
Chemical Engineering Science 164 (2017) 63–70
Contents lists available at ScienceDirect

Chemical Engineering Science

journal homepage: www.elsevier .com/ locate/ces
Short Communication
Highlighting multiplicity in the Gilliland solution to the Maxwell-Stefan
equations describing diffusion distillation
http://dx.doi.org/10.1016/j.ces.2017.01.060
0009-2509/� 2017 Elsevier Ltd. All rights reserved.

E-mail address: r.krishna@contact.uva.nl
Rajamani Krishna
Van‘t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
h i g h l i g h t s

� Alcohol/water mixtures can be
separated by diffusion through inert
gas.

� The efficacy of separation improves
with higher molar mass of inert gas.

� The Gilliland equations yield three
different solution sets, only one is
realistic.

� The Prigogine minimum entropy
production principle identifies the
physically correct solution.

� If porous barriers are used, the pore
diameter should large enough to
ensure bulk diffusion.
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This article investigates the separation of ethanol/water, and 2-propanol/water liquid mixtures of azeo-
tropic composition by allowing diffusion through six different inert gases: helium, nitrogen, air, argon,
CO2, and xenon. The Maxwell-Stefan (M-S) equations afford a rigorous quantification of the achievable
separation. For steady-state transfer, analytic solutions to the M-S formulation were obtained in paramet-
ric form by Gilliland. For each investigated system in this study, the Gilliland approach yields three dif-
ferent solution sets for the transfer fluxes of alcohol and water; only one of these is physically realizable
in practice. The physically realistic solution can be identified by invoking the Prigogine principle of min-
imum entropy production. Robust computational algorithms are essential for modeling and development
of diffusion distillation technology; these are indicated.
The efficacy of diffusion distillation depends on differences in alcohol-inert and water-inert friction in

the vapor phase; such differences increase with increasing molar mass of the inert component. Inert
gases such as CO2 and Xe are more effective than lighter inerts such as air, nitrogen or helium. Some
of the strategies in the published literature, involve interposing porous barriers between the vapor and
liquid phases; the choice of the pore diameter influences the efficacy of diffusion distillation. For alco-
hol/water mixtures, it is preferable to choose the pore diameter such that ‘‘bulk” diffusion, rather than
Knudsen diffusion regime prevails inside the pores.
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Nomenclature

ct total molar concentration of mixture, mol m�3

dp diameter of pore, m
Ðij M-S binary pair diffusivity, m2 s�1

Di,Kn Knudsen diffusivity of species i, m2 s�1

½D� diffusivity matrix, m2 s�1

½I� identity matrix, dimensionless
Mi molar mass of species i, kg mol�1

Ni molar flux of species i, mol m�2 s�1

pi partial pressure, Pa
pt total pressure, Pa

P0
i vapor pressure, Pa

R gas constant, 8.314 J mol�1 K�1

t time, s
T absolute temperature, K
xi mole fraction of component i in liquid phase,

dimensionless
yi mole fraction of component i in vapor phase,

dimensionless

z direction coordinate, m

Greek letters
ci activity coefficient of component i, dimensionless
d film thickness, m
dij Kronecker delta, dimensionless
g dimensionless distance in diffusion layer, dimensionless
ki eigenvalues of ½U�, dimensionless
r rate of entropy production, J m�3 s�1 K�1

Uij dimensionless mass transfer rate factors, dimensionless

Subscripts
0 referring to position, z ¼ 0
d referring to position, z ¼ d
1 component 1
2 component 2
3 component 3
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1. Introduction

For a binary alcohol(1)/water(2) mixture, the vapor-liquid equi-
librium is described by yi ¼ cixiP

0
i =pt; at the azeotropic composi-

tion, we have yi ¼ xi. Binary mixtures of azeotropic composition
cannot be separated by conventional distillation because there is
no driving force for transfer from liquid to vapor phase, and vice
versa. The addition of an entrainer (species 3) is a common strategy
employed in azeotropic and extractive distillation processes; the
addition of the entrainer serves to alter the phase equilibrium ther-
modynamics in such a manner as to allow complete separation of
species 1, and 2. Such processes are energy-intensive because of
the need for solvent recovery in an additional distillation column.
There is considerable research on developing energy-efficient
alternatives to azeotropic and extractive distillation processes.
One such alternative involves the introduction of an ‘‘inert” gas
as species 3 (Fullarton and Schlünder, 1986). The separation prin-
ciple is based on the differences in the interfacial mass transfer
fluxes (N1, and N2) of components 1 and 2 in the ternary mixture
(1, 2, and 3). Essentially, the separation relies on maintaining con-
ditions such that the ratio of fluxes N1=N2 is significantly different
from the corresponding ratio of mole fractions of the azeotrope,
x1=x2. In the absence of the third component, we must have
N1=N2 ¼ x1=x2 ¼ y1=y2, as there is no driving force during conden-
sation or evaporation for each of the components of a mixture with
azeotropic composition. When an inert non-condensable, is intro-
duced into the vapor phase, this allows mixtures of azeotropic
composition to be separated because the vapor compositions are
altered and driving forces for component transfers are ‘‘created”.

Diffusional effects have been exploited to separate alcohol/
water mixtures of azeotropic composition by distillation in the
presence of an inert gas such as helium, nitrogen, air, argon, and
CO2 (Fullarton and Schlünder, 1986; Singh and Prasad, 2011).
Experimental verification of the efficacy of the diffusion distillation
concept has been established in wetted-wall columns (Fullarton
and Schlünder, 1986; Singh and Prasad, 2011, 2015; Ziobrowski
et al., 2009). The same separation principle prevails in other con-
structs in which a porous barrier, or membrane, is interposed
between the liquid and vapor/gas phases; such separations have
been variously termed ‘‘sweep-gas distillation”, or ‘‘frictional dis-
tillation” (Banat et al., 1999a, 1999b; Breure et al., 2008).

It must be remarked that the concept of deliberate addition of a
third component to enable diffusion-selective separation was
already developed in the 1950s (Cichelli et al., 1951; Keyes and
Pigford, 1957). These early research activities were focused on
the separation of gaseous isotopes by diffusing through a third
component in the form of a condensable vapor. The following
quote from Keyes and Pigford (1957) is both illuminating and
instructive partial separation of the components of a binary gas mix-
ture can be effected by diffusion at constant total pressure through a
third gas or vapor, provided there exists a difference in diffusivities
of the components with respect to the vapor. The third component is
commonly called the separating agent.

Diffusion distillation, and indeed all sweep diffusion processes,
place heavy reliance on the proper description of molecular diffu-
sion phenomena in the gaseous phase. Rigorous models to describe
the diffusion of three-component gas mixtures are required, and it
is therefore no real surprise that the earliest practical applications
of the Maxwell-Stefan (M-S) diffusion formulations are to be found
in the analysis of sweep diffusion processes for separating gaseous
isotopes (Cichelli et al., 1951; Keyes and Pigford, 1957).

For diffusion of a binary mixture (components 1, and 2) in the
presence of an inert, non-transferring component (3), at constant
pressure and temperature, the M-S equations take the form
(detailed derivations are provided in the Supplementary material
accompanying this publication)

� ct
dy1
dz

¼ y2N1 � y1N2

Ð12
þ y3N1

Ð13
;

� ct
dy2
dz

¼ y1N2 � y2N1

Ð12
þ y3N2

Ð23

ð1Þ

For separations operating at steady-state, we need to determine
the transfer fluxes, N1, and N2, by solving the set of two indepen-
dent Eqs. (1) together with the boundary conditions

z ¼ 0; ðyÞ ¼ ðy0Þ
z ¼ d; ðyÞ ¼ ydð Þ ð2Þ

At first sight, the task of determining the fluxes N1, and N2

seems simple and straightforward; it is neither. The earliest pub-
lished solution to Maxwell-Stefan equations (1) should be credited
to Edwin Richard Gilliland, one of the pioneering founders of the
chemical engineering profession. Gilliland developed an analytic
solution in the parametric form of Eqs. (3) and (4) below:

N1

Ð13
þ N2

Ð23
¼ ct

d
ln

y3d
y30

� �
ð3Þ
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and

N1 þ N2

Ð12
¼ ct

d
ln

y1d
N1þN2

N1
�

1
Ð12

� 1
Ð13

� �
1

Ð12
� 1
Ð23

� � N1þN2
N2

y2d �
1

Ð13
� 1
Ð23

� �
1

Ð12
� 1
Ð23

� �

y10
N1þN2
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1
Ð12

� 1
Ð13

� �
1

Ð12
� 1
Ð23

� � N1þN2
N2

y20 �
1

Ð13
� 1
Ð23

� �
1

Ð12
� 1
Ð23

� �

0
BBBBBBB@

1
CCCCCCCA

ð4Þ

Eqs. (3) and (4) were published in the 1st edition of Absorption
and Extraction, authored by Thomas Kilgore Sherwood (Sherwood,
1937), another pioneer in mass transfer. Eqs. (3) and (4) are also
available in the classic paper of Herbert Lawrence Toor (Toor,
1957). The fluxes N1, and N2 may be determined with say the Excel
solver, using starting guess values. Sherwood (1937) demonstrated
the utility of the Gilliland solution by means of an illustrative
example for absorption of NH3 (1) and water vapor (2) from air
(3) into water. For a chosen set of conditions, three distinct sets
of solutions for the fluxes N1 and N2 were obtained, depending
on the starting guess values. On the basis of physical arguments,
only one of these sets was considered to be physically realizable
in practice. Later editions of the classic 1937 book of Sherwood,
do not contain any discussions of Maxwell-Stefan equations, and
the Gilliland solutions are omitted (Sherwood et al., 1975). Readers
who do not have access to the 1937 edition of Sherwood’s book,
will find the discussions of the multiple solutions for NH3(1)/H2O
(2)/Air(3) diffusion in the Supplementary material accompanying
this paper; see also (Krishna, 1977). The use of the Gilliland equa-
tions for flux calculations is also illustrated by the work of Bröcker
and Schulze (1991).

The objectives of the current investigation of diffusion distilla-
tion are four-fold. The first objective is to investigate the multiplic-
ity of fluxes that result from use of Eqs. (3) and (4) when applied to
diffusion distillation. We address the question of determining the
physically realistic set of fluxes by invoking the Prigogine principle
of minimum entropy production (Prigogine, 1961). The second
objective is to elucidate the choice of the inert gas on the separa-
tion performance. Specifically, we aim to rationalize the experi-
ments of Singh and Prasad (2011, 2015) in which the separation
selectivity was found to be strongly dependent on the choice of
the inert gas: helium, air, or argon. The third objective is to inves-
tigate the role of the porous barrier that is often interposed
between the vapor and liquid phases. Is the porous barrier essen-
tial, and are there fundamental guidelines for choice of the pore
sizes of such barriers? The fourth, and final objective is to apply
the Prigogine entropy concepts in analyzing steady-state multiplic-
ity in multicomponent diffusion with heterogeneous catalyzed
reaction; the analysis is relevant in the context of reactive distilla-
tion (Higler et al., 1999; Taylor and Krishna, 2000).

The Supplementary material accompanying this publication,
available for download in the online version of this article, provides
detailed derivations of model equations, numerical solution
methodology used, and data inputs.

2. Multiplicity of Gilliland solutions in diffusion distillation

Consider mass transfer between the liquid and vapor phase for
ethanol(1)/water(2)/CO2(3). The mass transfer resistance is
assumed to be restricted to the vapor phase, and the effective film
thickness of the gas phase resistance is d ¼ 1 mm. Assume that the
liquid phase is the binary mixture ethanol(1)/water(2) at
T = 343.15 K. The azeotropic composition at this temperature can
be calculated as x1 = 0.87, x2 = 0.13. Let us bring this liquid mixture
in contact with an inert gas phase consisting of the CO2 (=species
3). The vapor pressure of ethanol at 343.15 K is 71.2 kPa, and the
vapor pressure of water at 343.15 K is 31.2 kPa. The total gas phase
pressure pt = 101.3 kPa. The composition of the vapor phase at the
gas/liquid interface in equilibrium with the liquid mixture can be
calculated from yi ¼ cixiP

0
i =pt . This yields y1d = 0.6177,

y2d = 0.09264, y3d = 0.2897. The bulk vapor composition is taken
to be: y10 = 0.0, y20 = 0.0, y30 = 1.0. The driving forces are
Dy1 ¼ y10 � y1d ¼ �0:6177, and Dy2 ¼ y20 � y2d ¼ �0:09264. Both
driving forces are directed from liquid to the vapor phase.

The values of the vapor phase M-S diffusivities of the three bin-
ary pairs at 343.15 K, calculated using the (Fuller et al., 1966)
method, are Ð12 ¼ 2:05; Ð13 ¼ 1:27; Ð23 ¼ 2:67� 10�5 m2 s�1;
these diffusivities are independent of composition.

Depending on the starting guess used in any equation solver,
there are three distinct sets of solutions to Eqs. (3) and (4), called
Gilliland sets A, B, and C. Our solutions are based on the Given-
Find solve block of MathCad 15 (PTC, 2013).

Good starting guess values for the transfer fluxes can be
obtained using a simplified linearized solution to Eqs. (1), as pro-
posed by (Krishna, 1981)

N1

N2

� �
¼ ct

d
½D� y10 � y1d

y20 � y2d

� �
ð5Þ

in which the diffusivity matrix

D½ � ¼ D11 D12

D21 D22

� �
¼

y1
Ð12

þ y3
Ð23

y1
Ð12

y2
Ð12

y2
Ð12

þ y3
Ð13

" #

y1y3
Ð12Ð13

þ y2y3
Ð12Ð23

þ y3y3
Ð13Ð23

� � ð6Þ

is evaluated at the arithmetic average vapor compositions
yi;av ¼ ðyi0 þ yidÞ=2. With this simplification, the fluxes can be evalu-
ated explicitly as follows N1 ¼ �0:446; N2 ¼ �0:11 mol m�2 s�1.
Using these values at starting guesses, the Gilliland A solution set
is obtained: N1 ¼ �0:506; N2 ¼ �0:14; both fluxes are directed
from the liquid to the vapor phase. The ratio of the flux of water
to that of ethanol is N2=N1 ¼ 0:225; this ratio is higher than the
ratio of the compositions in the liquid phase x2=x1 ¼ 0:15. Diffu-
sional evaporation leads to a relatively higher proportion of water
in the vapor phase, causing separation of the azeotrope.

If the starting guess values are chosen as
N1 ¼ �0:3; N2 ¼ �0:27, the Gilliland B solution set is obtained:
N1 ¼ �0:2476; N2 ¼ �0:6546, yielding a flux ratio N2=N1 ¼ 2:64.
Remarkably, in this case, the flux of water is significantly higher
than the flux of ethanol. There is no fundamental physical reason-
ing that allows us to discount, a priori, the set of fluxes obtained in
the Gilliland set B.

If the starting guess values are chosen to be
N1 ¼ �0:3; N2 ¼ 0:1, we obtain the Gilliland C solution set:
N1 ¼ �1:073; N2 ¼ 1:073, yielding a flux ratio N2=N1 ¼ �1. Indeed
it is easy to check that N1 þ N2 ¼ 0 always satisfies Eq. (4), as also
pointed out by Toor (1957).

Three different solution sets are also realized by choosing the
inert gas to be helium, nitrogen, air, argon, and xenon; plots of
the flux ratios N2=N1 for Gilliland A, B, C solution sets are presented
in Fig. 1a as a function of the square root of the molar mass of the
inert gas. The choice of the inert gas influences the relative values
of 1–3 friction and 1–2 friction. The friction is inversely propor-
tional to the corresponding M-S diffusivity pairs Ðij. The M-S diffu-
sivity Ðij is inversely proportional to the square root of the mean
molar mass of the pairs

ffiffiffiffiffiffiffi
Mij

p
. We should therefore expect the ratio

of fluxes to depend on the square root of the molar mass of the
inert gas,

ffiffiffiffiffiffiffi
M3

p
. Also plotted in Fig. 1a are the flux calculations using

the linearized Eq. (5); the flux ratios are above 10% higher than
those of Gilliland A set of values.
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Fig. 1. Comparison of ratio of steady-state fluxes N2=N1 for diffusional evaporation
of (a) ethanol/water, and (b) 2-propanol/water into vapor phase containing inert
gas. The flux ratios are obtained using six different inert gases as component 3:
helium, nitrogen, air, argon, CO2, and xenon as inert gas. The x-axis is the square
root of the molecular weight of the inert gas

ffiffiffiffiffiffiffi
M3

p
.
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For 2-propanol(1)/water(2) mixtures the azeotrope composi-
tion at 313.15 K is x1 = 0.62258, x2 = 0.37742; the ratio of the mole
fraction of water to that of propanol is x2=x1 ¼ 0:60624. Let us
bring this liquid mixture in contact with an inert gas phase. The
vapor pressure of ethanol at 313.15 K is 13.6 kPa, and the vapor
pressure of water at 313.15 K is 7.36 kPa. The total gas phase
pressure pt = 101.3 kPa. The composition of the vapor phase at
the gas/liquid interface in equilibrium with the liquid mixture
can be calculated from yi ¼ cixiP

0
i =pt . This yields y1d = 0.09836,

y2d = 0.05963, y3d = 0.84201. The bulk vapor composition is taken
to be: y10 = 0.0, y20 = 0.0, y30 = 1.0. The driving forces are
Dy1 ¼ y10 � y1d ¼ �0:09836, and Dy2 ¼ y20 � y2d ¼ �0:05963. Both
driving forces are directed from liquid to the vapor phase. Depend-
ing on the starting guess values for the fluxes, Eqs. (3) and (4)
yields multiple solutions; plots of the flux ratios N2=N1 for Gilliland
A, B, C solution sets are presented in Fig. 1b as a function of the
square root of the molar mass of the inert gas.
3. The Krishna-Standart analytic solution for diffusion
distillation

The solution method of Krishna and Standart (1976) will now
be applied to calculate the fluxes in diffusion distillation. We define
a dimensionless distance: g ¼ z=d, introduce the equality
y3 ¼ 1� y1 � y2, and re-cast Eqs. (1) using matrix notation

dy1
dg
dy2
dg

0
@

1
A ¼ U½ � y1

y2

� �
� d
ct

N1
Ð13

N2
Ð23

 !
ð7Þ

where we define a two-dimensional square matrix of dimensionless
fluxes, that are g-invariant

U½ � ¼ d
ct

N1
Ð13

þ N2
Ð12

�N1
1

Ð12
� 1

Ð13

� �
�N2

1
Ð12

� 1
Ð23

� �
N2
Ð23

þ N1
Ð12

2
64

3
75 ð8Þ

Eq. (7) represents a system of coupled ordinary differential
equations with constant coefficients. The system of equations can
be solved analytically to obtain the mole fraction profiles within
the diffusion layer

ðyg � y0Þ ¼ �½exp½U�g� ½I��½exp½U� � ½I���1ðy0 � ydÞ ð9Þ
In Eq. (9), ½I� is the identity matrix with Kronecker delta dik as

elements. The composition gradient at the position g ¼ z=d can
be obtained by differentiation of Eq. (9); we get

dðygÞ
dg

¼ �½U�½exp½U�g�½exp½U� � ½I���1ðy0 � ydÞ ð10Þ

The steady-state transfer fluxes of components 1, and 2 can be
determined by combining Eqs. (1) and (10)

N1

N2

� �
¼ � ct

d
½Dg�

dðygÞ
dg

¼ ct
d
½Dg�½U�½exp½U�g�½exp½U� � ½I���1ðy0 � ydÞ

ð11Þ
The diffusivity matrix ½Dg� can be evaluated from Eq. (6) using

the appropriate gas phase mole fractions. Without loss of general-
ity, we may evaluate the diffusivity ½Dg� at position g ¼ z=d ¼ 0,
and obtain

N1

N2

� �
¼ � ct

d
½Dg¼0�dðyÞdg

				
g¼0

¼ ct
d
½Dg¼0�½U�½exp½U� � ½I���1ðy0 � ydÞ

ð12Þ
The Sylvester theorem, detailed in Appendix A of Taylor and

Krishna (1993) is required for explicit calculation of

½U�½exp½U� � ½I���1. Though the expression (12) appears to be expli-

cit in the fluxes, it is to be noted that the matrix ½U�½exp½U� � ½I���1 is
also a function of the fluxes. In the limit of vanishingly small trans-

fer fluxes we have the limiting behavior ½U�½exp½U� � ½I���1 ! ½I�. In
this work, the set of coupled algebraic equations (12) were solved
iteratively using the Given-Find solve block of MathCad 15 (PTC,
2013) using starting guesses for the fluxes. For all mixtures inves-
tigated, the final converged values of the fluxes are identical to Gil-
liland A set for ethanol/water/inert, and 2-propanol/water/inert,
irrespective of the starting guess values; see Fig. 1a and b.

The eigenvalues k1; k2 of ½U� provide valuable insights into the
characteristics of sets A, B, and C of the Gilliland solutions. The Gil-
liland set A corresponds to the case in which the eigenvalues k1; k2
are both distinct, and non-zero. The Gilliland set B corresponds to
the case in which the eigenvalues k1; k2 are equal to each other. The
Gilliland set C corresponds to the case in which the second
eigenvalue is zero, k2 ¼ 0. Details of the numerical values of k1; k2
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for all mixtures investigated are provided in the Supplementary
material.

What fundamental principle can we employ to decide between
Gilliland sets A, B, and C?
y

z z

d x

y

Fig. 3. Schematic showing vapor/liquid transfer across an inert porous barrier.
4. The Prigogine principle of minimum entropy production

The second law of thermodynamics dictates that the rate of
entropy production must be positive definite, rP 0; the situation
r ¼ 0 manifests at thermodynamic equilibrium (Prigogine, 1961;
Standart et al., 1979). For the ternary gas diffusion with N3 ¼ 0,
the rate of entropy production is (detailed derivations in Supple-
mentary material)

r ¼ �R N1
1
y1

dy1
dz

þ N2
1
y2

dy2
dz

� �
P 0 ð13Þ

The Prigogine principle of minimum entropy production says
that the steady state of an irreversible process, i.e., the state in
which the thermodynamic variables are independent of the time,
is characterized by a minimum value of the rate of entropy produc-
tion (Prigogine, 1961).

We illustrate the application of the Prigogine principle by con-
sidering diffusional evaporation of 2-propanol(1)/water(2) into
inert CO2 (species 3).

Using the fluxes calculated from the linearized Eq. (6):
N1 ¼ �0:0384; N2 ¼ �0:0546 mol m�2 s�1, as starting guess val-
ues, Eqs. (3) and (4) yields the Gilliland A set of fluxes:
N1 ¼ �0:0386; N2 ¼ �0:0546 mol m�2 s�1, with N2=N1 ¼ 1:416;
the rate of entropy production is r ¼ 1:55 kJ m�3 s–1 K�1.

If the starting guess values are chosen to be
N1 ¼ �0:03; N2 ¼ �0:05 mol m�2 s�1, deviating only slightly from
the Gilliland A set values, we obtain the Gilliland B solution set:
N1 ¼ �0:0352; N2 ¼ �0:0631 mol m�2 s�1, yielding a flux ratio
N2=N1 ¼ 1:79; the rate of entropy production is r ¼ 1:63 kJ m�3

s–1 K�1. A further noteworthy point is that the magnitude of the
flux ratios for Gilliland sets A and B are close to one another, and
neither set can be discarded by subjective hand-waving.

If the starting guess values are chosen to be N1 ¼ �0:04;
N2 ¼ 0:05 mol m�2 s�1, we obtain the Gilliland C solution set:
N1 ¼ �0:0997; N2 ¼ 0:0997 mol m�2 s�1, yielding a flux ratio
N2=N1 ¼ �1; the rate of entropy production r ¼ 0. A null entropy
production at steady-state is not a physically acceptable situation,
M

Fig. 2. Rate of entropy production, r, for diffusional evaporation of ethanol (1)/
water (2) into vapor phase containing inert gas (3).
and we conclude that Gilliland set C is not realizable in practice;
counter-diffusion of alcohol and water cannot be a physically real-
istic solution. On the basis of the Prigogine principle, we must con-
clude that Gilliland set A is the one that can be realized in practice
because it produces entropy at a lower rate than for the set B.

For ethanol/water/inert gas mixtures, the rates of entropy pro-
duction for the solution sets A, B, and C are plotted in Fig. 2. The
rate of entropy production for set C is zero, that is only possible
at thermodynamic equilibrium; this set C can be discounted on
the basis that equimolar counter-diffusion of ethanol/water is
not a physically realistic solution. The Gilliland set A is the one that
is physically realizable because it produces entropy at a lower rate.
d

N
N

Fig. 4. Comparison of ratio of quasi-stationary fluxes N2=N1 for 2-propanol (1)/
water (2)/inert gas (3), plotted as a function of pore diameter, dp, of the barrier
interposed between the vapor and liquid phases.
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Experimental verification that the Gilliland solution set A is the
physically realizable solution is provided by experimental data of
Carty and Schrodt (1975) for diffusional evaporation of acetone/
methanol into air. For the set of boundary conditions in their
experiments, three solution sets are obtained. Of the three solution
sets, only Gilliland set A yields composition profiles, and transfer
fluxes, that are in agreement with the experimentally data; see
Fig. S4. The use of the Prigogine principle of minimum entropy pro-
duction, as suggested in this work, obviates the need for using
experimental data to decide on the choice of the physically realiz-
able solution.

For steady-state equimolar diffusion in ternary gas mixtures,
N1 þ N2 þ N3 ¼ 0, Toor (1957) has presented analytic solutions in
parameter form, analogous to Eqs. (3) and (4); the Toor solutions
also result in multiplicity of solutions. The Prigogine principle of
minimum entropy production allows the selection of the physi-
cally realizable solution; see Supplementary material for detailed
discussions and calculations.

From the results in Fig. 1a we must conclude that for accurate
calculation of the ethanol/water fluxes, wemust use Eq. (12); some-
what lower accuracy is obtained using the linearized Eq. (5). For 2-
propanol/water/inert system, the linearized solution is practically
identical to the results from the exact Krishna-Standart model;
see Fig. 1b. This is because the 2-propanol/water/inert system
was investigated at a lower temperature of 313.15 K at which the
compositions of both 2-propanol and water in the gas phase are
low. The separation efficacy, quantified by N2=N1, appears to corre-
late with

ffiffiffiffiffiffiffi
M3

p
, broadly in agreement with the experimental results

of Singh and Prasad (2011) for ethanol/water separations in a
wetted-wall column using different inert gases. Simulations of
transient diffusion between a liquid film and a stagnant vapor slab,
more representative of wetted-wall columns, lead to the same con-
clusions regarding the influence of the choice of the inert gas; see
Figs. S12–S16 of the Supplementary material.

5. Imposition of porous barriers between liquid and vapor
phases

In view of scale-up limitations of wetted-wall columns, porous
barriers are often interposed between the liquid and vapor phases
(Breure et al., 2008) in experimental set-ups for diffusion distilla-
tion. Fig. 3 shows a schematic of vapor/liquid transfer across an
inert porous barrier. From the conceptual point of view, the porous
barrier is also to be considered as an ‘‘inert” fourth component in
the quaternary system alcohol(1)/water(2)/inert gas (3)/inert bar-
rier(component m). Extending Eq. (5), we may write for a barrier
(membrane) with pore diameter, dp (see (Krishna, 2016) for further
background information)

N1

N2

� �
¼ ct

d

y1
Ð12

þ y3
Ð23

þ 1
D2;Kn

y1
Ð12

y2
Ð12

y2
Ð12

þ y3
Ð13

þ 1
D1;Kn

" #

y1
Ð12

y3
Ð13

þ 1
D1;Kn

� �
þ y2

Ð12

y3
Ð23

þ 1
D2;Kn

� �
þ y3

Ð13
þ 1

D1;Kn

� �
y3
Ð23

þ 1
D2;Kn

� �� � y10 �y1d
y20 �y2d

� �

ð14Þ

where the Knudsen diffusivity values are used to quantify the fric-
tion with the pore walls of the barrier

Di;Kn ¼ dp

3

ffiffiffiffiffiffiffiffiffi
8RT
pMi

s
ð15Þ
Fig. 5. Composition profiles in the gas film external to the catalyst surface with
heterogeneous chemical reactions (a, b) Aþ 2B () C, and (c) H2 þ C2H4 () C2H6.
The calculations are all based on Eq. (9). Depending on the starting guess, different
composition profiles are obtained, corresponding to one of the solution sets I, II, and
III. The rates of entropy production, r, for each solution set are also indicated. The
input data and computational details are provided in the Supplementary material.

3
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Fig. 4 presents calculations of the ratio of fluxes N2=N1 for 2-
propanol (1)/water (2)/inert gas (3), plotted as a function of pore
diameter, dp, of the barrier interposed between the vapor and liq-
uid phases. For each of the five inert gases investigated, increase in
the pore diameter improves the separation performance; i.e. intro-
duction of the porous barrier decreases the efficacy of separation.
The results in Fig. 4 also lead to the conclusion that separations
are most effective in the ‘‘bulk” diffusion regime, as compared to
the ‘‘Knudsen” regime; the same conclusion has been drawn by
Breure et al. (2008).
6. Applying the Prigogine principle for diffusion with
heterogeneous catalytic reaction

For diffusion with heterogeneously catalyzed reversible reac-
tion Aþ 2B () C, following Langmuir-Hinshelwood kinetics,
Löwe and Bub (1976) have demonstrated the possibility of multi-
ple solutions with the aid of Example 1 and Example 2, each with
different kinetic constants. We re-trace their analysis, using the
Krishna-Standart analytic solution for calculation of the steady-
state fluxes in the diffusion ‘‘film”; the reaction takes place at the
position g ¼ z=d ¼ 1, corresponding to the catalytic surface. The
analysis is also relevant in the context of reactive distillation for
which multiple steady-states are often reported (Higler et al.,
1999; Taylor and Krishna, 2000).

For Example 1, depending on the starting guess values, three
different solutions sets I, II, and II are obtained. The composition
profiles in the ‘‘film”, calculated using Eq. (9), are shown in
Fig. 5a. The obtained results are, precisely the same as those
reported by Löwe and Bub (1976) as should be expected. The
dimensionless rate of entropy production, rd2= ctÐRð Þ, for the
three sets are 0.299, 0.941, and 0.531, respectively; calculation
details are provided in the Supplementary material. Invoking
the Prigogine principle, we conclude that the stable steady state
is Solution Set I.

For Example 2, two different solutions are obtained; the compo-
sition profiles in the ‘‘film” are shown in Fig. 5b. The dimensionless
rate of entropy production, rd2= ctÐRð Þ, for the two sets; the values
are 0.49132, and 0.73706, respectively. Invoking the Prigogine
principle, we conclude that the stable steady state is Solution Set
I. Löwe and Bub (1976) present a detailed stability analysis to con-
clude that for both Examples 1, and 2, the Solution set I is the
stable steady-state. The use of the Prigogine principle of minimum
entropy production obviates the need for performing a detailed
stability analysis.

Three different steady-state solutions are also realized in the
analysis of diffusion and catalytic hydrogenation of ethene to pro-
duce ethane using platinum/alumina catalyst. For Langmuir-
Hinshelwood kinetics and input data from Uppal and Ray (1977),
the composition profiles calculated using Eq. (9), are shown in
Fig. 5c. Application of the Prigogine principle leads us to conclude
that the stable steady-state corresponds to solution set I, which
is the low-conversion steady-state.

7. Conclusions

In this article, the Maxwell-Stefan diffusion equations have
been used to investigate the strategy of introduction of an inert
component for effecting the separation of azeotropic 2-propanol/
water, and ethanol/water mixtures. The following major conclu-
sions emerge from the analysis presented in this paper.

(1) The use of the Gilliland parametric solutions to the M-S dif-
fusion equations results in three different set of transfer
fluxes, depending on the starting guess values. Of these, only
Gilliland set A solution is physically realizable, because it
conforms with the Prigogine principle of minimum entropy
production.

(2) The Krishna-Standart analytic solution yields results in pre-
cise agreement with the Gilliland A set. The method is com-
putationally robust, and converges quickly.

(3) The linearized solution method employing Eq. (5) is of rea-
sonable accuracy and may be used for preliminary design
and screening purposes.

(4) The efficacy of separation of alcohol(1)/water(2) mixtures of
azeotropic composition by introduction of an inert gaseous
component (3) essentially relies on differences in 1–2 and
2–3 friction in the vapor phase. Such differences increase
with increasing molar mass of the inert component 3. Inert
gases such as CO2 and Xe are more effective than lighter
inerts such as air, nitrogen or helium.

(5) If porous barriers (membranes) are interposed between the
vapor and liquid phases, the pore size of the barrier material
must be chosen to be large enough to ensure that the diffu-
sion regime within the pores corresponds to bulk diffusion.
In other words, the operations should not be in the Knudsen
regime.

(6) For diffusion with heterogeneous chemical reaction, the
Prigogine principle can also be gainfully employed to
determine the stable steady-state.
Appendix A. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.ces.2017.01.060.
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1. Preamble 

The Supplementary material (e-content) accompanying the manuscript Highlighting Multiplicity in 

the Gilliland Solution to the Maxwell-Stefan Equations Describing Diffusion Distillation provides (a) 

Detailed derivation of the Maxwell-Stefan equations applicable to non-equimolar distillation, and 

diffusion distillation. (b) Calculation details of simulation model, and input data used to elucidate the 

principle of diffusion distillation for separation of azeotropic mixtures. (c) Analysis of multicomponent 

distillation with heterogeneous chemical reaction. 

All the calculations and simulations presented in this article were performed using MathCad 15.1 

For ease of reading, this Supplementary material has been written as a stand-alone document. 

Consequently, there is some degree of overlap with the main article.  

2. The Maxwell-Stefan formulation for n-component diffusion  

The approach we adopt to describe diffusion distillation stems from the pioneering works of James 

Clerk Maxwell 2 and Josef Stefan 3 who analyzed diffusion in ideal gas mixtures. The Maxwell-Stefan 

(M-S) formulation is best understood by considering z-directional diffusion in a binary gas mixture 

consisting of species 1 and 2, contained within the control volume shown schematically in Figure 1. The 

cross-sectional area available for diffusion is 1 m2 and the length of the diffusion path is dz .  If the 

change in the partial pressure of component i across the diffusion distance dz  is idp , the force acting 

on species i per m3 is 
dz

dpi . The number of moles of species i per m3, 
RT

p
c i

i  , and therefore the force 

acting per mole of species i is 
dz

dp

p

RT i

i

  which for an ideal gas mixture at constant temperature also 
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equals the chemical potential gradient 
dz

d i . This force is balanced by friction between the diffusing 

species 1 and 2, each diffusing with a velocity iu  (cf. Figure 2). We may expect that the frictional drag 

to be proportional to the velocity difference  21 uu  , and we write  212
12

1 uuy
Ð

RT

dz

d



 where the 

term 
12Ð

RT
 is to be interpreted as the drag coefficient. The multiplier y2 in the right member represents 

the mole fraction of component 2; this factor is introduced because we expect the friction to be 

dependent on the number of molecules of component 2 relative to that of component 1. The Maxwell-

Stefan diffusivity 12Ð  has the units m2 s-1 and the physical significance of an inverse drag coefficient. 

The extension to n-component mixtures is intuitively obvious 4, 5: 

 
 

ni
Ð

uuy

dz

d

RT

n

j ij

jiji

ij

,2,1;
1

1




 




 (1) 

The pair diffusivity ijÐ  can be interpreted as an inverse “drag coefficient” between species i and 

species j. Equation (1) is consistent with the theory of irreversible thermodynamics. The Onsager 

reciprocal relations demand the symmetry constraint njiÐÐ jiij ,2,1,;  . Multiplying both sides 

of Equation (1) by yi we obtain 

 
 

ni
Ð

uuyy

dz

d

RT

y n

j ij

jijiii

ij

,2,1;
1




 




 (2) 

The M-S pair diffusivities Ðij for gaseous mixtures at low pressures, below about 10 bar, can be 

estimated to a good level of accuracy using the Fuller-Schettler-Giddings (FSG)6 method  

    
12

23/13/1

75.17

sm
1043.1 








iiij

ij
vvMp

T
Ð  where p is the pressure (expressed in bars), 

ji

ij

MM

M
11

2


  is the 

mean molecular weight of the mixture (expressed in g mol-1), iv ,  and jv  are the diffusion volumes  

(expressed in cm3 mol-1) whose values are obtained by summing the contributions of the volumes of the 
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constituent atoms in the molecular species (the values are tabulated in Table 11.1 of Reid, Prausnitz, 

and Poling7). According to the FSG estimation procedure, the product of Ðij and the total pressure, p, is 

a function only of temperature and is also independent of composition.  

For mixtures of ideal gases, 
dz

dy

dz

d

RT

y iii 


; in this case, equation (2) simplifies to yield 

 
 

ni
Ð

uuyy

dz

dy n

j ij

jijii

ij

,2,1;
1




 



 (3) 

Equation (3) is entirely consistent with the kinetic theory of gases, and the pair diffusivities ijÐ  can be 

identified with the diffusivity in the binary gas mixture of species i and species j.   

 All the calculations presented in this article are for ideal gas mixtures. 

Only n-1 of the equations (2) are independent because the mole fractions sum to unity and the mole 

fraction gradients sum to zero 0...;1 21

1


 dz

dy

dz

dy

dz

dy
y n

n

i
i . 

The molar fluxes iN  in the laboratory fixed reference frame are  

 niuycucN iitiii ,2,1;   (4) 

The molar average mixture velocity u  is nnuxuxuxu  2211 . We may also define diffusion 

fluxes iJ  with respect to the chosen molar average reference velocity frame u : 

   niuucJ iii ,..2,1;   (5) 

We have the inter-relation between the two fluxes 

 



n

i
tittiiiii ucNNNyJucN

1

;  (6) 

The diffusion fluxes iJ  sum to zero 

   
  


n

i

n

i

n

i
ii

n

i
iii

n

i
i ucNucucJ

1 1 111

0  (7) 
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The n-1 independent diffusion fluxes iJ  can be determined by solving the n-1 independent equations 

(3). The determination of the n independent molar fluxes iN  in the laboratory fixed reference frame 

requires an additional relationship, called the bootstrap relation by Krishna and Standart.8 

A variety of bootstrap relations are applicable in a variety of situations; these are discussed in the 

following section. 

3. The bootstrap relations in distillation separations  

Consider first, vapor/liquid transfer in distillation, in the absence of an inert gas. Application of the 

proper energy balances to the vapor and liquid phases, it can be shown that the proper constraint on the 

interfacial molar fluxes is9 

   0
1




L
i

V
i

n

i
i HHN  (8) 

Let us denote the molar heats of vaporization as  L
i

V
ii HH  . So, the additional bootstrap 

relation is 

 0
1




i

n

i
iN   (9) 

Equations (3), in combination with the bootstrap relation (9) are sufficient to determine the n 

independent molar fluxes iN . 

Table 1 lists some typical values for the molar heats of vaporization of various molecules. For 

water/methanol, and water/ethanol mixtures, the molar heats of vaporization are close to one another 

and therefore, as an approximation, we get 

  diffusion-counterequimolar ;0
1




n

i
iN  (10) 

The assumption of equimolar counter-diffusion is commonly invoked in the analysis of mass transfer 

effects in distillation.  
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Consider the reactive distillation process for the manufacture of methyl tert-butyl ether (MTBE) by 

heterogeneously catalysed reaction of isobutene with methanol.  The molar heats of vaporization of the 

species involved (at 40 oC) are: isobutene: 19.6 kJ/mol; methanol: 36.5 kJ/mol; MTBE: 29.5 kJ/mol.  In 

the mass transfer modelling of this process a proper account is to be taken of these differences, as 

demonstrated in the detailed analysis of Sundmacher and Hoffmann.10 

In diffusional distillation, the nth component is an inert gas that does not transfer across the 

vapor/liquid interface into or out of the liquid phase 0;0  nn Nu . 

4. Second law, and the rate of entropy production 

The second law of thermodynamics dictates that the rate of entropy production must be positive 

definite 

 0
1

1

 


i

n

i

i J
dz

d

T

  (11) 

Equation (11) simplifies for ideal gas mixtures to 

 mixtures) gas (ideal;0
1

1

 


n

i

i

i
i dz

dy

y
JR  (12) 

Equation (12) may also be re-written as 

   mixtures) gas (ideal;0
1

 
 dz

dy
uu

y

c
R i

n

i
i

i

i  (13) 

For equimolar counter-diffusion, the molar average reference velocity 0u , and so equation (13) 

simplifies to 
dz

dy

y

N
R i

n

i i

i



1

 . For equimolar counter-diffusion across a film thickness , the integral 

average rate of entropy production is  

 diffusion-counterequimolar ;
,3

3
3

,2

2
2

,1

1
1











 








avavav y

y
N

y

y
N

y

y
N

R


  (14) 
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For a ternary gas mixture, the molar average reference velocity of the mixture 332211 uyuyuyu  ,  

equation (13) yields 

      03
3322113

2
3322112

1
3322111 

dz

dy
uyuyuyu

dz

dy
uyuyuyu

dz

dy
uyuyuyu

Rct


 

For diffusion distillation, we have u3 = 0.  Therefore,  

       ;021
2211

2
22112

1
22111 






 

dz

dy

dz

dy
uyuy

dz

dy
uyuyu

dz

dy
uyuyu

Rct


 (15) 

In Equation (15)), we have introduced the constraint 
dz

dy

dz

dy

dz

dy 321  . Equation (15) simplifies to  

     ;02
2

1
1 

dz

dy
uRc

dz

dy
uRc tt  (16) 

In terms of the molar fluxes, equation (16) can be written 

 0
11 2

2
2

1

1
1 










dz

dy

y
N

dz

dy

y
NR  (17) 

For diffusion across a film thickness , with boundary conditions 
   
   


yyz

yyz




;;1

;0;0 0 , the  

integral average rate of entropy production can be approximated as follows 

  0
11

,2

2
2

,1

1
1

0

2

2
2

1

1
1 











 












 



 avav

z

z y

y
N

y

y
N

R
dz

dz

dy

y
N

dz

dy

y
NR






 (18) 

In equation (18), we use the arithmetic average vapor compositions 
2

0
,

ii
avi

yy
y


  and define the 

driving forces as 1101 yyy  , and 2202 yyy  .   

5. Non-equimolar effects for binary distillation 

Let us examine the influence of non-equimolar diffusion for binary distillation. There is only one 

independent diffusion flux 
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  
dz

dy
ÐcJ

dz

dy
ÐcuucJ tt

2
122

1
12111   (19) 

The bootstrap relation is 
2

11
22211 ;0


 N

NNN  . So, 

   1
2112

2

2

21
111

2

11
1111 J

y
NyJ

N
NyJN



















 









  (20) 

Combining equation (19) and (20) yields 

   dz

dy
Ð

y
cN t

1
12

2112

2
1 




  (21) 

The flux equation (21) can be integrated for the boundary conditions 
 11

101

;

;0

yyz

yyz




 to obtain 

  
 
 















2112

21102

21

212
1 ln







 y

yÐc
N t  (22) 

The corresponding expression for equimolar counter-diffusion is 

   diffusion-counterequimolar ;110
12

1 
yy

Ðc
N t   (23) 

The influence of non-equimolar transfer is given by the factor 

 
 

 
 

 
 






110

2112

21102

21

2 ln

yy

y

y

F














  (24) 

The total flux Nt is non-zero 

 
 
  
















21102

211212

2

21
1

2

11
121 ln








 

y

yÐc
N

N
NNNN t

t  (25) 

Let us consider the narrow vertical slice of froth on a distillation tray in Figure 3. The liquid phase is 

the vertical slice will be assumed to be well mixed and have bulk phase composition liquid composition 
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xi. The vapor phase is assumed to rise through the liquid in plug flow.  The composition of the vapor 

phase depends on the distance above the tray. 

Let vi represents the molar flow rate of component i in the vapor phase, 



n

i
ivV

1

 the total vapor flow 

rate, a the interfacial area per unit volume of froth, hf the froth height, and Ab the active bubbling area. 

The component material balance for the vapor phase may be written as (See Section 12.1.1 of Taylor 

and Krishna4 for more detailed background and derivations) 

 niaAN
dh

dv
bi

i ,...2,1;   (26) 

Where Ni is the molar flux of species i across the vapor liquid interface, directed from the vapor to the 

liquid phase. For the n-component mixture, we may sum equation (26) to give 

 bt aAN
dh

dV
  (27) 

The non-zero net-transfer flux Nt will cause an increase or decrease in the molar flow rate of the vapor 

phase during vapor/liquid contacting in a tray column or packed column. Depending on the direction of 

net transfer, the vapor flow rate will either increase or decrease.  Increase in the vapor flow rate will 

result in a reduction in the contact time between vapor and liquid phases, causing perhaps a reduction in 

the Murphree efficiency.  Conversely, a decrease in the vapor flow rate will result in an increase in the 

contact time between vapor and liquid phases, leading perhaps to an increase in the component 

Murphree efficiency, defined by ni
y

y

yy

yy

yy

yy
E

iE

iL

eqiiE

eqiiL

eqiiE

iLiE
i ,...2,1;11

,

,

,














  where iEy , and 

iLy  are, respectively, the vapor phase mole fractions, entering and leaving a tray, and eqiy ,  is the vapor 

composition in thermodynamic equilibrium with the liquid leaving the tray; see schematic in Figure 3. 

For a tray in thermodynamic equilibrium, the component efficiencies are 100% for each component. 

Mass transfer resistances on either side of the vapor/liquid interface reduce the component efficiencies 

to values below 100%. For binary distillation, the Murphree component efficiencies are bounded, i.e. 
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10 2,1  EE .  For multicomponent distillation, with the number of species 3n ,  coupled diffusion 

effects in either vapor or liquid phases cause the component efficiencies to be distinctly different from 

one another, 321 EEE  . Phenomena such as osmotic diffusion, diffusion barrier, and uphill diffusion 

lead to component efficiencies that are unbounded ( iE ), zero ( 0iE ), or negative ( 0iE ); this 

has been demonstrated in several experimental studies.11-19 

Substituting  tiii NyJN   in equation (26) and writing Vyv ii   we obtain 

 niaANyaAJ
dh

dV
y

dh

dy
V btibii

i ,...2,1;   (28) 

In view of equation (27), the right members of both sides of equation (28) cancel each other and we get 

 niaAJ
dh

dy
V bi

i ,...2,1;   (29) 

Due to non-equimolar transfers, the vapor flow rate V is not constant during the traverse upwards 

through the froth. Consequently, the set of equations (27) and (29) need to be solved simultaneously in 

order to determine the composition changes and Murphree point efficiencies. 

To illustrate the influence of differences in the molar heats of vaporization on interfacial transfer 

fluxes we consider a set of three binary mixtures: 

Acetic acid/water 

2-pentane/ethanol 

Water/tri-ethylene glycol 

For all three binary mixtures, we assume that the interphase mass transfer process is governed by 

molecular diffusion in the vapor phase. A well-mixed binary liquid mixture of equimolar composition 

(x1=0.5) is brought into contact with a bulk vapor phase of equimolar composition (y10=0.5). The 

composition of the vapor mixture at the interface, y1, is determined from NRTL models describing 

vapor/liquid equilibrium. 

Acetic acid (1)/water (2) mixture 
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Operating pressure, p = 101.3 kPa, Temperature, T = 374.74 K. Total molar concentration of the 

vapor mixture ct = 32.5 mol m-3. 

The bulk vapor composition is y10=0.5. 

Acetic acid is less volatile, the interface composition, y1 = 0.328. 

Molar heats of vaporization: 1 = 23.5 kJ mol-1; 2 = 40.7 kJ mol-1. 

Estimated value of mass transfer coefficient in the vapor phase, k = 


12Ð
 = 0.0158 m s-1. 

The acetic acid transfer flux N1, calculated from equation (22) is 1071.01 N  mol m-2 s-1. The acetone 

flux is positive, i.e. directed from the bulk vapor to the liquid phase because it is the component with the 

lower volatility. 

The total mixture transfer flux Nt, calculated from equation (25) is 0454.0tN  mol m-2 s-1. The total 

flux is positive, i.e. directed from the bulk vapor to the liquid phase; this implies there will be a 

reduction in the molar flow rate of the vapor mixture as it traverses the distillation tray or packing. The 

contact time will be effectively increased due to decreased vapor flow causing an increase in the 

Murphree efficiency. 

The influence of non-equimolar transfer, F, calculated from equation (24) is 2137.1F .  Non-

equimolar effects cannot be ignored. 

2-pentane (1)/ethanol(2) mixture 

Operating pressure, p = 101.3 kPa, Temperature, T = 301.4 K. Total molar concentration of the vapor 

mixture ct = 40.4 mol m-3. 

The bulk vapor composition is y10=0.5. 

2-pentane is more volatile, the interface composition, y1 = 0.9276. 

Molar heats of vaporization: 1 = 24.7 kJ mol-1; 2 = 38.8 kJ mol-1. 

Estimated value of mass transfer coefficient in the vapor phase, k = 


12Ð
 = 0.00375 m s-1. 
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The 2-pentane transfer flux N1, calculated from equation (22) is 0879.01 N  mol m-2 s-1. The 2-

pentane flux is negative i.e. directed from the interface to the bulk vapor because it is the component 

with the higher volatility. 

The total mixture transfer flux Nt, calculated from equation (25) is 032.0tN  mol m-2 s-1. The total 

flux is negative, i.e. directed from the interface to the bulk vapor phase; this implies there will be a 

increase in the molar flow rate of the vapor mixture as it traverses the distillation tray or packing. The 

contact time will be effectively reduced due to increased vapor flow causing a reduction in the 

Murphree efficiency. 

The influence of non-equimolar transfer, F, calculated from equation (24) is 35.1F .  Non-

equimolar effects cannot be ignored. 

water (1)/tri-ethyleneglycol(2) mixture 

Operating pressure, p = 101.3 kPa, Temperature, T = 401.2 K. Total molar concentration of the vapor 

mixture ct = 30 mol m-3. 

The bulk vapor composition is y10=0.5. 

water is more volatile, the interface composition, y1 = 0.99907. 

Molar heats of vaporization: 1 = 40.5 kJ mol-1; 2 = 70 kJ mol-1. 

Estimated value of mass transfer coefficient in the vapor phase, k = 


12Ð
 = 0.015 m s-1. 

The water transfer flux N1, calculated from equation (22) is 335.01 N  mol m-2 s-1. The water flux is 

negative i.e. directed from the interface to the bulk vapor because it is the component with the higher 

volatility. 

The total mixture transfer flux Nt, calculated from equation (25) is 141.0tN  mol m-2 s-1. The total 

flux is negative, i.e. directed from the interface to the bulk vapor phase; this implies there will be a 

increase in the molar flow rate of the vapor mixture as it traverses the distillation tray or packing. The 

contact time will be effectively reduced due to increased vapor flow causing a reduction in the 

Murphree efficiency. 
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The influence of non-equimolar transfer, F, calculated from equation (24) is 473.1F .  Non-

equimolar effects cannot be ignored. 

It is to be noted that for water/TEG mixtures, the liquid phase transfer resistance is significant and the 

Illustrative Example 12.1.2 of Taylor and Krishna4 provides a good illustration of how both transfer 

resistances should be accounted for the calculations of non-equimolar distillation.  It is however to be 

noted that the model calculations in Example 12.1.2 of Taylor and Krishna4 do not consider the 

variation of the vapor flow rate V along the height of the distillation froth; in other words, equation (27) 

was not invoked. For a proper evaluation of non-equimolar effects, we need to account for the alteration 

in vapor flow as it traverses the distillation tray. 

6. The Krishna-Standart solution to the M-S equations for non-
equimolar distillation of ternary mixtures 

We generalize the analysis in the foregoing section to non-equimolar distillation of n-component 

mixtures. The Maxwell-Stefan diffusion equations for n-component mixtures are 

 ni
Ðc

JyJy

Ðc

NyNy

dz

dy n

j ijt

jiij
n

j ijt

jiiji

ijij

,2,1;
11







 



 (30) 

Only n-1 of the fluxes Ji are independent. The Fick diffusivity matrix  D  is commonly defined by the 

n-1 dimensional matrix equation 

    
dz

yd
DcJ t)(  (31) 

For ternary mixtures, the Fick diffusivity matrix  D  can be evaluated explicitly from equation (30) 
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For 3-component ideal gas mixtures, the M-S equations reduce to 

 

 

 
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 (33) 

The bootstrap relation is 

 
3

2211
3332211 ;0


 NN

NNNN


  (34) 

Therefore, there are only two independent fluxes, and 2 independent driving forces. The molar fluxes 

Ni in the laboratory-fixed reference are linearly related to the diffusion fluxes Ji with respect to the 

molar average reference velocity nnuxuxuxu  2211  via the 2-dimensional bootstrap matrix    
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Krishna and Standart8 have developed exact solutions to equation (33) for explicit evaluation of the 

fluxes for steady-state transfer across a film of thickness . The Krishna-Standart method, as applied to 

non-equimolar distillation is described hereunder. 

We define a dimensionless distance: 


 z
  and re-write equation (33) as follows 

 
      


 y
d

yd
  (35) 

In equation (35) we define a two-dimensional square matrix of dimensionless fluxes 
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For steady-state transfer across a film, the matrices    and    are both -invariant. Therefore 

equation (35) represents a system of coupled ordinary differential equations with constant coefficients  

   and   .  

The system of equations can be solved analytically to obtain the mole fraction profiles within the 

diffusion layer                yyIIyy  
0

1
0 expexp  where  I  is the identity matrix with 

Kronecker delta ik  as elements. 

The Sylvester theorem, detailed in Equation (A.5.17) of Taylor and Krishna,4 is required for explicit 

calculation of           1expexp  II . For the case of distinct eigenvalues, 1  and 2  of the 2-

dimensional square matrix   , the Sylvester theorem yields 
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


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  II
II  (36) 

The composition gradient at the position 


 z
   can be obtained by differentiation of equation (36); 

we get  
              


yyI
d

yd
 

0
1expexp . The steady-state transfer fluxes of components 1, 

and 2 can be determined from  
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1 expexp  where the Fick diffusivity 

matrix at position   is  
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 .  Without loss of 

generality, we may evaluate 





  and 





D  at position 0


 z
, and obtain 
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 (37) 

The Sylvester theorem, detailed in Equation (A.5.17) of Taylor and Krishna,4 is required for explicit 

calculation of        1exp  I . For the case of distinct eigenvalues, 1  and 2  of the 2-dimensional 

square matrix   , the Sylvester theorem yields 

         
    
   
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I  (38) 

Though the expression (37) appears to be explicit in the fluxes, it is to be noted that the matrix  

       1exp  I  is also a function of the fluxes. In the limit of vanishingly small transfer fluxes we 

have the limiting behavior         II  1exp .  Equation (37) can be solved using the Given-Find 

solve block of MathCad 15 using    


yyD
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N

N
t 




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


0

2

1  as starting guess values for the fluxes; in 

these guess values, we evaluate the matrices     and  D  at the arithmetic average vapor compositions 

2
0

,
ii

avi

yy
y


 . 
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7. The Krishna-Standart solution to the M-S equations for equimolar 
distillation of ternary mixtures 

When the molar latent heats of vaporization of the three components are close together, we may 

assume the equimolar distillation prevails, i.e.  213321 ;0 NNNNNN  . The bootstrap 

matrix 

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  degenerates to the identity matrix, and therefore     
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
vanishes; see Krishna and Standart8 for 

details. Explicitly, the two eigenvalues are 
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 and 02  . The 

application of Sylvester’s theorem for evaluation of        1exp  I  has to be done with care, because 

  1exp 2

2




 needs to be evaluated by use of L’Hôpital’s rule:   1
1exp 2
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
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 The two independent fluxes can be evaluated explicitly  
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 (39) 

For the determination of the composition profiles, we need to evaluate           1expexp  II  

by use of L’Hôpital’s rule: 
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Equation (39) can be solved using the Given-Find solve block of MathCad 15 using 

  
yyD

c

N

N
t 








0

2

1  as starting guess values for the fluxes; in these guess values, we evaluate  D  at 

the arithmetic average vapor compositions 
2

0
,

ii
avi

yy
y


 . 

8. The Toor (1957) analytic solutions to the M-S equations for equimolar 
distillation 

Toor20 has published analytic solutions to the M-S equations describing equimolar diffusion in 

parametric form: 
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The left member of the first of the two Equations (39), 
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. The set of two 

Equations (39) can be solved simultaneously using the Given-Find solve block of MathCad 15; using 

starting guess values for the two fluxes N1 and N2.  



Supplementary 20 

 

9. Non-equimolar distillation of acetic acid (1) – water (2) – methanol  (3) 
mixtures 

As illustration of flux calculations for non-equimolar distillation, we consider the ternary mixture 

acetic acid (1) – water (2) – methanol (3).  We assume that the liquid mixture has the composition x1 = 

0.64, x2 = 0.24, x3 = 0.12. At a total pressure of 101.3 kPa, the composition of the vapor phase in 

equilibrium with the liquid mixture is y1 = 0.33869, y2 = 0.33078, y3 = 0.33053; the bubble 

temperature is 371.25 K.  Let us consider vapor phase diffusion across a film of thickness  = 1 mm. 

The compositions at the two edges of the film are taken to be      

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;
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0.64
0 yy where 

we use 2-dimensional column matrices to represent the two independent compositions. The molar heats 

of vaporization are: 1 = 23.5 kJ mol-1; 2 = 40.7 kJ mol-1;3 = 35.43 kJ mol-1. The heat of vaporization 

of acetic acid is significantly lower than that of water and methanol. 

The bootstrap matrix evaluated at   




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

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
 0.95610.09882

0.11707-1.26351
0 . 

The values of the vapor phase M-S diffusivities of the three binary pairs are: 

125
231312 sm1004.3;5.1;45.2  ÐÐÐ ; these diffusivities are independent of composition.  

The Fick diffusivity matrix 5
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D  m2 s-1. Solving equations (37) 

yields -0.09368;
04648.0

222.0
3

2

1 

















N

N

N
 mol m-2 s-1. 

We re-analyze distillation of the ternary mixture acetic acid (1) – water (2) – methanol (3) imposing 

the assumption of equimolar counter-diffusion. The bootstrap matrix for equimolar transfers is the 

identity matrix,   







 10

01
0 . The Fick diffusivity matrix 5
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s-1 has the same values as in the set of calculations in the foregoing paragraph. Solving equations (39) 

yields -0.11184;
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non-equmolar distillation -0.09368;
04648.0

222.0
3
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 mol m-2 s-1 shows that the proper 

accounting of differences in molar latent heats leads to a higher flux of the acetic acid (component 1) 

with the lowest molar heat of vaporization.   

The observed influences of non-equimolar transfer are easily rationalized by comparing the 

constraints 0332211  NNN   with that for equimolar transfers 0321  NNN .  Forcing the 

equimolar transfer constraint 0321  NNN  will have the effect of reducing the flux of the 

component with the lowest molar heat of vaporization; concomitantly the flux of component with the 

highest molar heat of vaporization will be increased.  

Let us perform the flux calculations for equimolar distillation using the Toor analytic solution given 

by equations (40). Let us use the starting guess values -0.060.2 21  NN  mol m-2 s-1 that is close to 

the final solution determined using the Krishna-Standart method in the foregoing section. The solution 

to equations (40), using the Given-Find solve block of MathCad 151 yields 

-0.11184;
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 mol m-2 s-1, that is identical to the Krishna-Standart model for 

equimolar distillation. The rate of entropy production can be calculated from  Equation (13) that reduces 

to 
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  because the molar average mixture velocity 0u ; we obtain 

98.1  kJ m-3 K-1 s-1. 

Using a slightly poorer starting guess values -0.0180.2 21  NN  mol m-2 s-1 yields 
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(40). The rate of entropy production can be calculated from  
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 ; we 

obtain 36.8  kJ m-3 K-1 s-1. Invoking the Prigogine principle, we conclude that the physically 



Supplementary 22 

 

realizable solution is the one that produces entropy at the lower rate. Therefore the physically realizable 

fluxes are -0.11184;
06983.0

18166.0
3

2
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The Krishna-Standart solution always converges to the solution that corresponds to the minimum rate 

of entropy production, irrespective of the starting guess values. 

10. Non-equimolar distillation of 2-pentane (1) – ethanol (2) – water (3) 
mixtures 

We now analyze the influence of non-equimolar transfers  for distillation of pentane-2 (1) – ethanol 

(2) – water (3) mixtures; the analysis is essentially the same as that reported by Krishna.9 The total 

pressure of 100 kPa, and the bubble temperature is 346 K.  The composition of the vapor phase in 

equilibrium with the liquid mixture is y1 = 0.6, y2 = 0.1, y3 = 0.3. Let us consider vapor phase 

diffusion across a film of thickness  = 0.01 mm. The compositions at the two edges of the film are 

taken to be      

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0 yy where we use 2-dimensional column matrices to represent the 

two independent compositions. The molar heats of vaporization are: 1 = 22.5 kJ mol-1; 2 = 40.5 kJ 

mol-1;3 = 42 kJ mol-1. The heat of vaporization of 2-pentane is significantly lower than that of ethanol 

and water. 

The bootstrap matrix evaluated at    









0.16

0.62
0y is   








 1.008090.10516

0.031341.40741
0 . 

The values of the vapor phase M-S diffusivities of the three binary pairs are: 

125
231312 sm1009.2;44.1;727.0  ÐÐÐ ; these diffusivities are independent of composition.  

The Fick diffusivity matrix 5
0 10

1.0425390.18625

0.547941.34257 
 














D  m2 s-1. Solving equations (39) 

yields  -3.98;
46.2

99.2
3

2

1 
















N

N

N
 mol m-2 s-1. 
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We re-analyze distillation of the ternary mixture pentane-2 (1) – ethanol (2) – water (3) imposing the 

assumption of equimolar counter-diffusion. The bootstrap matrix for equimolar transfers is the identity 

matrix,   







 10

01
0 . The Fick diffusivity matrix  5

0 10
1.0425390.18625

0.547941.34257 
 














D  m2 s-1 has 

the same values as in the set of calculations in the foregoing paragraph. Solving equations (39) yields 

-4.36;
27.2

09.2
3

2

1 
















N

N

N
 mol m-2 s-1. Comparing with the corresponding values for non-equmolar 

distillation -3.98;
46.2

99.2
3

2

1 
















N

N

N
 mol m-2 s-1, shows that the proper accounting of differences in 

molar latent heats leads to a 30% higher flux of the 2-pentane (component 1) with the lowest molar heat 

of vaporization.  

For azeotropic mixtures, differences in the molar heats of vaporization will have no influence on the 

transfer fluxes that will be zero because there is no driving force for transfer.  To break azeotropes we 

allow diffusion through an inert gas, as explained below. 

11. Multiplicity of solutions for equimolar diffusion in 
H2(1)/N2(2)/CO2(3) gas mixtures 

Consider equimolar counter-diffusion in ternary H2(1)/N2(2)/CO2(3) gas mixtures at 101.3 kPa and 

308.35 K. The length of the diffusion path, = 1 mm. The compositions at the two ends are 

 
0.24957 = 0.49982; = 0.25061; =

0.49914 = 0.50086; = 0.00000; =

321

302010

 yyy

yyy
  

The driving forces for H2(1), and N2(2) are: 001035.0;25061.0 21  yy . The M-S diffusivities 

for the three binary pairs at T = 308.3 K are 
1-25

23

1-25
13

-125
12

s m1068.1

s m108.6

s m1033.8













Ð

Ð

Ð

. The Fick diffusivity matrix is 
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calculated: 5
0 10

1.682.99443-

07.48894 
 














D  m2 s-1. Solving equations (39) yields 

0.421;
328.0

748.0
3

2

1 
















N

N

N
 mol m-2 s-1.  

Let us perform the flux calculations for equimolar counter-diffusion using the Toor analytic solution 

given by equations (40). Let us use the starting guess values 3.00.7 21  NN  mol m-2 s-1 that is 

close to the final solution determined using the Krishna-Standart method in the foregoing section. The 

solution to equations (40), using the Given-Find solve block of MathCad 151 yields 

0.421;
328.0

748.0
3

2

1 
















N

N

N
 mol m-2 s-1, that is identical to the Krishna-Standart model. The rate of 

entropy production can be calculated from Equation (13) that reduces to 











 








avavav y

y
N

y

y
N

y

y
N

R

,3

3
3

,2

2
2

,1

1
1

  because the molar average mixture velocity 0u ; we obtain 

8.14  kJ m-3 K-1 s-1. 

Using slightly poorer starting guess values 0.010.7 21  NN  mol m-2 s-1 yields 

663.;
89.3

22.0
3

2

1 

















N

N

N
 mol m-2 s-1 using the Toor analytic solution given by equations (40). The 

rate of entropy production can be calculated from  










 








avavav y

y
N

y

y
N

y

y
N

R

,3

3
3

,2

2
2

,1

1
1

 ; we obtain 

6.16  kJ m-3 K-1 s-1. Invoking the Prigogine principle, we conclude that the physically realizable 

solution is the one that produces entropy at the lower rate. Therefore the physically realizable fluxes are 

0.421;
328.0

748.0
3

2

1 
















N

N

N
 mol m-2 s-1. 

The Krishna-Standart solution always converges to the solution that corresponds to the minimum rate 

of entropy production, irrespective of the starting guess values. 
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12. The Maxwell-Stefan formulation for diffusion distillation 

In diffusional distillation, the nth component is an inert gas that does not transfer across the 

vapor/liquid interface into or out of the liquid phase, i.e. 0;0  nn Nu . The n-1 non-zero molar 

fluxes Ni are related to the n-1 independent diffusion fluxes Ji by the bootstrap relation (for further 

details see Section 7.2 of Taylor and Krishna4)      1,..2,1,;;  nki
y

y
JN

n

i
ikik  . In view 

of 0;0  nn Nu , Equation (2) can be re-written in terms the n-1 non-vanishing fluxes iN  as 

 1,2,1;
1




 



ni
Ðc

NyNy

dz

dy n

j ijt

jiiji

ij

  (41) 

Equations (41) are applicable also to situations in which there is a temperature gradient along the 

diffusion path; in this case the molar concentration of the mixture 

 
RT

p
c t

t   (42) 

is to be evaluated at the average temperature in the diffusion layer. 

For solving equations (41), it is convenient to re-cast these equations into (n-1) dimensional matrix 

notation  

 
    )(NB
dz

yd
ct   (43) 

where we define a (n-1) (n-1) dimensional matrix of inverse diffusivities  B  whose elements are 

given by 1...2,1,;; )(
1

 





nji
Ð

y
B

Ð

y
B

ij

i
jiij

n

k ik

k
ii

ik

. Equations (43) may be re-written in (n-1) 

dimensional matrix notation to yield an explicit expression for the n-1 non-vanishing fluxes iN  

    
dz

yd
DcN t)( . The (n-1) (n-1) dimensional Fick diffusivity matrix [D] is 
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      

1

23

3

12

1

12

2

12

1

13

3

12

2

2221

1211

23

3

12

1

12

2
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1
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3
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




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
















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
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
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Ð

y

Ð

y

Ð

y
Ð

y

Ð

y

Ð

y

DD

DD

Ð

y

Ð

y

Ð

y
Ð

y

Ð

y

Ð

y

BBD  (44) 

The inversion of the matrix [B] can be performed explicitly and the 2  dimensional matrix [D] are 

explicitly related to the pair M-S diffusivities Ð12, Ð13, and Ð23   

  










































2313

33

2312
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1312

31

13

3

12

2

12

2

12

1

23

3

12

1

2221

1211

ÐÐ

yy

ÐÐ

yy

ÐÐ

yy

Ð

y

Ð

y

Ð

y
Ð

y

Ð

y

Ð

y

DD

DD
D  (45) 

Note that the Fick diffusivity matrix is defined in a distinctly different manner to that in equation (31). 

For diffusion distillation, the matrix [D] equals 

 

1

23

3

12

1

23

2

2312
2

1312
1

13

3

12

2

13

1

3

2

3
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1
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












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
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




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







































Ð

x

Ð

x

Ð

x

ÐÐ
x

ÐÐ
x

Ð

x

Ð

x

Ð

x

y

y

y

y
y

y

y

y

D .  

For 3-component ideal gas mixtures, equations (41) reduce to 

 

23

23

12

12212

13

13

12

21121 ;

Ð

Ny

Ð

NyNy

dz

dy
c

Ð

Ny

Ð

NyNy

dz

dy
c

t

t











 (46) 

Combining equations (68), and  (45), we obtain 

  













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


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



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
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
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yy

ÐÐ
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ÐÐ
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Ð
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Ð
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Ð

y
Ð

y

Ð
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Ð

y

c

dz
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1

2313
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2312
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1312
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3
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2

12

2

12

1
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3

12

1

2

1

2

1  (47) 
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13. Krishna-Standart exact analytic solution for diffusion distillation 

Krishna and Standart8 have developed exact solutions to equation (41) for explicit evaluation of the 

fluxes for steady-state transfer across a film of thickness . The Krishna-Standart method, as applied to 

diffusion distillation is described hereunder. 

We define a dimensionless distance: 


 z
 , introduce the equality 213 1 yyy  , and re-write 

equation (46) as follows 

 

 

 
t

t

cÐ

N
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Nyy
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NyNy

d

dy

cÐ

N

Ð
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Ð
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d
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

























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










23

2

23

221

12

12212

13

1

13

121

12

21121 ;

 (48) 

We define a two-dimensional square matrix of dimensionless fluxes 

  


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
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
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Ð

N

Ð

N
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N

ÐÐ
N

Ð

N

Ð

N

ct


 (49) 

We also define a column matrix of dimensionless fluxes 

  




















23

2

13

1

Ð

N
Ð

N

ct

  (50) 

With definitions (49), and (50), we can re-write equation (48) in 2-dimensional matrix form  

 
      


 y
d

yd
  (51) 

The boundary conditions are 

 
   
   


yyz

yyz




;;1

;0;0 0  (52) 
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For steady-state transfer across a film, the matrices    and    are both -invariant. Therefore 

equation (51) represents a system of coupled ordinary differential equations with constant coefficients  

   and   .  

The system of equations can be solved analytically to obtain the mole fraction profiles within the 

diffusion layer                yyIIyy  
0

1
0 expexp  where   I  is the identity matrix with 

Kronecker delta ik  as elements. 

The Sylvester theorem, detailed in Equation (A.5.17) of Taylor and Krishna,4 is required for explicit 

calculation of           1expexp  II . For the case of distinct eigenvalues, 1  and 2 , of the 2-

dimensional square matrix   , the Sylvester theorem yields 

            
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II  

For a ternary gas mixture, the two eigenvalues of    can be derived explicitly; these are 

tcÐ

N

Ð

N  
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
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

12
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2 . 

If the two eigenvalues are equal to each other, we need to use the confluent form of the Sylvester’s 

theorem; see equation (29) of Toor.21 
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The composition gradient at the position 


 z
  can be obtained by differentiation; we get  

 
              


yyI
d

yd
 

0
1expexp  (53) 

The steady-state transfer fluxes of components 1, and 2 can be determined by combining equation 

(47) and (53) 
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The Fick diffusivity matrix 





D  is to be evaluated using equation (45) using the compositions 

corresponding to position 


 z
 . Without loss of generality, we may evaluate the Fick diffusivity at 

position 0


 z
, and obtain 
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 (55) 

The Sylvester theorem, detailed in Equation (A.5.17) of Taylor and Krishna,4 is required for explicit 

calculation of        1exp  I . For the case of distinct eigenvalues, 1  and 2  of the 2-dimensional 

square matrix  D , the Sylvester theorem yields 
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If the two eigenvalues are equal to each other, we need to use the confluent form of the Sylvester’s 

theorem; see equation (29) of Toor.21 
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Though the expression (55) appears to be explicit in the fluxes, it is to be noted that the matrix  

       1exp  I  is also a function of the fluxes.         II  1exp .  Equation (37) can be solved 

using the Given-Find solve block of MathCad 15 using   
yyD

c

N

N
t 








0

2

1  as starting guess values 



Supplementary 30 

 

for the fluxes; in these guess values, we evaluate  D  at the arithmetic average vapor compositions 

2
0

,
ii

avi

yy
y


 . 

14. Gilliland exact analytic solution for diffusion distillation 

The earliest example of the use of the Maxwell-Stefan equations to calculate steady-state transfer 

fluxes in ternary mixtures is provided by Edwin Richard Gilliland, one of the pioneering founding 

fathers of the chemical engineering profession. Gilliland developed an exact analytic solution to the 

Maxwell-Stefan equations (41) for the set of boundary conditions 

 
   
    yyz

yyz
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;

;0 0  (57) 

The Gilliland solutions are in parametric form: 
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The left members of Equations (58) are the two eigenvalues, 1  and 2 , of 

 
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. Equations (58) were published in the 1st edition of 

Absorption and Extraction, authored by Thomas Kilgore Sherwood22, another pioneer in mass transfer 

and separations. The fluxes N1, and N2 may be determined with say the Excel solver, using starting 



Supplementary 31 

 

guess values for N1, and N2. All the calculations in this article were performed using the Given-Find 

solve block of MathCad 15.1 

 Sherwood22 illustrated the utility of equation (58) by means of an illustrative example for absorption 

of NH3 (1) and water vapor (component 2) from a gas phase containing air as an inert gas (component 

3) into water. For a chosen set of conditions, three distinct sets of solutions for the fluxes N1 and N2 

were obtained, depending on the guess values for the fluxes. On the basis of physical arguments, only 

one of these sets was considered to be physically realizable in practice. Later editions of the classic 

1937 book of Sherwood, do not contain the any discussions of Maxwell-Stefan equations, and the 

Gilliland solutions are omitted. Equations (58)  are also available in the paper of Toor.20 

The use of the Gilliland equations for flux calculations is illustrated by the work of Bröcker and 

Schulze.23  

15. The linearized solution for diffusion distillation 

For analysis of diffusional distillation we may also use the simplified procedure suggested in earlier 

work.24 We evaluate the matrix  D  at the arithmetic average vapor compositions 
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this simplification, the fluxes can be evaluated explicitly as follows 
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16. Carty-Schrodt experiments for diffusional evaporation of 
acetone/methanol into air 

Before examining diffusional distillation as a separation technique, let us validate the Krishna-

Standart model for calculation of composition profiles and fluxes.  Towards this end, we simulate the 

experimental data of Carty and Schrodt25 for diffusional evaporation of acetone/methanol into air. Their 
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experiments were carried out in a Stefan tube; see Figure 4. The temperature is 328.5 K, and the total 

pressure is 99.4 kPa. The length of the diffusion path,  = 0.238 m. The composition at the liquid/vapor 

interface is: y10 = 0.319, y20 = 0.528, y30 = 0.153. The bulk vapor compositions at position z =  are y1 = 

0.0, y2 = 0.0, y3 = 1. The values of the vapor phase M-S diffusivities of the three binary pairs, are 

provided in Table I of Carty and Schrodt25:  126
231312 sm1091.19;72.13;48.8  ÐÐÐ ; these 

diffusivities are independent of composition. 

The Gilliland Equations (58) yields three different solution sets. 

With the starting guesses using equation (59), 
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 are both real and distinct; 787.3;877.1 21   .   

Figure 4 presents the experimental data (indicated by symbols) of Carty and Schrodt25 for the vapor 

phase composition profiles in Stefan tube for acetone(1)/methanol(2)/air(3). The continuous solid lines 

are the calculations of the composition profiles                yyIIyy  
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 is calculated using the set of fluxes from the 

Gilliland solution set A.   There is good agreement of the calculated profiles with experimental data. It 
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is also to be noted that the composition profiles in the diffusion layer are not linear. The transfer fluxes 

calculated using equation (55) yield 3
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are equal to each other: 877.121   .  These fluxes are not in agreement with the experimental data 

of Carty and Schrodt.25 
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is zero and therefore one of the eigenvalues is zero: 0;877.1 21   .  These fluxes are not in 

agreement with the experimental data of Carty and Schrodt.25 

17. Diffusional evaporation of acetone/methanol into Xe 

Let us examine the diffusional evaporation of acetone/methanol mixture into inert Xe. The conditions 

are chosen to be the same as in the Carty and Schrodt25 experiments.The temperature is 328.5 K, and the 

total pressure is 99.4 kPa. The length of the diffusion path,  = 0.238 m. The composition at the 
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liquid/vapor interface is: y10 = 0.319, y20 = 0.528, y30 = 0.153. The bulk vapor compositions at position z 

=  are y1 = 0.0, y2 = 0.0, y3 = 1. The values of the vapor phase M-S diffusivities of the three binary 

pairs, estimated using the Fuller-Schettler-Giddings6 method, are 

126
231312 sm1061.12;68.7;87.10  ÐÐÐ ; these diffusivities are independent of composition. 

The Gilliland Equations (58) yields three different solution sets. 

With the starting guesses using equation (59), 
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 are both real and distinct; 7925.1;877.1 21   .  

The rate of entropy production calculated using equation (18): 
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2082.0  J m-3 s-1 K-1. 
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are equal to each other: 877.121   .  The rate of entropy production for Gilliland set B, calculated 
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using equation (18), yields 21804.0  J m-3 K-1 s-1. Since the rate of entropy production for Gilliland 

set A is lower, the Prigogine principle of minimum entropy production indicates that only Gilliland set 

A fluxes will be realized in practice. 

With the starting guesses 3

2

1 10
2

1 

















N

N
 mol m-2 s-1, the Gilliland solution set C is obtained: 

3

2

1 10
64.5

64.5 

















N

N
 mol m-2 s-1; the determinant of  











































12

1

23

2

2312
2

1312
1

12

2

13

1

11

11

Ð

N

Ð

N

ÐÐ
N

ÐÐ
N

Ð

N

Ð

N

ct


 

is zero and therefore one of the eigenvalues is zero: 0;877.1 21   . The rate of entropy production 

for Gilliland set C, calculated using equation (18), yields 0 . A zero entropy production at steady-

state is not a physically acceptable situation, and we conclude that Gilliland set C is not realizable in 

practice. 

18. Absorption of NH3(1) and H2O(2) from Air(3) into water 

Before examining diffusional distillation as a separation technique, we re-examine the tutorial 

example included in Sherwood22 for absorption of NH3 (1) and water vapor (component 2) from a gas 

phase containing air as an inert gas (component 3) into water. The total system pressure is 20.265 kPa 

and temperature is 328.15 K. The effective film thickness for gas phase mass transfer,  = 1 mm. The 

bulk vapor composition is: y10 = 0.03, y20 = 0.0, y30 = 0.97. The compositions at the liquid/vapor 

interface: z =  are y1 = 0.0, y2 = 0.36315, y3 = 0.83685. The values of the vapor phase M-S 

diffusivities of the three binary pairs are: 125
231312 sm1045.12;752.10;75.14  ÐÐÐ ; these 

diffusivities are independent of composition. 

The transfer fluxes calculated using equation (55) yield 

















4136.0

02115.0

2

1

N

N
 mol m-2 s-1.   

The Gilliland Equations (58) yields three different solution sets. 
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The Gilliland solution set A is 

















4136.0

02115.0

2

1

N

N
 mol m-2 s-1, that is identical with the Krishna-

Standart solution.  The eigenvalues of  











































12

1

23

2

2312
2

1312
1

12

2

13

1

11

11

Ð

N

Ð

N

ÐÐ
N

ÐÐ
N

Ð

N

Ð

N

ct


 are both real and 

distinct; 35942.0;42076.0 21   .   

The rate of entropy production calculated using equation (18): 










 





avav y

y
N

y

y
N

R

,2

2
2

,1

1
1

  yields 

23.7  kJ m-3 s-1 K-1. 

With the starting guesses 


















07.0

065.0

2

1

N

N
, the Gilliland solution set B is obtained: 



















9041.0

44467.0

2

1

N

N
 mol m-2 s-1.  The eigenvalues of  











































12

1

23

2

2312
2

1312
1

12

2

13

1

11

11

Ð

N

Ð

N

ÐÐ
N

ÐÐ
N

Ð

N

Ð

N

ct


 are 

both identical: 42076.021   .   

The rate of entropy production for Gilliland set B, calculated using equation (18), yields 42.22  kJ 

m-3 K-1 s-1. Since the rate of entropy production for Gilliland set A is lower, the Prigogine principle of 

minimum entropy production indicates that only Gilliland set A fluxes will be realized in practice. 

With the starting guesses 
















07.0

065.0

2

1

N

N
, the Gilliland solution set C is obtained: 



















46.2

46.2

2

1

N

N
 mol m-2 s-1.  The determinant of  










































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1
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2

2312
2

1312
1
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2

13

1
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11

Ð

N

Ð

N

ÐÐ
N

ÐÐ
N

Ð

N

Ð

N

ct


 is 

zero and therefore one of the eigenvalues is zero: 0;42076.0 21   .  The rate of entropy 
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production calculated using equation (18): 










 





avav y

y
N

y

y
N

R

,2

2
2

,1

1
1

  yields 0 ; a zero rate of 

entropy production is only possible at thermodynamic equilibrium. Counter-diffusion of cannot be a 

physically realistic solution and Gilliland set C has to be discounted. 

The rate of entropy production for Gilliland set C, calculated using equation (18), yields 0 . A 

zero entropy production at steady-state is not a physically acceptable situation, and we conclude that 

Gilliland set C is not realizable in practice. 

19. Multiplicity of solutions for acetone/benzene diffusion in inert 
helium 

Modine26 has reported experimental data that demonstrate strong coupling effects for diffusion of 

acetone/benzene through stagnant helium.  The experiments were carried out in a wetted-wall column. 

Our objective here is to demonstrate multiplicity of solutions that are possible using the Gillliland 

analytic solution. For our calculation purposes, we use the data as presented in Example 11.5.3 of  

Taylor and Krishna.4 For illustration purposes we use the film model for mass transfer and assume that 

the mass transfer resistance is restricted to the vapor phase, and the effective film thickness of the gas 

phase resistance is  1  mm. The temperature is 309.15 K, and the total pressure is 129.81 kPa. 

The composition at the liquid/vapor interface is: y10 = 0.03603, y20 = 0.1248, y30 = 0.83917. The bulk 

vapor compositions at position z =  are y1 = 0.052354, y2 = 0.0, y3 = 0.947646. The values of the 

vapor phase M-S diffusivities of the three binary pairs, are:  

126
231312 sm1029;8.31;93.2  ÐÐÐ ; these diffusivities are independent of composition. 

The Gilliland Equations (58) yields three different solution sets. 

With the starting guesses 
 
  




























18279.0

02622.0

11023

11013

2

1





 yyÐ

yyÐc

N

N
t  mol m-2 s-1, the Gilliland solution 

set A is obtained 
















15401.0

02636.0

2

1

N

N
 mol m-2 s-1. It is vital to note that uphill diffusion of acetone is 

predicted by Gilliland set A. Uphill diffusion of acetone is confirmed in the Modine experiments; see 
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the analysis by Krishna.27 This solution set is identical to that obtained using the Krishna-Standart 

equations (55), using a head-to-tail iteration procedure. The eigenvalues of 

 











































12

1

23

2

2312
2

1312
1

12

2

13

1

11

11

Ð

N

Ð

N

ÐÐ
N

ÐÐ
N

Ð

N

Ð

N

ct


 are both real and distinct; 

21892.1;12157.0 21   .  The rate of entropy production calculated using equation (18): 











 





avav y

y
N

y

y
N

R

,2

2
2

,1

1
1

  yields 48.2  kJ m-3 s-1 K-1. The rate of entropy production due to 

acetone (1) is negative, 08.0
,1

1
11 











 


avy

y
N

R


  kJ m-3 s-1 K-1. However, there is no violation of the 

second law of thermodynamics, because the second component benzene (2) produces entropy at a rate 

56.2
,2

2
23 











 


avy

y
N

R


  kJ m-3 s-1 K-1 that is high enough to ensure that the total rate of entropy 

production is positive definite, 048.221    kJ m-3 s-1 K-1. 

With the starting guesses 
















5.0

02.0

2

1

N

N
 mol m-2 s-1, the Gilliland solution set B is obtained: 


















83584.1

81785.1

2

1

N

N
 mol m-2 s-1.  The eigenvalues of  










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






















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


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1
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2
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are equal to each other: 12157.021   .  The rate of entropy production calculated using equation 

(18): 










 





avav y

y
N

y

y
N

R

,2

2
2

,1

1
1

  yields 1.36  kJ m-3 s-1 K-1; this value is significantly higher than 

that for the Gilliland set A.  Consequently, Gilliland set A will be realized in practice, and not the 

Gilliland set B. 
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With the starting guesses 
















9.0

02.0

2

1

N

N
 mol m-2 s-1, the Gilliland solution set C is obtained: 


















022.2

022.2

2

1

N

N
 mol m-2 s-1.  The determinant of  








































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1
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2

2312
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2
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1
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Ð
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ÐÐ
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ÐÐ
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Ð
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Ð

N

ct


 is 

zero and therefore one of the eigenvalues is zero: 0;12157.0 21   .  The rate of entropy 

production for Gilliland set C, calculated using equation (18), yields 0 . A zero entropy production 

at steady-state is not a physically acceptable situation, and we conclude that Gilliland set C is not 

realizable in practice. 

20. Multiplicity of solutions for 2-propanol/water diffusion in inert CO2 

Consider mass transfer between the liquid and vapor phase for 2-propanol(1)/water(2)/CO2(3). The 

mass transfer resistance is assumed to be restricted to the vapor phase, and the effective film thickness 

of the gas phase resistance is  1  mm. 

Assume that the liquid phase is the binary mixture 2-propanol(1)/water(2) at T = 313.15 K. The 

azeotropic composition at this temperature can be calculated as x1 = 0.62258, x2 = 0.37742; the 

calculations are based on the NRTL parameters provided in Table 2. The ratio of the mole fraction of 

water to that of propanol in the liquid phase is 60624.0
1

2 
x

x
.  Let us bring this liquid phase in contact 

with an inert gas phase consisting of the CO2 (= species 3). The vapor pressure of 2-propanol at 313.15 

K is 13.6 kPa, and the vapor pressure of water at 313.15 K is 7.36 kPa. The total gas phase pressure pt 

=101.3 kPa. The composition of the vapor phase at the gas/liquid interface in equilibrium with the liquid 

mixture can be calculated from 
t

iii
i p

Px
y

0
 . This yields y1 = 0.09836, y2 = 0.05963, y3 = 0.84201; 

see Figure 5. The bulk vapor composition is taken to be: y10 = 0.0, y20 = 0.0, y30 = 1.0. 
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The driving forces are 09836.01101  yyy , and 05963.02202  yyy .  Both driving 

forces are directed from liquid to the vapor phase. The ratio of driving forces 65.1
2

1 



y

y
. 

 The values of the vapor phase M-S diffusivities of the three binary pairs at 313.15 K, calculated using 

the Fuller-Schettler-Giddings6 method, are 125
231312 sm1027.2;9.0;47.1  ÐÐÐ ; these 

diffusivities are independent of composition.  

Firstly, we consider the linearized method for estimation of the transfer fluxes and use equation (59). 

At the average composition 
2

0
,

ii
avi

yy
y


 , the Fick matrix of diffusivities calculated using equation 

(45),  yields   510
2.2816430.044363

0.0731780.959668 







D m2 s-1. At steady-state, the transfer fluxes can be 

estimated as 

 



























 
 005963.00

09836.00
10

2.2816430.044363

0.0731780.959668

10

15.313314.8101300 5
3

2

1

N

N
; this yields 




















0546.0

0384.0

2

1

N

N
 mol m-2 s-1.  Both fluxes are directed from liquid to the vapor phase. The ratio of the 

flux of water to that of 2-propanol is 42.1
1

2 
N

N
. This ratio is significantly higher than the ratio of the 

compositions in the liquid phase 60624.0
1

2 
x

x
.  This implies that the vapor phase gets relatively 

enriched with water vapor. 

The Krishna-Standart exact analytic solution, using equation (55) and (56), following an head-to-tail 

iterative procedure (this procedure is explained in Example 8.3.1 of Taylor and Krishna4) yields 




















0546.0

0385.0

2

1

N

N
, i.e. 416.1

1

2 
N

N
. The exact solution is very close to the linearized solution. The 
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eigenvalues of  










































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1
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2
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2
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Ð

N

Ð

N
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N
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N

Ð

N
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N

ct


 are both real and distinct; 

16302.0;17196.0 21   .   

Depending on the starting guess used in an equation solver, there are three distinct sets of solutions to 

the Gilliland equations, called Gilliland A, Gilliland B, and Gilliland C. Our solutions are based on the 

Given-Find solve block of MathCad 15.1 

The Gilliland A solution set is identical to that obtained using the Krishna-Standart matrix 

formulation. For the starting guess values, we use the values using the linearized solution: 




















0546.0

0384.0

2

1

N

N
. With this starting guess values, the equation yields the set of values that 

correspond precisely with the Krishna-Standart exact analytic solution: 


















0546.0

0386.0

2

1

N

N
, with 

416.1
1

2 
N

N
. The eigenvalues of  


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
 are both real and 

distinct; 16302.0;17196.0 21   .  The rate of entropy production calculated using equation 

(18): 










 





avav y

y
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y

y
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2
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  yields 55.1  kJ m-3 s-1 K-1.  

If the starting guess values are chosen to be 



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





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
05.0

03.0

2

1

N

N
, deviating slightly from the Gilliland A 

solution values, we obtain the Gilliland B solution set: 



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
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0352.0
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1

N

N
, yielding a flux ratio 

79.1
1

2 
N

N
. The eigenvalues of  
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 are: 
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17196.021   . The rate of entropy production calculated using equation (18): 











 





avav y

y
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y

y
N

R

,2

2
2

,1

1
1

  yields 63.1  kJ m-3 s-1 K-1; this value is higher than that for the Gilliland 

set A.  Consequently, Gilliland set A will be realized in practice, and not the Gilliland set B. 

If the starting guess values are chosen to be 
















05.0

04.0

2

1

N

N
, we obtain the Gilliland C solution set: 


















0997.0

0997.0

2

1

N

N
, yielding a flux ratio 1

1

2 
N

N
. Indeed it is easy to check that 021  NN  is always 

a solution to the equations (58). For this scenario, the determinant 0  and consequently one of the 

eigenvalues is zero: 0;17196.0 21   . The rate of entropy production for Gilliland set C, 

calculated using equation (18), yields 0 . A zero entropy production at steady-state is not a 

physically acceptable situation, and we conclude that Gilliland set C is not realizable in practice. 

Counter-diffusion of alcohol and water cannot be a physically realistic solution and Gilliland set C 

should be discounted as unrealistic. 

The existence of multiple Gilliland solutions is not restricted to the choice of CO2 as inert. To 

demonstrate this, we performed analogous sets of calculations for helium, nitrogen, air, argon, and 

xenon. The calculated fluxes with different inert gases are compared in Figure 6. The x-axis is the 

square root of the molecular weight of the inert gas 3M .The linearized theory is in excellent 

agreement with the exact Krishna-Standart solution for all of the chosen inert gases. The Gilliland B set 

of solutions leads to serious error in all cases. With Xe as inert gas the predicted flux ratio for Gilliland 

B set is 33.5
1

2 
N

N
, compared to the physically correct ratio 603.1

1

2 
N

N
.   

The simplest explanation of influence of the choice of the inert gas is as follows.  From equation (59), 

the ratio of the flux of water (2) to that of 2-propanol (component 1) is 
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
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
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


















  

The choice of the inert gas influences the relative values of 1-3 friction and 1-2 friction. The friction 

is inversely proportion to the corresponding M-S diffusivity pairs ijÐ . From the FSG equation 

    
12

23/13/1

75.17

sm
1043.1 








iiij

ij
vvMp

T
Ð , the M-S diffusivity ijÐ  is inversely proportional to the square root 

of the mean molar mass of the pairs ijM . We should therefore expect the ratio of fluxes to depend on 

the square root of the molar mass of the inert gas, 3M .  

21. Multiplicity of solutions for ethanol/water diffusion in inert CO2 

Consider mass transfer between the liquid and vapor phase for ethanol(1)/water(2)/CO2(3). The mass 

transfer resistance is assumed to be restricted to the vapor phase, and the effective film thickness of the 

gas phase resistance is  1  mm. 

Assume that the liquid phase is the binary mixture ethanol(1)/water(2) at T = 343.15 K. The 

azeotropic composition at this temperature can be calculated as x1 = 0.87, x2 = 0.13; the calculations are 

based on the NRTL parameters provided in Table 2. Let us bring this liquid phase in contact with an 

inert gas phase consisting of the CO2 (= species 3). The vapor pressure of ethanol at 343.15 K is 71.2 

kPa, and the vapor pressure of water at 343.15 K is 31.2 kPa. The total gas phase pressure pt =101.3 

kPa. The composition of the vapor phase at the gas/liquid interface in equilibrium with the liquid 

mixture can be calculated from 
t

iii
i p

Px
y

0
 . This yields y1 = 0.6177, y2 = 0.09264, y3 = 0.2897; see 

Figure 5. The bulk vapor composition is taken to be: y10 = 0.0, y20 = 0.0, y30 = 1.0. 

The driving forces are 6177.01101  yyy , and 09264.02202  yyy . Both driving 

forces are directed from liquid to the vapor phase. The ratio of driving forces 67.6
2

1 



y

y
. 
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 The values of the vapor phase M-S diffusivities of the three binary pairs at 343.15 K, calculated using 

the Fuller-Schettler-Giddings6 method, are 125
231312 sm1067.2;27.1;05.2  ÐÐÐ ; these 

diffusivities are independent of composition.  

Firstly, we consider the linearized method for estimation of the transfer fluxes and use equation (59). 

At the average composition 
2

0
,

ii
avi

yy
y


 , the Fick matrix of diffusivities calculated using equation 

(45),  yields   510
2.5900.1106

0.73771.922 







D m2 s-1. At steady-state, the transfer fluxes can be estimated as 

 



























 
 09264.00

6177.00
10

2.5900.1106

0.73771.922

10

15.343314.8101300 5
3

2

1

N

N
; this yields 




















10947.0

44594.0

2

1

N

N
 mol m-2 s-1.  Both fluxes are directed from liquid to the vapor phase. The ratio of 

the flux of water to ethanol is 2455.0
1

2 
N

N
. This ratio is significantly higher than the ratio of the 

compositions in the liquid phase 15.0
1

2 
x

x
. Diffusional evaporation leads to a relatively higher 

proportion of water in the vapor phase.  

The Krishna-Standart analytic solution, using equation (55) and (56), following an head-to-tail 

iterative procedure (this procedure is explained in Example 8.3.1 of Taylor and Krishna4) yields 




















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2

1

N

N
, i.e. 225.0

1

2 
N

N
. The eigenvalues of  
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are both real and distinct; 8514.0;239.1 21   . The exact solution leads to a flux ratio that is 

about 10% lower than the value determined from the linearized theory.  For accurate modelling of 

diffusion distillation, it is necessary to employ the exact analytic solution of Krishna and Standart.8  
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Depending on the starting guess used in any equation solver, there are three distinct sets of solutions 

to the Gilliland equations, called Gilliland A, Gilliland B, and Gilliland C, are obtained. Our solutions 

are based on the Given-Find solve block of MathCad 15.1 

The Gilliland A solution set is identical to that obtained using the Krishna-Standart matrix solution. 

For the starting guess values, we use the values using the linearized solution: 


















10947.0

44594.0

2

1

N

N
. 

With this starting guest, the equation yields the set of values that correspond exactly with the Krishna-

Standart exact analytic solution: 














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
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2

1
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N
, with 225.0
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N
. The eigenvalues of 
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 are both real and distinct; 8514.0;239.1 21   .  

The rate of entropy production calculated using equation (18): 


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  yields 

31.10  kJ m-3 s-1 K-1.  

If the starting guess values are chosen to be 

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1
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N
, deviating somewhat from the Gilliland 

A solution values, we obtain the Gilliland B solution set: 

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N
, yielding a flux ratio 

64.2
1

2 
N

N
. Remarkably, in this case the flux of water is significantly higher than the flux of ethanol. 
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 are equal to each other; 

239.121   . The rate of entropy production calculated using equation (18): 
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


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y
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  yields 15  kJ m-3 s-1 K-1; this value is significantly higher than that for 

the Gilliland set A.  Consequently, Gilliland set A will be realized in practice, and not the Gilliland set 

B. 

If the starting guess values are chosen to be 












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


1.0

3.0

2

1

N

N
, we obtain the Gilliland C solution set: 






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


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


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N
, yielding a flux ratio 1

1

2 
N

N
. Indeed it is easy to check that 021  NN  is always 

a solution to the equations (58). The determinant 0  and consequently one of the eigenvalues is 

zero: 0;239.1 21   . The rate of entropy production for Gilliland set C, calculated using 

equation (18), yields 0 . A zero entropy production at steady-state is not a physically acceptable 

situation, and we conclude that Gilliland set C is not realizable in practice. Counter-diffusion of alcohol 

and water cannot be a physically realistic solution and Gilliland set C should be discounted as 

unrealistic.  

The existence of multiple Gilliland solutions is not restricted to the choice of CO2 as inert gas. To 

demonstrate this we performed analogous sets of calculations for helium, nitrogen, air, argon, and 

xenon. The calculation details for Ar are provided below. 

22. Multiplicity of solutions for ethanol/water diffusion into Ar 

Consider mass transfer between the liquid and vapor phase for ethanol(1)/water(2)/Ar(3). The mass 

transfer resistance is assumed to be restricted to the vapor phase, and the effective film thickness of the 

gas phase resistance is  1  mm. 

Assume that the liquid phase is the binary mixture ethanol(1)/water(2) at T = 343.15 K. The 

azeotropic composition at this temperature can be calculated as x1 = 0.87, x2 = 0.13; the calculations are 

based on the NRTL parameters provided in Table 2. Let us bring this liquid phase in contact with an 

inert gas phase consisting of the nitrogen (= species 3). The vapor pressure of ethanol at 343.15 K is 
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71.2 kPa, and the vapor pressure of water at 343.15 K is 31.2 kPa. The total gas phase pressure pt 

=101.3 kPa. The composition of the vapor phase at the gas/liquid interface in equilibrium with the liquid 

mixture can be calculated from 
t

iii
i p

Px
y

0
 . This yields y1 = 0.6177, y2 = 0.09264, y3 = 0.2897; see 

Figure 5. The bulk vapor composition is taken to be: y10 = 0.0, y20 = 0.0, y30 = 1.0. 

The driving forces are 6177.01101  yyy , and 09264.02202  yyy . Both driving 

forces are directed from liquid to the vapor phase. The ratio of driving forces 67.6
2

1 



y

y
. 

 The values of the vapor phase M-S diffusivities of the three binary pairs at 343.15 K, calculated using 

the Fuller-Schettler-Giddings6 method, are 125
231312 sm1024.3;51.1;05.2  ÐÐÐ ; these 

diffusivities are independent of composition.  

Firstly, we consider the linearized method for estimation of the transfer fluxes and use equation (59). 

At the average composition 
2

0
,

ii
avi

yy
y


 , the Fick matrix of diffusivities calculated using equation 

(45),  yields   510
2.920.147

0.9782.27 







D m2 s-1. At steady-state, the transfer fluxes can be estimated as 
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
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N

N
 mol 

m-2 s-1.  Both fluxes are directed from liquid to the vapor phase. The ratio of the flux of water to ethanol 

is 2423.0
1

2 
N

N
. This ratio is significantly higher than the ratio of the compositions in the liquid phase 

15.0
1

2 
x

x
. Diffusional evaporation leads to a relatively higher proportion of water in the vapor phase.  

The Krishna-Standart analytic solution, using equation (55) and (56), following an head-to-tail 

iterative procedure (this procedure is explained in Example 8.3.1 of Taylor and Krishna4) yields 
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are both real and distinct; 01.1;239.1 21   .  Consequently, this solution is physically 

realizable. The exact solution leads to a flux ratio that is about 10% lower than the value determined 

from the linearized theory.  For accurate modelling of diffusion distillation, it is necessary to employ the 

exact analytic solution of Krishna and Standart8 

Depending on the starting guess used in any equation solver, there are three distinct sets of solutions 

to the Gilliland equations, called Gilliland A, Gilliland B, and Gilliland C, are obtained. Our solutions 

are based on the Given-Find solve block of MathCad 15.1 

The Gilliland A solution set is identical to that obtained using the Krishna-Standart solution. For the 

starting guess values, we use the values using the linearized solution: 



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N
. With this 

starting guest, the equation yields the set of values that correspond exactly with the Krishna-Standart 

exact analytic solution: 
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 are both real and distinct; 01.1;239.1 21   .  

The rate of entropy production calculated using equation (18): 
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  yields 

2.12  kJ m-3 s-1 K-1. 

If the starting guess values are chosen to be 
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solution values, we obtain the Gilliland B solution set: 
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. The eigenvalues of  
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 are equal to each 

other; 239.121   . The rate of entropy production calculated using equation (18): 
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  yields 0.15  kJ m-3 s-1 K-1. This rate of entropy production is higher than 

for the Gilliland set A; therefore the physically realizable solution corresponds to Gilliland set A. 

If the starting guess values are chosen to be 




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, we obtain the Gilliland C solution set: 
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, yielding a flux ratio 1

1

2 
N

N
. Indeed it is easy to check that 021  NN  is always a 

solution to the equations (58). The determinant 0  and consequently one of the eigenvalues is zero: 

0;239.1 21   . The rate of entropy production calculated using equation (18): 
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  yields 0  kJ m-3 s-1 K-1; a zero rate of entropy production is only 

possible at thermodynamic equilibrium. Counter-diffusion of alcohol and water cannot be a physically 

realistic solution and Gilliland set C has to be discounted. 

The calculated flux ratios using different inert gases are compared in Figure 7. The x-axis is the 

square root of the molecular weight of the inert gas 3M .The linearized theory is in reasonable 

agreement with the exact Krishna-Standart solution for all of the chosen inert gases. The Gilliland B set 

of solutions leads to serious error in all cases. With Xe as inert gas the predicted flux ratio for Gilliland 

B set is 3.14
1

2 
N

N
, compared to the physically correct ratio 249.0

1

2 
N

N
.   

The simplest explanation of influence of the choice of the inert gas is as follows.  From equation (59), 

the ratio of the flux of water (2) to that of ethanol (component 1) is 
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The choice of the inert gas influences the relative values of 1-3 friction and 1-2 friction.  The friction 

is inversely proportion to the corresponding M-S diffusivity pairs ijÐ . From the FSG equation 

    
12

23/13/1

75.17

sm
1043.1 








iiij

ij
vvMp

T
Ð , the M-S diffusivity ijÐ  is inversely proportional to the square root 

of the mean molar mass of the pairs ijM . We should therefore expect the ratio of fluxes to depend on 

the square root of the molar mass of the inert gas, 3M .  

23. Diffusion distillation with porous barrier: Exact analytic solutions 
for fluxes 

In view of scale-up limitations of using wetted-wall columns, porous barriers are often interposed 

between the liquid and vapor phases.28  Figure 8 shows a schematic of vapor/liquid transfer across an 

inert porous barrier. From the conceptual point of view, the porous barrier is also to be considered as an 

“inert” fourth component in the quaternary system alcohol(1)/water(2)/inert gas (3)/inert 

barrier(component m). The quasi-stationary transfer fluxes are obtained by extending the linearized 

equation (80), to include the friction between the transferring components 1, and 2 and the barrier (m). 

The porous barriers used are, generally speaking, either meso-porous or macro-porous.   

In recent works, a different approach to the description of diffusion in porous materials has been 

developed, using the Maxwell-Stefan approach,29-34 employing chemical potential gradients as driving 

forces: 
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The fluxes Ni are defined as the moles transported per m2 of total external surface area of the porous 

material 

 niu
RT

p
N i

i
i ...2,1;    (61) 

The species velocities ui are defined in a reference framework with respect to the pore walls. The 

porosity  appears on the left member of equation (61) because only a fraction  of the external surface 

is available for influx of guest molecules. 

In equation (60), ci is the molar concentration of species i based on the accessible pore volume, Vp ( = 

m3 pore volume per kg framework), and  is the material framework density. The quantity pV  is the 

fractional pore volume 
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Equation (60) applies to microporous, mesoporous, and macroporous materials. For mesoporous, and 

macroporous materials with the fluid phase in the gaseous state, 
dz

dp

p
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d
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p
c i

i

ii
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
; , the left 

hand side of equation (60)  simplifies to yield 
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For pores with tortuosity , equation (63) may be modified as follows 
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 (64) 

Equation (64) is comparable, but not equivalent with the corresponding Dusty-Gas Model (DGM)35  
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where the Knudsen diffusivity values are used to quantify the friction with the pore walls, with pore 

diameter, dp, of the barrier 

i

p
Kni M

RTd
D


8

3,   (66) 

In the M-S formulation (64), the M-S diffusivity Ði describes the interaction between species i and the 

pore wall. The Maxwell-Stefan diffusion formulation is essentially a “friction formulation”; the M-S 

diffusivity iÐ , is to be interpreted as an inverse drag coefficient between the guest molecule and the 

surface of the framework material; this diffusivity reflects both the Knudsen and surface diffusion 

characteristics. In other words, the surface diffusion is not separately accounted for. Furthermore, any 

viscous flow contribution is also subsumed into the M-S diffusivities iÐ , and  ijÐ . Comparing equation 

(64) with the DGM equation (65) we may derive; see Krishna and Wesselingh36 
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 (67) 

In all the flux calculations for diffusion distillation, we calculate the fluxes based on the surface area 

of the pores, and consequently we take  1 . For the purposes of our analysis of diffusion distillation 

with porous barriers, we also ignore the viscous flow contributions, and take the tortuosity 1 .  

Consequently our analysis is based on the assumption that   1 . 

For diffusion at constant total pressure, Equations (65) may be re-written in (n-1) dimensional matrix 

notation to yield an explicit expression for the n-1 non-vanishing fluxes iN  

    
dz

yd
DcN t)(  (68) 

The Fick diffusivity matrix [D] can be evaluated explicitly from 
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For steady-state diffusion across a porous barrier of thickness ,  equations (65) can be solved 

analytically for the set of boundary conditions are 
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;0;0 0  following the procedure 

described by Krishna.37 

We re-write equations (65) in n-1 dimensional matrix notation 
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The system of equations (70) can be solved analytically to obtain the mole fraction profiles within the 

diffusion layer                 yyIIyy  
0

1
0 expexp  where  I  is the identity matrix with 

Kronecker delta ik  as elements. The Sylvester theorem, detailed in Equation (A.5.17) of Taylor and 

Krishna,4 is required for explicit calculation of           1expexp  II . For the case of distinct 

eigenvalues, 1  and 2  of the 2-dimensional square matrix   , the Sylvester theorem yields 
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The fluxes can be calculated from 
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Equation (71) can be solved using the Given-Find solve block of MathCad 15 with starting guess 

values for the fluxes   
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We consider the separation of liquid phase binary mixture 2-propanol(1)/water(2) at T = 313.15 K. 

The azeotropic composition at this temperature can be calculated as x1 = 0.62258, x2 = 0.37742; the 

calculations are based on the NRTL parameters provided in Table 2. Let us bring this liquid phase in 

contact with an inert gas phase consisting of the CO2 (= species 3) inside a pore of diameter dp = 1 m. 

The vapor pressure of 2-propanol at 313.15 K is 13.6  kPa, and the vapor pressure of water at 313.15 K 

is 7.36 kPa. The total gas phase pressure pt =101.3 kPa. The composition of the vapor phase at the 

gas/liquid interface in equilibrium with the liquid mixture can be calculated from 
t

iii
i p

Px
y

0
 . This 

yields y1 = 0.09836, y2 = 0.05963, y3 = 0.84201; see Figure 5. The bulk vapor composition is taken to 

be: y10 = 0.0, y20 = 0.0, y30 = 1.0. The solution to Equation (71) yields 
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24. Diffusion distillation with porous barrier: Linearized solutions for 
flux calculations 

Following the linearized model described in earlier works,29, 38 we write for a barrier (membrane) with 

pore diameter, dp, in which we evaluate the matrix  D  at the arithmetic average vapor compositions 
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The matrix inversion in equation (72) can be performed explicitly to yield 
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The ratio of the flux of water to that of alcohol is 
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For the separation of liquid phase binary mixture 2-propanol(1)/water(2) at T = 313.15 K, under the 

same set of conditions as in the foregoing section, the fluxes are calculated to be yields 
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N
 = 1.39. The ratio of fluxes is within 1% of the value 

calculated using the exact analytic solution.  Therefore, all porous barrier calculations reported below 

are obtained using the linearized solution. 

Figure 9a presents calculations of the ratio of quasi-stationary fluxes 
1

2

N

N
 for 2-propanol (1)/water 

(2)/inert gas (3), plotted as a function of pore diameter, dp, of the barrier interposed between the vapor 

and liquid phases. For each of the five inert gases investigated, increase in the pore diameter improves 

the separation performance. Introduction of the porous barrier decreases the efficacy of separation. The 

results in Figure 9a also lead to the conclusion that separations are most effective in the “bulk” diffusion 

regime, as compared to the “Knudsen” regime.  

In order to emphasize this point further, Figure 9b compares the ratio of quasi-stationary fluxes 
1

2

N

N
 

for 2-propanol (1)/water (2)/CO2 (3) for the two scenarios, with and without inclusion of the porous 
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barrier.  The separations without a porous barrier provides the upper limit for the separation. Precisely 

analogous conclusion can be drawn for ethanol (1)/water (2)/CO2 (3) system; see the results in Figure 

10.  

25. Diffusional evaporation of acetone/methanol into inert gas 

Diffusion distillation also applies to non-aqueous mixtures such as acetone/methanol. For quantitative 

demonstration of this separation, let us consider operation at a total pressure of 101.3 kPa and 

temperature of 323.15 K. The liquid composition is x1 = 0.8025, x2 = 0.19744; this composition 

corresponds to that of the azeotrope at 323.15 K, calculated using the NRTL parameters provided in 

Table 4. 

We bring this liquid mixture into contact with gas phase containing pure CO2 (component 3), 

interposing a porous barrier between the vapor and liquid phases.  

The composition of the vapour phase in equilibrium with the binary liquid mixture is y1 = 0.66112,  

y2 = 0.16265,  y3 = 0.17623. The ratio of the compositions of methanol (2) to that of acetone (1) at 

equilibrium, 




1

2

y

y
 is that same as that of the ratio of water to ethanol in the liquid phase, 

0.246
1

2

1

2 
x

x

y

y



 .  

Figure 11 presents calculations of the quasi-stationary fluxes 
1

2

N

N
 for acetone (1)/methanol (2)/CO2 

(3) for two scenarios: with and without inclusion of the porous barrier.  We note that the best 

separations  are achieved by choosing smaller pore sizes and operating in the Knudsen regime. 

However, it is noteworthy that the maximum ratio of 33.0
1

2 
N

N
 achieved in diffusion distillation is 

only slightly higher than the ratio of azeotropic compositions, 0.246
1

2

1

2 
x

x

y

y



 . In other words, 

diffusion distillation is unlikely to be a useful strategy that can be exploited in practice. 
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26. Transient diffusional evaporation of 2-propanol/water/inert mixture 

A different method of illustrating the principle of diffusion distillation is to consider transient 

diffusion into a vapor “slab” of half-thickness (= 1 mm); see schematic in Figure 12. The vapor slab is 

considered to be of “infinite” length in the vertical direction and the diffusion is limited to the transverse 

(z) direction. 

At time t = 0, the bulk vapor phase consists of pure nitrogen: y10 = 0.0, y20 = 0.0, y30 = 1.0. At time t = 

0, either side of the vapor slab is in contact with a binary liquid mixture of constant composition and 

maintained at 313.15 K. The liquid composition corresponds to the azeotrope: x1 = 0.62258, x2 = 

0.37742.  The vapor pressure of 2-propanol at 313.15 K is 13.6 kPa, and the vapor pressure of water at 

341.15 K is 7.36 kPa. The total gas phase pressure pt =101.3 kPa. The composition of the vapor phase at 

the gas/liquid interface in equilibrium with the liquid mixture can be calculated from 
t

iii
i p

Px
y

0
 . This 

yields y1 = 0.09836, y2 = 0.05963, y3 = 0.84201. 

For a binary vapor mixture, the fractional departure from equilibrium is given by the matrix equation 
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This expression can be generalized for ternary vapor mixtures by using two-dimensional matrix 

notation by replacing the binary mixture diffusivity D by the Fick diffusivity matrix  D ; the 

justification for this procedure is provided in earlier works. 4, 24  

The expression for fractional departure from equilibrium for ternary vapor mixtures (inert species 3) 

is 
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The Sylvester theorem, detailed in Appendix A of Taylor and Krishna,4 is required for explicit 

calculation of  Q . For the case of distinct eigenvalues, 1  and 2  of the 2-dimensional square matrix 

 D , the Sylvester theorem yields 

         
 

      
 12

12

21

21



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







IDfIDf

Q  (77) 

In equation (77),  I  is the identity matrix with elements ik . The functions  if   are obtained by 

substituting the eigenvalues 1  and 2  in place of the binary diffusivity in equation (75): 
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The calculations can be easily implemented in MathCad 15.1  

In Figure 13a, the spatial-averaged mole fractions  )(ty  of 2-propanol (1) and water (2) are plotted as 

a function of time, t. The ratio of the mole fraction of water (2) to that of 2-propanol (1) in the vapor 

phase as a function of time, t is plotted in Figure 13b; this ratio equilibrates to the value of 

0.60624
1

2

1

2 
x

x

y

y
, as is expected.  During the initial transience, t < 0.01 s, 917.0

1

2 
y

y
, i.e. the vapor 

phase is richer in water than the azeotropic composition. For effective separations, the contact time 

should be less than about 0.02 s. Also shown in Figure 13b are the calculations for = 5 mm. In this 

case, for t < 0.02 s, 917.0
1

2 
y

y
 and longer contact times are allowed before the system equilibrates to 

the azeotropic composition.  

The choice of the inert gas is also important. Figure 13c compares the transient values of  
1

2

y

y
 for 

helium, nitrogen, air (21% oxygen, 79% nitrogen), argon, CO2, and xenon. The results obtained with air 

are indistinguishable from those with nitrogen. The separation performance increases with increasing 

molar mass of the inert gas. We note that best separations are obtained by choosing xenon as the inert 

gas.  
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Figure 13d presents a plot of the value of 
1

2

y

y
 during the initial transience as a function of 3M .  The 

separation efficacy appears to correlate with 3M , broadly in agreement with the experimental results 

of Singh and Prasad39  for ethanol/water separations using different inert gases.  

The simplest explanation of influence of the choice of the inert gas is as follows.  From equation (59), 

at time t, that is close to the initial condition ( 0;0 21   yy ), the ratio of the flux of water (2) to that 

of 2-propanol (component 1) is 
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  (79) 

Since the vapor phase is dilute in both of the transferring components, the flux ratio is dictated 

predominantly by the relative values of 1-3 friction and 1-2 friction. The friction is inversely proportion 

to the corresponding M-S diffusivity pairs ijÐ . From the FSG equation 

    
12

23/13/1

75.17

sm
1043.1 








iiij

ij
vvMp

T
Ð , the M-S diffusivity ijÐ  is inversely proportional to the square root 

of the mean molar mass of the pairs ijM . We should therefore expect the ratio of fluxes to depend on 

the square root of the molar mass of the inert gas, 3M .  

Figure 14 presents a plot of the ratio of quasi-stationary fluxes 
1

2

N

N
, calculated using equation (59), as 

a function of 3M . The trends are the same as for the ratio 
1

2

y

y
.  However, we note that 

1

2

N

N
 is 

consistently higher than 
1

2

y

y
 because the compositions are time averaged over the volume of the vapor 

slab.   
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The important conclusion that can be drawn from Figure 14 is that the ratio of quasi-stationary fluxes 

1

2

N

N
 provides a reasonably good qualitative indication of the influence of inerts on the separation. 

27. Transient diffusional evaporation of ethanol/water into inert gas 

We illustrate the principle of diffusion distillation to separation ethanol(1)/water(2) azeotrope 

mixtures by considerng transient diffusion into a vapor “slab” of half-thickness (= 1mm); see 

schematic in Figure 12. The vapor slab is considered to be of “infinite” length in the vertical direction 

and the diffusion is limited to the transverse (z) direction. 

At time t = 0, the bulk vapor phase consists of pure CO2: y10 = 0.0, y20 = 0.0, y30 = 1.0. 

At time t = 0, either side of the vapor slab is in contact with a binary liquid mixture of constant 

composition and maintained at 343.15 K. The liquid composition corresponds to the azeotrope: x1 = 

0.869, x2 = 0.131.  The vapor pressure of ethanol at 343.15 K is 71.2 kPa, and the vapor pressure of 

water at 343.15 K is 31.2 kPa. The total gas phase pressure pt =101.3 kPa. The composition of the vapor 

phase at the gas/liquid interface in equilibrium with the liquid mixture can be calculated from 

t

iii
i p

Px
y

0

0


 . This yields y1 = 0.6177, y2 = 0.09264, y3 = 0.28971. 

In Figure 15a, the spatial-averaged mole fractions  )(ty of ethanol (1) and water (2) are plotted as a 

function of time, t. The ratio of the mole fraction of water (2) to that of ethanol (1) in the vapor phase as 

a function of time, t is plotted in Figure 15b; this ratio equilibrates to the value of 0.15
1

2

1

2 
x

x

y

y
, as is 

expected.  During the initial transience, however, 0.15
1

2

1

2 
x

x

y

y
, i.e. the vapor phase is richer in water 

than the azeotropic composition. Short contact times result in more effective separations. 

The choice of the inert gas is also important. Figure 15c compares the transient values of  
1

2

y

y
 for 

helium, nitrogen, air (21% oxygen, 79% nitrogen), argon, CO2, and xenon. The results obtained with air 
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are indistinguishable from those with nitrogen. The separation performance increases with increasing 

molar mass of the inert gas. We note that best separations are obtained by choosing xenon as the inert 

gas.  

Figure 15d presents a plot of the value of 
1

2

y

y
 during the initial transience as a function of 3M .  The 

separation efficacy appears to correlate with 3M , broadly in agreement with the experimental results 

of Singh and Prasad for ethanol/water separations using different inert gases.39  The data in Figure 15d 

also includes the separation efficacies at temperatures T = 333.15 K, 323.15 K, and 318.15 K. We note 

that the separations are more effective at lower temperatures; these results also agree with the 

experimental findings of Singh and Prasad at different temperatures.39   

The simplest explanation of influence of the choice of the inert gas is as follows.  From equation (59), 

at time t, that is close to the initial condition ( 0;0 21   yy ), the ratio of the flux of water (2) to that 

of ethanol (component 1) is 
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The choice of the inert gas influences the relative values of 1-3 friction and 1-2 friction.  The friction 

is inversely proportion to the corresponding M-S diffusivity pairs ijÐ . From the FSG equation 

    
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T
Ð , the M-S diffusivity ijÐ  is inversely proportional to the square root 

of the mean molar mass of the pairs ijM . We should therefore expect the ratio of fluxes to depend on 

the square root of the molar mass of the inert gas, 3M .  
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Figure 16 presents a plot of the ratio of quasi-stationary fluxes 
1

2

N

N
, calculated using equation (59), as 

a function of 3M . The trends are the same as for the ratio 
1

2

y

y
.  However, we note that 

1

2

N

N
 is 

consistently higher than 
1

2

y

y
 because the compositions are time averaged over the volume of the vapor 

slab.   

The important conclusion that can be drawn from Figure 16 is that the ratio of quasi-stationary fluxes 

1

2

N

N
 provides a reasonably good qualitative indication of the influence of inerts on the separation. 

28. Diffusion with heterogeneous chemical reaction 

Löwe and Bubb40 have presented an analysis of the diffusion with heterogeneous chemical reaction   

CB2A   to demonstrate the possibility of multiplicity of solutions. For that reason, we present a 

general analysis of diffusion with heterogeneous chemical reaction in this Section. 

For steady-state diffusion across a film of thickness , the Maxwell-Stefan diffusion equations for n-

component mixtures are written as 

 ni
Ðc

JyJy

Ðc

NyNy

dz

dy n

j ijt

jiij
n

j ijt

jiiji

ijij

,2,1;
11







 

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 (81) 

Only n-1 of the fluxes Ji are independent.  

The Fick diffusivity matrix     1 BD  is commonly defined by the n-1 dimensional matrix equation 

         1;)(  BD
dz

yd
DcJ t  (82) 

In equation (82) we define a (n-1) (n-1) matrix of inverse diffusivities  B  whose elements are given 

by 
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We define a dimensionless distance: 


 z
 . The bulk vapor compositions are specified as follows 

   0;0;0 yyz  . At the other end of the film, the boundary conditions are 

    yyz  ;;1 ; at this position we have a catalytic surface with the heterogeneous reaction 

0A......AAA 332211  nn . In contrast to the model calculations heretofore for equimolar 

diffusion, non-equimolar diffusion, and Stefan diffusion, the mole fractions at the surface of the catalyst 

are not known. 

In typical practical examples, the bulk vapor compositions    0;0;0 yyz   are specified or 

known. The n-1 independent compositions at the catalytic surface     yyz  ;;1  are all 

unknown.  Since the flux ratios are fixed, there is only one unknown flux, say N1. For the determination 

of total of n unknowns (N1, and n-1 independent compositions yi), requires the specification of the 

chemical reaction rate at the surface, say expressed in terms of moles of component 1 converted per m2 

of surface per second. 

The ratios of the fluxes Ni, in the laboratory fixed reference velocity frame, are determined by the 

reaction stoichiometry and so 
n

nNNNN


 ....

3

3

2

2

1

1 .  

For ammonia synthesis reaction 322 NH2H3N  , for example, we have the constraint 

231
321




NNN
.  

In the chemical vapor deposition (CVD) process for production of tungsten by surface reaction on a 

wafer 6HF+WH3WF (s)26  , the gas phase mixture consists of four species WF6 (1), H2 (2), HF 

(3), along with inert gas Ar (4). The molar masses of the four species are, respectively: 297.83, 2, 20, 

and 40 kg mol-1. The flux ratios are 2/1 = 3; 3/1 = -6; 4/1 = 0.   
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For the catalytic dehydrogenation of ethanol to acetaldehyde 2352 H+CHOCHOHHC  , the flux 

ratios are are 2/1 = -1; 3/1 = -1.  

The total mixture flux can be expressed in terms of the flux of component 1: 
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A different approach for the calculation of the fluxes Ni is to define effective diffusivities, Di,eff for 

each component i as follows 

 ni
dz

dy
DcN i

effiti ,2,1;,   (84) 

 Equation (81) allows us to obtain an explicit expression for the effective diffusivity 
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We illustrate the effective diffusivity approach using Equation (85) by considering: chemical vapor 

deposition (CVD). Consider the specific example of the CVD process for deposition of tungsten, by 

surface reaction on a wafer 
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 6HF+WH3WF (s)26   (86) 

The gas phase mixture consists of four species WF6, H2, HF, along with inert gas Ar. The molar masses 

of the four species are, respectively: 297.83, 2, 20, and 40 kg mol-1. For example, in a tungsten CVD 

reactor with the species WF6 (1), H2 (2), HF (3) and inert Ar (4), the flux ratios are 2/1 = 3; 3/1 = -6; 

4/1 = 0.  Calculations of the effective diffusivities according to eq. (84) are illustrated in Figure 17 for 

conditions in which the ratio of the compositions x2/x1 = 2, and the composition of Ar is held constant at 

x4 = 0.3. At the chosen temperature (673 K) and pressure conditions (100 Pa), use of the Peng-Robinson 

equation of state reveals that ideal gas behavior prevails despite the presence of the “heavy” WF6. The 

effective diffusivity of H2 is about an order of magnitude higher than that of WF6.  Also noteworthy is 

that the effective diffusivities are practically composition independent. The large differences in the 

effective diffusivities of WF6 (1), H2 (2), HF (3) have a significant influence on the composition profiles 

in the effective diffusion layer between the bulk gas phase and the surface of the wafer. We take the 

opportunity to note that the effective diffusivity calculations presented in earlier work 36 are erroneous. 

The exact analytic solution of Krishna and Standart8 is now applied for the calculation of the fluxes.  

In terms of the n-1 independent mole fraction gradients, equation (33) can be cast into n-1 dimensional 

matrix notation 
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For steady-state transfer across a film, the matrices    and    are both -invariant. Therefore 

equation (87) represents a system of coupled ordinary differential equations with constant coefficients  

   and   .  
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The system of equations can be solved analytically to obtain the mole fraction profiles within the 

diffusion layer 

                yyIIyy  
0

1
0 expexp  (88) 

In equation (88),  I  is the identity matrix with Kronecker delta ik  as elements. 

The Sylvester theorem, detailed in Equation (A.5.17) of Taylor and Krishna,4 is required for explicit 

calculation of           1expexp  II . The composition gradient at the position 


 z
   can be 

obtained by differentiation of equation (88); we get  

 
              


yyI
d

yd
 

0
1expexp  (89) 

The steady-state transfer fluxes of components 1,2,..n-1 can be determined from 
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1expexp  where the Fick diffusivity 

matrix at position   is  D  is calculated from equations (82) and (83). Without loss of generality, we 

may evaluate 
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, and obtain 
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 (90) 

The Sylvester theorem, detailed in Equation (A.5.17) of Taylor and Krishna,4 is required for explicit 

calculation of        1exp  I . 

Using effective diffusivities, as defined in equation (85), the fluxes are calculated from 
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In Equation (91), the diagonal matrix of effective diffusivites is calculated using the compositions yi0 

at position 0


 z
. Both equations (90) and (91) yield identical values for the fluxes, as they should.  

29. Diffusional coupling effects in CVD reactor for W deposition  

We shall now demonstrate the importance of proper modelling of diffusion processes in the chemical 

vapor deposition (CVD) process for production of tungsten by surface reaction on a wafer 

6HF+WH3WF (s)26  . The gas phase mixture consists of four species WF6 (1), H2 (2), HF (3), along 

with inert gas Ar (4). The flux ratios are 2/1 = 3; 3/1 = -6; 4/1 = 0.  The data inputs for the process 

are largely based on the paper by Kuijlaars et al.41 The temperature in the CVD reactor is 673 K and the 

total pressure pt = 100 Pa. The effective film thickness  = 1 mm. Using the Fuller-Schettler-Giddings 

(FSG)6, the M-S diffusivities of the constituent binary pairs are 

;0946.0

;343.0344.0

;0295.0;04.0152.0

34

2421

141312






Ð

ÐÐ

ÐÐÐ

 m2 s-1.  Note that the diffusivities are about three orders of 

magnitude higher than the usual values at ambient pressure and temperature conditions. The reaction 

rate, r, expressed as moles of W deposited per m2 of surface per second is calculated by the kinetic 

expression  21015.0 ppr   where tpyp  11   and tpyp  22   are the partial pressures of WF6 

and H2 at the surface of the wafer (position   z;1 . At steady-state, the flux of WF6 equals the 

reaction rate, i.e. 

  211 015.0 ppN   (92) 

For a chosen bulk gas mixture composition, 25.0,3.0,3.0,15.0 40302010  yyyy , Equations (90) 

and (92), four in total, need to be solved simultaneously to determine the four “unknowns” 

 3211 ,,, yyyN . The Given-Find solve block of MathCad 15 was used for solving the four set of 
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equations. The obtained results are: 

0.50751

0.25336

0.01184

s m mol0.08215

3

2

1

-1-2
1












y

y

y

N

.  The composition profiles in the “film”, 

calculated using equation (88) are shown as the continuous solid lines in Figure 18. If difference in the 

pair diffusivities are ignored and we assume that six pair diffusivities are equal to the diffusivity of WF6 

in Ar, i.e. 0.03 m2 s-1, the obtained results are 

0.72155

0.01899

0.04907

s m mol0.04579

3

2
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-1-2
1



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







y

y

y

N

. In this case, the flux of WF6 

is about half of the value calculated above using the rigorous M-S equations with differing pair 

diffusivities. The corresponding composition profiles are shown as dashed lines in Figure 18. The 

calculations underscore the need for taking proper account of differences in pair diffusivities in the 

modelling of CVD reactors; this conclusion is also reached by Kuijlaars et al.41 

30. Multiplicity of solutions for hydrogenation of ethene 

We now analyze the influence of diffusion on the heterogeneously catalyzed hydrogenation of ethene 

to produce ethane, 62422 HCHCH  , using platinum/alumina catalyst at 293.15 K. We number the 

species as follows 3HC2;HC;1H 62422  . The stoichiometric coefficients are 1 = 1; 2 = 1; 3 = 

-1. The flux ratios are 2/1 = 1; 3/1 = -1. According to the work of Uppal and Ray,42 the system 

follows Langmuir-Hinshelwood kinetics. In the calculations presented below, the rate of reaction, 

expressed as mole H2 (species 1) reacted per m2 of external surface are per second is described by the 

Langmuir-Hinshelwood kinetic expression 




21

211

1 pKpK

ppKKk
r

BA

BA


  where tpyp  11   and tpyp  22   

are the partial pressures of H2 (species 1) and C2H4 (species 2) at the surface of the catalyst (position 

  z;1 ). The total pressure of the gas mixture, pt = 20.4105 Pa. The partial pressures of H2 

(species 1) and C2H4 (species 2) in the bulk gas phase at position 0;0  z  are 5
10 1012p  Pa 
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and 5
20 104.8 p  Pa. The total molar concentration of the gas mixture, 

RT

p
c t

t   = 837 mol m-3, is 

constant across the diffusion “film”, whose thickness is taken to be,  = 1 mm. The adsorption constants 

are 5105.0 AK  Pa-1, and 51030 BK  Pa-1.  The reaction rate constant 41 k  mol m-2 s-1. 

At the operating pressure and temperature conditions, the Maxwell-Stefan diffusivities of the binary 

pairs, calculated using the Fuller-Schettler-Giddings6 method, are 

126
231312 sm10548.0;57.2;7.2  ÐÐÐ ; these diffusivities are independent of composition. 

The elements of the diagonal bootstrap matrix, 





0 , evaluated at 0


 z
  are  10

11 1

1

y
 ; 

 20
22 1

1

y
 . 

 At steady-state, the fluxes of H2 (component 1) and C2H4 (Component 2) are given by the two-

dimensional matrix equation 

          
yyID

c

N

N
t 







 
 0

1
00

2

1 exp , where    is defined as in equation (87).   

At steady-state, the flux of H2 equals the reaction rate at   z;1 , i.e. 





21

211
1 1 pKpK

ppKKk
rN

BA

BA


 .  In view of the reaction stoichiometry, the steady-state flux of C2H4 is 

12 NN  . The steady-state flux of C2H6 is 213 NNN  . The total mixture flux 

  11321 NNNt    

The diffusion fluxes are calculated from Equation (93), that simplifies to 

 ttt NyNJNyNJNyNJ 333222111 ;;    

The calculations below are for ;58824.010 y  41176.020 y ; these values are based on the partial 

pressures in the bulk gas mixture as in the work of Uppal and Ray.42 For these mixture compositions, y10 

and y20, there are two independent flux relations that determine the compositions, and concentrations, at 
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the position   z;1 : tcyc  11   and tcyc  22  . We use the Given-Find solve block of MathCad 

15 to determine the unknowns y1 and y2. 

Depending on the starting guess values for N1, y1 and y2, three different solution sets are obtained; 

these are called Solution set I, Solution set II, and Solution set III. 

With the starting guesses: 0.11 N  mol m-2 s-1, y1 = 0.6 and y2 = 0.2, we obtain Solution set I: 

0.12111 N  mol m-2 s-1, y1 = 0.56381, and y2 = 0.28786. The composition profiles, calculated using 

equation (88), are shown in Figure 19a. For this solution set I, the rate of entropy production is  
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With the starting guesses: 0.11 N  mol m-2 s-1, y1 = 0.06 and y2 = 0.02, we obtain Solution set II: 

0.28351 N  mol m-2 s-1, y1 = 0.52838, and y2 = 0.1023. The composition profiles, calculated using 

equation (88), are shown in Figure 19b. For this solution set II, the rate of entropy production is  
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 With the starting guesses: 0.11 N  mol m-2 s-1, y1 = 0.5 and y2 = 0.01, we obtain Solution set III: 

0.363941 N  mol m-2 s-1, y1 = 0.50959, and y2 = 0.0014312. The composition profiles, calculated 

using equation (88), are shown in Figure 19c. For this solution set III, the rate of entropy production is  
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Invoking the Prigogine principle, the stable, physically realizable, steady-state corresponds to the one 

that produces entropy at the minimum rate; this implies the realizable solution is Solution set I: 

0.12111 N  mol m-2 s-1, y1 = 0.56381, and y2 = 0.28786 ; this is the “low conversion” steady-state as 

discussed by Uppal and Ray.42 

What is the cause of multiplicity of steady-states?  There are two possible reasons: (1) differences in 

the diffusivities of the pair M-S diffusivities, 231312 ;; ÐÐÐ , and (2) the “feedback” mechanism 
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implicit in the Langmuir-Hinshelwood kinetic expression 



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ppKKk
r

BA

BA


 .  To answer this 

question, we repeated the same set of calculations and taking 126
231312 sm106.0  ÐÐÐ .  With 

this assumption, the Krishna and Standart8 analytic solution, equation  (37), simplifies to 
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t  where the dimensionless flux is 
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 1
321  .  

At steady-state, the flux of H2 equals the reaction rate at   z;1 , i.e. 
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

 .  In view of the reaction stoichiometry, the 

steady-state flux of C2H4 is    
 2202212 1exp

yyÐ
c

NN t 



 . The steady-state flux of C2H6 is 

213 NNN  . The total mixture flux   11321 NNNt    

Depending on the starting guess values for N1, y1 and y2, three different solution sets are also 

obtained in this scenario with equal M-S pair diffusivities. 

With the starting guesses: 0.11 N  mol m-2 s-1, y1 = 0.5 and y2 = 0.01, we obtain Solution set I: 

0.114661 N  mol m-2 s-1, y1 = 0.48262, and y2 = 0.26089. The composition profiles, calculated using 

equation (88), are shown in Figure 20a. For this solution set I, the rate of entropy production is  
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With the starting guesses: 0.11 N  mol m-2 s-1, y1 = 0.1 and y2 = 0.1, we obtain Solution set II: 

0.214371 N  mol m-2 s-1, y1 = 0.369, and y2 = 0.09857. The composition profiles, calculated using 

equation (88), are shown in Figure 20b. For this solution set II, the rate of entropy production is  
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 With the starting guesses: 0.21 N  mol m-2 s-1, y1 = 0.01 and y2 = 0.01, we obtain Solution set III: 

0.266121 N  mol m-2 s-1, y1 = 0.3005, and y2 = 0.00072. The composition profiles, calculated using 

equation (88), are shown in Figure 20c. For this solution set III, the rate of entropy production is  
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Invoking the Prigogine principle, the stable, physically realizable, steady-state corresponds to the one 

that produces entropy at the minimum rate; this implies the realizable solution is Solution set I: 

0.114661 N  mol m-2 s-1, y1 = 0.48262, and y2 = 0.26089 ; this is also the “low conversion” steady-

state as discussed by Uppal and Ray.42 

The important conclusion we wish to draw is that the steady-state multiplicity is not caused by 

differences in the M-S pair diffusivities, but due to the “feedback” mechanism implicit in the Langmuir-

Hinshelwood kinetics.  

Having established this, we proceed to analyze the reaction system CB2A  , with equal M-S pair 

diffusivities and Langmuir-Hinshelwood kinetics. 

31. Multiplicity of solutions in the Löwe-Bubb reaction system 

We now present a re-analysis of the multiplicity in the diffusion-reaction system considered by Löwe 

and Bubb.40 Our objective is to demonstrate that the Prigogine principle of minimum entropy production 

can be gainfully employed in selecting the physically realizable, stable, solution.  

The reaction scheme considered by Löwe and Bubb40 is the heterogeneous catalyzed reversible 

reaction CB2A  .  We number the species 1 = A, 2 = B, 3 = C.  The stoichiometric coefficients are 

1 = 1; 2 = 2; 3 = -1. The flux ratios are 2/1 = 2; 3/1 = -1.  The M-S diffusivities of all species is 
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taken to be identical to one another, and equal to Ð. The elements of the diagonal bootstrap matrix 
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
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22 1
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y
 . 

The Krishna and Standart8 analytic solution, equation  (37), simplifies to 
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The rate of reaction, expressed as mole A (species 1) reacted per m2 of external surface are per second 

is described by the Langmuir-Hinshelwood kinetic expression 
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  where tcyc  11   

and tcyc  22   are the molar concentrations of A (species 1) and B (species 2) at the surface of the 

catalyst (position   z;1 ). The total molar concentration of the gas mixture, 
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p
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At steady-state, the flux of A (component 1) is    





 2312

211
110111 11exp ckck

cck
yyÐ

c
N t







 . 

The flux of B (component 2) is    


 22022122 1exp
yyÐ

c
NN t 



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The flux of C (component 3) is 133 NN  .  The total mixture flux   1321 NNt    

The diffusion fluxes are calculated from Equation (94), that simplifies to 

 ttt NyNJNyNJNyNJ 333222111 ;;    

For a specified set of bulk gas mixture compositions, y10 and y20, there are two independent flux 

relations that determine the compositions, and concentrations, at the position   z;1 : tcyc  11   

and tcyc  22  . We use the Given-Find solve block of MathCad 15 to determine the unknowns y1 and 

y2. 



Supplementary 74 

 

Löwe and Bubb40 have demonstrated the existence of multiple steady-states by considering two 

different examples, Example 1, and Example 2. The diffusivity and kinetic data used Löwe and Bubb40 

is presented in terms of dimensionless variables.  

We shall first reproduce their published results for Example 1, for which the parameter values are 

y10 =0.6, y20 = 0.4, y30 = 0; 
 

2
2

3

1 105.5
1


 t

t

ckÐ

ck 
; 3-

2

3 10
k

k
, 0.97

1 3

3 
 t

t

ck

ck
.  

Depending on the starting guess values for 
Dc

N

t

1 , y1 and y2, three different solutions are obtained in 

agreement with the findings of Löwe and Bubb.40 

With the starting guesses: 0.11 
Dc

N

t


, y1 = 0.6 and y2 = 0.3, we obtain Solution set I: 

0.121031 
Dc

N

t


, y1 = 0.62739, and y2 = 0.23568. The composition profiles, calculated using equation 

(88), are shown in Figure 21a. Since the composition profiles are practically linear, the rate of entropy 

production, Equation (12) simplifies to 
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In equation (95) we estimate the diffusion fluxes  
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For this solution set I, the dimensionless rate of entropy production is  
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With the starting guesses: 0.11 
Dc

N

t


,  y1 = 0.6 and y2 = 0.01, we obtain Solution set II: 

0.249161 
Dc

N

t


, y1 = 0.6646, and y2 = 0.01243. The composition profiles, calculated using equation 

(88), are shown in Figure 21b. For this solution set II, the dimensionless rate of entropy production is  
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With the starting guesses: 0.11 
Dc

N

t


,  y1 = 0.6 and y2 = 0.15, we obtain Solution set III: 

0.182321 
Dc

N

t


, y1 = 0.644, and y2 = 0.13601. The composition profiles, calculated using equation 

(88), are shown in Figure 21c. For this solution set III, the dimensionless rate of entropy production is  
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Invoking the Prigogine principle, the stable, physically realizable, steady-state corresponds to the one 

that produces entropy at the minimum rate; this implies the stable steady state solution is Solution set I: 

0.121031 
Dc

N

t


, y1 = 0.62739 and y2 = 0.23568. It is noteworthy, that Löwe and Bubb40 have reported 

identical results for Solution sets I, II, and III, as should be expected. Löwe and Bubb40 present a 

detailed stability analysis to reach the same conclusion that Solution set I is the stable steady-state; see 

Figure 5 of their paper. 

The multiple solutions obtained in Example 1 is a phenomenon that is distinctly different from 

diffusion distillation, because the multiplicity is also exhibited by the exact analytic solution of Krishna 

and Standart.8 

We now reproduce the results for multiplicity for Example 2 of Löwe and Bubb.40 In  this case the 

reaction kinetics and diffusivity data are chosen by Löwe and Bubb40 to correspond with the Eley-

Rideal reaction mechanism as described by equation (9) in the paper by Löwe and Bubb.40 The bulk 

phase compositions are the same as in Example 1, i.e. 

y10 =0.6, y20 = 0.4, y30 = 0.0 

Two different solutions are reported by Löwe and Bubb;40 referred to here as Solution set I and 

Solution set II. 
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For Solution set I: y1 = 0.6414 and y2 = 0.1514, 0.173311 
Dc

N

t


. The composition profiles, 

calculated using equation (88), are shown in Figure 22a. For this solution set I, the dimensionless rate of 

entropy production is  
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For Solution set II: y1 = 0.6555 and y2 = 0.0669, 0.220781 
Dc

N

t


. The composition profiles, 

calculated using equation (88), are shown in Figure 22b. For this solution set II, the dimensionless rate 

of entropy production is  
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 Our contention is that the stable, physically realizable, steady-state corresponds to the one that 

produces entropy at the minimum rate; this implies the realizable solution is Solution set I: y1 = 0.6414 

and y2 = 0.1514, 0.173311 
Dc

N

t


. Löwe and Bubb40 present a detailed stability analysis to reach the 

same conclusion that Solution set I is the stable steady-state; see Figure 4 of their paper. The use of the 

Prigogine principle of minimum entropy production obviates the need for performing detailed stability 

analysis to determine the stable steady-state. 
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32. Notation 

 

ct  total molar concentration of mixture, mol m-3 

 B    inverse diffusivity matrix, m-2 s1  

dp  diameter of pore, m  

Ðij  M-S binary pair diffusivity, m2 s-1 

Di,Kn  Knudsen diffusivity of species i, m2 s-1 

 D    Fick diffusivity matrix, m2 s-1  

 I   Identity matrix, dimensionless 

Ji molar diffusion flux of species i with respect to u , mol m-2 s-1 

n number of species in the mixture, dimensionless 

Mi molar mass of species i, kg mol-1 

Ni molar flux of species i, mol m-2 s-1 

ip   partial pressure, Pa 

tp   total pressure, Pa 

0
iP    vapor pressure, Pa 

 Q   matrix quantifying fractional departure from equilibrium, dimensionless 

R  gas constant, 8.314 J mol-1 K-1  

t  time, s  

T  absolute temperature, K  

xi  mole fraction of component i in liquid phase, dimensionless 

yi  mole fraction of component i in vapor phase, dimensionless 

ui  velocity of component i, m s-1 

u   molar average mixture velocity, m s-1 

z  direction coordinate, m  
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Greek letters 



    bootstrap matrix, dimensionless 

i  activity coefficient of component i, dimensionless 

   film thickness, m 

 ij  Kronecker delta, dimensionless 

  dimensionless distance in diffusion layer, dimensionless 

i  eigenvalues of    , dimensionless 

i  molar chemical potential of component i, J mol-1 

νi  stoichiometric reaction coefficient, dimensionless 

  rate of entropy production, J m-3 s-1 K-1 

 ij  dimensionless mass transfer rate factors, dimensionless 

 i  dimensionless mass transfer rate factors, dimensionless 

 

Subscript 
 

0  Referring to starting compositions, t = 0 

0  Referring to position, 0z  

  Referring to position, z  

1  Component 1        

2  Component 2 

3  Component 3 

i  Component index         

j  Component index 

eq  Referring to final equilibrated compositions, t  
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Table 1. Values of the molar heats of vaporization of some typical molecules, determined at their 

respective normal boiling points: 

Compound Normal boiling point 

Tb/ K 

Molar heat of vaporization, 

/ kJ mol-1 

water 373.1 40.7 

ethanol 351.8 38.8 

methanol 337.7 35.4 

acetone 329.2 29.6 

chloroform 334.3 29.3 

benzene 353.2 30.8 

toluene 383.8 33.2 

cyclohexane 353.9 29.9 

2-pentane 301.0 24.7 

n-hexane 341.9 28.7 

acetic acid 391.0 23.5 

formic acid 373.9 22.8 

monomethylamine 266.8 26.1 

triethylamine 276.0 23.0 

tri-ethylene glycol 558 70.0 
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Table 2. NRTL parameters for 2-propanol(1)/water (2) mixture. These parameters are from the 

DECHEMA Dortmund data bank, and are used along with  ijijijG  exp . 

Component 1 Component 2 
12  21  12  

2-
propanol(1) 

water (2) 

T

6619.70
12   T

2208.729
21   0.288 

 

 

 

Table 3. NRTL parameters for ethanol(1)/water (2) mixture. These parameters are from the DECHEMA 

Dortmund data bank, and are used along with  ijijijG  exp . 

Component 1 Component 2 
12  21  12  

ethanol(1) water (2) 

T

29.169
12   T

624.9174
21   0.2937 

 

 

Table 4. NRTL parameters for acetone(1)/methanol (2) mixture. These parameters are from the 

Kurihara et al.43, and are used along with  ijijijG  exp . 

Component 1 Component 2 
12  21  12  

Acetone (1) methanol (2) 

RT

770.15
12   RT

1023.18
21   0.1099 
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34.   Caption for Figures 

 

Figure 1. A force balance on a control volume containing an ideal gas mixture. 

 

Figure 2. The force acting on each of the species in the diffusing binary mixture of species 1 and 2 is 

balanced by friction between the species 1 and 2. 

 

Figure 3. Transfer resistances in vapor/liquid contacting on a distillation tray. 

 

 

Figure 4.  Vapor phase composition profiles in Stefan tube for acetone(1)/methanol(2)/air(3).  The 

experimental data of Carty and Schrodt25 are compared with the composition profiles calculated by the 

Krishna-Standart model. 

 

 

Figure 5. Schematic for liquid/vapor transfer for ethanol (1)/ water (2)/nitrogen (3) at steady state across 

a film of thickness . 

 

 

Figure 6. Comparison of ratio of steady-state fluxes 
1

2

N

N
 for diffusional evaporation of 2-propanol 

(1)/water (2) into vapor phase containing inert gas. The flux ratios are obtained using six different inert 
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gases as component 3: helium, nitrogen, air, argon, CO2, and xenon as inert gas. The x-axis is the square 

root of the molecular weight of the inert gas 3M . 

 

 

Figure 7. Comparison of ratio of steady-state fluxes 
1

2

N

N
 for diffusional evaporation of ethanol (1)/water 

(2) into vapor phase containing inert gas. The flux ratios are obtained using six different inert gases as 

component 3: helium, nitrogen, air, argon, CO2, and xenon as inert gas. The x-axis is the square root of 

the molecular weight of the inert gas 3M . 

 

 

Figure 8.  Schematic showing vapor/liquid transfer across an inert porous barrier. 

 

 

Figure 9. (a) Comparison of ratio of quasi-stationary fluxes 
1

2

N

N
 for 2-propanol (1)/water (2)/inert gas 

(3), plotted as a function of pore diameter, dp, of the barrier interposed between the vapor and liquid 

phases. (b) Influence of the inclusion of the porous barrier on the ratio of quasi-stationary fluxes 
1

2

N

N
 for 

2-propanol (1)/water (2)/CO2 (3). 

 

 

Figure 10. Influence of the inclusion of the porous barrier on the ratio of quasi-stationary fluxes 
1

2

N

N
 for 

ethanol (1)/water (2)/CO2 (3). 
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Figure 11. Influence of the inclusion of the porous barrier on the ratio of quasi-stationary fluxes 
1

2

N

N
 for 

acetone (1)/methanol (2)/CO2 (3). 

 

 

Figure 12. Schematic for transient diffusion of ethanol/water into slab of half-thickness .   

 

 

Figure 13. Transient diffusional evaporation of 2-propanol (1)/water (2) into vapor phase containing 

inert gas. The total pressure is 101.3 kPa, and the temperature is 313.15 K. The composition of the 

vapor in equilibrium with the liquid is y10 = 0.09836, y20 = 0.05963,  y30 = 0.84201. The initial 

composition of the vapor slab is y1 = 0.0, y2 = 0.0, y3 = 1.0. The phase equilibrium is calculated using 

the NRTL parameters provided in Table 2. (a) The mole  fractions of 2-propanol (1) and water (2) 

plotted as a function of time, t. (b) Ratio of the mole fraction of water (2) to that of 2-propanol (1) in the 

vapor phase as a function of time, t. (c) Comparisons of the ratios of the mole fraction of water (2) to 

that of 2-propanol (1) in the vapor phase as a function of time, t using helium, nitrogen, argon, CO2, and 

xenon as inert gas. (d) Plot of  
1

2

y

y
 during the initial transience as a function of 3M .   

 

Figure 14. Comparison of ratio of quasi-stationary fluxes 
1

2

N

N
, with 

1

2

y

y
 at initial transience for 2-

propanol (1)/water (2)/inert gas (3), plotted as a function of 3M .  
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Figure 15. Transient diffusional evaporation of ethanol (1)/water (2) into vapor phase containing inert.  

The total pressure is 101.3 kPa, and the temperature is 3143.15 K. The initial composition of the vapor 

slab is y1 = 0.0, y2 = 0.0, y3 = 1.0. The composition of the vapor in equilibrium with the binary liquid 

mixture is y1,eq = 0.09859,  y2,eq = 0.02278,  y3.eq = 0.82455. The phase equilibrium is calculated using 

the NRTL parameters provided in Table 3. (a) The mole  fractions of ethanol (1) and water (2) plotted 

as a function of time, t. (b) Ratio of the mole fraction of water (2) to that of ethanol (1) in the vapor 

phase as a function of time, t. (c) Comparisons of the ratios of the mole fraction of water (2) to that of 

ethanol (1) in the vapor phase as a function of time, t using helium, nitrogen, argon, CO2, and xenon as 

inert gas.. (d)  Plot of  
1

2

y

y
 during the initial transience as a function of 3M .   

 

 

Figure 16. Comparison of ratio of quasi-stationary fluxes 
1

2

N

N
, with 

1

2

y

y
 at initial transience for ethanol 

(1)/water (2)/inert gas (3), plotted as a function of 3M . 

 

 

 

Figure 17. Calculation of the effective diffusivities in the gaseous mixture WF6/H2/HF/Ar at a 

temperature of 673 K and total pressure 100 Pa. In these calculations, the ratio of the compositions x2/x1 

= 3, and the composition of Ar is held constant at x4 = 0.3. 

 

Figure 18. Calculation of the composition profiles in the gas “film” in the gaseous mixture 

WF6/H2/HF/Ar at a temperature of 673 K and total pressure 100 Pa. The continuous solid lines represent 

the solution using the exact analytic solution of Krishna and Standart8, taking proper account of the 

differences in the pair diffusivities.  The dashed lines are the corresponding calculations in which all the 

pair diffusivities are assumed to be the same, equal to 0.03 m2 s-1.  
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Figure 19. (a, b, c) Composition profiles in the gas film external to the catalyst surface with 

heterogeneous chemical reaction 62422 HCHCH  , corresponding to the Solution sets I, II, and III. In 

the calculations, we take account of differences in the M-S pair diffusivities 

126
231312 sm10548.0;57.2;7.2  ÐÐÐ . 

 

 

Figure 20. (a, b, c) Composition profiles in the gas film external to the catalyst surface with 

heterogeneous chemical reaction 62422 HCHCH  , corresponding to the Solution sets I, II, and III. In 

the calculations, we assume that he M-S pair diffusivities are equal to one another 

126
231312 sm106.0  ÐÐÐ . 

 

 

Figure 21. (a, b, c) Composition profiles in the gas film external to the catalyst surface with 

heterogeneous chemical reaction CB2A  , corresponding to the Solution sets I, II, and III for 

Example 1 of Löwe and Bubb.40 

 

 

Figure 22. (a, b) Composition profiles in the gas film external to the catalyst surface with heterogeneous 

chemical reaction CB2A  , corresponding to the Solution sets I, and II for Example 2 of Löwe and 

Bubb.40 
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Steady-state evaporation into vapor slab
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Fig.  S62-propanol/water/inert: diffusional evaporation
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Fig.  S7ethanol/water/inert: diffusional evaporation
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Fig.  S9Influence of porous barrier
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Fig.  S10Influence of porous barrier
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Fig.  S11Influence of porous barrier
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Fig.  S12

Transient diffusion into vapor slab
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Fig.  S13
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Fig.  S142-propanol/water/inert: diffusional evaporation
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Fig.  S15
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Fig.  S16Ethanol/water/inert: diffusional evaporation
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Fig.  S17
Effective diffusivities in CVD reactor
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Fig.  S19
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Fig.  S20
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Fig.  S21Composition profiles in Example 1 
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