ni 
using an exact analytical procedure which we 
had presented earlier [ 31. Comparison 
between the exact and linearized model 
predictions shows that the linearized model 
is an excellent approximation over a wide 
range of system pressure values. The small 
percentage deviations between model (exact 
or linearized) and experimental values of Ni 
point to the applicability of the Dusty Gas 

Experimental ternary diffusion data (Remick and Geankoplis [ 6 1) for the system helium (1)-neon (2)-argon (3) 

Run No. j Mole fractions Fluxes 
(mm Hg abs) I’%) 

x10 X16 x20 X26 
(1 O-’ kmol rnF2 s-r) 

-N1 N2 N3 

1 0.450 27.6 0.0472 0.9471 0.5241 0.0343 3.7333 1.100 0.5966 
2 1.100 28.3 0.0652 0.9610 0.5099 0.0251 6.810 1.923 1.065 
3 4.09 27.2 0.0572 0.9619 0.5134 0.0244 19.98 5.064 2.843 
4 22.66 27.8 0.0622 0.9625 0.5102 0.0237 44.14 9.437 5.495 
5 303.19 27.5 0.0539 0.9601 0.5051 0.0252 49.25 12.81 7.472 
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TABLE 2 

Model predictions (linearized and exact) and % deviations from measured data for Ni. The model parameters are: 
6 = 9.6 mm; 2rc = 0.391 pm; Mi = 4; Mz = 20.18; Ma = 39.95; p = 22 /_&‘a s; Di2 = i06.8 mm2 s-l; Dis = 73.4 mm’ 
s-1; D 2s = 31.6 mm2 s-l (values at 1 atm); E = 1; 7 = 1 

Run No. 

1 

2 

3 

4 

5 

Model 

Exact 
Linearized 
Exact 
Linearized 
Exact 
Linearized 
Exact 
Linearized 
Exact 
Linearized 

Predicted fluxes 
( low5 kmol rnd2 s-l) 

--N1 N2 

3.439 0.834 
3.438 0.834 
7.611 1.837 
7.600 1.834 

20.318 4.909 
20.124 4.862 
40.594 9.844 
39.093 9.479 
51.536 12.276 
48.518 11.552 

N3 

0.496 
0.495 
1.103 
1.101 
2.940 
2.912 
5.846 
5.633 
7.582 
7.141 

% Deviations from expt. 

(%) 

el e2 

-7.88 -24.19 
-7.90 -24.21 
11.76 -4.5 
11.60 -4.63 

1.69 -3.06 
0.72 -3.99 

-8.03 4.32 
-11.43 0.44 

4.64 -4.17 
-1.49 -9.82 

e3 

-16.94 
-16.97 

3.55 
3.41 
3.41 

’ 2.42 
6.42 
2.51 
1.47 

-4.43 

Model to the system considered. It must be 
pointed out here that our model predictions 
given in Table 2 appear to be somewhat 
superior to the predictions of the “exact” 
model of Remick and Geankoplis [8], who 
used the analytical solution of Cunningham 
and Geankoplis [ 91. This latter procedure 
does not involve matrix algebra and it is 
possible that their model calculations had 
not fully converged; calculations of multi- 
component mass transfer using matrix 
methods are known to provide rapid con- 
vergence [ 71. 

4. EXTENSION TO NON-IDEAL LIQUID 

MIXTURES 

Using the generalized Maxwell-Stefan eqns. 
(1) as the starting point it is possible to 
parallel the derivation of the Dusty Gas Model 
valid for the general case of non-ideal fluid 
mixtures. The final equations obtained in this 
manner have the same form as eqn. (13), with 
the following alterations: 

(a) VXi is to be replaced by 2 V, P /Ji 

(b) Vxi + xi 2 is to be replaced by 2 VT pi 
P 

(c) the pressure is to be replaced by c, R T 

except in the vp term 

With the above alterations, the final Dusty 
Fluid Model equations take the form 

ciBc 
+- 

PDh i 
VP- kCjI$ 

j=l 

n XiNj -xjNi 
=c De 

j=l ii 
j#i 

i=l,2,...,n (22) 

Equation (22) represents the most con- 
venient starting point for the discussions on 
transport of non-ideal fluid mixtures in 
porous #media. Though eqns. (22) are formally 
equivalent to the corresponding Dusty Gas 
Model equations (13), there are some impor- 
tant limitations to eqns. (22). The diffusion 
coefficients D& representing transport of 
component i through the porous media have 
to be determined empirically. The same 
comments hold for the pair generalized 
Maxwell-Stefan diffusion coefficients D&. 
Equations (22) must therefore be viewed as 
an important aid to the interpretation of 
diffusion data in porous media By distinguish- 
ing between the two types of coefficients 
D$ and DfK these coefficients can be better 
interpreted in terms of the molecular and 
thermodynamic properties of the fluid 
mixture and the structure of the porous 
medium. 
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In practical cases the most important 
external body force to be considered is the 
electrostatic potential, arising in the transport 
processes involving charged species 

4 = -ZiyV@ (23) 

Due to the condition of electroneutrality 
in the bulk fluid mixture we must have 

~cjzj=o gCiI$=O (24) 
i=l i=l 

and so eqns. (22) simplify to 

c,di s ci V,~i + CiZi 
9 

RT 
- vf$ + 

Ci BO 

RT 
- VP 
E.tD?K 

jfi 
i=l,2 , . . . . n (25) 

The set of eqns. (25) can be cast into 
n-dimensional matrix notation 

(N) = -c, [B]-l(d) (26) 

where the elements of [B] are given as before 
by eqns. (19) and (20). The linearization 
procedure can be extended to the non-ideal 
fluid mixture case. We calculate the elements 
of [B] at some averaged composition and 
assume it to be composition independent. 
The gradients are approximated by assuming 
linear profiles 

Xi ATPi 
+xz. 7 A4 Xi& AP 

-dig__ --+-- 

RT 6 “RT 6 IGK 6 

(27) 
With the above simplifications the fluxes 

Ni can be determined explicitly from eqn. 
(26). We firmly believe that the above 
procedure will be an invaluable aid to the 
interpretation of experimental data on 
transport processes in membranes. 

The foregoing linearized treatment has 
been developed for planar slabs, but can be 
easily generalized to spherical and cylindrical 
geometries using generalized distance param- 
eters as has been shown earlier [lo]. 

5. CONCLUDING REMARKS 

We have developed a simplified linearized 
procedure for the calculation of the fluxes Ni 

for steady-state diffusion of multicomponent 
gaseous mixtures in porous media. The 
linearized procedure is shown to be of 
acceptable accuracy in a few comparisons 
with published. experimental data. An addi- 
tional advantage of the use of n-dimensional 
matrix notation is that this notation is much 
less awesome than the algebraic form of the 
Dusty Gas Model equations. Manipulations 
can be easily carried out. 

The linearized procedure can also be 
extended to the description of the transport 
of non-ideal fluid mixtures in porous media. 
This extension will help in the interpretation 
of experimental data in adsorptive and 
membrane separations. 
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APPENDIX A: NOMENCLATURE 

Bo permeability of the porous medium 
(m’) 

WI matrix of inverted diffusion coeffi- 
cients defined by eqns. (19) and (20) 
(mm2 sj 

ci molar concentration of species i 
(kmol me3) 

c n+l molar concentration of “dust” species 
(kmol me3) 



ct 

di 
Dij 

DFj 

DiK 

GK 

ei 

mixture molar concentration (kmol 
me3) 
generalized driving force (m-l) 
generalized Maxwell-Stefan diffusion 
coefficients ( m2 s-r) 
effective generalized Maxwell-Stefan 
diffusion coefficients in porous 
medium (m2 s-l) 
Knudsen diffusion coefficient of 
species i in cylindrical pore (m2 s-l) 
effective Knudsen diffusion coefficient 
in porous medium (m* s-l) 
% deviation between model predic- 
tions and experimental values of 
fluxes 

9 

4 

ii 

Mi 

Lk j 
P 

r0 

R 
t 
T 
q 

Faraday’s constant (9.65 X 10’ C 
(kg equiv)-‘) 
external body force acting on species i 
(N kmol-‘) 
mass diffusion flux of component i 
with respect to the mass average 
mixture velocity (kg mW2 s-l) 
molar mass of species i (kg kmol-l) 
number of species in fluid mixture 
molar diffusion flux in fixed coordi- 
nate reference frame (kmol rnp2 s-l) 
system pressure (N m-* or atm or 
mm Hg) 
radius of cylindrical pore (m) 
gas constant (8314.4 J kmol-’ K-l) 
temperature (“C) 
absolute temperature (K) 
partial molar volume of species i 
(m3 kmol-l) 

xi mole fraction of species i 
zi charge on species i 

Greek symbols 
6 length of diffusion path (m) 
E porosity of medium 
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Pi molar chemical potential of species i 
(J kmol-‘) 
viscosity of fluid mixture (Pa s) 
tortuosity of porous medium 
= CjVi, volume fraction of species i 

@ electrostatic potential (V) 
(4 mass fraction of species i 

Subscripts 

i, j referring to species i, j in multi- 
component mixture 

K Knudsen diffusion coefficient 
n+l “dust” species 
0 at position 0 (start of diffusion path) 
T at constant temperature 
T P at constant temperature and pressure 
6 at position 6 (at end of diffusion path) 

Superscripts 
D diffusive contribution to the fluxes 
e effective diffusion coefficient in 

porous medium 
V viscous contribution to the fluxes 
- overbar denotes averaged value 

tilde above letter denotes specific 
quantity 

Matrix notation 

[I n X n dimensional matrix 
[ 1-l inverted matrix 
0 n dimensional column matrix 

Vector notation 
V gradient operator (m-l) 
. dot product between two vectors 

Operators 
A difference operator 
2 summation 


