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Preamble

1 Preamble

This Supplementary Material accompanying our article Diffusing Uphill with James Clerk Maxwell
and Josef Stefan provides detailed derivations of the Maxwell-Stefan diffusion equations, along with
solutions to the model equations describing transient equilibration in  gaseous mixtures,
multicomponent distillation, ternary liquid-liquid extraction, mixed electrolyte solutions, ion exchange
processes, reverse osmosis, solid crystals, metal alloys, silicates, and microporous materials. All the
necessary data inputs, and calculation methodologies are provided in the Supplementary Material.
Procedures for estimation of diffusivities are discussed. This should enable the interested reader to
reproduce all the calculations and results presented and discussed in the review article.

For ease of reading, this Supplementary Material is written as a stand-alone document; as a

consequence, there is some overlap of material with the main manuscript.



Phenomenological relations for n-component diffusion

2 Phenomenological relations for n-component diffusion

Before setting up the proper phenomenological relations between the diffusion fluxes and the driving
forces, we first consider the various choices of concentration measures, and reference velocities. The

treatment below is essentially a summary of Chapter 1 of Taylor and Krishna.'
2.1 Concentration measures

A summary of the wide variety of concentration measures for n-component mixtures that are
encountered in practice are summarized in Table 2-1.

2.2 Diffusion fluxes and reference velocities

If u; denotes the ensemble average velocity of component i with respect to a laboratory-fixed (i.e.

stationary) coordinate reference frame, the molar flux of component i in the laboratory-fixed reference

frame is N, =c,u, and the molar flux of the mixture is N, =ZM The modelling and design of

i=1
separation and reaction equipment requires calculation of the diffusion fluxes, J;; these are defined with

respect to an arbitrarily chosen reference velocity of the fluid mixture, u :

J. Ec.(ul. —u); i=12,.n (2-1)

1 1

Most commonly, we choose u as the molar average velocity of the mixture
u= ixiui =xu + XUy XU, (2-2)
i=1
Only n-1 of the fluxes J; are independent because the diffusion fluxes sum to zero
i J, =0 (2-3)
i=1

The molar fluxes &, in the laboratory fixed reference frame are related to the diffusion fluxes J, by
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N,=cu,=J,+x,N,; N[:ZN[ (2-4)

i=1

The molar diffusion flux can also be defined with respect to other reference velocities; some
commonly used ones are summarized in Table 2-2.

For ideal gas mixtures, the molar average mixture velocity equals the volume average mixture
velocity. The mass average reference velocity frame is convenient to use when the equations of
conservation of mass need to be solved in conjunction with the momentum balance relations. For
diffusion of ions in dilute aqueous solutions, it is convenient to define the diffusion fluxes with respect

to water (the nth component). The volume average mixture velocity is convenient for liquid mixtures.

2.3 The Generalized Fick’s law for n-component diffusion

Choosing the mole fraction gradients as the driving forces, the diffusion fluxes

J. Ec(ui —u); i=12,.n

1 1

with respect to the molar average reference velocity may expressed as linear
functions of the (n-1) independent driving forces, by defining a (n-1) x (n-1) dimensional Fick

diffusivity matrix [D]

() =, [D]* (j) __Lipe®) (2-5)

where V = Z kak is the mean molar volume of the mixture.
k=1

2.4 Other choices of reference velocities in the definition of [D]
The Fick diffusivity matrix [D] is defined in equation (2-5) in terms of molar diffusion fluxes, J,,

that are, in turn, defined with respect to the molar average reference velocity frame u . Other choice of
fluxes and reference velocities are encountered in the chemical engineering literature; see Section 3.2.2

of Taylor and Krishna.' See also Table 2-2.
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For mass diffusion fluxes, j, = p, (1, —v); i=12,.n; Z J; =0 defined with respect the mass average
i=1

mixture velocity v = Za)[u[ , we write (j) =—p, [D'”“” ]@
i=1 zZ
The mass fractions are related to the mole fractions X
a)i
, x;M, xM, C M, o, — . S
®, = L = l]\_/ll ; X, =—t=—rt—= VM’ where M; is the molar mass of species 7, with
P ¢ @, i
x.M.

[a—y

. The

the units kg mol™, and M s the mean molar mass of the mixture is M = inM P =

i=1 w;
2,

mixture mass density is related to the total molar concentration of the mixture p, = CIM =—M.

| =

no__
For molar diffusion fluxes, J"""=c, (ul. —uv”l”me} i=12,.n ZVI.Jiv”l”me =0  defined with

i
i=1

respect the volume average mixture velocity u"”"" = ZC‘[V[M[ , we write (J™"") = —[D olume @ This
i=1 z

is a common choice in the experimental determination of diffusivities.
For n-component mixtures, the numerical values of the elements of [D], [D'”“” ], and [DV”[“’”G] are
different. However, the determinants of the corresponding matrices are equal to one another.'

Dk D

_‘ D volume

(2-6)
1
For the special case of a binary mixture, n =2, dx, = %Z’Zdwl; do, = MM, - dx,
o, 0 (x1M1+x2M2)
Ml MZ

and the Fick diffusivity is the same for the three different choice of reference velocity frames'

10
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. dw,
Lh=EP (”1 _V) =-p,D, dzl
_ dx,
Ji=¢ (ul _”) =—¢,Dy, Z (2-7)

de;

leolume = Ci (ul _ uvulume) —D12
dz

The inter-relationship between J; and j; is summarized in Table 2-3.
The formulae for transformation of the Fick diffusivity matrix from one reference frame to another are

provided in Section 3.2.4 of Taylor and Krishna.! For example, for a ternary mixture, n = 3, the

transformation between [D], and [D ’"”‘“] is

o) alolas (D)=L} o1
e - Zﬁj o[- o o o] o)

- ,x w,x 0 o ||0 x
-, 1— 37 -, 1— 372 2 2
X300, X3,

For the ternary mixture of nCsH;g(1)/nCioH2(2)/1-methylnapthalene(3) with mass fractions @, =

0.3333, w, = 0.3333, @3 =0.3333 at 295.65 K, Leahy-Dios et al.? report experimental data on the Fick

1.99 -0.93

x107° m?s™
-042 24

diffusivity matrix in the mass average reference velocity frame: [D'””‘“]z{

the large magnitudes of the off-diagonal elements are particular noteworthy. The corresponding mole
fractions of the three components are x; = 0.384, x , = 0.308, x 3 = 0.308. On transformation using

equation (2-8), we obtain the matrix of Fick diffusivities in the molar average reference velocity frame

192 -1.07] ., , .
[D]= x10” m*s™ .
~0.333  2.47

For a ternary mixture, n = 3, the transformation between [D], and [D“’h‘"’e} is given by equation

(2-9). Alimadadian and Colver;’ report the elements of the Fick matrix [DVOI”"”] in the volume average

reference velocity frame for acetone(1)/benzene(2)/methanol(3) mixtures at 9 different compositions. At

11
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3.819 042

x1 = 0.350, x; = 0.302, x3 = 0.348, [D l] { 0.561 2.133

}x 10° m’s™". The partial molar volumes

are V, =74.1x10°%; 7, =89.4x10"°; ¥, =40.7x10° m’ mol". Using equation (2-9), we can convert

3.651 -0.069

x10” m’s™"; see
-0.300 2.303

to the molar average reference velocity frame to obtain [D] ={

Example 3.2.1 of Taylor and Krishna' for further calculation details.

I:Dvolume] _ [A][D][A]_l ; [D]= [A]_1 [Dv"’”m“][/l];

-3y -v) -Z(v,-7,
(4] V(_l _3) V(Z_ 3_) ; Vzix/ﬁ (2-9)
—2Hp-v) 1-2m-n)

2.5 The Onsager relations for n-component diffusion

Lars Onsager was amongst the first to recognize the limitations of Fick’s law. In his classic paper
published in 1945 entitled Theories and Problems of Liquid Diffusion, Onsager’ wrote The theory of
liquid diffusion is relatively undeveloped... It is a striking symptom of the common ignorance in this
field that not one of the phenomenological schemes which are fit to describe the general case of
diffusion is widely known. In the Onsager formalism for n-component mixture diffusion, the diffusion

fluxes J, are postulated to be linearly dependent on the chemical potential gradients, dy,/dz, of each

Ay

of the species present in the mixture. Only (n-1) of the chemical potential gradients y
Z

arc

independent, because of the Gibbs-Duhem relationship

%_l_x %_’_...x %:0

2-1
* dz > dz " dz (2-10)

d(u,—p,)

It is convenient, therefore, to choose the (n-1) independent chemical potential gradients y
z

driving forces for diffusion. In (n-1) dimensional matrix notation, the Onsager formulation is written as

12
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L (dlumn)
(/)= V[L]RT( dz ] (2-11)

where V = Zxkz is the mean molar volume of the mixture. For example, for an ideal gas mixture
k=1

V =RT /p, . The units of the elements L; are the same as those for Fick diffusivities, i.e. m’ 5. The

matrix of Onsager coefficients [L] is symmetric because of the Onsager Reciprocal Relations (ORR)’

L.=L, (2-12)

ij Ji
For insightful and robust discussions on the validity of the Onsager relations, see Truesdell.®

In proceeding further, we define a (n-1) dimensional matrix [@] , that is the Hessian of the molar Gibbs

free energy, G

1 &G 1 &G
= =— =0 .; ,j=1L2...n-1 -
" RT oxox, RT oxoy, "7 (2-13)

where G, the molar Gibbs free energy for the n-component mixture, is the sum of two contributions

G=G“+RTY xIn(x); G“=RTY x,In(y,) (2-14)

i=1 i=1

where y, is the activity coefficient of component i. Equation (2-14) can also be written in terms of the

M, , that is the chemical potential or partial molar Gibbs free energy:

G= anui (2-15)
i=1

When carrying out the partial differentiations of G, required in equation (2-13), it is important to note
that all » of the mole fractions cannot be varied independently. So, we re-write equation (2-15) in terms

of the n-1 independent mole fractions

n—1

G=2 xu =) x,— )+ p, (2-16)
i=1 i=l

In view of equations (2-13) and (2-16), we obtain

13
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Lo(u-m)_ 1 o(m=m)

""RT ox, RT ox ”

1

i,j=12..n-1 (2-17)

Combining equations (2-11), and (2-17) we get

1 d (x)

J)y=—=|L||® 2-18

== [t} @-19)
The inter-relationship between the Fick, and Onsager formulations are
1 d (x) 1 d (x)

J)=—=|L||O® =—=|D 2-19
) V [ ][ ] dz V [ ] dz ( )
and therefore
[D]=[L][®] (2-20)

2.6 The Maxwell-Stefan formulation for n-component diffusion

The Maxwell-Stefan approach, that we adopt in this article, has its origins in the pioneering works of
James Clerk Maxwell ’ and Josef Stefan ® who analyzed diffusion in ideal gas mixtures. The Maxwell-
Stefan (M-S) formulation is best understood by considering z-directional diffusion in a binary gas
mixture consisting of species 1 and 2, contained within the control volume shown schematically in
Figure 2-1. The cross-sectional area available for diffusion is 1 m” and the length of the diffusion path is

dz. If the change in the partial pressure of component i across the diffusion distance dz is —dp;,, the

is —@. The number of moles of species i per m’, c, =L and

dz "RT’

. . . 3
force acting on species i per m

. . . RT dp, . . .
therefore the force acting per mole of species i is ——% which for an ideal gas mixture at constant
p; az
temperature also equals the chemical potential gradient —%. This force is balanced by friction
A

between the diffusing species 1 and 2, each diffusing with a velocity u, (cf. Figure 2-2). We may expect

that the frictional drag to be proportional to the velocity difference (u1 —uz), and we write

RT
_an =—X, (u1 —uz) where the term RT is to be interpreted as the drag coefficient. The multiplier
dz D, D,

14
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x> in the right member represents the mole fraction of component 2; this factor is introduced because we
expect the friction to be dependent on the number of molecules of component 2 relative to that of
component 1. The Maxwell-Stefan diffusivity D,, has the units m’ s and the physical significance of
an inverse drag coefficient. The extension to n-component mixtures is intuitively obvious and can be

written for component 1, for example as follows

_dm _RT

RT
i D, xz(ul—u2)+B—x3(ul—u3)+ ........ +—x, (u,—u,) (2-21)

The corresponding relations for components 2, 3, ..n are written down in an analogous manner. The left

member of equation (2-21)) is the negative of the gradient of the chemical potential, with the units N

mol™; it represents the driving force acting per mole of species 1. The term RT, / D, is interpreted as the

drag coefficient for the i-j pair. The multiplier x; in each of the right members represents the mole
fraction of component j; this factor is introduced because we expect the friction to be dependent on the

number of molecules of j relative to that of component 1. The M-S diffusivity D, has the units m® s’
and the physical significance of an inverse drag coefficient. The magnitudes of the M-S diffusivities D,

do not depend on the choice of the mixture reference velocity because Equation (2-21) is set up in terms

of velocity differences. Equation (2-21) may be re-written as

1 du, :Z":xj(ui _”j)

RT &= S B, (2-22)

Multiplying both sides of equation (2-22) by x; we get

_ N dn
RT dz

Jii ivjrj) z J i Lty
- Z - 2-23
ij J= b, j=1 ¢D; (2-23)

j#i j#i

1 xixj(ui—uj) [ (X»XM«—X«XU») 1 (XCU-—X-CU)
Jj=1 B
J#i

Introducing the expressions for fluxes N, =c,u, =c¢,x,u. and J, =N, —x,N, in equation (2-23), we get

x, dy, HxN,—-x,N, &xJ -xJ,
—ol—h= = ci=12,...n
RT dz ¢,D, Z ¢,D; (2-24)

J=1 7 J=1

J#i J#i

15
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The Maxwell-Stefan diffusion formulation (2-24) is consistent with the Onsager formulation; the
Onsager Reciprocal Relations imply that the M-S pair diffusivities are symmetric
D,=Db,; i,j=12..n (2-25)

The second law of thermodynamics dictates that the rate of entropy production must be positive

1

d 1}
=——Z - TZ ﬂn Bty 5 (2-26)
i=1

Insertion of the Maxwell-Stefan equation (2-24) into equation (2-26) we obtain on re-arrangement’

:—c Rzz al J‘u —u. ‘ >0 (2-27)
i=l j=l1 ,"

The term L% on the left hand member of equation (2-24) is the generalization of the mole
z

fraction gradients, used as driving forces for ideal gas mixtures.

For non-ideal liquid mixtures, the chemical potential of component i, z; are related to the gradients of
the component activities, a; = y,x; where y; is the activity coefficient:
0 0
Hi = H; +RT1n(ai)::ui +RT1n(7/ixi) (2-28)
For gaseous mixtures at high pressure, the chemical potential of component i, x; are related to the

gradients of the component fugacities, f, =@p, =@x,p:

=4 +RTIn(f;)=p +RTIn(4xp,) (2-29)
where ¢ is the fugacity coefficient and p; is the total gas pressure.

In proceeding further, it is convenient to express the left member of equation (2-24) in terms of the

mole fraction gradients by introducing an (n-1) x (n-1) matrix of thermodynamic correction factors [F] :

x; du; ding, & , 0"1117‘ .
S gy —; I =0;+x Lo, j=12...n—-1 -
RT dz " dz Z P gz & / (2-30)

J
For non-ideal ternary liquid mixtures, the elements of [F] can be calculated from Van Laar, Wilson,
UNIQUAC or NRTL models describing phase equilibrium thermodynamics." ™

16



Phenomenological relations for n-component diffusion

The analogous expression for high pressure gaseous mixtures is

X dy o dinf, & Alng, .
—l—l: .. + l; 5 =1,2... _1 -
RT &z " Z Ly =0y +x—"=3 bJ n (2-31)

Jj= J

In this case, the elements of [F] can be calculated by analytic differentiation of an Equation of State

(EOS) such as the Peng-Robinson (PR) EOS; for further details see Krishna and van Baten.'' For binary

for PR EOS are provided in the

mixtures, explicit analytic expressions for T' = x,

agﬁ 5, ex, 2lng,

1 1

paper by Tuan et al.'

We also define a (n-1) x (rn-1) matrix of inverse M-S diffusivities [B ] whose elements are given by

X, N X 1 |
By, " 2p, Bm#,»):—xf(ﬁ b, ] hy=h2en] (232)

in ik ij in

Combining equations (2-24), (2-30), (2-31), and (2-32), we can re-cast equation (2-24) into (n-1)

dimensional matrix notation

) ey e e taT ) 4 __Lramid)

M= 21810 = 8] T =~ M) =~ [N -3
where we have additionally defined

[A]=[8]" (2-34)

The inter-relationships between the Fick, Onsager, and the Maxwell-Stefan diffusivities is

d(x) (2-35)

Equation (2-35) underscores the direct influence of mixture thermodynamics on the elements D;; of the

matrix of Fick diffusivities [D].
For an ideal gas mixture, the thermodynamic correction factors I'; =0, and equation (2-35) reduces

y

to

17
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[A]=[B] ' =[D]; idealgasmixture (2-36)
For a binary mixture, n = 2, equation (2-24) simplifies to

_idﬂl (szl_lez)

RT dz  c¢b, (2-37)
Introducing the constraints J, =—J,, and x, =1-X,, equation (2-37) yields
x, du dx dx
J=—¢D, L= _ep =L=—cD, L 2-
I €, RT d= € iz Cl a (2-38)
in which the Fick diffusivity for binary mixture is
Dy, =D, (2-39)

For a ternary mixture, n = 3, equation (2-35) gives the following explicit expression for the four

elements of the Fick diffusivity matrix

-1
AN XI(I—L]
[Dn D12:|_ Dy Dy, Dy D, D [Fn

D, D ( 1 1 j XX X
| —-—| —+——+—=
L D, D, b, b, b, |

)1

12 } (2-40)

22

—

21 22 21

The matrix inversion in equation (2-40) can performed explicity and we obtain

|:D11 D12:|:|:A11 A12:||:F11 1—‘12:|.
D21 D22 A21 A22 1—‘21 1—‘22

Bl3(xles+(1_X1 )Blz) xlBB(BlB_DlZ) (2-41)
|:A11 Au} _ x2B13(D23_B]2) Bz3(x21913+(1_x2 )BIZ)
A, Ay D y+x, D +x, D),

The determinant of [B ] for a ternary mixture is

| |: e B B :i; |A|: Dy DDy (2-42)
DD, D,Dyy DDy |A XDy +x,D5 + 3B,
. /2 D, DD, .
The quantity ‘A‘ = can be interpreted as a measure of the “average”
XD y+x, D+, D),

magnitude of M-S diffusivity in the ternary mixture.
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For stable single phase fluid mixtures, we must have |F| > (. In view of equation (2-35) the condition
of phase stability translates to
|D| > 0; |F| > (0; phase stability (2-43)

Equation (2-43) implies that all the eigenvalues of the Fick matrix [D] are positive definite. It is
interesting to note that thermodynamic stability considerations do not require the diagonal elements Dj

to be positive. If recourse is made to the kinetic theory of gases, it can be shown that the diagonal
elements D, are individually positive for mixtures of ideal gases. The off-diagonal elements D, (i # ;)
can be either positive or negative, even for ideal gas mixtures. Indeed, the sign of D, (i # j) also

depends on the component numbering.

The condition for phase stability in a binary fluid mixture is
D,>0; I'20; phase stability (2-44)

The occurrence of I' < 0 implies vapor/liquid or liquid/solid phase transitions.
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2.7 List of Tables for Phenomenological relations for n-component diffusion

Table 2-1. Concentration measures

Concentration measure units Inter-relation, constraint
xi, mole fraction of species i | - o,
c M, 0O —
x,=—"=—-"—=—M;) x, =1
¢, Z @, =]
= M,
@;, mole fraction of species i | - P xM,  xM,
S A
i=1
©oaM,
i=1
¢;, molar density of species i | mol m™ 0 & ) |
—_ L . J— j—
¢ =—; Zci = ¢, = mixture molar density==
M, S V
- P 3
., mass density of species i | kg m < ) .
P Yy OLsp p. =cM; Z p, = p, = mixture mass density
i=1
M;, molar mass of speciesi | kg mol” — .
M =) x.M, =mean molar mass of mixture
i=1
V. partial molar volume of m’ mol” = v 5 |
P V =) xV, =— =mean molar volume of mixture
i=1 Ct
i
¢, volume fraction of |- ¢ = CZVI
species i
fi, fugacity of species i Pa

Z f; = f, = total mixture fugacity

i=1

L, molar chemical potential | J mol”

of species i

H =

' +RTIn f,
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Table 2-2. Choice of reference velocity frame.

Reference velocity Constraint on molar fluxes

n
u =) xu, =molar average mixture velocity > J,=0
i=1 i=1

n n
V= Za),.ul. =mass average mixture velocity Z—’ J, =0
i=1 i=1

' =Y cVu, = u, = volume average mixture velocity VJ, =0

i=1 i=1 i=1

n
u, = Zé‘mu,. = velocity of component »
i=1
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Table 2-3. Inter-relation between J; and j; for binary mixture

Molar fluxes

Mass fluxes

J,=cx (u1 —u);u = XU, + X,U,
Jy=c¢x (ul XY —x2u2) =6XNX, (”1 _”2)
o, — ®, —
x,=——M;x,=—2M;¢, L
M, M, M

J, =cxx, (u1 —uz)

Ji = P (ul _V);V = ou, +w,u,

. xM, x.M. —
pl_ 1 ] — l_l;pt:ctM

P, Zn: xM, M
i=1

i

Ji = Py (”1 — WY, _a)zuz) = p0@, (”1 _uz)

J M ( ) M . Ji1 = P00, (ul _uz) =C XX, (Ml —uz)
I:pta)]a)z— ul_uZ = ]]
MM MM . MM MM
1 1M ]lzctx1x2T(u1_u2): jl\_/lz‘jl
1
MM MM
dxl:%dq; da)I: | ) 2dxl
(ﬁm o j (xM, +x,M,)
M, M,
1 _
==ﬁ+&;M=x1M1+x2M2
M M, M,
—2
M MM
dv, =——dw; do, ="=2dx,
1M
€ XX, M
p, wow, MM,
dx ) do
Jl - CtDlzd_Zl; Ji Z—ptDlzd—Z1
M MM —
dx, = M day;c, =2 do,=—=>dx;p,=c,M
MM,
IY: MM, d
J —pD Lﬂ Ji _CtDlzé%
1 ¢ 12]\11]‘/[2 Az o M iz
M d
M1M2J __pD m VM jlz_ctDlz%zjl
M 1 T Ji M, 7
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2.1 List of Figures for Phenomenological relations for n-component diffusion

Force balance

area =1 mz\

v
|

Piz ] Piz+dz

b4 z+dz

Figure 2-1. A force balance on a control volume containing an ideal gas mixture.
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Force is balanced by friction

u, U
1 >
uy
u, .
. Stefan, J. Uber das Gleichgewicht und die
Maxwell, J. C., 1866. On the dynamical Bewegung insbesondere die Diffusion von
theory of gases. Phil. Trans. Roy. Soc. Gasgemengen, Sitzber. Akad. Wiss. Wien.
157, 49-88. 1871, 63, 63-124.
U2 : l: u2 : :
Force acting per _ Friction between
mole of species 1 1and 2

B

Figure 2-2. The force acting on each of the species in the diffusing binary mixture of species 1 and 2

is balanced by friction between the species 1 and 2.
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3 Diffusion in Ideal Gas Mixtures

For an ideal gas mixture, the thermodynamic correction factors I', =0, and the Maxwell-Stefan

y y
diffusion equations
n x.N.—x.N. nox.J —x.J.

X dﬂ,=2 TN el e B s B PR LN (3-1)

RT dZ = ctDij j=1 CtDij
simplify to yield

&Y N—yN, &y -y,

_@:zuz B IR VI S (3-2)

dz c B - c D

For mixtures of ideal gases for which the Dj are independent of composition the second-law

requirement
1 n n X.X. 2
o=—c,R —Llu, —u,| 20 3-3
2 ZZ=1: ]Z=1: Dy‘ ‘ J‘ ( )
can only be satisfied if
D, 20; (ideal gas mixtures) (3-4)

Equation (3-4) was first derived by Hirschfelder, Curtiss and Bird."> For non-ideal fluid mixtures the

Bj are composition dependent in general and a result analogous to equation (3-4) cannot be derived.’
3.1 The M-S pair diffusivities D;; in gaseous mixtures

The M-S pair diffusivities D;; for gaseous mixtures at low pressures, below about 10 bar, can be

estimated to a good level of accuracy using the Fuller-Schettler-Giddings (FSG)'* method.

D, - 1.43x1077"7" S

>~ m's 3-5
M, _(V11/3)+ (Vém)] o
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where p is the pressure (expressed in bars), M,, = is the mean molecular weight of the

2
L

Ml M2
mixture (expressed in g mol™), v,, and v, are the diffusion volumes (expressed in cm’ mol™) whose

values are obtained by summing the contributions of the volumes of the constituent atoms in the
molecular species (the values are tabulated in Table 11.1 of Reid, Prausnitz, and Poling'®). According to
the FSG estimation procedure, the product of D;, and the total pressure, p, is a function only of
temperature and is also independent of composition.

In generalizing the FSG method to dense gas mixtures, it is important realize that equation (3-5)

implies that, at constant temperature, the M-S diffusivity is inversely proportional to the molar density

of the gas phase. For dense gases, the total mixture molar density of the gas phase is ¢, = P \where Z

is the compressibility factor. Consequently, the M-S diffusivity for dense gases can be estimated by
correcting the original FSG equation by introducing the compressibility factor Z; see Krishna and van

Baten'! for further details

1.43x10777"7
D, = 7

7 3-6
T CERED o0

Due to the introduction of the compressibility factor, Z, the M-S diffusivity D,, becomes dependent on

mixture composition. The molar density of the mixture is ¢, = %, and therefore Equation (3-6)

anticipates that ¢,B), is constant at constant temperature 7.

3.2 The Loschmidt tube experiments of Arnold and Toor

Arnold and Toor'® report experimental data on the transient equilibration of CH4(1)/Ar(2)/H,(3) gas
mixtures of two different compositions in the top and bottom compartments of a Loschmidt tube of total
length; see Figure 3-1. The temperature is 307 K and the total pressures is 101.3 kPa. Each compartment

has a length, 6 =0.4 m. The initial compositions in the two compartments are
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top compartmert (+):0<z <0;y, =0.0;y, =0.509; y, =0.491
botttom compartmert(-):—0 <z <0;y, =0.515;y, =0.485;y, =0.0

The final equilibrated compositions are y;¢q = 0.2575, y2.6q = 0.497 and y3 q = 0.2455. For the ternary
CH4(1)/Ar(2)/H»(3) gas mixture, the binary pair diffusivities calculated using the Fuller-Schettler-

Giddings (FSG)"* method for 7= 307 K and p, = 101.3 kPa. are:

b, =2.16x10"; D,=7.72x10"; D, =833x10"° m’s"

At the equilibrium composition, yieq = 0.2575, y2¢q = 0.497 and y3q = 0.2455, the elements of the

I, T, 1 0
Fick diffusivity matrix [D] can be calculated using (cf. Equation (2-41), with [FH FU} = [0 J)
21 22

x2B13(D23_B12) B23(X2D13+(1_x2 )Blz)

D y+x,D+x, D),

(3-7)

|:B13(XID23+(1x1 )D12) xlez(Dn_Bn) :l

|:D11 D12 —
DZl D22

4.45895 1.784055

The result is [D]
3.63675 6.40716

}xl ~ m®s’. The large off-diagonal elements indicate strong

diffusional coupling for transfer of all components.
We note that the driving force for Ar is significantly lower than that of its two partner species. The
analytic solution for transient equilibration trajectories in the two compartments is given in Section 5.5

of Taylor and Krishna.' In two-dimensional matrix notation, the equilibration trajectories are described

by

)=y ) A Ve
[J"2 (17.) —sz -loa. (m —sz
[D]-2[]] [D]- 4[]
[0(n,t]= f(’?afﬂq)m S, fﬂz)m (3-9)

(el 5

fn.t,4)

Nl»—‘

| @
+;k§
[++3)

[\)
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In equation (3-8), the dimensionless distance coordinate 7 =§ where ¢ is the length of each of the two

tube segments; 4, and A, are distinct eigenvalues of the 2-dimensional Fick diffusivity square matrix

[D] , that may be evaluated at the final equilibrated composition. We also note in passing that there are
two typographical errors in Equation (5.5.6) of Taylor and Krishna;' Equation (3-8) is the correct one to
use. See also Ravi'’ for further clarifications on this topic.

Figure 3-1(a) shows the composition profiles at time ¢t = 0.05 h from the start of the equilibration
process. Due to strong coupling effects, the composition profile of Ar shows both overshoot (top
compartment) and undershoot (bottom compartment).

At any time ¢, the integral averaged compositions in the bottom compartment are described by

yi() =y Vi~
[ykﬂ—};j:{gg(y;—ylj

loe)= sy I2=2l p g ID1=AL)

(4 —4,) (4 -4) (3-9)
f(.4) —%—%g#exp[—[kﬁ-%j [gj M]
[++3)

Figure 3-1(b) compares the transient equilibration trajectories calculated using equation (3-9) with the
experimental data of Arnold and Toor;'® there is excellent agreement between the two sets. The transient
equilibration processes for CHy, and H, are “normal”, inasmuch as their equilibration are monotonous.
The equilibration of Ar, however, shows an overshoot (in top compartment) and an undershoot (in
bottom compartment). Such over- and under-shoots signal the occurrence of uphill diffusion engendered
by diffusional coupling effects. In ternary composition space, the equilibration process follow

serpentine trajectories; see Figure 3-1(c)

3.3 Two-bulb experiments of Duncan and Toor

One of the first set of experiments to demonstrate uphill diffusion were reported by Duncan and

Toor'® for ternary Ha(1)/N2(2)/CO4(3) gas mixtures. The experimental set-up consisted of a two bulb
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diffusion cell, pictured in Figure 3-2. The two bulbs are connected by means of an 86 mm long capillary
tube. The length of the diffusion path, 6 =0.086 m. Since the two bulbs are sealed there is no net

transfer flux out of or into the system, i.e. we have conditions corresponding to equimolar diffusion

u=0;, N +N,+N,=0;, N, =J

The initial compositions (mole fractions in the two bulbs, Bulb A and Bulb B, are

BulbA:y, =0.0;y,=0.5;y,=0.5
BulbB:y, =0.5;y,=0.5;y,=0.0

The experimental data on the transient approach to equilibration are indicated by the symbols in
Figure 3-3Figure 3-2.(a). We note that despite the fact that the driving force for nitrogen is practically
zero, it does transfer from one bulb to the other, exhibiting over-shoot and under-shoot phenomena
when approaching equilibrium. The transient equilibration trajectories of H,, and CO, are “normal”,
with their compositions in the two bulbs approaching equilibrium in a monotonous manner.

The Maxwell-Stefan equations (3-2) allow a quantitative explanation of the experimental data; the
model calculations are presented in Example 5.4.1 of Taylor and Krishna.! The M-S diffusivities

calculated using the Fuller-Schettler-Giddings (FSG)"* method for the three binary pairs at 7= 308.3 K
are D, =8.33x10° m’s"; D, =68x10" m’s’;D,, =1.68x10" m’s”.
The compositions in the two bulbs equilibrate after several hours to yjeq = 0.25, y2q = 0.5 and y3q =

0.25. At this equilibrium composition the elements of the Fick diffusivity matrix [D] can be calculated

7.68 —0.11

using Equation (3-7); the result is [D|=
= -7) D] {—3.83 2.15

}<105 m’s”. The large magnitude of the

off-diagonal element D»; indicate strong diffusional coupling for transfer of nitrogen.
If the Fick diffusivity matrix is assumed constant during the entire equilibration process, the transient

equilibration trajectories can be expressed in two-dimensional matrix notation
V()= Vi ~ex _ﬂ{Du D12} Y10 T Vieq =[Q Y10 7 Vieg (3-10)
y2(t)_y2,eq D, D, Y20 = Ve Y20 T Vaeq
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where S 1is the cell constant. From the information provided by Duncan and Toor,'® the value of the cell
constant is calculated as =0.9895 m™.

The Sylvester theorem, detailed in Appendix A of Taylor and Krishna,' is required for explicit

Dll D12

calculation of the 2x2 square matrix [Q] = exp{— ,B[
D21 D22

}t}. For the case of distinct eigenvalues,

A and 4, of the 2-dimensional square matrix [D], the Sylvester theorem yields

~4 —4
[Q]=exp[—ﬁ/%t]%ﬂxp[—ﬁ%t]% 1)

In equation (3-11), [[ ] is the identity matrix with elements O, .

The continuous solid lines in Figure 3-3(a) are the calculations of the composition trajectories using
Equations (3-10) and (3-11); these calculations are performed using MathCad 15." There is excellent
agreement with the experimental data of Duncan and Toor;'® this validates the assumption of constant
Fick diffusivity matrix, calculated at the final equilibrated composition. In ternary composition space,

the equilibration trajectories follow serpentine paths in either of the two bulbs; see Figure 3-3(b)

N, @) o

At any time ¢, the instantaneous fluxes may be calculated ( =
Vou() = 5 (0)

Nl(t)j c, [D(ym(t)_yw(t)} Figure

3-3(c) presents the calculations of the instantaneous fluxes. At time ¢ = 0, there is no driving force of

species 2 (nitrogen), but its flux is non-zero because of the non-zero contribution of
Ct
gDzl(ylA(tZO)_le(tzo))'

The composition of N, in Bulb A continues to decrease during the time interval 0<7<¢#;
concomitantly, the composition of N, in Bulb B continues to increase; the diffusion of nitrogen is in an
up-hill direction. The occurrence of uphill diffusion is not in violation of the second law of
thermodynamics; the second law requires that the total rate of entropy produced by all diffusing species

should be positive definite
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d
:__z “g;l >0 (3-12)
For equimolar diffusion of ideal ternary gas mixtures, equation (3-12) simplifies to

o=-R N LDy LAy L (3-13)
y] dz Y, dz y; dz

For diffusion across a film thickness o, with boundary conditions , the
n=l z=06 (v)=0,)
integral average rate of entropy production can be approximated as follows
z=0
1 dy 1 dy 1 dy R
oc=-R — LN, — =24 N, — =3z — (v, (O-y,,)=0  (3-14
Z_[i 1y1 = 2y2 = 3y3 Az 521: yzA(t)+ )/2(34/1() Vis( )) ( )
In equation (3-14), we use the arithmetic average vapor compositions y, :y"(’;—y’ﬁ as a good
approximation.  The  individual  rates of the instantaneous entropy  production
R 1 -
o, =—N, (y,,(t) = y,5(2)) are plotted in Figure 3-3(c). We note that the rate of entropy
J (yiA(t)+yiB)/2

production by nitrogen (species 2) is negative during the time interval 0<#<?,. However, the second

law of thermodynamics is not violated because the other two species, hydrogen and carbon dioxide
produce entropy at significantly higher rates, ensuring that o >0 is satisfied during the entire time

duration.

3.4 Two-bulb experiments of Taviera, Cruz and Mendes

Taveira et al.”’ report experimental results for transient equilibration of He(1)/N2(2)/CO,(3) gas
mixtures, in a two-bulb diffusion cell that are similar to that used by Duncan and Toor.'* Figure 3-4 the
Taveira set-up; the two bulbs are connected by means of a 153 mm long capillary tube; i.e. the length of
the diffusion path, o =0.153 m. The temperature, 7= 298 K and total pressure, p; = 40 kPa. The initial
compositions (mole fractions in the two bulbs, Bulb A and Bulb B, are

BulbA:y, =0.5;y,=0.5;y,=0.0
BulbB:y, =0.0;y,=0.5;y,=0.5
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Since the two bulbs are sealed there is no net transfer flux out of or into the system, i.e. we have
conditions corresponding to equimolar diffusion:u =0; N, +N,+N,=0; N =J.

The experimental data on the transient approach to equilibration are indicated by the symbols in
Figure 3-5(a). We note that despite the fact that the driving force for nitrogen is zero, it does transfer
from one bulb to the other, exhibiting over-shoot and under-shoot phenomena when approaching
equilibrium. The transient equilibration trajectories of He, and CO, are ‘“normal”, with their
compositions in the two bulbs approaching equilibrium in a monotonous manner.

The Maxwell-Stefan equations (3-2) allow a quantitative explanation of the experimental data. The
M-S diffusivities calculated using the Fuller-Schettler-Giddings (FSG)'* method for the three binary

pairs at 7=298 K are
D, =17.8x10" m’s";D,=147x10" m’s’;D,, =4.1x10° m’s’
The compositions in the two bulbs equilibrate after several hours to y¢q = 0.25, y20q = 0.5 and y3¢q =

0.25. At this equilibrium composition the elements of the Fick diffusivity matrix [D] can be calculated

1645 -0.25

using Equation (3-7); the result is [D]= {—7 83 5.2

}xlO‘5 m’s”. The large magnitude of Dy,

indicate strong diffusional coupling for transfer of nitrogen.
If the Fick diffusivity matrix is assumed constant during the entire equilibration process, the transient
equilibration trajectories are described by Equations (3-10) and (3-11);. From the details provided by

Taveira et al.,”” the value of the cell constant is calculated as 5 =4.38 m™.

The continuous solid lines in Figure 3-5(a) are the explicit calculations of the composition trajectories
using Equations (3-10) and (3-11); these calculations are performed using MathCad 15."” There is
excellent agreement with the experimental data of Taveira et al.;*° this validates the assumption of
constant Fick diffusivity matrix, calculated at the final equilibrated composition. In ternary composition

space, the equilibration trajectories follow serpentine paths in either of the two bulbs; see Figure 3-5(b).
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N, (¢ t)— t
At any time ¢, the instantaneous fluxes may be calculated from [ i€ )) =&[D( D14 (D=1 )j;
N, (1) o Vou () = y,5(0)

Figure 3-5(c) presents the calculations of the instantaneous fluxes. At time ¢ = 0, there is no driving

force of species 2 (nitrogen), but its flux is non-zero because of the non-zero contribution of
ct
gDzl(ylA(tzo)_yls(tzo))'

The composition of N, in Bulb A continues to increase during the time interval 0<?<%;
concomitantly, the composition of N, in Bulb B continues to deccrease; the diffusion of nitrogen is in
an up-hill direction. The occurrence of uphill diffusion is not in violation of the second law of

thermodynamics; the second law requires that the total rate of entropy produced by all diffusing species

should be  positive  definite. =~ The  individual rates of  entropy  production
R 1 I

o, =—N, (yi () =V, (t)) are plotted in Figure 3-5(d). We note that the rate of entropy
6 (yiA(t)+yiB)/2

production by nitrogen (species 2) is negative during the time interval 0<#<?,. However, the second

law of thermodynamics is not violated because the other two species, helium and carbon-dioxide
produce entropy at significantly higher rates, ensuring that o >0 is satisfied during the entire time

duration.

3.5 Composition profiles within the capillary connecting bulbs

The analysis of the diffusion process at time 7 = 0 in the Duncan and Toor'® and Taveira et al.*
experiments for ternary Hy(1)/N2(2)/CO,(3) and He(1)/N»(2)/CO,(3) gas mixtures are of particular
interest, because this situation triggers uphill diffusion of N, in both these systems. We analyze the
ternary diffusion process at time ¢ = 0 under the assumption of quasi-steady state for the compositions at

either end of the capillary maintained at the initial bulb compositions. In the Duncan-Toor experiments,
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o o BulbA:y, =0.0;y,=0.5;y,=0.5 ) ]
the initial compositions are . In the Taveira experiments, the
BulbB:y, =0.5;y, =0.5; y, =0.00000

BulbA:y, =0.5;y,=0.5;y,=0.0

initial compositions are .
BulbB:y, =0.0;y,=0.5;y,=0.5

Krishna and Standart®' have developed exact solutions to the Maxwell-Stefan equations (3-2) for
explicit evaluation of the fluxes for steady-state transfer across a film of thickness 6. The Krishna-
Standart solution, as applied to equimolar diffusion of ternary gas mixtures is detailed hereunder; see

also the Supplementary Material accompanying the paper by Krishna.**

We define a dimensionless distance: n:% and re-write Maxwell-Stefan equations (3-2) in two-

dimensional matrix notation as follows

%;) =[@])y)+(¢) (3-15)

In equation (3-15) we define a two-dimensional square matrix of dimensionless fluxes

N, N, N, 11
s b, b, B, b, B,
[@]==| 7, T B 2 TB/1 We also define a column matrix of dimensionless
¢ ( 11 ] N, N, N,
-N, - + +
DIZ BZ3 Dlz BZ3 BZ3
Nl
D =0, z=0; =
fluxes (4)= _9| Dy . The boundary conditions are 7 ) (yO).
¢ | Mo n=l z=5; (y)=(v)
D23

For steady-state transfer across a film, the matrices [CD] and (¢) are both 7-invariant. Therefore
(3-15) represents a system of coupled ordinary differential equations with constant coefficients [Q)] and
(¢) The system of equations can be solved analytically to obtain the mole fraction profiles within the
length of the capillary connecting the two tubes (y,] - yo)z—[exp[(l)]n—[l ]][exp[CD]—[] ]]_l(yo ~ )

where [] ] is the identity matrix with Kronecker delta 0, as elements.
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The Sylvester theorem, detailed in Equation (A.5.17) of Taylor and Krishna,' is required for explicit

calculation of [exp[q)]n—[l ]][exp[CD]—[] ]]71. For equimolar diffusion, one of the eigenvalues of

=
12 13

, _Nz(l B 1j N, N, N
DlZ D23 D23

vanishes; see Krishna and Standart’’ for details.

1 1 | | o
Explicitly, the two eigenvalues are A, = {N{———]+N{———ﬂ— and 4, =0. The
b, Dy, D, Dy)e

application of Sylvester’s theorem for evaluation of [d)][exp[d)]— [I ]]_1 has to be done with care, because

A needs to be evaluated by use of L’Hopital’s rule: - — 1. So,
eXp(ﬂz ) -1 exp(ﬁz ) -1

[ Jexplo]- [T [ z j @] [@]-A4[1]

exp(/Il)—l (/11) (ﬁ“‘) . The two independent fluxes can be evaluated
explicitly
N Ct d(y ) ct B
]S ~Slo, olewto)-UT 0 -) G-16

n=0

The Fick diffusivity matrix [Dn:o] is evaluated at =0, z=0; (y)=(y0). The quasi-steady-state

N -17.5
fluxes in the Duncan-Toor experiments are ( 1):( 217 j; N, =9.35 mmol m? s, The quasi-
5 .

) ) ) N, 8.62 5 .1
steady-state fluxes in the Taveira experiments are = ; Ny=—4.74 mmolm™s .

,) =388

For the determination of the composition profiles, we need to evaluate [eXp[CD]Iy - [I ]][exp[CD]— [I ]]_1; by

use of L Hopital’s rule: M —>7n.So
exp(ﬂbz)_l
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olo) - llofe)- (1 - S0t el o) AL 1)

The composition profiles within the capillary in the Duncan-Toor and Taveira experiments are shown
in Figure 3-6. In both sets of experiments, the variation of the compositions of N, is not monotonic, but

shows a sharp minimum; this maximum is a direct result of uphill diffusion at ¢ = 0.

3.6 Uphill diffusion in He/N,/O, mixtures: Heliox therapy

In diffusion processes in lung airways, normally four gases are involved: O,, CO,, N», and H,O; the
Maxwell-Stefan equations (3-2) are commonly used to model pulmonary gas transport.”>*’ The
transport of the fresh breathed-in air towards the acini of human beings with chronic obstructive
bronchopneumopathy, such as asthma, is rendered difficult due to bronchoconstriction and other
factors.””>' Such patients need some respiratory support to allow the oxygen to be transported through
the proximal bronchial tree and then diffused in the distal one. One such support system consists of the
inhalation of a mixture of heliox (20% O,; 80% He), that facilitates the transport of oxygen, and
exhalation of CO,.

We now demonstrate the phenomena of uphill diffusion of O, in ternary He(1)/N2(2)/O,(3) mixtures.
For purposes of demonstration we use the same set-up as in the Taveira experiments; see Figure 3-7.
The two bulbs are connected by means of a 153 mm long capillary tube, i.e. the length of the diffusion
path 6 =0.153 m. The temperature, 7= 298 K and total pressure, p; = 100 kPa. The initial compositions

BulbA:y, =0.8y,=0.0;y,=0.2

(mole fractions in the two bulbs, Bulb A and Bulb B, are taken as .
BulbB:y, =0.0;y,=0.8;y,=0.2

This implies that the driving forces for transfer of O, is zero at time ¢ = 0. Since the two bulbs are sealed

there is no net transfer flux out of or into the system, i.e. we have conditions corresponding to equimolar
diffusion: u=0; N, +N,+N,=0; N =J.
Using the Fuller-Schettler-Giddings (FSG) estimation procedure,14 the M-S diffusivities of the

constituent binary pairs are B, =7.1, D,;=7.45 BD,;=2.08x10" m*s'. The compositions in the
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two bulbs equilibrate after several hours to yicq = 0.4, y20q = 0.4, and y3q = 0.2. At this equilibrium
composition the elements of the Fick diffusivity matrix [D] can be calculated using Equation (3-7); the

7.2533  0.0546

result is [D]= {_2 8584 2.8839

}x 10° m?s™. The large magnitude of D;; indicate strong diffusional

coupling for transfer of nitrogen.
If the Fick diffusivity matrix is assumed constant during the entire equilibration process, the transient
equilibration trajectories are described by are described by Equations (3-10) and (3-11); the value of the

cell constant is calculated as =4.38 m™. The continuous and dashed lines in Figure 3-8(a) are the

explicit calculations of the composition trajectories using Equations (3-10) and (3-11); these
calculations are performed using MathCad 15." Particularly noteworthy are the transient overshoot and
undershoot experienced by O, during transient equilibration. The overshoot arises because O, gets
dragged uphill during the early transience; In ternary composition space, the equilibration trajectories

follow serpentine paths in either of the two bulbs; see Figure 3-8(b).

N, (¢t t)— t
At any time ¢, the instantaneous fluxes may be calculated from ( i€ )j T D{ a0 =15 )j;
N, (1) o Vu(1) = y,5(0)

Figure 3-8(c) presents the calculations of the instantaneous fluxes. At time ¢ = 0, there is no driving
force of species 3 (oxygen), but its flux is non-zero because of coupled transfers.

The occurrence of uphill O, diffusion is not in violation of the second law of thermodynamics; the
second law requires that the total rate of entropy produced by all diffusing species should be positive

R 1
definite. The individual rates of entropy production o, =—N (yi () =V (t)) are

i (yiA(t) + Vi )/2

plotted in Figure 3-8(d). We note that the rate of entropy production by oxygen (species 2) is negative
during the time interval 0<?<?,. However, the second law of thermodynamics is not violated because

the other two species, helium and nitrogen produce entropy at significantly higher rates, ensuring that

o 20 is satisfied during the entire time duration.
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An alternative way to demonstrate the phenomenon of uphill O, diffusion is to model the ternary
He(1)/N2(2)/0,(3) mixture diffusion as inter-diffusion between two cylindrical Loschmidt tubes each of
length O as pictured in Figure 3-9. For comparison with the experimental data as reported in Figure 3
of Bres and Hatzfeld,”® we take the tube length, 6 =1 m. The initial compositions in the two

bottom compartmert () :—0 <z <0;;y, =0.8;y, =0.0; y, =0.2
compartments are .
top compartmernt(+):0<z<0;y, =0.0;y, =0.8; y, =0.2
The final equilibrated compositions are yieq = 0.4, y2¢q = 0.4 and y3¢q = 0.2. At this equilibrium

composition the elements of the Fick diffusivity matrix [D] can be calculated using Equation (3-7); the

7.2533  0.0546

result is [D]= {_2 8584 2.8839

}x 10° m’s”. Coupling effects appear to be non-negligible.

Figure 3-9(a,b) show the transient equilibration of O; in the (a) top, and (b) bottom compartments at the
positions z/6=20.35, and z/0=20.5, calculated using equation (3-8). The overshoot of O,
composition in the bottom compartment signals uphill diffusion; this overshoot has been verified in the
experimental data presented in Figure 3 of Bres and Hatzfeld” The corresponding transient
equilibration of O, in the top compartment tube displays undershoots. If coupling effects are ignored
entirely, no oxygen transport in feasible. Put another way, the efficacy of heliox therapy relies on uphill
transfer of oxygen.

In ternary composition space, the equilibration trajectories at Z/ 0 =10.5 follow serpentine trajectories

as shown in Figure 3-10. The equilibration trajectories are practically indistinguishable from those

determined using the two-bulb diffusion set-up; see Figure 3-8(b).

3.7 Uphill diffusion in He/N,/O,/CO, mixtures: Heliox therapy

We now demonstrate the phenomena of uphill diffusion of both O, and CO, in quaternary
He(1)/N2(2)/02(3)/CO2(4) mixtures. For purposes of demonstration we use the same set-up as in the
Taveira experiments; see Figure 3-11. The two bulbs are connected by means of a 153 mm long

capillary tube, i.e. the length of the diffusion path 6 =0.153 m. The temperature, 7 = 298 K and total
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pressure, py = 100 kPa. The initial compositions (mole fractions in the two bulbs, Bulb A and Bulb B,

BulbA:y, =0.79;y, =0.0; y, =0.15;y, =0.06 o o
are taken as . This implies that the driving forces for
BulbB:y, =0.0;y, =0.79; y, =0.15;y, =0.06

transfer of both O, and CO, are zero at time ¢ = 0. Since the two bulbs are sealed there is no net transfer
flux out of or into the system, i.e. we have conditions corresponding to equimolar diffusion:
u=0;, N +N,+N,=0, N,=J,. Using the Fuller-Schettler-Giddings (FSG) estimation
procedure, the M-S diffusivities of  the constituent binary  pairs are

P,=71;, B,=1745 D, =587
D, =2.08; P, =1.64; x10° m*s™.
b, =1.64;

The compositions in the two bulbs equilibrate after several hours to y;¢q = 0.395, y2¢q = 0.39, y304 =

0.15, and y4¢q = 0.06. At this equilibrium composition the elements of the Fick diffusivity matrix [D]

can be calculated using [D]= [B]f1 ; the result is

>

. D, D,| [68633 -01863 -02377
W D, Dy |=|-29906 25687 -02391|x10° m’s’.
D, D, | |-1.1633 -0.0989 2.757

S O

31

If the Fick diffusivity matrix is assumed constant during the entire equilibration process, the transient

equilibration trajectories, written in 3-dimensional matrix form, are

yl(t)_y],eq D, D, D; Yio T Vieg Yo 7 Vieg
() - Voeg | = €XP| — B| Dy Dy Dyt | vy — Voeg |~ [Q Y20 T Ve (3-18)
y3(1) - Vieq D, D,, D Y30 T Vieq Y30 T Vieq

where f#=4.38 m™ is the cell constant. The Sylvester theorem, detailed in Appendix A of Taylor and

Dll D12 Dl3
Krishna,' is required for explicit calculation of the 3x3 square matrix [Q] =exp|-pB|D,, D,, D, |t
D31 D32 D33

For the case of distinct eigenvalues, 4, 4,, and A, of the 3-dimensional square matrix [D], the

Sylvester theorem yields
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0] exole g1 [[g(b]—zz [;]] [[cf]—@ [§]] R t][[?]—a[z)]] [[c(b]—% [§“+
1 /11_/12 /11_/13 ’ /12_11 /12_/13
(3-19)
ot AL LA

where [] ] is the identity matrix with elements J,, .

Figure 3-12(a,b) presents the composition trajectories in Bulb A, and Bulb B during transient
approach to equilibrium in the two-bulb diffusion apparatus for He(1)/N2(2)/02(3)/CO,(4) mixtures. We

note that both O, and CO, exhibit overshoots and undershoots during transient equilibration; uphill
diffusion manifest during the time interval 0<# <#,. On the other hand, the equilibration trajectories of

He and N, are both monotonous.

Figure 3-13(a,b) present calculations of the instantaneous fluxes
N, (1) Dy, Dy, Dy | y4(0) =y ()
N,(@) |= % D, D,, D, | v,,(t)—y,,(¢)| during transient approach to equilibrium in the two-
N, () Dy, Ds,  Ds; [ y34(2) = y35(0)

bulb diffusion apparatus for He(1)/N2(2)/O4(3)/COx(4) mixtures. During the time interval 0<?<?,, the
fluxes of both O, and CO, are negative, signaling the phenomena of uphill diffusion. Uphill diffusion
contributes significantly to inhalation/exhalation of O, and CO, for patients with breathing difficulties.

Figure 3-14 (a,b) show calculations of the individual rates of entropy production

U:EN !
o

i i (y )+ y )/2 (yiA (D)= Vi (Z‘)). During the time interval 0<?<?,, both O, and CO, consume
id iB

entropy, i.e. 03 <0;0, <0. The other two components produce entropy at a such a high rate as to

prevent the violation of the second law requirement =0, +0, +0,+0, 20.

Replacing Helium with either Argon or SFg, leads to equilibration trajectories for which the
phenomena of uphill diffusion is imperceptibly small. This is evidenced in Figure 3-15 (a,b)that present
comparisons of the composition trajectories of (a) O,, and (b) CO; in Bulb A for transient equilibration

of He(1)/N2(2)/05(3)/CO(4), Ar(1)/Nx(2)/05(3)/COx(4), and SF¢(1)/Na(2)/0x(3)/COx(4) mixtures. This
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leads us to conclude that the uphill diffusion phenomena is engendered by large differences in the binary

pair M-S diffusivities.
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3.8 List of Figures for Diffusion in Ideal Gas Mixtures

CH,/Ar/H, gas mixture diffusion in Loschmidt

@ tube

1.0
z=0 r
" r —— CH,
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omposi : 8 o05f H,
CH,=0.0 § i
Ar =0.509 3 H
@ L
H, = 0.491 8 ool
< L
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(b) 03
0.6 -
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C = DDEDQ%
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8 o03r ® Ar, top Bottom compartment
K] r A H, top
S L
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E T=307K ' .
00 02 04 06 08 10 12 1.0 00
time, t/h H 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 CH

Figure 3-1. (a, b) The Loschmidt tube experiment of Arnold and Toor'® on the transient approach to
equilibrium for CH4(1)/Ar(2)/Hx(3) gas mixtures. The plotted data (symbols) are spatially averaged
compositions in the top and bottom compartments. The continuous solid lines are the model calculations
as presented in Example 5.5.1 of Taylor and Krishna.! (c) The equilibration trajectories plotted in

ternary composition space.
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Duncan-Toor set-up for H,/N,/CO, gas mixture
N diffusion

Herbert Lawrence Toor
Carnegie-Mellon U

1927-2011
Bulb A Bulb B
Capillary tube ; §= 86 mm;
2 mm diameter
= -2
77.99m Cell constant #=0.9895 m 78.63 mL
|
g'ualzs T=3083K; -
py=101.3 kPa
Initial Initial
Compositions: Compositions:
H,=0.0 H,=05
N,=0.5 N,=0.5
CO,=0.5 C0O,=0.0

Figure 3-2. The two-bulb diffusion experimental set-up of Duncan and Toor'® for Ha(1)/N5(2)/CO,(3)

gas mixture.
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H,/N,/CO, gas mixture diffusion
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Figure 3-3. (a) Experimental data of Duncan and Toor'® on the transient approach to equilibrium in
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Entropy production by N, / J miK's

the two-bulb diffusion experiments for H(1)/N2(2)/CO,(3) mixtures. The continuous solid lines are the

transient equilibration trajectories calculated using the Maxwell-Stefan equations, as presented in

Example 5.4.1 of Taylor and Krishna.' (b) The equilibration trajectories plotted in ternary composition

space. (c) Calculations of the instantaneous fluxes of the three components as a function of time. (d)

Calculations of the individual rates of entropy production of the three species.
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Taveira set up for He/N,/CO, gas mixture
diffusion

Bulb A Bulb B

Capillary tube length; 6 = 153

mm;
= 2
452 mL Cell constant f=4.38 m 415 mL
g g
py =40 kPa
Initial Initial
Compositions: Compositions:
He =0.5 He =0.0
N, =05 N, =0.5
CO,=0 CO,=0.5

Figure 3-4. The two-bulb diffusion experimental set-up of Taveira et al.?® with He(1)/N,(2)/CO,(3)

gas mixtures.
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He/N,/CO, gas mixture diffusion
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Figure 3-5. (a) Experimental data of Taveira et al.** on the transient approach to equilibrium in the

0.005
1 0.000
1-0.005
f-o.o1o
f-o.o15

1-0.020

-0.025

Entropy production by N, / J m3K's™

two-bulb diffusion experiments for He(1)/N»(2)/CO,(3) mixtures. The continuous solid lines are the

transient equilibration trajectories calculated using the Maxwell-Stefan equations. (b) The equilibration

trajectories plotted in ternary composition space. (¢) Calculations of the instantaneous fluxes of the three

components as a function of time. (d) Calculations of the individual rates of entropy production of the

three species as a function of time.
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Composition profiles within the capillary

(a) Duncan-Toor (b) Taveira
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Figure 3-6. Quasi-steady compositions profiles within the capillary connecting the two bulbs in the
experiments of (a) Duncan and Toor'® on the transient approach to equilibrium in the two-bulb diffusion
experiments for Ha(1)/N5(2)/CO4(3) mixtures, and (b) Taveira et al.** on the transient approach to

equilibrium in the two-bulb diffusion experiments for He(1)/N,(2)/CO»(3) mixtures.
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He/N,/O, gas mixture diffusion:
Heliox therapy

Bulb A Bulb B

Capillary tube length; 6 = 153
mm;
Cell constant g = 4.38 m=2

T=298K;

py = 100 kPa
Initial Initial
Compositions: Compositions:
He =0.8 He =0.0
N, = 0.0 N,=0.8
0,=0.2 0,=0.2

Figure 3-7. The two-bulb diffusion set-up for He(1)/N,(2)/0O,(3) mixtures.
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Figure 3-8. (a) Transient approach to equilibrium for He(1)/N2(2)/O,(3) mixtures in the two-bulb

diffusion set-up, calculated using the Maxwell-Stefan equations. (b) The equilibration trajectories

plotted in ternary composition space. (c¢) Calculations of the instantaneous fluxes of the three

components. (d) Calculations of the individual rates of entropy production of the three species.
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Heliox therapy modeled as Loschmidt diffusion
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Figure 3-9. Heliox therapy modeled as inter-diffusion of He(1)/N2(2)/O2(3) mixtures between two

cylindrical Loschmidt tubes. (a, b) The transient equilibration trajectories O, in the (a) top, and (b)

bottom compartments at the positions z/d =+0.35, and z/§=10.5.
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Heliox therapy modeled as Loschmidt diffusion
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cylindrical Loschmidt tubes. The transient equilibration trajectories at Z/ 0 =10.5 in the top and bottom

compartments, are shown in ternary composition space.
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He/N,/O,/CO, gas mixture diffusion:
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Figure 3-11. The two-bulb diffusion set-up for He(1)/N2(2)/0,(3)/CO»(4) mixtures.
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He/N,/O,/CO, gas mixture diffusion
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Figure 3-12. Composition trajectories in Bulb A, and Bulb B during transient approach to equilibrium in

the two-bulb diffusion apparatus for He(1)/N2(2)/0,(3)/CO,(4) mixtures.
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He/N,/O,/CO, gas mixture diffusion
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Figure 3-13.Instantaneous fluxes during transient approach to equilibrium in the two-bulb diffusion

apparatus for He(1)/N2(2)/0,(3)/CO,(4) mixtures.
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He/N,/O,/CO, gas mixture diffusion
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Figure 3-14. The individual rates of entropy production during transient approach to equilibrium in

the two-bulb diffusion apparatus for He(1)/N2(2)/0,(3)/CO,(4) mixtures.
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Inert/N,/O,/CO, gas mixture diffusion
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Figure 3-15. Comparison of the composition trajectories of (a) O,, and (b) CO; in Bulb A for transient

equilibration of He(1)/N2(2)/02(3)/COx(4), Ar(1)/N5(2)/0x(3)/COx(4), and SFe(1)/Na(2)/0x(3)/CO(4)

mixtures.
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4 Multicomponent Distillation

4.1 Murphree point efficiencies

Design and simulation procedures for distillation are commonly based on the equilibrium stage
model, developed by Sorel more than a hundred years ago.*’ Departures from thermodynamic
equilibrium between the vapor and liquid phases on a distillation tray are commonly accounted for by

introducing the component Murphree point efficiencies

E = Yie — Vi :l_yiL_yi,eq :l_Ayl.L
yiE _yi,eq yiE _yi,eq AyiE

o i=12,..n 4-1)

where y,, and y, are, respectively, the vapor phase mole fractions, entering and leaving a tray, and
Yieg 18 the vapor composition in thermodynamic equilibrium with the liquid leaving the tray. See

schematic in Figure 4-1. For a tray in thermodynamic equilibrium, the component efficiencies are 100%
for each component. Mass transfer resistances on either side of the vapor/liquid interface reduce the
component efficiencies to values below 100%. For binary distillation, the Murphree component

efficiencies are bounded, i.e. 0<E, =F, <1. For multicomponent distillation, with the number of
species n=>3, coupled diffusion effects in either vapor or liquid phases cause the component
efficiencies to be distinctly different from one another, E, #E, # E;,. Phenomena such as osmotic
diffusion, diffusion barrier, and uphill diffusion lead to component efficiencies that are unbounded (
E, —>700), zero (E, =0), or negative ( E; <0); this has been demonstrated in several experimental and

theoretical studies.”™' The values of the component Murphree efficiencies influence the composition

profiles along the height of distillation columns.

1.42

Levy et al.” have put forward the following two “rules” regarding that are applicable to continuous

azeotropic distillation columns operating with each stage in thermodynamic equilibrium:
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e Rule 1: If the simple distillation boundary is perfectly linear, then the steady-state composition
profile in a continuous distillation column cannot cross the boundary from either side.

e Rule 2: If the simple distillation boundary is curved, then the steady-state composition profile
in a continuous distillation column cannot cross the boundary from the concave side but may
cross the boundary from the convex side when moving from the product compositions inward.

Consider, for example, the system water/methanol/2-propanol; the residue curve maps for this system
are shown in Figure 4-2(a). A straight-line distillation boundary connects the binary water/2-propanol
azeotrope with pure methanol and divides the composition space into two regions. According to Rule 1,
the column composition trajectories cannot cross this straight line distillation boundary, whichever side
the feed is located. For either of the two feed locations, F1 and F2 in Figure 4-2(a)m boundary crossing
is forbidden.

For the system acetone/chloroform/methanol we have three binary and one ternary azeotrope dividing
the composition space into four regions by means of four distillation boundaries, that are all curved; see
the residue curve map shown in Figure 4-2(b). According to Rule 2, the column trajectory obtained for
operation with the feed located on the concave side of a boundary, with say composition indicated by F1
is able to cross that boundary. This has been demonstrated experimentally by Li et al.** Conversely, if
the feed is located on the convex side, with say composition indicated by F2 the boundary cannot be
crossed.*

In a series of papers, Springer et al. 35.37.39:40 have reported a set of experiments in a bubble-cap tray
column operating at total reflux for homogeneous azeotropic distillation using mixtures:
water/ethanol/acetone, water/ethanol/methanol, water/ethanol/methylacetate,
water/ethanol/methanol/acetone to demonstrate that the Levy rules are violated. The experimental set-up

used by Springer can be viewed at: http://krishna.amsterchem.com/distillation/. A schematic of the

experimental set-up is shown in Figure 4-3. The set-up consists of a 12-stage distillation column

wherein all the experiments were conducted under total-reflux conditions at 101.3 kPa. The condenser
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is a total condenser, and is considered to be stage 1. The numbering of the stages is downwards, and the
Stage 12 is the partial reboiler. Stages 2, to 11 are bubble-cap trays.
For rationalization and quantitative description of the observed experimental boundary crossing

1 35,37, 39, 40

phenomena, Springer et a used rigorous non-equilibrium (NEQ) stage-wise contacting model,

as implemented in ChemSep.** **

The NEQ model uses the Maxwell-Stefan formulation for diffusion in
the vapor and the two liquid phases. The important conclusion reached in their work is that boundary
crossing effects are primarily attributable to diffusional coupling effects, that cause the component
Murphree efficiencies to be unequal to one another. Unequal component efficiencies cause column
composition trajectories to deviate from those of the residue curve maps. Put another way, the NEQ
model does not follow the tramline guides of the RCM.

Our earlier detailed analysis of the Springer experiments show that the interphase mass transfer
process is dominated by molecular diffusion in the gaseous mixture inside the dispersed bubbles on the

tray.” For demonstrating the phenomenon of (a) uphill diffusion and (b) boundary crossing, we adopt

the Geddes model for transient equilibration of vapor bubbles rising through the liquid on a tray.*®

4.2 Geddes model for transient equilibration inside vapor bubble

For a ternary mixture, the diffusion, in either the dispersed vapor bubbles or in the continuous liquid

phase surrounding the bubbles, is described by the generalized Fick’s law (J) = —c, [D]@ in which
z

the two-dimensional matrix of Fick diffusivities [D] is a product of two matrices [D]z[A][F]. The

vapor phase can often be considered to thermodynamically ideal; in this event, the matrix of

thermodynamic factor degenerates to the identity matrix I, =6,; i,j=1,2. The matrix [A] to be

ij ij
expressed explicitly in terms of the M-S diffusivities of the constituent binary pairs in the ternary

Bl3(x1D23+(l_xl)Blz) x1D23(Bl3 _DIZ) :|

Ay A12j| _ { xles(Dz3 - Dlz) D, (x2D13+(1 — X, )DIZ)
Ay Ay, x,D,+x,D)5 + XD,

mixture: [
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Let us consider the dispersion to consist of uniform and rigid vapor bubbles of diameter, d,,,,,,. The

transient equilibration process within a rigid spherical bubble is described by Geddes model that was
originally developed for describing binary diffusion inside vapor bubbles on distillation trays.* For

ternary mixtures, the Geddes model can be written in two-dimensional matrix equation’*’

-, )=[0lv -2} [0]= %i#exp{— m'z’ M} (4-2)

T =l Do
In equation (4-2), (yo) denotes the vapor composition entering the tray. The Sylvester theorem,
detailed in Appendix A of Taylor and Krishna,' is required for explicit calculation of the composition

trajectories described by the Geddes model. For the case of two distinct eigenvalues, 4, 4, of the 2-

dimensional square matrix [D], the Sylvester theorem yields

PPN [LJSPA T4 PN R

h—2) (2 -4) *+3)

In equation (4-3), [I ] is the identity matrix with elements &, . The functions /() are calculated from

2) 2Z—exp{ 22 ‘W} (4-4)

m=1 M bubble

For diffusion in quaternary mixtures, the Fick diffusivity matrix is 3-dimensional. For the case of

three distinct eigenvalues, 4, A,, and 4, of the 3-dimensional square matrix [D], the Sylvester

theorem yields
_ S@Jp]-A[rlID]- 4[],
l0]= (4, -4, XA, - 4,) ws)
S )J[D]-AltlllD]- A1, f(2IP]-AlIIP]-4,[r]]
(12 _ﬂ’l )(lz _/13) (13 _11 )(13 _ﬂ*z)

For vapor bubbles rising on a sieve or bubble-cap tray, the effective contact time of the dispersed

phase bubbles with the surrounding continuous phase is ¢ =%, /V, . , where Ay is the froth dispersion
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height, and V,,,,,. is the bubble rise velocity. The fractional approaches to equilibrium for contact time ¢,

8-50

also termed as the Murphree efficiencies,” " are calculated from

E, = Y0V o100 (4-6)
y[O _y[,eq

We now apply the Geddes model to rationalize the boundary crossing effects for
water(1)/ethanol(2)/acetone(3), water(1)/ethanol(2)/methanol(3), and

water(1)/ethanol(2)/methylacetate(3), and water(1)/ethanol(2)/methanol(3)/acetone(4) mixtures.

4.3 Boundary crossing in water/ethanol/acetone mixture

As an example of boundary crossing in homogeneous azeotropic distillation, we present the
experimental results for Run T2-26 for water(1)/ethanol(2)/acetone(3) mixture in Figure 4-4. In Run T2-
26, the condenser composition is left of the distillation boundary. Therefore, the residue curves dictate
that the reboiler composition should be in the top left corner, rich in ethanol. The measured
compositions along the column operating at total reflux shows that the reboiler composition is towards
the right of the distillation boundary, and is rich in water. Boundary crossing occurs at stage 2, just

below the total condenser.

For Run T2-26, the values of Ay,, :(yzE - yzﬂeq) are plotted in Figure 4-5(a). We note that the
ethanol driving force Ay,, = (y2 £~ Ve )> 0 for Stages 2 -9, Ay,, = (y2 P yz,eq)z 0 for Stage 10, and
Ay, = (y2 P yz’eq)< 0 for Stage 11. The values of the Murphree efficiency E, for ethanol is negative

on Stage 10; on Stage 11, E, >1; see in Figure 4-5(b). This implies reverse or uphill diffusion on stages
10 and 11; the transfer of ethanol is dictated by the driving forces of the other two components

Ay, = (ylE Vi ), and Ay,, = (y3E - y3,eq), that are both finite.*
We shall demonstrate below that the boundary crossing is primarily due to the factor that the

Murphree efficiency of water is higher than that of ethanol, i.e. E£>E,.
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To rationalize and quantify the phenomena of boundary crossing, consider a specific tray for which
the composition of the vapor entering is y;o = 0.075, y20 = 0.5, and y3p = 0.425. This composition is right
of the distillation boundary. For total reflux operations, the compositions of the liquid leaving that stage
will be equal to that of the vapor entering the stage, i.e. x; = 0.075, x, = 0.5, and x3 = 0.425. The
composition of vapor in equilibrium with the liquid leaving the tray can be determined using the NRTL
parameters provided in Table 4-1. The bubble point temperature is 336.6 K and the equilibrium
composition is yi¢q = 0.04869, 154 = 0.29898, and y3q = 0.65233. The equilibrium composition is also

right of the distillation boundary, as is to be expected. The driving forces are Ay, = y,, —»,,, = 0.02631,
and Ay, =y, —¥,,, =0.20102. Both driving forces are positive, i.e. directed from vapor to the liquid

phase.

The values of the vapor phase M-S diffusivities of the binary pairs, calculated using the Fuller-
Schettler-Giddings (FSG)'* method, are D, =1.98 D,=1.72; D,, =0.856x10"° m’s™". These

diffusivities are independent of composition. The differences in the binary pair diffusivities cannot be
ignored, as we demonstrate below. At the average composition between the entering compositions and
the equilibrated compositions, use of the Fick diffusivity matrix

Dl3(x1923+(1_x1)D12) x11923(1913 _Blz)

D,(Dy—D,)  Pyl(,D+(1-x, )1912)} results in [D]= { 1.82109 —0.00765}(10_5

D =
D] XDyt x,D,; + x,D, -0.42848  0.88913

2 1 . . . .. . . . .
m~ s~ in which the D, is seen to non-negligible in comparison with D,;. We can also determine a

1/2

“magnitude” of the Fick diffusivity for use in the calculation of the Fourier number: |D| =1.27x10"

1/2

- . . . . 4D| "t
m” s in order to plot the results in terms of dimensionless Fourier number #
bubble

The diffusion equilibration trajectory, calculated using the Geddes model is shown in Figure 4-6(a).
The curvilinear equilibration trajectory crosses the distillation boundary during a portion of this traject.

Figure 4-6(b) presents a plot of the component Murphree efficiencies, E;, as function of the Fourier
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| |1/2

— . The Murphree point efficiency of ethanol, E», is the lowest; this is because of the
bubble

number

negative contribution of D, Ay,; the Murphree point efficiency of water, Ej, is higher than that of

ethanol: E; > E,. Due to E| > E,, a larger proportion of water is transferred to the liquid phase as
compared to ethanol; this implies that the vapor phase is poorer in water than predicted by calculations
based on equal component efficiencies. The hierarchy of point efficiencies E; > E, = Ej3 is in agreement
with the experimentally determined values for Stages 2 to 9; see Figure 4-5(b).

The contact time of the bubble with the liquid phase is finite. For a 4.5 mm bubble, with a rise
velocity of 0.2 m s in a dispersion of height 9.2 mm, the contact time ¢ = 0.046 s; these are the input
parameters used by Springer et al. in the NEQ model implementation.”” For this contact time, the
composition of the vapor bubble leaving the tray is y; =0.05212, y, = 0.35762, and y; = 0.59026. This
vapor composition is on the left side of the distillation boundary, and is indicated by the circle with
cross-hair in Figure 4-6(a). Such boundary crossing is observed in Run T2-26 of the experiments of
Springer et al.;>> "% % cf. Figure 4-4.

For various vapor compositions entering any given stage, we have plotted in Figure 4-6(c) the actual

composition vector (yi - yi’o), calculated from the Geddes model (taking bubble diameter of 4.5 mm,
and contact time ¢ = 0.046 s) along with the equilibrium vector (yl - yi,O)' The angle between the

Geddes trajectory, also called the NEQ (non-equilibrium) trajectory (blue line) and the EQ trajectory
(pink line) increases when the differences in the component efficiencies increases.’’ If all the
component efficiencies were equal to one another, the angle between the NEQ and EQ vectors would be
zero. We also note from Figure 4-6(c) that for entering vapor compositions that lie to the left of the
distillation boundary, no boundary crossing is observed.

As illustration, consider a specific tray for which the composition of the vapor entering is y;o = 0.075,
v = 0.7, and y3o = 0.225; this composition is left of the distillation boundary. For total reflux

operations, the compositions of the liquid leaving that stage will be equal to that of the vapor entering
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the stage, i.e. x; = 0.075, x, = 0.7, and x3 = 0.225. The composition of vapor in equilibrium with the
liquid leaving the tray can be determined using the NRTL parameters provided in Table 4-1. The bubble
point temperature is 335.5 K and the equilibrium composition is y; ¢q = 0.05487, 114 =0.4719, and y3 ¢4
= 0.47322. The equilibrium composition is also left of the distillation boundary, as is to be expected.

The driving forces are Ay, = y,,—y,,, =0.02013, and Ay, =y,, - »,,, =0.2281. Both driving forces are

positive, i.e. directed from vapor to the liquid phase.

The values of the vapor phase M-S diffusivities of the binary pairs, calculated using the Fuller-
Schettler-Giddings (FSG)'* method, are P, =2.03; P, =1.76; D,,=0.877x10° m’s™". These
diffusivities are independent of composition. The differences in the binary pair diffusivities cannot be

ignored, as we demonstrate below. At the average composition between the entering compositions and

the equilibrated compositions, the Fick diffusivity matrix is calculated

|:Dl3(x1D23+(1_x1)D12) X1D23(Dla _Blz) :|
D] 0,D,(Py —Dy)  Dylx,D+(l-x,)D,)] [1.91742 —0.00847 10 o s i
X, D450 + x,D, -0.66293  0.913543

which the D5 is seen to non-negligible in comparison with Dy,. We can also determine a “magnitude”

1/2

of the Fick diffusivity for use in the calculation of the Fourier number: |D| =1.32x107° m’ s in

4|D
2
bubble

1/2
order to plot the results in terms of dimensionless Fourier number |

The diffusion equilibration trajectory, calculated using the Geddes model is shown in Figure 4-7(a).
The curvilinear equilibration trajectory remains to the left the distillation boundary during the entire

traject. see Figure 4-7(b) presents a plot of the component Murphree efficiencies, Ej, as function of the

| |l/2

Fourier number . The Murphree point efficiency of ethanol, £, is the lowest; this is because of

bubble
the negative contribution of D, ,Ay,; the Murphree point efficiency of water, E}, is higher than that of

ethanol: £ > E,. Due to E; > E», a larger proportion of water is transferred to the liquid phase as

compared to ethanol; this implies that the vapor phase is poorer in water than predicted by calculations
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based on equal component efficiencies. The hierarchy of point efficiencies £, > E> = E3 is in agreement
with the experimentally determined values for Stages 2 to 9; see Figure 4-5(b).

The contact time of the bubble with the liquid phase is finite. For a 4.5 mm bubble, with a rise
velocity of 0.2 m s in a dispersion of height 9.2 mm, the contact time ¢ = 0.046 s; these are the input
parameters used by Springer et al. in the NEQ model implementation.”’ For this contact time, the
composition of the vapor bubble leaving the tray is y; = 0.05751, y, = 0.53831, and y; = 0.40418. This
vapor composition is also the left side of the distillation boundary, and is indicated by the circle with

cross-hair. No boundary crossing possible for the chosen vapor composition entering the tray.

4.4 Boundary crossing in water/ethanol/methanol mixture

The experimental data for Run T4-13 with water(1)/ethanol(2)/methanol(3) mixture are shown in
Figure 4-8, In Run T4-13, the condenser composition is left of the distillation boundary. Therefore, the
residue curves dictate that the reboiler composition should be in the top left corner, rich in ethanol. The
measured compositions along the column operating at total reflux shows that the reboiler composition is
towards the right of the distillation boundary, and is rich in water. Also shown in Figure 4-8, are the
Murphree component efficiencies along the column for Run T4-13. We shall demonstrate below that the

boundary crossing is primarily due to the factor that the Murphree efficiency of water is higher than that
of ethanol, i.e. E>E,.

Consider distillation of water(1)/ethanol(2)/methanol(3) mixture in a tray column operating at total
reflux at a total pressure of 101.3 kPa. For a specified tray, the composition of the vapor entering the
tray is y10 = 0.082, y»0 = 0.68, and y3p = 0.238. This composition is right of the distillation boundary. For
total reflux operations, the compositions of the liquid leaving that stage will be equal to that of the vapor
entering the stage, i.e. x; = 0.082, x, = 0.68, and x3 = 0.238. The composition of vapor in equilibrium
with the liquid leaving the tray can be determined using the NRTL parameters provided in provided in
Table 4-1. The bubble point temperature is 348 K and the equilibrium composition is y;q = 0.06767,

V2eq = 0.59691, and y3.q = 0.33542. The final equilibrated composition is also right of the distillation
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boundary, as is to be expected. The driving forces are Ay =y,-y, =0.01433, and

Ay, = Yoy = Vyy =0.08309. Both driving forces are positive, i.e. directed from vapor to the liquid

phase.

The values of the vapor phase M-S diffusivities of the binary pairs, calculated using the Fuller-
Schettler-Giddings (FSG)'* method, are D, =2.1; D;=2.72 D, =136x10" m’s™. These
diffusivities are independent of composition. The differences in the binary pair diffusivities cannot be
ignored, as we demonstrate below. At the average composition between the entering compositions and
the equilibrated compositions, the Fick diffusivity matrix is calculated

[01{

x10~ m” s in which the D5, is seen to non-negligible in comparison with
-0.52706 1.39446

2.28276 0.02578}
Dy. We can also determine a “magnitude” of the Fick diffusivity for use in the calculation of the

Fourier number: |D|1/2 =1.8x10° m’ s in order to plot the results in terms of dimensionless Fourier

number |D|1/2

2
bubble

The diffusion equilibration trajectory, calculated using the Geddes model is shown in Figure 4-9(a).
The curvilinear equilibration trajectory crosses the distillation boundary during a portion of this traject.
Figure 4-9(b) presents a plot of the component Murphree efficiencies, Ej, as function of the Fourier
number. The Murphree point efficiency of ethanol, E», is the lowest; this is because of the negative
contribution of D, ,Ay,; the Murphree point efficiency of water, £, is higher than that of ethanol: E; >
E>. Due to E; > Ej, a higher proportion of water is transferred to the liquid phase as compared to
ethanol; this implies that the vapor phase is poorer in water than predicted by calculations based on
equal component efficiencies. The hierarchy of point efficiencies E; > E, ~ Ej is in agreement with the
experimentally determined values shown in Figure 4-8(b).

The contact time of the bubble with the liquid phase is finite. For a 4.5 mm bubble, with a rise

velocity of 0.2 m s in a dispersion of height 9.2 mm, the contact time ¢ = 0.046 s; these are the input
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13537349 i the NEQ model implementation.’” For this contact time,

parameters used by Springer et a
the composition of the vapor bubble leaving the tray isy; =0.06856, y, =0.61221, and y3 = 0.31943. This
vapor composition is on the left side of the distillation boundary. Such boundary crossing is observed in
Run T4-13 of the experiments of Springer et al.*” (cf. Figure 4-8).

For various vapor compositions entering any given stage, we have plotted in Figure 4-9(c) the actual

composition vector ( .= yi,o), calculated from the Geddes model (taking bubble diameter of 4.5 mm,
and contact time ¢ = 0.046 s) along with the equilibrium vector (yl - yi,O)' The angle between the NEQ

trajectory (blue line) and the EQ trajectory (pink line) increases when the differences in the component
efficiencies increase. If all the component efficiencies were equal to unit, the NEQ and EQ trajectories
would coincide. We see from Figure 4-9(c) that the NEQ trajectory has a tendency to cut across to the

right of the EQ trajectory, precisely as has been observed in Run T4-13; cf. Figure 4-8.

4.5 Boundary crossing in water/ethanol/methylacetate mixture

The experimental data for Run T3-23 with water(1)/ethanol(2)/methylacetate(3) mixture are shown in
Figure 4-10. In Run T3-23, the condenser composition is left of the distillation boundary. Therefore, the
residue curves dictate that the reboiler composition should be in the top left corner, rich in ethanol. The
measured compositions along the column operating at total reflux shows that the reboiler composition is
towards the right of the distillation boundary, and is rich in water. Also shown in Figure 4-10 are the
Murphree component efficiencies along the column for Run T4-13. We shall demonstrate later that the

boundary crossing is primarily due to the factor that the Murphree efficiency of water is higher than that
of ethanol, i.e. E>E,.

Consider distillation of water(1)/ethanol(2)/methylacetatel(3) mixture in a tray column operating at
total reflux at a total pressure of 101.3 kPa. For a specified tray, the composition of the vapor entering
the tray is y1o = 0.095, y»0 = 0.6345, and y3p = 0.2705. The chosen vapor composition is right of the
distillation boundary. For total reflux operations, the compositions of the liquid leaving that stage will
be equal to that of the vapor entering the stage, i.e. x; = 0.095, x, = 0.6345, and x3 = 0.2705. The
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composition of vapor in equilibrium with the liquid leaving the tray can be determined using the NRTL
parameters provided in Table 4-1. The bubble point temperature is 337 K and the equilibrium
composition is yjeq = 0.06324, 3.4 = 0.36863, and y3.q = 0.56813. The final equilibrated composition
is also right of the distillation boundary, as is to be expected. The driving forces are

AV = Vi = 1oy =0.03176 1 AV, = v3y =1y, =0.26587

nd

The values of the vapor phase M-S diffusivities of the binary pairs, calculated using the Fuller-
Schettler-Giddings (FSG)'* method, are D, =2; P, =1.62; D,,=0.791x10"° m’s™"; these

diffusivities are independent of composition. The differences in the binary pair diffusivities cannot be
ignored, as we demonstrate below. At the average composition between the entering compositions and

the equilibrated compositions, the Fick diffusivity matrix is calculated

10~ m? s™ in which the D5, is seen to non-negligible in comparison with

[D]- 1.79479 -0.01346
T 1-0.56871 0.83543

Dy;. We can also determine a “magnitude” of the Fick diffusivity for use in the calculation of the

1/2

Fourier number: |D| =1.22x107° m? s in order to plot the results in terms of dimensionless Fourier

4D
2
bubble

|1/ 2
number

The diffusion equilibration trajectory, calculated using Geddes model is shown in Figure 4-11(a). The
curvilinear equilibration trajectory crosses the distillation boundary during a portion of this traject.
Figure 4-11(b) presents a plot of the component Murphree efficiencies, Ei, as function of the Fourier

number. The Murphree point efficiency of ethanol is the lowest; this is because of the negative
contribution of the D, ,Ay,. The hierarchy of point efficiencies E; > E, ~ E; is in agreement with the

experimentally determined values shown in Figure 4-10. A lower amount of ethanol is transferred to the
liquid phase than predicted by an uncoupled equation; i.e. the vapor phase is richer in ethanol. The
component efficiency of water is higher than that of partner species; see Figure 4-11(b). Water is the

least volatile of the three components, and its transfer is directed from vapor to the liquid phase; a
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higher efficiency of water ensures that the liquid phase is richer in water than anticipated on the basis of
equal component efficiencies.

The contact time of the bubble with the liquid phase is finite. For a 4.5 mm bubble, with a rise
velocity of 0.2 m s in a dispersion of height 9.2 mm, the contact time ¢ = 0.046 s; these are the input
parameters used by Springer et al. in the NEQ model implementation.’” For this contact time, the
composition of the vapor bubble leaving the tray is y; =0.06778, y, = 0.45057, and y; = 0.48165. This
vapor composition is on the left side of the distillation boundary. Such boundary crossing is observed in

Run T3-23 of the experiments of Springer et al.*>>" ¥ %

(cf. Figure 4-10). The component efficiency of
water is higher than that of partner species; see Figure 4-11(b). Water is the least volatile of the three
components, and its transfer is directed from vapor to the liquid phase; a higher efficiency of water
ensures that the liquid phase is richer in water than anticipated on the basis of equal component
efficiencies.

For various vapor compositions entering any given stage, we have plotted in Figure 4-11(c), the actual

composition vector (y,. - yi,o), calculated from the Geddes model (taking bubble diameter of 4.5 mm,
and contact time ¢ = 0.046 s) along with the equilibrium vector (yl - yi,O)' The angle between the NEQ

trajectory (blue line) and the EQ trajectory (pink line) increases when the differences in the component
efficiencies increase. If all the component efficiencies were equal to unity, the NEQ and EQ trajectories
would coincide. We see from Figure 4-11(c) that the NEQ trajectory has a tendency to cut across to the
right of the EQ trajectory, precisely as has been observed in Run T3-23; cf. Figure 4-10.

We also note from Figure 4-11(c) that for entering vapor compositions that lie to the left of the
distillation boundary, no boundary crossing is observed. As illustration, consider a specific tray for
which the composition of the vapor entering is y;9 = 0.075, y0 = 0.6, and y3p = 0.325; this composition
is left of the distillation boundary. For total reflux operations, the compositions of the liquid leaving that
stage will be equal to that of the vapor entering the stage, i.e. x; = 0.075, x, = 0.6, and x3 = 0.325. The

composition of vapor in equilibrium with the liquid leaving the tray can be determined using the NRTL
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parameters provided in Table 4-1. The bubble point temperature is 336 K and the equilibrium
composition 18 yjeq = 0.0508, 3204 = 0.34186, and y3q = 0.60735. The equilibrium composition is also
left of the distillation boundary, as is to be expected. The driving forces are Ay, =y,, — Vieg = 0.0242,
and Ay, = y,, —¥,,, =0.25814. Both driving forces are positive, i.e. directed from vapor to the liquid
phase.

The values of the vapor phase M-S diffusivities of the binary pairs, calculated using the Fuller-
Schettler-Giddings (FSG)'* method, are D, =1.98; D, =1.61; D,;=0.787x107 m’s™". These

diffusivities are independent of composition. The differences in the binary pair diffusivities cannot be
ignored, as we demonstrate below. At the average composition between the entering compositions and

the equilibrated compositions, the Fick diffusivity matrix is calculated

szw(Bz} _Blz) Dz3(szl3+(l_x2)Dlz) _
x,Dy+x,D5 + x;D,,

[D]=

Dl3(x1B23+(1_x1)D12) X1B23(Bl3_Dlz) }
{-0.52149 0.821

1.77081 -0.010457 s R
x 10 m- s n

which the D5, is seen to non-negligible in comparison with D,;. We can also determine a “magnitude”

of the Fick diffusivity for use in the calculation of the Fourier number: |D|1/2 =1.2x107° m’s” in order

4D

1/2

to plot the results in terms of dimensionless Fourier number |
bubble

The diffusion equilibration trajectory, calculated using the Geddes model is shown in Figure 4-12(a).

The curvilinear equilibration trajectory remains to the left the distillation boundary during the entire

traject. Figure 4-12(b) presents a plot of the component Murphree efficiencies, Ej, as function of the

| |1/2

Fourier number . The Murphree point efficiency of ethanol, £, is the lowest; this is because of

bubble
the negative contribution of D, ,Ay,; the Murphree point efficiency of water, E), is higher than that of

ethanol: E; > E,. Due to E,| > E,, a larger proportion of water is transferred to the liquid phase as

compared to ethanol; this implies that the vapor phase is poorer in water than predicted by calculations

70



Multicomponent Distillation

based on equal component efficiencies. The hierarchy of point efficiencies £, > E> = E3 is in agreement
with the experimentally determined values shown in cf. Figure 4-10.

The contact time of the bubble with the liquid phase is finite. For a 4.5 mm bubble, with a rise
velocity of 0.2 m s in a dispersion of height 9.2 mm, the contact time ¢ = 0.046 s; these are the input
parameters used by Springer et al. in the NEQ model implementation.”’ For this contact time, the
composition of the vapor bubble leaving the tray is y; = 0.05432, y, = 0.42158, and y; = 0.5241. This
vapor composition is also the left side of the distillation boundary, and is indicated by the circle with

cross-hair. No boundary crossing possible for the chosen vapor composition entering the tray.

4.6 Boundary crossing in water/ethanol/methanol/acetone mixtures

Experimental data for Murhpree efficiencies for quaternary
water(1)/ethanol(2)/methanol(3)/acetone(4) mixtures were determined by Springer et al.*®* The
experiments were carried out in a 12-stage bubble cap distillation column wherein all the experiments
were conducted under total-reflux conditions at 101.3 kPa. Table 4-3 provides the data on the liquid
compositions leaving each stage for Run Q6. The experimental composition trajectories in the column
are indicated by the blue circles in Figure 4-13. The data are plotted in ternary composition space by
combining the mole fractions of methanol and acetone in the left bottom vertex in Figure 4-13. Table
4-2 provides the NRTL parameters used in the calculation of the vapor/liquid phase equilibrium.

Two distillation boundaries are shown in Figure 4-13: the “acetone” boundary is the same as for the
water/ethanol/acetone mixture; the “methanol” boundary is the same as for the water/ethanol/methanol
mixture. The experimental data shows that both the “acetone” and “methanol” boundaries are crossed
in Run Q6. Also shown as insets are the Murphree component efficiencies and component driving
forces. The component Murphree efficiency of methanol is negative on stage 3, and slightly exceeds
unity on stage 4. This implies that uphill diffusion of methanol manifests on stage 4. The reason is to
found in the fact that the driving force of methanol is practically zero on these two stages; the direction

of transport of methanol is dictated by the transfer of the three partner species in the mixture: water,
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ethanol, and acetone. The boundary crossing is primarily due to the fact that the Murphree efficiency of
water is higher than that of ethanol, i.e. E,>E,.

We now demonstrate that the phenomenon of uphill diffusion on stage 4 can be rationalized on the
basis of the Geddes model for transient diffusion within a spherical bubble. The bubble diameter used in
the simulations correspond to the value determined experimentally to be 4.5 mm. In the experimental
set-up of Springer et al.*” the vapor/liquid contact time on the tray is 0.046 s.

The composition of the vapor entering the tray is y;o = 0.0614, y,0 = 0.5527, y30 = 0.1868, and y49 =
0.199. For total reflux operations, the compositions of the liquid leaving that stage will be equal to that
of the vapor entering the stage, i.e. x; = 0.0614, x, = 0.5527, x3 = 0.1868, and x4 = 0.199. The
composition of vapor in equilibrium with the liquid leaving the tray can be determined using the NRTL
parameters provided in Table 4-2. The bubble point temperature is 337 K and the equilibrium
composition 18 yieq = 0.03846, 374 = 0.35035, y3.q = 0.19685, and y4q = 0.41435. The driving forces

Ay, =y, ~Vieg = 0.02294 Ay, =y,, =Yg = 0.20235 a Ay, =y, Vi = -0.01005.

nd

are

The values of the vapor phase M-S diffusivities of the binary pairs, calculated using the Fuller-
Schettler-Giddings (FSG)'* method, are provided in Table 4-4. The differences in the binary pair
diffusivities cannot be ignored, as we demonstrate below. At the average composition between the

entering compositions and the equilibrated compositions, the Fick diffusivity matrix is calculated from

D, D, Dj| [208543 -0.00713 -0.02297
[D1=[B]": |D, D, D,|=|-055018 100661 -0.20879 |x10° m’s’; the off-diagonal
D, D, Dy| [-023304 -0.02717 130245

32

elements are non-negligible. We can also determine a “magnitude” of the Fick diffusivity for use in the

1/3

calculation of the Fourier number: |D| =1.394x10~° m” s™ in order to plot the results in terms of in

| |1/2

terms of dimensionless Fourier number . Figure 4-14 presents the Geddes model calculations

bubble

for the Murphree point efficiencies on Stage 4. The inlet compositions on the stages are as specified in
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| |1/3

Table 4-3. The x-axis is dimensionless Fourier number . For stage 4, we note that the efficiency

2
bubble

of methanol exceeds unity, indicating uphill diffusion. This is in accord with the data of Springer et al.”

in Figure 4-13.

Figure 4-15 shows the equilibration trajectory for water(1)/ethanol(2)/methanol(3)/acetone(4)
mixtures for entering vapor compositions V; =0.11}y,, =0.79,y,, =0.08 y,, =0.019. We note that

the equilibration trajectory has crossed the water/ethanol/acetone “distillation boundary”. These
calculations provide a rationalization of the experimental observation of boundary crossing in Figure

4-13.

4.7 Boundary crossing in water/methanol/2-propanol mixtures

Let us consider the system: water(1)/methanol(2)/2-propanol(3) has one binary azeotrope, as indicated
in Figure 4-16(a). We note that the boundary is very nearly a straight line. According to boundary

1.* it is not possible to cross a straight-line boundary. But these remarks

crossing rules of Levy et a
regarding boundary crossing are based on the use of the EQ stage model.

In order to see whether the introduction of mass transfer resistance has an influence on the column
composition trajectories (a boundary crossing phenomenon) for this homogeneous ternary azeotropic
system, we carried out the simulations with both EQ and NEQ stage models for a 12-stage column
operating at total reflux. The feed composition was chosen to be x; = 0.05, x, = 0.8 which is located in
on the left side of the distillation boundary, see Figure 4-16(b) and fixed on stage 1 (condenser). The EQ
(green triangular markers) and NEQ (red circular markers) composition trajectories are seen to follow
completely different composition trajectories; see see Figure 4-16(b). The NEQ model predicts that the
bottom product composition corresponds to (nearly) pure water whereas the EQ model predicts the

bottom product to consist of (nearly) pure 2-propanol. The NEQ model crosses the distillation boundary.

We shall demonstrate below that the boundary crossing is primarily due to the factor that the

Murphree efficiency of water is higher than that of ethanol, i.e. E>E,.
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Consider distillation of water(1)/methanol(2)/2-propanol(3) mixture in a tray column operating at total
reflux at a total pressure of 101.3 kPa. For a specified tray, the composition of the vapor entering the
tray is yi0 = 0.12, y20 = 0.62, and y3p = 0.26. The chosen vapor composition is right of the distillation
boundary. For total reflux operations, the compositions of the liquid leaving that stage will be equal to
that of the vapor entering the stage, i.e. x; = 0.12, x, = 0.62, and x3 = 0.26. The composition of vapor in
equilibrium with the liquid leaving the tray can be determined using the NRTL parameters provided in
Table 4-1. The bubble point temperature is 344 K and the equilibrium composition is y;¢q = 0.0742,
V2eq = 0.76109, and y3q = 0.1647. The final equilibrated composition is also right of the distillation

Ay, =W T Vieg = 0.0458

boundary, as is to be expected.The driving forces are and

AV) =Y = Voo = '0'14109.

The values of the vapor phase M-S diffusivities of the binary pairs, calculated using the Fuller-
Schettler-Giddings (FSG)'* method, are P, =2.67; P,=1.73 D, =1.12x10" m’s™"; these

diffusivities are independent of composition. At the average composition between the entering

compositions and the equilibrated compositions, the Fick diffusivity matrix 1is calculated

2.33042 -0.0543 50 . ) i e . .
[D] = 0.98755 1.21273 x10™ m” s” in which the D5, is seen to non-negligible in comparison with

Dy;. We can also determine a “magnitude” of the Fick diffusivity for use in the calculation of the

1/2

Fourier number: |D| =1.66x10~° m? s in order to plot the results in terms of dimensionless Fourier

number 4|D2—|1/2t
bubble
The diffusion equilibration trajectory, calculated using Geddes model is shown in Figure 4-17(a). The
curvilinear equilibration trajectory crosses the distillation boundary during a portion of this traject. The
contact time of the bubble with the liquid phase is finite. For a 4.5 mm bubble, with a rise velocity of

0.2 m s in a dispersion of height 9.2 mm, the contact time ¢ = 0.046 s. For this contact time, the

composition of the vapor bubble leaving the tray is y; =0.07685, y, = 0.73677, and y; = 0.18638. The
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composition of the vapor leaving the tray is to the left of the distillation boundary. The vapor phase is
poorer in methanol than predicted by the equilibrium model.
Figure 4-17(b) presents a plot of the component Murphree efficiencies, Ei, as function of the Fourier

number. The Murphree point efficiency of methanol is the lower than that of water; this is because of
the negative contribution of the D,;Ay,. The driving force of methanol is directed from the vapor to the

liquid phase. Due to the lower efficiency of methanol, a smaller amount of methanol is transferred to the
liquid phase than predicted by a model that assumes equal component efficiencies for all components;
1.e. in other words, the vapor phase is poorer in methanol.

Figure 4-17(c) compares the NEQ and EQ vector trajectories.

Pelkonen et al.>* performed total reflux experiments with the system water/methanol/2-propanol in a
packed distillation column and showed that if the composition at the top of the column is located on the
distillation boundary (i.e. the line connecting pure methanol with the methanol/2-propanol binary
azeotrope) the experimentally measured composition profiles end up with a reboiler composition that is
rich in water. The measured composition trajectories can be simulated very well using a nonequilibrium
(NEQ) stage model incorporating the Maxwell-Stefan diffusion equations. On the other hand, an
equilibrium (EQ) stage model (i.e. a model in which the component efficiencies are each taken to 100%)
predicts that the reboiler compositions corresponds to pure 2-propanol. Pelkonen et al.’> ** also
performed similar experiments with the quaternary system acetone-methanol-isopropanol-water, with
the composition near the top of the column chosen to lie on the distillation boundary and obtained the
same dramatic differences between the predictions of the NEQ and EQ models. The NEQ model

predictions were in accord with the experiments.

4.8 Uphill diffusion in acetone/chloroform/methanol mixtures

For the system acetone/chloroform/methanol we have three binary and one ternary azeotrope dividing
the composition space into four regions by means of four distillation boundaries, that are all curved; see

the residue curve map shown in Figure 4-18(a). According to Rule 2 of Levy et al.**, boundary crossing
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is not forbidden if the feed is located on the concave side of the distillation boundary, say as indicated in
Figure 4-18(a).

We now demonstrate the possibility of uphill diffusion in this system.

Consider distillation of acetone(l)/chloroform(2)/methanol(3) mixture in a sieve tray column
operating at total reflux at a total pressure of 101.3 kPa. For a specified tray, the composition of the
vapor entering the tray is yio = 0.486, 20 = 0.46, and y3yp = 0.054. The chosen vapor composition lies on
the concave side of the distillation boundary. For total reflux operations, the compositions of the liquid
leaving that stage will be equal to that of the vapor entering the stage, i.e. x; = 0.486, x, = 0.46, and x3 =
0.054. The composition of vapor in equilibrium with the liquid leaving the tray can be determined using
the NRTL parameters provided in Table 4-1. The bubble point temperature is 334.6 K and the
equilibrium composition is yi¢q = 0.49042, y,.q = 0.38374, and y3q = 0.12584. The final equilibrated
composition is on the convex side of the distillation boundary; boundary crossing is not forbidden. The

Ay, = yig = Yoy = —4.41582x10°

driving forces are , and AY) = V20 = Vaeg = 0-07626.

The values of the vapor phase M-S diffusivities of the binary pairs, calculated using the Fuller-Schettler-
Giddings (FSG)'* method, are P, =0.59; D, =1.1; D,, =0.93x10” m’s™"; these diffusivities are
independent of composition. At the average composition between the entering compositions and the

0.85691 0.23788 5
x10™” m

equilibrated compositions, the Fick diffusivity matrix is calculated [D] = L} 16128 077088

s in which both off-diagonal elements are seen to non-negligible in comparison with the diagonal

elements. We can also determine a “magnitude” of the Fick diffusivity for use in the calculation of the

1/2

Fourier number: |D| =0.79x107° m” s in order to plot the results in terms of dimensionless Fourier

1/2
4D|
2
bubble

number

The diffusion equilibration trajectory, calculated using Geddes model is shown in Figure 4-18(b). The

contact time of the bubble with the liquid phase is finite. For a 4.5 mm bubble, with a rise velocity of
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0.2 m s in a dispersion of height 9.2 mm, the contact time ¢ = 0.046 s. For this contact time, the
composition of the vapor bubble leaving the tray is y; = 0.48372, y, = 0.40845, and y; = 0.10783. The
composition of the vapor leaving the tray remains on the concave side off the distillation boundary.

Figure 4-18(c) presents a plot of the component Murphree efficiencies, Ei, as function of the Fourier

number. The Murphree point efficiency of acetone is negative because the positive contribution of
D,Ay, is opposite in sign to the diagonal contribution D;;Ay,. Put another way, uphill diffusion of

acetone occurs.

4.9 Uphill diffusion in water/ethanol/tert-butanol mixtures

For the system water/ethanol/tert-butanol (=2-methyl-2-propanol) there are two binary azeotropes
dividing the composition space into two distinct regions boundaries, that are all curved; see the residue
curve map shown in Figure 4-19(a). Experimental data of Krishna et al.®® for distillation of
water/ethanol/tert-butanol mixtures in a sieve tray distillation column, operating under total reflux
conditions, have demonstrated the occurrence of negative component efficiencies. Our objective here is
to investigate the origins of negative efficiencies by using the Geddes model for vapor phase
equilibrium within a spherical bubble. We now demonstrate the possibility of uphill diffusion in this
system.

Consider distillation of water(1)/ethanol(2)/tert-butanol(3) mixture in a sieve tray column operating at
total reflux at a total pressure of 101.3 kPa. For a specified tray, the composition of the vapor entering
the tray is y10 = 0.3089, y20 = 0.5558, and y39 = 0.436. The chosen vapor composition corresponds to
Run M46 of Krishna et al.** For total reflux operations, the compositions of the liquid leaving that stage
will be equal to that of the vapor entering the stage, i.e. x; = 0.3089, x, = 0.5558, and x3 = 0.436. The
composition of vapor in equilibrium with the liquid leaving the tray can be determined using the NRTL
parameters provided in Table 4-1. The bubble point temperature is 352 K and the equilibrium
composition 18 yieq = 0.27405, yreq = 0.59176, and y3¢q = 0.13419.  The driving forces are

Ay, = Y10 — N1 =0.03485, Ay, =y, —»,,, =-0.03596, and Ay, = y,, — ;,, =0.001108. Particularly
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noteworthy is the fact that the driving force of tert-butanol is about one order of magnitude lower than
that of water, and ethanol.

The values of the vapor phase M-S diffusivities of the binary pairs, calculated using the Fuller-
Schettler-Giddings (FSG)'* method, are B, =2.14; D,;=1.59; D,;=0.79x10° m’s™"; these

diffusivities are independent of composition. At the average composition between the entering
compositions and the equilibrated compositions, the Fick diffusivity matrix 1is calculated

1.9443  -0.09042 s , 1. i ) oy .
[D]: 0.86633 100673 x10 m”~ s~ in which the D, is seen to non-negligible in comparison

with Dy;. In other words, the flux of ethanol is strongly coupled to the flux of water. We can also
determine a “magnitude” of the Fick diffusivity for use in the calculation of the Fourier number:

4|D

1/2
1/2 |

|D| =1.37x10~° m’ s in order to plot the results in terms of dimensionless Fourier number

bubble

The diffusion equilibration trajectory, calculated using Geddes model is shown in Figure 4-19(b). The
contact time of the bubble with the liquid phase is finite. For a 4.5 mm bubble, with a rise velocity of
0.2 m s in a dispersion of height 9.2 mm, the contact time ¢ = 0.046 s. For this contact time, the
composition of the vapor bubble leaving the tray is y; = 0.27742, y, = 0.58721, and y; = 0.13537; see
Figure 4-19(b). It is remarkable that the composition of tert-butanol leaving the tray higher than the
entering tray composition, whereas the EQ model anticipates that the tert-butanol composition should be
lower than the entering composition.

Figure 4-19(c) presents a plot of the component Murphree efficiencies, Ej, as function of the Fourier
number. The Murphree point efficiency of tert-butanol is negative because it is being dragged uphill by
the two partners: water and ethanol. Further explanation of this is provided in Example 12.2.2 of Taylor

and Krishna.!
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4.10 List of Tables for Multicomponent Distillation

Table 4-1. NRTL parameters for homogeneous ternary mixtures at 101.3 kPa (Gmehling & Onken,

1977). These parameters are used along with Gj;= exp(-a;;7j) and 7; = Byj/T

Ternary systems

Component i Component j B; / [K] B;i / [K] aij | [-]
Water Methanol 594.6299 -182.6052 0.297
Water 2-propanol 729.2208 70.6619 0.288
Methanol 2-propanol 65.71121 -89.74272 0.304
Acetone Methanol 59.42076 149.0765 0.3003
Chloroform Methanol 671.975 -53.0728 0.2873
Water Acetone 602.6252 330.4768 0.5103
Ethanol Acetone 188.8983 22.83319 0.3006
Water Methanol 594.6299 -182.605 0.297
Ethanol Methanol 73.413 -79.1718 0.3029
Water Methylacetate 796.8165 334.6706 0.35

Ethanol Methylacetate 198.9705 134.162 0.3

Water Methylacetate 860.2462 442 .4 0.383
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Methanol Methylacetate 229.9405 284.8969 1.0293
Water Tert-butanol 1122.14 209.54 0.4917
Ethanol Tert-butanol 250.99 —335.37 -0.1382
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Table 4-2. The NRTL parameters for the quaternary mixture water (1) — ethanol (2) — methanol (3) —

acetone (4) at 101.3 kPa (Gmehling & Onken, 1977). These parameters are used along with Gj; = exp(-

G Tij) and 4y = Bij/T

Quaternary system (homogeneous)

Component i Component j B; / [K] B;i / [K] aij / [-]
Water Ethanol 624.9174 -29.169 0.2937
Water Methanol 594.6299 -182.6052 0.297
Water Acetone 602.6252 330.4768 0.5103
Ethanol Methanol 73.413 -79.1718 0.3029
Ethanol Acetone 188.8983 22.83319 0.3006
Methanol Acetone 97.78178 107.83 0.3008
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Table 4-3. Compositions of the liquid leaving each stage for Run Q6 of Springer. At total reflux, the
compositions leaving each stage equals the vapor entering each stage. These compositions were
determined by a non-equilibrium stage model that matched the column composition profiles that were

determined in the experiments.

Stage number X1E XoE X3E X4E

1 0.0205 0.2865 0.1956 0.4974

2 0.0307 0.3658 0.1986 0.4049

3 0.0446 0.4576 0.197 0.3008

4 0.0614 0.5527 0.1868 0.199

5 0.0787 0.6374 0.167 0.1169

6 0.094 0.7026 0.1412 0.0622

7 0.1064 0.748 0.1147 0.031

8 0.1163 0.778 0.0908 0.0149

9 0.1245 0.7977 0.0709 0.006964
10 0.1316 0.8103 0.0549 0.003223
11 0.1381 0.818 0.0424 0.00148
12 0.1462 0.825 0.0284 0.0003942
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Table 4-4. M-S vapor phase diffusivities for the binary pairs in the quaternary Water (1) — Ethanol (2)
— Methanol (3) — Acetone (4) system. The values are calculated using the FSG correlation at the

temperature 340 K, the average temperature in Run Q6 in the Springer experiments.

Parameter units i-j pair

1-2 pair  1-3pair 1-4pair 2-3pair 2-4pair  3-4 pair

b; 10° m?| 2.1 2.72 1.82 1.36 0.908 1.18
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4.11 List of Figures for Multicomponent Distillation

Vapor/liquid contacting on distillation tray

Liquid
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Figure 4-1. Schematic of vapor/liquid contacting on a distillation tray, indicating transfer resistances.
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Residue curve maps (RCM)
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Figure 4-2. (a) Residue curve map for the water/methanol/2-propanol system, showing a straight-line

distillation boundary and feed locations F1 and F2 on either side of the distillation boundary. (b)

Residue curve map for the acetone/chloroform/methanol system, showing feed locations F1 and F2 on

the concave and convex sides of the highlighted distillation boundary respectively.
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Springer experimental set-up
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Figure 4-3. (a) Schematic of a laboratory-scale distillation column used in the experiments of
Springer et al.**7 which includes a total condenser (1), a partial reboiler (12), 10 bubble-cap trays (2-

11), and 13 draw-off faucets, 9 for vapor samples and 4 for liquid samples.
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Water/Ethanol/Acetone Distillation
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Figure 4-4. Residue curve maps for distillation of water(1)/ethanol(2)/acetone(3) mixtures. The blue

1 35, 37, 39, 40

circles represent the experimental data for T2-26 of Springer et a on composition trajectories

in a bubble-cap tray column operating at total reflux implying x; =y..
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Murphree component efficiencies
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Figure 4-5. (a) Ethanol driving force Ay,, z(yZE - y2,eq) on each stage for the system

water(1)/ethanol(2)/acetone(3).
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Water/Ethanol/Acetone Distillation
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Figure 4-6. (a) Transient equilibration trajectories for the system water(1)/ethanol(2)/acetone(3) at

101.3 kPa. The initial mole fractions in the rigid spherical vapor bubble are y;o = 0.075, y20 = 0.5, and

30 = 0.425; the final equilibrium compositions are yjeq = 0.04869, 314 = 0.29898, and y3q = 0.65233.

(b) Plot of the component Murphree efficiencies, Ej, as function of the Fourier number. (¢) NEQ and EQ

trajectory vectors for various entering tray compositions for the system water(1)/ethanol(2)/acetone(3)

at 101.3 kPa.
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Figure 4-7. (a) Transient equilibration trajectories for the system water(1)/ethanol(2)/acetone(3) at

101.3 kPa. The initial mole fractions in the rigid spherical vapor bubble are y;o = 0.075, y,0 = 0.7, and

30 = 0.225; the final equilibrium compositions are yj¢q = 0.05487, y7q = 0.4719, and y3 q = 0.47322.

(b) Plot of the component Murphree efficiencies, Ej, as function of the Fourier number.
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Water/Ethanol/Methanol Distillation
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Figure 4-8.Residue curve maps for distillation of water(1)/ethanol(2)/methanol(3) mixtures. The blue

circles represent the experimental data for T4-13 of Springer et al.*>*"-3% %

in a bubble-cap tray column operating at total reflux implying x; =y..

on composition trajectories
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Water/Ethanol/Methanol Distillation
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Figure 4-9. (a) Transient equilibration trajectories for the system water(1)/ethanol(2)/methanol(3) at

101.3 kPa. The initial mole fractions in the rigid spherical vapor bubble are y;o = 0.082, y,o = 0.68, and

30 = 0.238; the final equilibrium compositions are yjeq = 0.06767, 114 = 0.59691, and y3q = 0.33542.

(b) Plot of the component Murphree efficiencies, Ej, as function of the Fourier number. (¢) NEQ and EQ

trajectory vectors for various entering tray compositions for the system water(1)/ethanol(2)/methanol(3)

at 101.3

kPa.
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Water/Ethanol/Methylacetate Distillation
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Figure 4-10. Residue curve maps for distillation of water(1)/ethanol(2)/methylacetate(3) mixtures.

The blue circles represent the experimental data for T3-23 of Springer et al.* *”*%** on composition

trajectories in a bubble-cap tray column operating at total reflux implying x, = y;.
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Water/Ethanol/Methylacetate Distillation
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Figure 4-11. (a) Transient equilibration trajectories for the system

water(1)/ethanol(2)/methylacetate(3) at 101.3 kPa. The initial mole fractions in the rigid spherical
vapor bubble are y;o = 0.095, y9 = 0.6345, and y30 = 0.2705; the final equilibrium compositions are y ¢q
=0.06324, yycq=0.36863, and y3 .4 = 0.56813. (b) Plot of the component Murphree efficiencies, £;, as
function of the Fourier number. (¢) NEQ and EQ trajectory vectors for various entering tray

compositions for the system water(1)/ethanol(2)/methylacetate(3) at 101.3 kPa.
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Water/Ethanol/Methylacetate Distillation
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Figure 4-12. (a) Transient equilibration trajectories for the system

water(1)/ethanol(2)/methylacetate(3) at 101.3 kPa. The initial mole fractions in the rigid spherical
vapor bubble are y;o = 0.075, y20 = 0.6, and y3p = 0.325; the final equilibrium compositions are yj¢q =
0.0508, y7¢q = 0.34186, and y3q = 0.60735. (b) Plot of the component Murphree efficiencies, E;, as

function of the Fourier number.
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Water/Ethanol/Acetone/Methanol Distillation
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Figure 4-13. Experimental data (blue circles) of Springer et al.*’ for Run Q6 with quaternary
water(1)/ethanol(2)/methanol(3)/acetone(4) mixtures. Also shown as insets are the Murphree component

efficiencies and component driving forces.
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Murphree Point Efficiencies: Geddes model
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Figure 4-14. Geddes model calculations for the Murhpree point efficiencies on Stage 4. The liquid

compositions leaving each stage (= vapor composition entering that stage) are as specified in Table 4-3.

The bubble size is taken to be 4.5 mm.
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Boundary crossing with Geddes model
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Figure 4-15. Equilibration trajectory for water(1l)/ethanol(2)/methanol(3)/acetone(4) mixtures

calculated with the Geddes mode
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Figure 4-16. (a) Residue curve map for the water/methanol/2-propanol system, showing a straight-

line distillation boundary and feed locations F1 and F2 on either side of the distillation boundary. (b)

Comparison of EQ and NEQ distillation trajectories.
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Figure 4-17. (a) Transient equilibration trajectories for the system water(1)/methanol(2)/2-

propanol(3) at 101.3 kPa. The initial mole fractions in the rigid spherical vapor bubble are y;p = 0.12,

y20 = 0.62, and y30 = 0.26. The final equilibrium compositions are yjq = 0.0742, yyq = 0.76109, and

V3eq = 0.1647. (b) Plot of the component Murphree efficiencies, E;, as function of the Fourier number.

(c) Comparison of the NEQ and EQ trajectory vectors.
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Acetone/chloroform/methanol
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Figure 4-18. (a) Residue curve map for the acetone/chloroform/methanol system. (b) Transient
equilibration trajectories for the system acetone(1)/chloroform(2)/methanol(3) at 101.3 kPa. The initial
mole fractions in the rigid spherical vapor bubble are y;o = 0.486, y,0 = 0.46, and y3p = 0.054. The final
equilibrium compositions are yieq = 0.49042, 3,04 = 0.38374, and y3.q = 0.12584. (c) Plot of the

component Murphree efficiencies, Ej, as function of the Fourier number.
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Figure 4-19. (a) Residue curve map for the water(1)/ethanol(2)/tert-butanol(3) system. (b) Transient
equilibration trajectories for the system water(1)/ethanol(2)/tert-butanol(3) at 101.3 kPa. The initial
mole fractions in the rigid spherical vapor bubble are y;o = 0.3089, y,0 = 0.5558, and y30 = 0.436. The
final equilibrium compositions are yj¢q = 0.27405, 3204 = 0.59176, and y3q = 0.13419. (c) Plot of the

component Murphree efficiencies, Ej, as function of the Fourier number.
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S Influence of Phase Stability on Diffusivities

The phase equilibrium thermodynamics has a significant influence on the diffusion characteristics.

This is illustrated below for a variety of binary and ternary mixtures.

5.1 The Darken correction factor for non-ideal thermodynamics

For binary fluid mixtures, the Fick, Maxwell-Stefan, and Onsager diffusivities are inter-related:

1 Oln
D12 =B12F=L12®=L12—F; F=(1+—%J (5-1)
XX, Inx,

54, 55

In the pioneering papers by Darken the following expression is postulated for the composition

dependence of the Fick diffusivity D,

. . Olny Olny
D, = (xle + xlDz) [1 +—8 ™ xl J = (xZDl,se[f +x1D2,Self) (1 + o x1 ] (5-2)
1 1

where D =D, ,and D, =D, . are the tracer diffusivities (also named self-diffusivities, Dy seir and

54, 55

Ds qif) in the binary mixture. Darken was one of the first to recognize the need to use activity

gradients as proper driving forces when setting up the phenomenological relations to describe diffusion.
The thermodynamic factor I is also referred to as the “Darken correction factor”. Combining equations
equations , and we obtain the following expression for the composition dependence of the M-S
diffusivity P, for a binary mixture

b,= xZDl,self + xlDZ,sel/' (5-3)

The tracer or self-diffusivities, D, =D and D,=D,, are more easily accessible, both

1,self >

56-58

experimentally’®>® and from Molecular Dynamics (MD) simulations,” than the D).

A somewhat more accurate interpolation formula is the empirical Vignes relation®”
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D, = (lezﬁl )XI (lezz ! )XZ (5-4)

where the limiting values of the M-S diffusivities are

Dy =Dy Di=D3 (5-5)
Generally speaking, the factoring out of the effects of non-ideal mixture thermodynamics (by use of

D,
% = D), ) results in a milder variation of the M-S diffusivity as compared to the Fick diffusivity.

The Vignes interpolation formula (5-4) offers the possibility of interpolation using data at either ends
of the composition scale. To verify this, Figure 5-1(a,b,c) present comparison of the Fick, and M-S, and
Onsager diffusivities for (a) acetone (1) — water (2), (b) ethanol (1) — water (2) and (c) methanol(1)/n-
hexane (2) mixtures along with the estimations using using the Vignes interpolation formula (5-4). We
see that that the interpolation formula is of good accuracy. Further examination of the validity of the
Vignes interpolation formula in available in published works." *1-°

The Onsager diffusivity is related to the M-S diffusivity by

D
L, =xx,bD,, = ?12 (5-6)

The L, vanishes at either ends of the composition scale (cf. Figure 5-1) and this characteristic makes it

. . . . . 1 4
less desirable for use in practical applications.' 3% ¢

5.2 Thermodynamic corrections for dense gaseous mixtures

The M-S pair diffusivities D;; for gaseous mixtures at low pressures, below about 10 bar, can be

estimated to a good level of accuracy using the Fuller-Schettler-Giddings (FSG)'* method.

1.43x107 7' S

- —p 'S 5-7
M, _(V11/3)+ (vé )] e

b, =

where p is the pressure (expressed in bars), M,, = is the mean molecular weight of the

2
L

M, M,

. . -1 . . . 3 -1
mixture (expressed in g mol ™), v;, and v, are the diffusion volumes (expressed in cm” mol) whose
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values are obtained by summing the contributions of the volumes of the constituent atoms in the
molecular species (the values are tabulated in Table 11.1 of Reid, Prausnitz, and Poling'®). According to
the FSG estimation procedure, the product of Dj, and the total pressure, p, is a function only of
temperature and is also independent of composition. In generalizing the FSG method to dense gas
mixtures, it is important realize that equation (3-5) implies that, at constant temperature, the M-S

diffusivity is inversely proportional to the molar density of the gas phase. For dense gases, the total

mixture molar density of the gas phase is ¢, =P where Z is the compressibility factor.

Consequently, the M-S diffusivity for dense gases can be estimated by correcting the original FSG

equation by introducing the compressibility factor Z; see Krishna and van Baten'' for further details

1.43x107T7""
]_—)12 = .

7 5-8
o) 60 o

Due to the introduction of the compressibility factor, Z, the M-S diffusivity D,, becomes dependent on

p

mixture composition. The molar density of the mixture is ¢, = ZRT and therefore Equation (3-6)

anticipates that ¢,D,, is constant at constant temperature 7.

The Fick diffusivity for dense gas mixtures can be estimated by multiplying M-S diffusivity P;»,

determined from Equation (3-6), with the thermodynamic correction factor I'

D,=b,[=D5°ZT; T= 1 Olnd (5-9)
Olnx,

The thermodynamic correction factor is determinable by analytic differentiation of an Equation of
State (EOS) such as the Peng-Robinson (PR) EOS; for further details see Krishna and van Baten.!' For

Jlng,

d1n f, =§U+xl for PR EOS are

X X

binary mixtures, explicit analytic expressions for T =x,

provided in the paper by Tuan et al.'?
Figure 5-2(a) presents the experimental data of Nishiumi and Kubota®® for diffusivity of benzene in

supercritical CO, as a function of the reduced pressure, p/p.. The deep well in the experimental Fick
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diffusivity at the reduced pressure, p/pc = 1 can be rationalized by equation (5-9) taking:

8x107 ol
D, == Z[l+%¢lJ m’s™ for x; = 0.005, 0.007, 0.01, 0.013, and 0.017; Figure 5-2(b).
p nx,

5.3 Diffusivities in PbTe/PbS crystalline mixtures

Consider the phase equilibrium thermodynamics for PbTe(1)/PbS(2) crystalline mixtures on its
diffusion characteristics. This mixture may also be represented as Pb(Tex;Sx2), with x; + x; =1.
Consequently, are the mole fractions of the cations Te, and S in the Pb(Tey; Sx») crystalline matrix.

The molar Gibbs free energy

G G G*
ﬁ:RT+(XI Inx, +x,Inx,); Tz(x1 Iny, +x,Iny,) (5-10)

can be calculated using using the sub-regular solution model with parameters provided in Table 1 of

Leute.”” The vanishing of the second derivative of the Gibbs free energy

G

2
Oox,

0 (5-11)

delineates the limits of phase instability; this defines the spinodal curve. The second derivative of the

Gibbs free energy is simply related to the thermodynamic factor, T

2
L o6 _ T ; F:[l+aln7/lj; x, =1-x (5-12)

RT ox} - X, X, Olnx,
Figure 5-3(a) shows the calculations of the spinodal curve. The critical temperature is 1074 K, and the
critical composition is x; = 0.38. Figure 5-3(b) shows calculations of the thermodynamic correction
factor, I', at various temperatures. For temperatures below 1074 K, there is a range of compositions for
which I" <0; within this region, the mixture is unstable and will undergo spinodal decomposition.

For binary Pb(Tey; Sx») mixtures, the Fick diffusivity, D, is the product of the Maxwell-Stefan
diffusivity, P, and the thermodynamic factor, I

D=pPr (5-13)
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The strong influence of the thermodynamic factor on the composition dependence of the Fick diffusivity
is underscored by the experimental data of Leute® on the Fick diffusivity, D, for inter-diffusion of Te
and S cations in PbTe(1)/PbS(2) crystalline mixtures of varying compositions at different temperatures:
973 K, 998 K, 1023 K, 1048 K, 1073 K, and 1098 K; see Figure 5-4(a,b,c), and Figure 5-5(a,b,c). Also
plotted (continuous solid blue lines) using the right y-axis in Figure 5-4(a,b,c), and Figure 5-5(a,b,c) are
the thermodynamic correction factor, I, at the corresponding temperatures. The Fick diffusivity is seen
to reduce by one to two orders of magnitude as the critical composition is approached, in line with the

calculations of T". For more detailed discussions, see Leute.”

5.4 Diffusivities in aqueous glycine and urea solution

Figure 5-6(a) shows the experimental data of Chang and Myerson’® for the diffusivity of glycine in
aqueous solutions at temperatures of 298.15 K and 308.15 K. The Fick diffusivity plummets to
vanishingly low values as the spinodal compositions are reached. Figure 5-6(b) shows analogous Fick
diffusivity data for urea as a function of solute concentration in aqueous solutions at 7' =298.15 K.”'
The strong concentration dependence of the Fick diffusivity D), is dictated by the thermodynamic factor

r.

5.5 Darken and Vignes interpolation formulae for ternary liquid mixtures

For diffusion in n-component non-ideal liquid mixtures, the matrix of Fick diffusivities [D] has
significant non-diagonal contributions caused by (a) differences in the binary pair M-S diffusivities, D;;,
and (b) strong coupling introduced by the matrix of thermodynamic factors [F]

The description of the composition dependence of the M-S diffusivities Dj in liquid mixtures
containing three or more species is much less developed. Krishna and van Baten®® postulate that the M-
S diffusivity of the i-j pair in the ternary i-j-k mixture depends on Dj s and D;ir in this mixture, but

weighted with mole fractions on a k-free basis, 1.e.
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X. X
— J
D. = —le,self +—2 D

g
X; +xj X; +x‘].

el (5-14)

Each of the three M-S pair diffusivities D;; depends on six infinite dilution parameters
T2 I O S A 2 E R 2 (5-15)

These limiting values of D;; at the edges of the ternary composition space are

x—=>1 _ x—l, Xl X1, x3—l _ Xl x3—l1 xz x3—l,
DIZ - D2,self’ DIZ - Dl,self ’ DIZ - D2,self + Dl,self H
X, + X, X, + X,
x—1 _ x—1, =1 31, X,—l x1 X1 )C3 x,—1,
b5 = Ds,se!f’ by = Dl,se[f’ Dy = D3,.s-e1f + Dl,self 5 (5-16)
X, + X3 X, + X5
=l oyl x3—1 31, =1 xz x—1 x3 -1,
B23 - D3,self > B23 = Dz,sezfa 1923 - D3,Se_lf + DZ,S@_I/‘"
X, + X3 X, + X5
Noting that the following limiting values hold
x>l x-l, X,—>1 x>,
Dy = DZ,]self’ b = Dl,.zve_lf >
x—1 x—1, 5=l _ ol
D3 = D3,]se[f’ by = l,;e_lf > (5-17)
X, —>1 x,—1, x>l x3—>1,
Dy = 3,ie[f" Dy = Zivelf >
we derive
x—>1 _ x—-l, x—l X1, x>l xl x3—>1 x2 x3—1,
b, = D2,self’ by = Dl,.s-ezf ; Dy = B23 + B13 >
X + X, X + X,
x—>1 _ x—1, x3—=1 x>, X,—>l xl X, —1 x3 x,—l1,
b5 =D Dy =D, D= Dy + by (5-18)
X + X3 X + X3
=l oyl =1 oyl x>l xz x—l1 x3 x—l1,
Dz3 - D3,se_lf’ B23 = DZ,self’ 1923 - 1913 + 1912 >
X, + X3 X, + X5

Equation (5-18) is the proper estimation procedure for B;’ ™ that is consistent with the Darken equation

(5-3).

For a ternary mixture, Wesselingh and Bollen’* have suggested the following extension of the Vignes

interpolation formula (5-4)

b, =B ) (B2~ ) (1) (5-19)

g g y

xp—1

For the estimation of D;*™, the i - j pair diffusivity when both i and j are present in infinitely dilute

concentrations. Krishna and van Baten™ suggest the following extension of equation (5-16)
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P = (s ) g )
b = (o ) o (5-20)
D;}, -1 _ (lezl -1 )‘2/(X2 +x3 )(Dl);] -1 )‘3/()‘2*’(3)

For the special case of an equimolar mixture we obtain

x3—>1 [( x3 =1 yx3 =1 )

BIZ - BIS D23
X, =1 [‘ Xy =1 yx, =1 )

BB - Dlz B23 (5'21)
x3—=>1 _ '( x; =1 x>l )

BZ3 - BIZ Bl3

The simplified interpolation formula (5-21) was proposed by Wesselingh and Bollen. "

The square root of the determinant |A|“2 may be viewed as a measure of the “magnitude” of the M-S

diffusivity that characterizes diffusion in a ternary mixture.

1/2 b,.b..D
|A| :\/ 12~13+~23 (5_22)
XDy +x, D5 + x3D),

Close to the regions of phase splitting, the thermodynamic coupling effects predominate and a simple

procedure for the estimation of the Fick diffusivity matrix has been proposed”
[D]=|A]"[r] (5-23)
The accuracy of the estimates using equation (5-23) has been verified by comparison with a very wide

range of MD simulations and experimental data. >

5.6 Diffusivities in partially miscible glycerol/acetone/water mixtures

We examine the influence of phase stability on diffusion in glycerol(1)/acetone(2)/water(3) mixtures
for which the liquid-liquid phase equilibrium data has been provided by Krishna et al;'® see Table 5-1.
The binodal and spinodal curves are shown in Figure 5-7. The composition of the plait point is Xgjycero™
0.1477, Xacetone= 0.4163 and xyae;= 0.4360. At the plait point, the binodal and spinodal curves converge.
Outside the region delineated by the binodal curve, we have the requirement that needs to be fulfilled

for phase stability in homogeneous liquid mixtures
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|F| >(0; phase stability (5-24)
Within the region delineated by the spinodal curve, there is the region of phase instability

|F| <0; |D| <0; phase instability (5-25)
Equation (5-25) implies that one of eigenvalues of the Fick diffusivity matrix [D] must be negative. The
region between the binodal and spinodal curves is meta-stable. At the plait point, and along the spinodal
curve we must have

|F| =0; |D| = |A||F| =0; spinodal curve (5-26)
So, the determinant |F| also vanishes along the spinodal curve, and at the plait point, i.e. |F| =

Grossmann and Winkelmann’*’® have reported data on the Fick diffusivity matrix [D] for
glycerol(1)/acetone(2)/water(3) mixtures at 75 different compositions, in the acetone-rich and water-rich
regions. To demonstrate the influence of phase stability on the elements of the matrix of Fick
diffusivities, we examine a set of four experimental data sets, all measured at a constant glycerol mole
fraction: (A) x;= 0.1, x, =0.1, x3=0.8; (B) x1=0.1, x, = 0.3, x3 = 0.6; (C) x1=0.1, x, = 0.432, x3 =
0.468; (D) x;= 0.1, x, = 0.48, x3 = 0.42.

The elements of the Fick diffusivity matrix are indicated in Figure 5-7. At composition A, the

0.3868 0.0184 5 -
x10 m°s".

experimental data on the elements of the Fick diffusivity are [D]= { 0.1477 0407

D,,D
The importance of diffusional coupling can be quantified by the ratio —2—2-=0.01725. The matrix of
117722

thermodynamic factors at the composition x;= 0.1, x» = 0.1, x3 = 0.8 is calculated from the NRTL

1.552124 0.361702 . . . .
. The importance of thermodynamic coupling is quantified

parameters to be [ ]
0.262193 0.656544

by the factor 22" Lol =0.093064.

11r22
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At composition B, x;= 0.1, x, = 0.3, x3 = 0.6, the experimental data on the elements of the Fick

-9 2

m’s™ . The importance of diffusional coupling can be

o 0.4513 0.1618
diffusivity are [D]:

X
0.2512 0.3075

D12D21

quantified by the ratio =0.292879. The matrix of thermodynamic factors at the composition x;=

llDZZ

1.49091 0.47104
he

0.1, x, = 0.3, x3 = 0.6 is calculated from the NRTL parameters to be [F]= L) 139491 0.412104|"

I
importance of thermodynamic coupling is quantified by the factor % =0.566933.
11+ 22

At composition C, x;= 0.1, xo = 0.432, x3 = 0.468, the experimental data on the elements of the Fick

L 0.495 0.2306
diffusivity are [D]=

x10” m’s”. The importance of diffusional coupling can be
0.4839 0.4025

D12D21

quantified by the ratio =0.560072. The matrix of thermodynamic factors at the composition x;=

llDZZ

. 1.442111 0.533204
0.1, x, = 0.432, x3 = 0.468 is calculated from the NRTL parameters to be [F]z 0.95815 0.409655|

I I
The importance of thermodynamic coupling is quantified by the factor —2-2=0.864789.

1122
At composition D, x;= 0.1, x, = 0.48, x3 = 0.42, the experimental data on the elements of the Fick

0.5684 0.30466

diffusivity are [D] = {0 3476 0.3195 } x10” m?s”. The importance of diffusional coupling can be

D12D21

quantified by the ratio =0.583022. The matrix of thermodynamic factors at the composition x;=

11D22

0.1, x, = 0.48, x3 = 0.42 is calculated from the NRTL parameters to be [F]z

1.422299 0.556079
1.007783 0.420284 |

I
The importance of thermodynamic coupling is quantified by the factor —2-2.=0.937496.

11722
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As the compositions approach the region of phase instability, the extent of diffusion coupling and

thermodynamic coupling both increase; see Figure 5-7. Figure 5-8(a) presents a plot of the ratio D1, Dy

DIIDZZ

of the elements of the Fick diffusivity matrix [D] for glycerol(1)/acetone(2)/water(3) mixtures as a

function of the ratio % We see a unique dependence between the two sets of data. Along the
11+ 22

spinodal curve, both of these ratios tend to unity values, in view of equation (5-26). The important
message emerging from Figure 5-8(a) is that diffusional coupling effects become of increasing

importance as the compositions approach values corresponding to the spinodal curve.

Figure 5-8(b) presents a plot of |D|”2 , that is an appropriate measure of the magnitude of the Fick

diffusvity matrix, as a function of the mole fraction of glycerol, x;. We note that |D|”2 tends to vanish

as the plait point composition is approached, in conformity with the restraint imposed by equation
(5-26). Krishna®> ™ has demonstrated that the Fick diffusivity matrix [D] for

glycerol(1)/acetone(2)/water(3) mixtures can be estimated with reasonably good accuracy taking

2

[D]=|A"*[r] wsing  |Al"* = (D ) (Do )2 (Do ), taking Dygeir= 0.01, Dsgeir= 3.2, Ds o= 0.5 with
units 107 m*s™.
5.7 Diffusivities in partially miscible water/chloroform/acetic acid mixtures

Figure 5-9 shows the experimental data for liquid/liquid equilibrium in
water(1)/chloroform(2)/acetic-acid(3) mixtures. The binodal curve is indicated in green. The spinodal
curve is indicated by the red line. The experimental data of Vitagliano et al.”’ for Fick diffusivity matrix
[D] of water(1)/chloroform(2)/acetic-acid(3) mixtures at five different compositions are shown in Figure

D12D21

5-9.We note that the influence of diffusional coupling, quantified by progressively increases in

11722
magnitude as the compositions become increasingly poorer in acetic acid and the two-phase region is
approached. At the plait point (composition: x; = 0.375, x, = 0.261 and x3 = 0.364) the matrix of Fick

diffusivities determined by Vitagliano et al.”’ by extrapolation of their data is
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D] {0.92 0.40

x10” m?s™. It can be confirmed that the determinant vanishes, i.e.|D| =0
0.37 0.161

r,r
because —2—2L =1; |F|:O; |D|=|A||F|:O.
FIIFZZ
More recent measurements reported by Buzatu et al.”® for Fick diffusivity matrix [D] of

water(1)/chloroform(2)/acetic-acid(3) mixtures at five different compositions are shown in Figure

D12D21

Figure 5-10. A similar trend is observed and the degree of coupling, quantified by , increases as

Dll 22

the two-phase region is approached.

Figure 5-11(a) presents a plot of |D|”2 as a function of (1- x3) for water(1)/chloroform(2)/acetic-

acid(3) mixtures for the two data sets. The magnitude of |D|1/2 reduces progressively as the plait point

composition is approached; this is in conformity with the restraint imposed by equation (5-26).
In order to demonstrate that the coupling effects in the Fick diffusivity matrix have their origins in the
coupling effects of the matrix of thermodynamic factors, Figure 5-11(b) presents a plot of the ratio

DiuDa of the elements of the Fick diffusivity matrix [D] for water(1)/chloroform(2)/acetic-acid(3)

D11D22

mixtures as a function of the ratio % We see a unique dependence between the two sets of data.
11+ 22

Along the spinodal curve, both of these ratios tend to unity values, in view of equation (5-26). The
important message emerging from Figure 5-11 is that diffusional coupling effects become of increasing
importance as the compositions approach values corresponding to the spinodal curve.

Krishna*" 7 has demonstrated that the Fick diffusivity matrix [D] for water(1)/chloroform(2)/acetic-

acid(3) mixtures can be estimated with reasonably good accuracy taking [D]:|A|”2[F] using

|A|1/2 = (Dl,self )Xl (D2,self )"2 (D3,self )X3 ’ taking taking Dl,self: 04; D2,self: 08, D3,self: 1.1 with units 10-9 m2 S-l‘

113



Influence of Phase Stability on Diffusivities

5.8 Diffusivities in partially miscible acetone/water/ethylacetate mixtures

Figure 5-12 shows the phase equilibrium diagram for partially miscible acetone/water/ethylacetate
mixtures at 293 K. Pertler”” reports the values of the elements of the Fick diffusivity matrix in both the
ethylacetate-rich and water-rich regions. In each of these two cases, he adopts a different numbering for
the components. For the ethylacetate-rich region, the values of the elements of Fick diffusivity matrix
[D] are reported using the component number acetone(1)/water(2)/ethylacetate(3); the values are plotted
in Figure 5-12. Particularly noteworthy is the extremely large negative value of D»;. The large negative
value of D;; is caused by the corresponding large negative value of '), as is evident in the plot on the
right upper side of Figure 5-12.

Figure 5-13 presents the experimental data of Pertler”” for the elements of the Fick diffusivity matrix
in the water-rich region of the phase diagram; these values correspond to the component numbering:
acetone(1)/ethylacetate(2)/water(3). The negative value of D, is caused by the corresponding large

negative value of I'j,, as is evident in the plot on the left upper side of Figure 5-13.

5.9 Diffusivities in glycine/L-valine/water solutions

Lo and Myerson®® report data on the Fick diffusivity matrix [D] for glycine(1)/L-valine(2)/water(3)

solutions. The data were measured as a function of the molar concentration of glycine, c;, at three

different L-valine concentrations (¢, = 0.1, 0.3, 0.05 mol L™). Figure 5-14 presents a plot of |D|l/2 as a

function of the molar concentration of glycine, ¢;. The magnitude of |D|1/2 tends to vanish as the

spinodal compositions are approached.
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5.10 List of Tables for Influence of Phase Stability on Diffusivities

Table 5-1. NRTL parameters for glyercol(1)/acetone(2)/water(3) at 298 K. These parameters are from

Krishna et al.'”

r[jzAl.j/T rﬂ.zAjl./T a; =a,

dimensionless dimensionless dimensionless
glycerol(1)/acetone(2) 0.868 2.467 0.2
glycerol(1)/water(3) -1.29 -1.52 0.2
acetone(2)/water(3) -0.665 2.095 0.2
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Table 5-2. UNIQUAC parameters for water(1)/chloroform(2)/acetic-acid(3) at 298 K. These

parameters are from Pertler.

79

These parameters needed re-adjustment in order to match the

experimental solubility data of Othmer and Ku.*' The following are the adjusted values used in the

calculations.
h g
dimensionless dimensionless
water(1) 0.92 1.4
chloroform(2) 2.87 2.41
acetic-acid(3) 2.2024 2.072

7, =exp(=4; /T) v, =exp(=4; /T)

dimensionless dimensionless
water(1)/chloroform(2) 0.4285 0.229
water(1)/acetic-acid(3) 1.274 1.312
chloroform(2)/acetic-acid(3) 1.388 0.885
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Table 5-3. UNIQUAC parameters for acetone(1)/ethyl-acetate(2)/water(3) at 293 K. These parameters

are from Pertler.”’

h q;

dimensionless dimensionless
acetone(1) 2.5735 2.336
ethyl-acetate(2) 3.4786 3.116
water(3) 0.92 1.4

z; =exp(—A[j/T) fjl.zexp(—Aﬁ/T)

dimensionless dimensionless
acetone(1)/ethyl-acetate(2) 1.3068 0.827
acetone(1)/water(3) 0.488 1.328
ethyl-acetate(2)/water(3) 0.2538 0.7705

117




Influence of Phase Stability on Diffusivities

5.11 List of Figures for Influence of Phase Stability on Diffusivities

Binaries: Fick, Onsager, M-S diffusivities
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Figure 5-1. Comparison of the Fick diffusivities, D, with the Maxwell-Stefan, P;,, and Onsager, L2,
diffusivities for (a) acetone (1) — water (2), (b) ethanol(1)-water(2), and (c) methanol(1)-n-hexane (2)
mixtures. The experimental data on D, are from Tyn and Calus,82 Grossmann and Winkelmann,74

Kéniger et al,** and Clark and Rowley® The P, are obtained by correcting for the thermodynamic

factor D,, =?‘2. Also shown are the calculations using the Vignes interpolation formula (5-4). The

Onsager coefficients L, are calculated using equation (5-6).
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Fick diffusivity in benzene/CO, mixtures

(a) (b)
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Figure 5-2. (a) Experimental data of Nishiumi and Kubota® for diffusivity of benzene (component 1)

in supercritical CO, (component 2) as a function of the reduced pressure, p, =P where Py, = 7.28
c2

MPa is the critical pressure of CO,. The measurements were made in a Taylor dispersion tube with
varying amounts of benzene injection into the tube. (b) The solid lines are the calculations of the Fick
diffusivities as a function of p/p. and composition of benzene in the mixture using the PR EOS. The PR
EOS calculations presented here use a binary interaction parameter k;, = 0.0774; for further details see

Krishna and van Baten.''
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PbTe/PbS Spinodal
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Figure 5-3. Phase equilibrium thermodynamics for PbTe(1)/PbS(2) crystalline mixtures, calculated
using the sub-regular solution model with parameters provided in Table 1 of Leute.” (a) Spinodal curve

T-x; curve. (b) Thermodynamic correction factor, I', at various temperatures.
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PbTe/PbS interdiffusion
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Figure 5-4. Fick diffusivity, D, for inter-diffusion of Te and S cations in PbTe(1)/PbS(2) crystalline
mixtures of varying compositions at three different temperatures: 973 K, 998 K, and 1023 K; these data
are re-plotted using the data scanned from Figure la of Leute.”” Also plotted (continuous solid blue
lines) using the right y-axis are the thermodynamic correction factor, I', at the corresponding

temperatures.
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PbTe/PbS interdiffusion
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Figure 5-5. Fick diffusivity, D, for inter-diffusion of Te and S cations in PbTe(1)/PbS(2) crystalline
mixtures of varying compositions at three different temperatures: 1048 K, 1073 K, and 1098 K; these
data are re-plotted using the data scanned from Figure la of Leute.”’ Also plotted (continuous solid blue
lines) using the right y-axis are the thermodynamic correction factor, I', at the corresponding

temperatures.
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Diffusivity of glycine in water
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Figure 5-6. (a) Fick diffusivity of glycine as a function of solute concentration in aqueous solutions, at
T =298.15 K and 308.15 K.” (b) Fick diffusivity of urea as a function of solute concentration in

aqueous solutions, at 7=298.15 K.”!
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Fick diffusivity matrix in Glycerol/Acetone/\Water
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Figure 5-7. The phase equilibrium diagram for glycerol(1)/acetone(2)/water(3) mixtures at 298 K.

The composition of the plait point is: Xgjycero™= 0.1477, Xacetone= 0.4163 and Xyaer= 0.4360. Also indicated

are the four different compositions for which Grossmann and Winkelmann’"® have measured the Fick

diffusivity matrix [D] for glycerol(1)/acetone(2)/water(3) mixtures. The spinodal curve is calculated

using the constraint |F|=0; for this purpose the phase equilibrium is determined from the NRTL

parameters in Table 5-1.
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Coupling effects in Glycerol/Acetone/Water
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Figure 5-8. (a) The ratio —2=2L of the elements of the Fick diffusivity matrix [D] for
D
1122

glycerol(1)/acetone(2)/water(3) mixtures plotted against the corresponding value of the ratio Lol .(b)
11+ 22

Plot of |D|”2 for glycerol(1)/acetone(2)/water(3) mixtures as a function of the mole fraction of glycerol,

X1.
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Water/Chloroform/Acetic Acid Diffusion
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Figure 5-9. Experimental data of Vitagliano et al.”’ for Fick diffusivity matrix [D] of
water(1)/chloroform(2)/acetic-acid(3) mixtures at six different compositions. The measured values of
the Fick matrix [D], in units of 10° m?® s, are indicated. The composition of the plait point is x; =
0.375, x,= 0.262, x3= 0.363. The binodal curve is from the experimental data of Othmer and Ku.?! The

spinodal curve is obtained from the criterion of phase stability; the UNIQUAC parameters are provided

in Table 5-2.
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Water/Chloroform/Acetic Acid Diffusion
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Figure 5-10. Experimental data of Buzatu et al.”® for Fick diffusivity matrix [D] of

water(1)/chloroform(2)/acetic-acid(3) mixtures at six different compositions. The measured values of

the Fick matrix [D], in units of 10° m* s

, are indicated. The composition of the plait point is x; =

0.375, x,= 0.262, x3= 0.363. The binodal curve is from the experimental data of Othmer and Ku.?! The

spinodal curve is obtained from the criterion of phase stability; the UNIQUAC parameters are provided

in Table 5-2.
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Water/Chloroform/Acetic Acid:
Coupling effects in Diffusion
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Figure 5-11. (a) Plot of |D|”2 as a function of (1- x3) for water(1)/chloroform(2)/acetic-acid(3)

mixtures. (b) The ratio DD of the elements of the Fick diffusivity matrix [D] for

11D22

water(1)/chloroform(2)/acetic-acid(3) mixtures plotted against the corresponding value of the ratio

1—‘121—‘21 .
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Acetone/Water/Ethylacetate:
Diffusivities in EA rich region
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Figure 5-12. Phase equilibrium diagram for acetone/water/ethylacetate mixtures at 293 K. The binodal
curve data is from Haeberl and Blass.*® The spinodal curve is obtained from the criterion of phase
stability; the UNIQUAC parameters are provided Table 5-3. Also indicated are the six experimental
values of of Pertler’” for the elements of the Fick diffusivity matrix in the ethylacetate-rich region of the
phase diagram; these values correspond to the component numbering:

acetone(1)/water(2)/ethylacetate(3). Note that the phase diagram is plotted in mass fractions.
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Acetone/Ethylacetate/Water:
Diffusivities in water rich region
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Figure 5-13. Experimental data of Pertler’” for the elements of the Fick diffusivity matrix in the
water-rich region of the phase diagram; these values correspond to the component numbering:

acetone(1)/ethylacetate(2)/water(3). Note that the phase diagram is plotted in mass fractions.
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Diffusivities in
glycine(1)/L-valine(2)/water(3) solutions
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Figure 5-14. Plot of |D|l/2 for glycine(1)/L-valine(2)/water(3) solutions as a function of the molar

concentration of glycine, ¢;. The data on the Fick diffusivity matrix [D] , measured at three different L-

valine concentrations (c; = 0.1, 0.3, 0.05 mol L) are culled from Table 1, Table 2, and Table 3 of Lo

and Myerson.™
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6 Ternary Liquid-Liquid Extraction

6.1 Preamble on technology of liquid-liquid extraction

Liquid extraction®® is often used in the chemical and petroleum industries to separate mixtures that
have boiling points close to one another, making distillation operations difficult and energy-intensive.*®

1 - 92 .
9091 "and eutectic’® solvents, there is

20- 8789 With the rapid development of a vast variety of ionic liquids
renewed interest in extractive separations for a variety of applications. An important application of
liquid extraction involves the selective removal of aromatics from mixtures of hydrocarbons for the
purposes of improving the properties of kerosene, diesel, and lube-oils, and manufacture of food-grade
hexane.”® *!- %> °* Solvents such as sulfolane, NMP (N-methyl pyrrolidone), ionic liquids, and eutectics,
allow the reduction of aromatics of hydrocarbon mixtures. As illustration, consider the separation a
50/50 propylbenzene/dodecane feed mixture, indicated by F in Figure 6-1. Addition of the extraction
agent, N-methyl pyrrolidone (NMP = solvent S) to the feed mixture F results in a mixture of
composition M that falls within the unstable region of the phase diagram. The mixture M separates into
two phases with compositions E (Extract) and R (Raffinate) at either ends of the tie-line shown. The
composition of the extract phase is xj¢q = 0.682507484, X34 = 0.195546114, and x3 oq = 0.1219464; the
composition of the raffinate phase, at the other end of the tie-line is: xj¢q = 0.338353679, X3¢ =
0.238690456, and x3 oq = 0.42295586. The feed phase F will equilibrate to R, and the solvent phase S
will equilibrate to E. In the extract phase E, the propylbenzene/dodecane ratio is 1.6, whereas this ratio
is reduced to 0.56 in the raffinate phase R.

Figure 6-2 shows the corresponding phase equilibrium diagram for the system
NMP(1)/propylbenzene(2)/tetradecane(3). We consider the separation a 50/50
propylbenzene/tetradecane feed mixture, indicated by F by addition of NMP as solvent. For this system,
the composition of the extract phase is xjeq = 0.689463372, x4 = 0.208896097, and x3.q =
0.101640532; the composition of the raffinate phase, at the other end of the tie-line is: xj¢q =

0.329380812, X204 = 0.250774108, and x3q = 0.41984508. The feed phase F will equilibrate to R, and
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the solvent phase S will equilibrate to E. In the extract phase E, the propylbenzene/dodecane ratio is
2.06, whereas this ratio is reduced to 0.6 in the raffinate phase R.

The design and development of liquid-liquid extraction processes is crucially dependent on our ability
to describe (a) liquid-liquid phase equilibrium thermodynamics, and (b) composition trajectories and
fluxes in both the adjoining phases as these approach equilibrium or stationary states. The design and
sizing of appropriate liquid-liquid contacting devices such as stirred vessels, sieve-tray columns, and
rotating disc contactors (RDC) are crucially dependent on accurate estimation of the interphase transfer
fluxes, and stage efficiencies, for achieving S-E, and F-R equilibration.** ** *7** % The equilibration
trajectories are dependent on the diffusivities, that are strongly influenced by considerations of phase

stability.

6.2 Murphree point efficiencies in ternary liquid-liquid extraction processes

Figure 6-3 is a schematic of liquid-liquid contacting in a sieve-tray column. This principle also applies
to other stage-wise operations. On a given stage, the continuous liquid phase can be considered to be
well-mixed; this is a reasonably good approximation.

For a ternary mixture, the diffusion fluxes in either continuous or dispersed phase is described by the

generalized Fick’s law

[D] d(x) (6-1)

(=—e[p] ) .

1
dz %4

in which the two-dimensional matrix of Fick diffusivities [D] is a product of two matrices
D, D A, A,||T,, T

|: 11 12:|=|: 11 12:||: 11 12:| (6-2)
D21 D22 A21 A22 1—‘21 1—‘22

The 2 x 2 matrix of thermodynamic factors [F]

x, du, & dx; Oy, .
B B AP z r.—~;, I,=0+x—=; i,j=12 -
RT dz = Va0 "N b (©3)

J
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can be calculated from UNIQUAC or NRTL models describing phase equilibrium thermodynamics." *°
The matrix [A] can be expressed explicitly in terms of the M-S diffusivities of the constituent binary

pairs in the ternary mixture:

|:B13(x1823+(1_x1 )B12) xlDB(Bl} _DIZ) }
[An A12:| xsz(Dza _Dlz) Dz3(xle3+(1_xz )Dlz) (6-4)
Ay Ay xDy+x,D5 + x;D,,

For partially miscible ternary mixtures, the coupling effects in the Fick matrix are primarily due to the
thermodynamic factors; this has been demonstrated in the foregoing sections, and in earlier works.*> ™

For the calculations presented in this article, we use the following, simplified expression for the

calculation of the Fick matrix

|:D11 D12}=|A|1/2 {Fn F12:| (6-5)

D, D, r, Iy

with the scalar diffusivity |A|1/2 calculated from

|A|1/2 :\/ B12D13B23 (6_6)
XD y+x,D5 +x;D,,

Let us consider the dispersion to consist of uniform and rigid droplets of diameter, d,,,,. The transient

equilibration process within a rigid spherical droplet is described by Geddes model that was originally
developed for describing binary diffusion inside vapor bubbles on distillation trays.*® For ternary

mixtures, the Geddes model can be written in two-dimensional matrix differential equation’

(x_xeq): [Q](xo X ) = %2% 2 2 1[?] :l (6'7)

The Sylvester theorem, detailed in Appendix A of Taylor and Krishna,' is required for explicit
calculation of the composition trajectories described by equation (6-7). For extraction equipment such as

a sieve tray or rotating disc contactors, the effective contact time of the dispersed phase droplets with

134



Ternary Liquid-Liquid Extraction

the surrounding continuous phase is =/, / V.., » where h¢ is the liquid/liquid dispersion height, and

rop

v

urop 18 the droplet rise velocity.”

The fractional approaches to equilibrium for contact time ¢, also termed as the Murphree

. . 48-
efficiencies,” ™’ are calculated from

X,y — X Ax
E, :Lzl_Qn_le_z;
X10 ™ Xieg Ax,
X, — X Ax
E,=—2—2=1-0,-0,,—;
'x20 _XZeq sz (6—8)
Mpog,
E, = X30 = X3 _ Ax,
X30 = X344 ﬂ_ﬂ

2

In equation (6-8), Ax; =x,, —x,,,, and Ax, =X, =X, .

6.3 Uphill diffusion in partially miscible glycerol/acetone/water mixtures

The experimental data (indicated by the white circles) on transient equilibration of glycerol-rich and
acetone-rich phases of the glycerol/acetone/water mixture were measured in a stirred Lewis cell by
Krishna et al.;”” see Figure 6-4. For the acetone-rich phase (left hand side), the initial mole fractions are
X10 = 0.0, x20 = 0.77, and x39 = 0.23; the final equilibrium composition is x; ¢q = 0.042, x3¢q = 0.894, and
X3,6q = 0.064. For the glycerol-rich phase (right hand side), the initial mole fractions are xj9 = 0.85, x20 =
0.0, and x30 = 0.15; the final equilibrium composition is xj¢q = 0.552, xp¢q = 0.164, and x3 .4 = 0.284. In

45,97

our previous works, the equilibration trajectories in either the glycerol-rich or the acetone-rich phase

were calculated using the exponential decay model
(x—x,)=[0lx, - x,} [Q]=exp[- AD}] (6-9)
where A is the Lewis cell constant. The value of the constant used in our calculations is S=10". The

precise choice of the value of this constant has no influence on the trajectories in composition space.

The calculated equilibration trajectories are indicated by the blue lines in Figure 6-4.
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We now apply the Geddes equilibration model to investigate the equilibration of a single droplet of 2
mm diameter in the dispersed phase. The initial mole fractions of the dispersed phase droplet is xj¢ =
0.85, x20 = 0.0, and x39 = 0.15. The final equilibrated composition is xje¢q = 0.552, X204 =0.164, and x3 ¢
= (0.284. The continuous phase is the acetone-rich phase with the composition at the other end of the tie-
line: x1¢q = 0.042, X304 = 0.894, and x3 g = 0.064. In our calculations we assume that the mass transfer
resistance resides predominantly within the dispersed phase; this is a common occurrence.*>*®

The matrix of thermodynamic factors, calculated at the arithmetic average composition of the

dispersed phase droplets between the initial and final equilibrated compositions (x; .y = 0.701, x2,.y =

For calculation of the transient equilibration

, 2.1516171 1.171495
0.082, and x34, = 0.217) is [[']=

0.019193 0.687462|

trajectories in the dispersed phase, the scalar diffusivity |A|1/2 is calculated from

A" = (Dl,se_zf Jr (Dz,self Je (D3,se1f J*, taking Dy et = 0.01, Dy s = 3.2, Dsgere = 0.5 with units 10° m® s''; this

, 12 o 12 8.069819 4.39379 a4
yields |A| =3.75x10"" m’s™ ; therefore, [D]=|A| [r]= x107 " m”s™ . The off-
0.071986 2.578383

diagonal element D, are significantly large in comparison to the diagonal element D;,, indicating

strongly coupled diffusion process for transfer of glycerol (1). We can also determine a “magnitude” of

the Fick diffusivity |D|l/2 =4.53x107"" m? s™ for use in the calculation of the Fourier number.
The component driving forces for transfer of glycerol (1) and acetone (2) are Ax; = x;, —x, ,, =0.298,
Ax, = X5, — X,,, =-0.164. Particularly noteworthy is that the magnitude of the driving force for acetone

transfer is lower than that for glycerol, and opposite in sign.
The transient Geddes equilibration trajectory follows a highly curvilinear path to equilibrium; see Figure
6-5(a), and is in good agreement with the experimental data. If coupling effects are completely ignored,

the equilibration trajectory follows a linear path in composition space. Figure 6-5(b) presents a plot of

1/2

4D| "t
component Murphree efficiencies as a function of the dimensionless Fourier number —— where the

drop
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droplet diameter is taken as dgop = 2 mm. During the later stages of the equilibration process, the
Murphree point efficiency of water (component 3) has values exceeding unity, indicative of uphill
diffusion.

Let us examine the trajectory followed during equilibration of homogenous mixtures of two different
compositions, indicated by L and R in Figure 6-6, for the system glycerol(1)/acetone(2)/water(3). The
composition of the equilibrated mixture 1S x; ¢q = 0.5, X2, = 0.17 and x3 ¢q = 0.33, which point lies on the
binodal curve. At the average composition, the matrix of thermodynamic factors is calculated from

23 137

phase equilibrium thermodynamics: [T’ {0.149 0.464

}. The “magnitude” of the M-S diffusivity is

estimated from |A|l/2 =(Dl,se,f)“1 (Dz,se,f)rz (DS,W)‘3 taking D seir= 0.01, Dy sei= 3.2, D3 ge1i= 0.5 with units

1/2

10° m* s the value IA""=0.095x10" m?s”. We assume that the matrix of Fick diffusivities is

0.223 0.133

[D]=|A|"*[]; the calculated value is i.e. [D]z{
0.0144 0.045

}<10‘9 m®s”. Using this diffusivity

estimate, we calculated the equilibration trajectory using

_12
X X, +Xx D D X, —X
[ 1]=l[ 1L 1,Rj+lerf z { 11 12} ( 1R 1Lj (6-10)
Xy 2( Xy, + X5 2 N4t | D, D, Xor —Xor

We note that the serpentine trajectory has penetrated the binodal envelope; see Figure 6-6. This

indicates the spontaneous emulsification is feasible. A linear equilibration trajectory (shown by pink
line) does not foray into the meta-stable zone.

In the foregoing example, an important consequence of uphill diffusion is emulsification.

6.4 Uphill diffusion in water(1)/chloroform(2)/acetic acid(3) mixtures

We now apply the Geddes equilibration model to investigate the equilibration of a single droplet of 2
mm diameter in water(1)/chloroform(2)/acetic-acid(3) mixtures mixtures in the dispersed phase; see
Figure 6-7. The initial mole fractions of the dispersed phase droplet (the droplet diameter is taken as

darop = 2 mm) is xj90 = 0.0, x0 = 0.3, and x3p = 0.7. The final equilibrated composition is xj¢q =
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0.267383532, x3,q = 0.382190021, and x3 .4 = 0.350426. The continuous phase has the compositions at
the other end of the tie-line: x;¢q = 0.609997518, x3.q = 0.081651022, and x3¢q = 0.308351. In our
calculations we assume that the mass transfer resistance resides predominantly within the dispersed
phase; this is a common occurrence. %

The matrix of thermodynamic factors, calculated at the arithmetic average composition of the

dispersed phase droplets between the initial and final equilibrated compositions (xjay = 0.133692, X7,y

For calculation of the transient

. 1.0364 0.419067
= 0.341095, and x34 = 0.525213) is [[]= 0.83488 1.0914296|

equilibration trajectories in the dispersed phase, the scalar diffusivity |A|”2 is calculated from

172

|A| —(Dlysdf)*‘ (DLW)X2 (Dlself)x3 , taking D se1= 0.4, D2 gei= 0.8, D3se1= 1.1 with units 10° m* s7'; this

yields |A|"* =8.62x10™" m’s™; therefore, [D]= |A|1/2[1"] =

0.893327 0.361215
0.719626  0.94076

} x10”m?s™ . The off-

diagonal elements are significantly large, indicating strongly coupled diffusion process. The
experimental data on the Fick diffusivity matrix, as reported by Vitagliano et al.”’, and Buzatu et al.”®

confirm the significance of diffusional coupling effects arising primarily from thermodynamic
coupling.”” We can also determine the “magnitude” of the Fick diffusivity |D|l/2 =7.62x107"° m* s for

use in the calculation of the Fourier number.
The component driving forces for transfer of water (1) and chloroform (2) are

Ax, =x,, —x,,, =-0.267384, Ax, =x,,—x,,, =-0.08219. Particularly noteworthy is that the

magnitude of the driving force for chloroform transfer is significantly lower than that for water.
The transient Geddes equilibration trajectory follows a highly curvilinear path to equilibrium; see
Figure 6-7. If coupling effects are completely ignored, the equilibration trajectory follows a linear path

in composition space. Figure 6-8(a) presents a plot of component Murphree efficiencies as a function of

1/2

4D "t
the dimensionless Fourier number 5 where the droplet diameter is taken as dgrop = 2 mm. During

drop
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the early stages of the equilibration process, the Murphree point efficiency of chloroform (component 2)
exhibits values exceeding unity, indicative of uphill diffusion. As a consequence of uphill diffusion, the
transient equilibration of chloroform exhibits a pronounced overshoot during its approach to
equilibration; see Figure 6-8(b).

Figure 6-8(c) plots the corresponding activities, @; =7,X;, of water, chloroform and acetic acid as a

function of the Fourier number. It is noteworthy that the transient equilibration process in terms of

component activities is monotonic; this implies that the composition overshoots have their origins in the

thermodynamic influences engendered by the off-diagonal elements of [F] .

We now demonstrate that uphill diffusion may open up the possibility of emulsification for
water(1)/chloroform(2)/acetic-acid(3) mixtures. Consider inter-diffusion between two compartments
maintained at two different compositions, indicated by L and R in Figure 6-9. The initial composition of
the left compartment is: x;p. = 0.3, xop = 0.3 and x3p = 0.4; the initial composition of the right
compartment is: x; g = 0.1, xor = 0.7 and x3r = 0.2. The composition at equilibrium is xjeq = 0.2, X2.q =

0.5 and x3 ¢q = 0.3; this point lies on the binodal curve. The matrix of thermodynamic factors, calculated

For calculation of the

0.9907682  0.6232338
0.90262047 0.87687646|

at the arithmetic average compositions 1is [F]z{

transient equilibration trajectories in the dispersed phase, the scalar diffusivity |A|1/2 is calculated from

|A|l/2 = (Dl,se!f)Xl (D2,self)v2 (D3,self))C3 > ttaking D1 seif= 0.4, D seif= 0.8, D3serr= 1.1 with units 10-9 m’ S-l; this

yields |A|]/2 =7.66x10""" m’s™"; therefore, [D] = |A|l/2[F] =

0.75918367 0.47755764
0.6916398 0.67191325

} x10”m?*s™". The

off-diagonal elements are significantly large in comparison to the diagonal elements, indicating strongly
coupled diffusion process. The equilibration trajectory, calculated using equation (6-10), is plotted by
the blue line in Figure 6-9. We note that composition trajectory in the left chamber has forayed into the

meta-stable region. A linear equilibration trajectory, shown by the pink line in Figure 6-9, remains in the
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homogeneous single-phase region. Uphill diffusion opens up the possibility of emulsification during

mixing of homogeneous liquid mixtures.

6.5 Uphill diffusion in water(1)/acetone(2)/ethylacetate(3) mixtures

We now apply the Geddes equilibration model to investigate the equilibration of a single droplet of 2
mm diameter in water(1)/acetone(2)/ethylacetate(3) mixtures in the dispersed phase; see Figure 6-10.
The initial mole fractions of the dispersed phase droplet is x19 = 0.87, x20 = 0.13, and x3p = 0.0. The final
equilibrated composition is xjcq = 0.4049748, x4 = 0.146113283, and x3¢q = 0.045392. The
continuous phase has the compositions at the other end of the tie-line: xjoq = 0.4049748, X204 =
0.317548401, and x3.q = 0.277477. In our calculations we assume that the mass transfer resistance
resides predominantly within the dispersed phase; this is a common occurrence.*” **

The matrix of thermodynamic factors, calculated at the arithmetic average composition of the

dispersed phase droplets between the initial and final equilibrated compositions (x1ay = 0.839247, X2.y

-0.173928 -0.584424

= 0.138057, and x3,y = 0.022696) is [F]: . For calculation of the transient
0.937821 1.518296

equilibration trajectories in the dispersed phase, the scalar diffusivity |A|”2 is calculated from

|”2 =1.16x10"° m?s™; therefore,

|A|”2= D), D)3 Dy ;  this yields; this yields |A
x,Dy+x,D +x,D,,

-0.20228 -0.67969

x10m’s™ . The off-diagonal elements are significantly large
1.090695 1.765792

[pJ= )=

in comparison to the diagonal elements, indicating strongly coupled diffusion process. The
experimental data on the Fick diffusivity matrix, as reported by Pertler”” (see Figure 5-12 and Figure

5-13) confirm the significance of diffusional coupling effects arising primarily from thermodynamic

coupling.”” We can also determine the “magnitude” of the Fick diffusivity |D|”2 =6.2x107"" m?s™ for

4D| "t
use in the calculation of the Fourier number >— . The component driving forces for transfer of

drop

| |1/2
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water (1) and acetone (2) are Ax, =x,,—x,,, =0.061505, Ax, =x,,—x,, =-0.016113. Particularly

noteworthy is that the magnitude of the driving force for acetone transfer is significantly lower than that
for water, and opposite in sign.

The transient Geddes equilibration trajectory follows a highly curvilinear path to equilibrium; see
Figure 6-10. The experimental data obtained by Haeberl and Blass® confirms that the equilibration
tends to “hug” the binodal curve rather than follow a straight-line equilibration path. If coupling effects
are completely ignored, the equilibration trajectory follows a linear path in composition space.

Figure 6-11(a) presents a plot of component Murphree efficiencies as a function of the dimensionless

4"t
2
drop

Fourier number where the droplet diameter is taken as dyop = 2 mm. During the early stages of

the equilibration process, the Murphree point efficiency of acetone (component 2) exhibits negative
values, indicative of uphill diffusion. As a consequence of uphill diffusion, the transient equilibration of
acetone exhibits a pronounced undershoot during its approach to equilibration; see Figure 6-11(b).

We now demonstrate that uphill diffusion may open up the possibility of emulsification for
water(1)/acetone(2)/ethylacetate(3) mixtures. Consider inter-diffusion between two compartments
maintained at two different compositions. The initial composition of the left compartment is: x; . = 0.05,
x21 = 0.1 and x3 1, = 0.85; the initial composition of the right compartment is: x; g = 0.55, x,r = 0.45 and
x3r = 0.0; see Figure 6-12. The composition at equilibrium is xj ¢q = 0.3, X2 = 0.275 and x3 ¢ = 0.425;
this point lies on the binodal curve. The matrix of thermodynamic factors, calculated at the arithmetic

0.169614 -0.365349

average compositions is [F]ZL) 085606 1 270447}. For calculation of the transient equilibration

|l/2

trajectories in the dispersed phase, scalar diffusivity |A is calculated from

|1/2

=2.06x10"° m*s™". Therefore,

|A|1/2 :\/ D, D3 D, : this yields |A
XDy +x, D5 + 53D,

0.34674 -0.746879 o 9 . , .
x107m"s™ . The off-diagonal element D, is a significantly
0.175003  2.59716

1= Tr)-|
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large fraction of the diagonal element D, indicating strongly coupled diffusion flux of water with
acetone driving force. The equilibration trajectory, calculated using equation (6-10), is plotted by the
blue line in Figure 6-12. We note that composition trajectory in the right chamber has forayed into the
meta-stable region. A linear equilibration trajectory, shown by the pink line in Figure 6-12 remains in
the homogeneous single-phase region. Uphill diffusion opens up the possibility of emulsification during

mixing of homogeneous liquid mixtures.

6.6 Uphill diffusion in water(1)/caprolactam(2)/toluene(3) mixtures

The extraction of caprolactam from aqueous solutions by toluene is an important processing step in
the manufacture of Nylon-66. Let us examine the diffusion equilibration trajectories for
water(1)/caprolactam(2)/toluene(3) mixtures at 298K; see Figure 6-13. The UNIQUAC parameters for
calculation of the phase equilibrium thermodynamics are provided in Table 6-3.The initial mole
fractions in the drop are xjo = 0.0, xp0 = 0.12, and x39p = 0.88. The final equilibrium composition of the
dispersed phase droplets is xjoq = 0.108182718, x2.q = 0.130183682, and x3.q = 0.7616336,
corresponding to one end of the tie-line; the other end of the tie-line, corresponding to the compositions
of the continuous phase (assumed to be of constant composition) has the compositions Xiceq =
0.725244955, x3ceq = 0.226323187, and x3¢cq = 0.0484319. In our calculations we assume that the mass
transfer resistance resides predominantly within the dispersed phase; this is a common occurrence.*> *
The matrix of thermodynamic factors, calculated at the arithmetic average composition of the

dispersed phase droplets between the initial and final equilibrated compositions (xj .y = 0.0540914, X3,y

0.8548921 -0.481726 .
. The off-diagonal elements are

= 0.1250918, and x3,, = 0.8208168) is [[']=
-0.979743 1.2381142

significantly large in comparison to the diagonal elements, indicating strongly coupled diffusion

process. For calculation of the transient equilibration trajectories in the dispersed phase, the scalar

diffusivity ~ |A

|1/2 |1/2

1s assumed to have the wvalue |A =1x10" m?’s™"; therefore,
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0. We can also determine a “magnitude” of the Fick

-0.979743 1.2381142

[D]=|A|‘”[r]=[

0.8548921 -0.481 726}
X

diffusivity |D|l/2 =7.66x107"" for use in the calculation of the Fourier number —; where the

droplet diameter is taken as dgrop = 2 mm. The component driving forces for transfer of water (1) and

caprolactam (2) are Ax, =x,,—x,, =-0.1081827, Ax, =x,,—x,, =-0.0101837. It is particularly

noteworthy that the driving force for caprolactam is significantly smaller, by about an order of
magnitude than that of water.

The transient Geddes equilibration trajectory follows a highly curvilinear path to equilibrium; see
Figure 6-13. If coupling effects are completely ignored, the equilibration trajectory follows a linear path
in composition space.

Figure 6-14(a) presents a plot of component Murphree efficiencies as a function of the dimensionless

1/2
. 4D| "t 2
Fourier number 5 where |D|
drop

=7.66x107"° m® s and the droplet diameter is taken as dgrop = 2

mm. During the initial stages of the equilibration process, the Murphree point efficiency of caprolactam
(component 2) is strongly negative, indicative of uphill diffusion. As a consequence of uphill diffusion,
the transient equilibration of caprolactam exhibits a pronounced undershoot during its approach to
equilibration; see Figure 6-14(b).

Figure 6-15 plots the Geddes equilibration trajectories for different values of the initial droplet
compositions: xj9 = 0.0, x20 = 0.0; x50 = 0.0, x20 = 0.1; x30 = 0.0, x20 = 0.2; x10 = 0.0, x20 = 0.3; x10=
0.0, x20 = 0.4; x10 = 0.0, x20 = 0.5; x10 = 0.0, x20 = 0.6. In all these six cases, the Geddes equilibration

trajectories follow curvilinear paths.

6.7 Uphill diffusion in water(1)/ethanol(2)/benzene(3) mixtures

We apply the Geddes equilibration model to investigate the equilibration of a single droplet of 2 mm

diameter in water(1)/ethanol(2)/benzene(3) mixtures in the dispersed phase. The initial mole fractions of
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the dispersed phase droplet is x19 = 0.0, x20 = 0.2, and x3p = 0.8; see Figure 6-16. The final equilibrated
composition is xj¢q = 0.082641058, x4 = 0.231828339, and x3q = 0.685531. The continuous phase
has the compositions at the other end of the tie-line: x| ¢q = 0.548327987, x3q = 0.370735283, and x3 ¢q
= 0.080937. In our calculations we assume that the mass transfer resistance resides predominantly
within the dispersed phase; this is a common occurrence.*

The matrix of thermodynamic factors, calculated at the arithmetic average composition of the

dispersed phase droplets between the initial and final equilibrated compositions (xj .y = 0.041321, X2,y

0.834875 -0.257899

= 0.215914, and x3,, = 0.742765) is [F]={ 11304071 0 709572] For calculation of the transient

equilibration trajectories in the dispersed phase, the scalar diffusivity |A|l/2 is assumed to have the value

0.834875 -0.257899

A2 =110 m*s™;  therefore, [D]=|A]"*[r]= x10”m?s™. The off-
-1.1304071 0.709572
diagonal elements are significantly large in comparison to the diagonal elements, indicating strongly

coupled diffusion process. We can also determine the “magnitude” of the Fick diffusivity

4D\ "t
" =5.49%10" m’® s for use in the calculation of the Fourier number >— . The component

drop

| |1/2

2

driving forces for transfer of water (1) and ethanol (2) are Ax =x,—x, =-0.082641,

Ax, = Xy — X,,, =-0.031828. Particularly noteworthy is that the driving force for ethanol transfer is

lower than that for water.

The transient Geddes equilibration trajectory follows a highly curvilinear path to equilibrium; see
Figure 6-16. If coupling effects are completely ignored, the equilibration trajectory follows a linear path
in composition space.

Figure 6-17(a) presents a plot of component Murphree efficiencies as a function of the dimensionless

1/2
4D| "t
Fourier number | 5 where the droplet diameter is taken as dg,p = 2 mm. During the early stages of
drop
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the equilibration process, the Murphree point efficiency of ethanol (component 2) exhibits negative
values, indicative of uphill diffusion. As a consequence of uphill diffusion, the transient equilibration of

ethanol exhibits a pronounced undershoot during its approach to equilibration; see Figure 6-17(b).

6.8 Uphill diffusion in water(1)/ethyl acetate (2)/ethanol(3) mixtures

We apply the Geddes equilibration model to investigate the equilibration of a single droplet of 2 mm
diameter in water(1)/ethyl acetate(2) /ethanol(3) mixtures in the dispersed phase. The initial mole
fractions of the dispersed phase droplet is xj9 = 0.0, x20 = 0.85, and x39 = 0.15; see Figure 6-18. The final
equilibrated composition is xj¢q = 0.359190924, x5, = 0.499644619, and x3.q4 = 0.141164. The
continuous phase has the compositions at the other end of the tie-line: x;¢q = 0.929439886, x3¢q =
0.018683455, and x3¢q = 0.051877. In our calculations we assume that the mass transfer resistance
resides predominantly within the dispersed phase; this is a common occurrence.*” *®

The matrix of thermodynamic factors, calculated at the arithmetic average composition of the
dispersed phase droplets between the initial and final equilibrated compositions (x1ay = 0.179595, X2y

. 1327858 0.650985
= 0.674822, and x3,, = 0.145582) is [[']=

. For calculation of the transient
0.929704 1.279449

equilibration trajectories in the dispersed phase, the scalar diffusivity |A|l/2 is assumed to have the value

1.327858 0.650985

|A|1/2 =1x10~ m’s™'; therefore, [D]= |A|l/2[1“]={
0.929704 1.279449

}x 10°m’s™ . The off-diagonal

elements are significantly large in comparison to the diagonal elements, indicating strongly coupled

diffusion process. We can also determine the “magnitude” of the Fick diffusivity |D|l/2 =1.05x10"° m?

1/2
4D| "t
s for use in the calculation of the Fourier number | >— .The component driving forces for transfer
drop

of water (1) and ethyl acetate (2) are Ax, =x,-x, =-0.359191, Ax,=x,-x,, =0.350355.
Particularly noteworthy is that the driving forces for transfer of ethanol transfer is practically nil:
Axy = X35 — X3, = 0.0088.
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The transient Geddes equilibration trajectory follows a curvilinear path to equilibrium; see Figure
Figure 6-18. If coupling effects are completely ignored, the equilibration trajectory follows a linear path
in composition space.

Figure 6-19(a) presents a plot of component Murphree efficiencies as a function of the dimensionless

1/2
4D| 't
Fourier number | 3 where the droplet diameter is taken as dg:op = 2 mm. During the early stages of
drop

the equilibration process, the Murphree point efficiency of ethanol (component 3) exhibits value
exceeding unity, indicative of uphill diffusion. As a consequence of uphill diffusion, the transient
equilibration of ethanol exhibits a pronounced undershoot during its approach to equilibration; see

Figure 6-19(b).

6.9 Uphill diffusion in furfural(1)/formic acid(2)/water(3) mixtures

We apply the Geddes equilibration model to investigate the equilibration of a single droplet of 2 mm
diameter in furfural(1)/formic acid(2)/water (3) mixtures in the dispersed phase. The initial mole
fractions of the dispersed phase droplet is x;9 = 0.98, x20 = 0.02, and x30 = 0.0; see Figure 6-20. The final
equilibrated composition is xjeq = 0.519537719, x3.4 = 0.068252025, and x3.q = 0.41221026. The
continuous phase is the water-rich phase with the composition at the other end of the tie-line: x;¢q =
0.033873374, x3.q=0.037692034, and x3 ¢q = 0.92843459. In our calculations we assume that the mass
transfer resistance resides predominantly within the dispersed phase; this is a common occurrence.**®

The matrix of thermodynamic factors, calculated at the arithmetic average composition of the
dispersed phase droplets between the initial and final equilibrated compositions (x; ., = 0.74976886,

, 0.50802915 0.90511575
Xaav = 0.04412601, and x3 4y = 0.20610513) is [T]=

. For calculation of the
0.40555182 1.653920

transient equilibration trajectories in the dispersed phase, the scalar diffusivity |A|1/2 is assumed to have

0.50802915 0.9051157

the value |A|1/2 =1x10" m’s™"; therefore, [D] = |A|1/2[F] ={
0.40555182  1.653920

5
} x10°m?s™ . The
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off-diagonal elements are significantly large in comparison to the diagonal elements, indicating strongly

coupled diffusion process. We can also determine the “magnitude” of the Fick diffusivity

1/2
4D 't
=6.9x10™" m’ 5™ for use in the calculation of the Fourier number | 2| .The component
drop

1/2

o]

driving forces for transfer of furfural (1) and formic acid (2) are Ax, =x,—x,, =0.46046228,
Ax, =Xy, = X,,, =-0.048252(@ . Particularly noteworthy is that the driving force for formic acid transfer

is significantly lower in magnitude than that of furfural, and opposite in sign.

The transient Geddes equilibration trajectory follows a highly curvilinear path to equilibrium, hugging
the binodal curve; see Figure 6-20. If coupling effects are completely ignored, the equilibration
trajectory follows a linear path in composition space.

Figure 6-21(a) presents a plot of component Murphree efficiencies as a function of the dimensionless

1/2
4D| 't
Fourier number | 3 where the droplet diameter is taken as dgop = 2 mm. During the early stages of
drop

the equilibration process, the Murphree point efficiency of formic acid (component 2) exhibits negative
values, indicative of uphill diffusion. As a consequence of uphill diffusion, the transient equilibration of

formic acid exhibits a pronounced undershoot during its approach to equilibration; see Figure 6-21(b).

6.10 Uphill diffusion in NMP(1)/propylbenzene(2)/dodecane(3) mixtures

Consider the separation a 50/50 propylbenzene/dodecane feed mixture, indicated by F in Figure
Figure 6-1. Addition of the extraction agent, N-methyl pyrrolidone (NMP = solvent S) to the feed
mixture F results in a mixture of composition M that falls within the unstable region of the phase
diagram. The mixture M separates into two phases with compositions E (Extract) and R (Raffinate) at
either ends of the tie-line shown. The composition of the extract phase is xj¢q = 0.682507484, X34 =
0.195546114, and x3q = 0.1219464; the composition of the raffinate phase, at the other end of the tie-

line is: xjeq = 0.338353679, x2.q = 0.238690456, and x3.q = 0.42295586. The feed phase F will
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equilibrate to R, and the solvent phase S will equilibrate to E. In the extract phase E, the
propylbenzene/dodecane ratio is 1.6, whereas this ratio is reduced to 0.56 in the raffinate phase R.

We first investigate the F-R equilibration trajectory, using the assumption that the 50/50
propylbenzene/dodecane feed mixture is dispersed as droplets of 2 mm diameter in a continuous phase
consisting of solvent rich phase; see Figure 6-22. The initial mole fractions in the drop are x;9 = 0.0, x20
= 0.5, and x3p = 0.5. The final equilibrated composition is x ¢q = 0.338353679, x;q = 0.238690456, and
X3,6q = 0.42295586. The final equilibrated composition is xj¢q = 0.682507484, x5.q = 0.195546114, and
X3,6q = 0.1219464, corresponding to one end of the tie line. The continuous phase has the composition at
the other end of the tie-line: x1¢q = 0.338353679, X204 = 0.238690456, and x3.q = 0.42295586. In our
calculations we assume that the mass transfer resistance resides predominantly within the dispersed
phase; this is a common occurrence.*> *

The matrix of thermodynamic factors, calculated at the arithmetic average composition of the

dispersed phase droplets between the initial and final equilibrated compositions (x; ., = 0.16917684,

0.51513196 -0.29198399

Xaay = 0.36934523, and x34, = 0.46147793) is [r]:{ 017794347 120329934 } For calculation of

the transient equilibration trajectories in the dispersed phase, the scalar diffusivity |A|1/2 is assumed to

|]/2

have the value |A =1x10" m?s™'; therefore,

0.51513196 -0.29198399 o 2 ,
= x107m"s™ . The off-diagonal element D), has the same
-0.17794847 1.20329934

[D]=|A][r]

order of magnitude as the diagonal element Dy, indicating that coupled diffusion phenomena cannot be

ignored. We can also determine the “magnitude” of the Fick diffusivity |D|1/2 =7.54%x107" m* s for

1/2
4D| ¢
use in the calculation of the Fourier number | 2| .The component driving forces for transfer of NMP
drop

(1) and propylbenzene (2) are Ax, =x,,—x, =-0.3383538, Ax,=x,,—x,, =0.26130954.
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Particularly noteworthy is that the driving force for propylbenzene transfer is of the same order of
magnitude as that of NMP, but opposite in sign.

The transient Geddes equilibration trajectory follows a highly curvilinear path to equilibrium, hugging
the binodal curve; see Figure 6-22. If coupling effects are completely ignored, the equilibration
trajectory follows a linear path in composition space.

Figure 6-23(a) presents a plot of component Murphree efficiencies as a function of the dimensionless

1/2

4D
Fourier number —; where the droplet diameter is taken as dgop = 2 mm. During the early stages of

drop

the equilibration process, the Murphree point efficiency of dodecane (component 2) exhibits negative
values, indicative of uphill diffusion. As a consequence of uphill diffusion, the transient equilibration of
dodecane exhibits a slight, yet perceptible, composition overshoot during its approach to equilibration;
see Figure 6-23(b).

We now apply the Geddes equilibration model to investigate the equilibration of a single droplet of 2
mm diameter in the system N-methylpyrrolidone (NMP)(1)/propylbenzene(2)/dodecane(3) mixtures in
which the the dispersed phase is rich in the solvent NMP. The initial mole fractions in the drop are
assumed to be xj9 = 0.82, xp0 = 0.18, and x39 = 0.0; see Figure 6-24. The final equilibrated composition
1S X1eq = 0.682507484, X304 = 0.195546114, and x3.q = 0.1219464.The continuous phase has the
composition at the other end of the tie-line: xi¢q = 0.338353679, x2.q = 0.238690456, and x3¢q =
0.42295586. In our calculations we assume that the mass transfer resistance resides predominantly
within the dispersed phase; this is a common occurrence.**®
The matrix of thermodynamic factors, calculated at the arithmetic average composition of the

dispersed phase droplets between the initial and final equilibrated compositions (x; .y = 0.75125374,

0.03813646 -0.73226404

X2.av = 0.18777306, and x3 5, = 0.0609732) is [[']=
’ ’ 0.51435241  1.5112041

} . For calculation of the

transient equilibration trajectories in the dispersed phase, the scalar diffusivity |A|”2 is assumed to have
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0.03813646 -0.73226404
the value |A|"*=1x10 m’s™; therefore, [D]= |A|l/2[F] = “m’s™
0.51435241 1.5112041

Both off-diagonal elements are significantly large in comparison to the diagonal elements, indicating

strongly coupled diffusion process. We can also determine the “magnitude” of the Fick diffusivity

4D| "t
|D|”2 =6.9x10"" m® s™' for use in the calculation of the Fourier number —— —.The component

drop

|1/2

driving forces for transfer of NMP (1) and propylbenzene (2) are Ax, =x,—x,, =0.13749252,
Ax, = x,y — x,,, =-0.01554611. Particularly noteworthy is that the driving force for propylbenzene

transfer is significantly lower in magnitude than that of NMP, and opposite in sign.

The transient Geddes equilibration trajectory follows a highly curvilinear path to equilibrium, hugging
the binodal curve; see Figure 6-24. If coupling effects are completely ignored, the equilibration
trajectory follows a linear path in composition space.

Figure 6-25(a) presents a plot of component Murphree efficiencies as a function of the dimensionless

1/2
4D| "t
Fourier number | D where the droplet diameter is taken as dyop = 2 mm. During the early stages of
drop

the equilibration process, the Murphree point efficiency of propylbenzene (component 2) exhibits
negative values, indicative of uphill diffusion. As a consequence of uphill diffusion, the transient
equilibration of propylbenzene exhibits a pronounced composition undershoot during its approach to

equilibration; see Figure 6-25(b).

6.11 Uphill diffusion in NMP(1)/propylbenzene(2)/tetradecane(3) mixtures

We investigate the F-R equilibration trajectory, using the assumption that the 50/50
propylbenzene/tetradecane feed mixture is dispersed as droplets of 2 mm diameter in a continuous phase
consisting of solvent rich phase; see Figure 6-26. The initial mole fractions in the drop are x;9 = 0.0, x20
= 0.5, and x3p = 0.5. The final equilibrated composition is xj ¢q = 0.329380812, x;q = 0.250774108, and

X3,0q = 0.41984508, corresponding to one end of the tie line. The continuous phase has the composition
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at the other end of the tie-line: x; ¢q = 0.329380812, x4 = 0.250774108, and x3 oq = 0.41984508. In our
calculations we assume that the mass transfer resistance resides predominantly within the dispersed
phase; this is a common occurrence.* %

The matrix of thermodynamic factors, calculated at the arithmetic average composition of the

dispersed phase droplets between the initial and final equilibrated compositions (x; ., = 0.16469041,

0.52331466 -0.51132939

X2av = 0.37538705, and x3,y = 0.45992254) is [F]={ 013074844 2 17166685] For calculation of

the transient equilibration trajectories in the dispersed phase, the scalar diffusivity |A|1/2 is assumed to

have the value |A|”2 =1x10"° m?s™'; therefore,
12 0.52331466 -0.51132939 o 24 . ,
[D]=|A| [F]= 0.13074844 217166685 x107m’s™ . The off-diagonal element D, is the same

order of magnitude as the diagonal element Dy, indicating that coupling effects are perhaps not

negligible process. We can also determine the “magnitude” of the Fick diffusivity |D|l/2 =1.03x10~° m’

s for use in the calculation of the Fourier number 5— . The component driving forces for transfer

of NMP (1) and propylbenzene (2) are Ax, = x,, —x,,, =-0.3293808I, Ax, =x,, —x,,, =0.24922589.

Particularly noteworthy is that the driving force for propylbenzene transfer is of the same order of
magnitude as that of NMP, but opposite in sign.

The transient Geddes equilibration trajectory follows a highly curvilinear path to equilibrium, hugging
the binodal curve; see Figure 6-26. If coupling effects are completely ignored, the equilibration
trajectory follows a linear path in composition space.

Figure 6-27(a) presents a plot of component Murphree efficiencies as a function of the dimensionless

1/2
4D| 't
Fourier number | 3 where the droplet diameter is taken as dgop = 2 mm. During the early stages of
drop

the equilibration process, the Murphree point efficiency of tetradecane (component 3) exhibits negative
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values, indicative of uphill diffusion. As a consequence of uphill diffusion, the transient equilibration of
tetradecane exhibits a slight, yet perceptible, composition overshoot during its approach to equilibration;

see Figure 6-27(b).
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6.12 List of Tables for Ternary Liquid-Liquid Extraction

Table 6-1. NRTL parameters for NMP(1)/propylbenzene(2)/dodecane(3) at 298 K. The parameters

are from Al-Jimaz et al.”*

4, A Ay =i

K K dimensionless
NMP(1)/ 16.061 52.731 0.2
propylbenzene(2)
NMP(1)/dodecane(3) 875.58 161 0.2
propylbenzene(2)/ 271.23 -299.3 0.2
dodecane(3)
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Table 6-2. NRTL parameters for NMP(1)/propylbenzene(2)/tetradecane(3) at 298.15 K.

parameters are from Al-Jimaz et al.”*

The

4, 4; Ay =i

K K dimensionless
NMP(1)/ -854.09 474.73 0.2
propylbenzene(2)
NMP(1)/tetradecane(3) 1035.4 122.26 0.2
propylbenzene(2)/ 84.968 -797.95 0.2
tetradecane(3)
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Table 6-3. UNIQUAC parameters for water(1)/caprolactam(2)/toluene(3) at 298.15 K. These

parameters are from Table 1, Chapter 7 of the PhD dissertation of Bollen.'®

7 g;

dimensionless dimensionless
water(1) 0.92 1.4
caprolactam(2) 4.6106 3.724
toluene(3) 3.9928 2.968

TU:AU./T rﬁ:Aﬂ/T

dimensionless dimensionless
water(1)/caprolactam(2) 0.1027043 3.647516849
water(1)/ toluene(3) 0.2563201 0.0964476
caprolactam(2)/toluene(3) 0.3324973 1.4351863
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Table 6-4. UNIQUAC parameters for water (1)/ethanol(2)/benzene(3) at 298.15 K. These parameters

are taken from Example 05.20 of Gmehling et al.'"'

7 g;
dimensionless dimensionless
water(1) 0.92 1.4
ethanol(2) 2.105 1.972
benzene(3) 3.1878 2.4
rij:A,.j/T Tﬂ:Aﬂ/T
dimensionless dimensionless
water(1)/ethanol(2) 0.1713 2.9060
Water(1)/benzene(3) 0.354 0.0117
ethanol(2)/benzene(3) 1.359 0.3625
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Table 6-5. UNIQUAC parameters for water (1)/ethyl acetate(2)/ethanol(3). These parameters are

taken from Table 3 of Resa and Goenaga.102

7 g;
dimensionless dimensionless
water(1) 0.92 1.4
Ethyl acetate (2) 3.4786 3.116
ethanol(3) 2.105 1.972
4, 4,
K" K"
water(1)/ethyl 176.158 320.83
acetate(2)
Water(1)/ethanol(3) -109.102 -137.836
Ethyl 390.218 -355.791
acetate(2)/ethanol(3)
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Table 6-6. NRTL parameters for furfural(1)/formic acid(2)/water (3) at 298 K. These parameters are

taken from Table 2 of Reyes-Labarta et al.'®

7y =4 /T 7 =4 [T &y =4,
dimensionless dimensionless dimensionless
Furfural(1)/ 3.0959 -1.662 0.2
formic acid(2)
Furfural(1)/ 0.1044 4.126 0.2
water(3)
Formic acid (2)/ 1.386 -3.523 0.2

water(3)
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6.13 List of Figures for Ternary Liquid-Liquid Extraction

NMP/propylbenzene/dodecane

Propylbenzene

0.0

1.0

0.9
=== uncoupled diffusion
e (Geddes equilibration trajectory 0.2

NMP(1)/ 04
propylbenzene(2)/

dodecane(3) mixture; 05
T=298K ’

0.6

//.&
M'/ tie-line
-

spinodal
curve

0.2

0.1

) 0.0
NMP 00 01 02 03 04 05 06 07 08 09 10 Dodecane

Figure 6-1.The phase equilibrium diagram for the system NMP(1)/propylbenzene(2)/dodecane(3) at
298 K. Pure N-methyl pyrrolidone (NMP, S = solvent) is mixed with a 50/50 propylbenzene/dodecane
feed mixture (F) to yield mixture M that lies in the two phase region. The plait point is indicated by P.
The mixture separates into two phases with compositions E (Extract) and R (Raffinate) at either ends of
the tie-line shown. The feed phase F will equilibrate to R, and the solvent phase S will equilibrate to E.
The NRTL parameters for calculation of the phase equilibrium thermodynamics are provided in Table

6-1.
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NMP/propylbenzene/tetradecane

Propylbenzene

0.0

1.0

0.0
Tetradecane

Figure 6-2.The phase equilibrium diagram for the system NMP(1)/propylbenzene(2)/tetradecane(3) at
298 K. Pure N-methyl pyrrolidone (NMP, S = solvent) is mixed with a 50/50 propylbenzene/dodecane
feed mixture (F) to yield mixture M that lies in the two phase region. The plait point is indicated by P.
The mixture separates into two phases with compositions E (Extract) and R (Raffinate) at either ends of
the tie-line shown. The feed phase F will equilibrate to R, and the solvent phase S will equilibrate to E.
The NRTL parameters for calculation of the phase equilibrium thermodynamics are provided in Table

6-2.
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Liquid-liquid mass transfer

Continuous phase liquid
entering
Lc’ XCE
Dispersed phase leaving
Ly, Xq.
Dispersed Continuous
phase »phase
€ Dispersed phase
entering
Ly, Xge
Continuous phase liquid
Interphase mass leaving
transfer Lo XoL

Figure 6-3. Schematic of single-stage contacting in sieve-tray column.
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Glycerol/Acetone/Water Equilibration

Stirred
. Lewis
Cell
Acetone Water
| HO
0.0 .
= Glycerol :
{ H,0 0.1
0.9
0.2
0 tie-line
glycerol(1)/acetone(2)/ i
water(3) mixture; 0.3, O Expt da_ta
T=298K 0.7 @ niait point
0.4

Yoo o 1

X,
8
0.9 spinodal
George Lenell Standart curve
University of Manchester 1.0 Xeq (
1921-1978 Acetone 00 01 02 03 04 05 06 07 08 09 10 Glycerol

Figure 6-4. Transient equilibration trajectories for the system glycerol(1)/acetone(2)/water(3) mixtures
at 298 K. For the acetone-rich phase (left hand side), the initial mole fractions drop are x;9 = 0.0, x29 =
0.77, and x39 = 0.23; the final equilibrium composition is xjeq = 0.042, X34 = 0.894, and x3 .q = 0.064.
For the glycerol-rich phase (right hand side), the initial mole fractions are x;9 = 0.85, x20 = 0.0, and x3p =
0.15; the final equilibrium composition is Xxj¢q = 0.552, X204 = 0.164, and x3.4 = 0.284. The
experimental data for the equilibration paths for glycerol(1)/acetone(2)/water(3) mixture measured in a

stirred Lewis cell by Krishna et al.”’ are also indicated. The two trajectories are calculated using

1/2

[D]=|A]"*[r] with [A]"* =(Dyy ) (D J2 (Ds,0p ), taking D= 0.01, Dagair= 3.2, Dsser= 0.5 with

units 10° m* s™'; this diffusivity information has been derived from our earlier work.” The calculation

details are provided by Krishna.*
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Glycerol/Acetone/Water (®
Geddes Equilibration
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0.0
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Figure 6-5. (a) Transient equilibration trajectories for glycerol(1)/acetone(2)/water(3) mixture at 298
K, calculated using the Geddes model. The initial mole fractions of the dispersed phase droplets of 2
mm diameter is xjo = 0.85, x20 = 0.0, and x30 = 0.15. The final equilibrated composition is x; ¢q = 0.552,
X2,eq = 0.164, and x3 4 = 0.284. (b) Plot of the component Murphree efficiencies, £, as function of the

Fourier number. The phase equilibrium is determined from the NRTL parameters in Table 5-1.
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Glycerol/Acetone/Water emulsification

e coupled equilibration trajectory
== uncouled diffusion
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Figure 6-6. Trajectory followed during equilibration of homogenous mixtures of two different
compositions for the system glycerol(1)/acetone(2)/water(3); the equilibrium composition x;¢q = 0.5,
X2eq = 0.17 and x3¢q = 0.33. The NRTL parameters for calculation of the phase equilibrium

thermodynamics are provided in Table 5-1.

164



Ternary Liquid-Liquid Extraction

Water/chloroform/acetic acid: equilibration
trajectory

0.8 e Geddes equilibration trajectory
L === uncoupled diffusion
X o7k %
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] acetic acid(3);
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©
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L SR T
tie-line

water(1)/chloroform(2)/
acetic acid(3);
T=298K

0.0
Water 00 01 02 03 04 05 06 07 08 09 10 Chloroform

Figure 6-7. Transient equilibration trajectories for water(1)/chloroform(2)/acetic-acid(3) mixture,
calculated using the Geddes model, plotted in composition space. The initial mole fractions of the
dispersed phase droplet is x19 = 0.0, x20 = 0.3, and x30 = 0.7. The final equilibrated composition is xj ¢q =
0.267383532, x2¢q = 0.382190021, and x3q = 0.350426. The UNIQUAC parameters are provided in

Table 5-2.
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Figure 6-8. Transient equilibration trajectories for water(1)/chloroform(2)/acetic-acid(3) mixture. (a)

Plot of the component Murphree efficiencies, Ei, as function of the Fourier number. (b) Plot of the

transient equilibration compositions (mole fractions) of chloroform and acetic acid as a function of the

Fourier number. (c) Plot of the transient equilibration activities of water, chloroform and acetic acid as a

function of the Fourier number.
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Figure 6-9. Transient inter-diffusion in a diffusion couple consisting of water(1)/chloroform(2)/acetic-

acid(3) mixtures.
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Water/Acetone/Ethylacetate: equilibration
trajectory
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Figure 6-10. Transient equilibration trajectories for water(1)/acetone(2)/ethylacetate(3) mixture,
calculated using the Geddes model, plotted in composition space. The initial mole fractions of the
dispersed phase droplet of 2 mm diameter is x;p = 0.87, x20 = 0.13, and x39p = 0.0. The final equilibrated
composition is xj¢q = 0.4049748, x3.q = 0.146113283, and x3 ¢q = 0.045392. The UNIQUAC parameters

for calculation of the phase equilibrium thermodynamics are provided in Table 5-3.
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Water/Acetone/Ethylacetate: equilibration
trajectory
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Figure 6-11. Transient equilibration trajectories for water(1)/acetone(2)/ethylacetate(3) mixture. (a)
Plot of the component Murphree efficiencies, Ei, as function of the Fourier number. (b) Plot of the

transient equilibration compositions of water and acetone as a function of the Fourier number.

169



Ternary Liquid-Liquid Extraction

Water/Acetone/Ethylacetate: emulsification
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Figure 6-12. Trajectory followed during equilibration of homogenous mixtures of two different
compositions for the system water(1)/acetone(2)/ethylacetate(3); the equilibrium composition xj¢q =
0.30, x2,6q = 0.275 and x3 ¢q = 0.425. The UNIQUAC parameters for calculation of the phase equilibrium

thermodynamics are provided in Table 5-3.
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Water/Caprolactam/Toluene equilibration
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Figure 6-13. Transient equilibration trajectories for the system water(1)/caprolactam(2)/toluene(3) at
298 K. The initial mole fractions in the drop are x;o = 0.0, x20 = 0.12, and x3p = 0.88. The final
equilibrium composition is xj¢q = 0.108182718, x4 = 0.130183682, and x3.q = 0.7616336. The
UNIQUAC parameters for calculation of the phase equilibrium thermodynamics are provided in Table

6-3.

171



Ternary Liquid-Liquid Extraction

Water/Caprolactam/Toluene equilibration
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Figure 6-14. Transient equilibration trajectories for the system water(1)/caprolactam(2)/toluene(3) at
298 K. (a) Plot of the component Murphree efficiencies, Ej, as function of the Fourier number. (b) Plot
of the transient equilibration compositions of water and caprolactam as a function of the Fourier

number.
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Water/Caprolactam/Toluene equilibration
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Figure 6-15.Transient equilibration trajectories for the system water(1)/caprolactam(2)/toluene(3) at
298 K. The initial mole fractions in the drop are binary caprolactam(2)/toluene(3) mixtures of varying
compositions. The final equilibrium composition is x;¢q = 0.76316675, X34 = 0.200866022, and x3¢q =
0.035967228. The UNIQUAC parameters for calculation of the phase equilibrium thermodynamics are

provided in Table 6-3.
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Water/ethanol/benzene equilibration
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Figure 6-16. Transient equilibration trajectories for the system water(1)/ethanol(2)/benzene(3) at 298
K. The initial mole fractions in the drop are x;o = 0.0, x50 = 0.2, and x39 = 0.88. The final equilibrated
composition 1S Xjeq = 0.082641058, x3.q = 0.231828339, and x3.q4 = 0.685531. The UNIQUAC

parameters are provided in Table 6-4.
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Water/ethanol/benzene equilibration
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Figure 6-17. Transient equilibration trajectories for the system water(1)/ethanol(2)/benzene(3) at 298

K. (a) Plot of the component Murphree efficiencies, Ei, as function of the Fourier number. (b) Plot of

the transient equilibration compositions of water (1) and ethanol (2) as a function of the Fourier number.
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Water/ethyl acetate/ethanol equilibration
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Figure 6-18. Transient equilibration trajectories for the system water(1)/ethyl acetate(2)/ethanol(3) at
298 K. The initial mole fractions in the drop are x;o = 0.0, x0 = 0.85, and x3p = 0.15. The final
equilibrated composition is xjeq = 0.359190924, x.4 = 0.499644619, and x3.q = 0.141164. The

UNIQUAC parameters are provided in Table 6-5.
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Water/ethyl acetate/ethanol equilibration
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Figure 6-19. Transient equilibration trajectories for the system water(1)/ethyl acetate(2) /ethanol(3) at

298 K. (a) Plot of the component Murphree efficiencies, Ej, as function of the Fourier number. (b) Plot

of the transient equilibration compositions of water (1) and ethanol (3) as a function of the Fourier

number.
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Figure 6-20.Transient equilibration trajectories for the system furfural(1)/formic acid(2)/water (3) at

298 K. The initial mole fractions in the drop are x;o = 0.98, x;0 = 0.02, and x3p = 0.0. The final

equilibrated composition is xj¢q = 0.519537719, x34 = 0.068252025, and x3q = 0.41221026. The

NRTL parameters for calculation of the phase equilibrium thermodynamics are provided in Table 6-6.

178



Ternary Liquid-Liquid Extraction

Furfural/formic acid/water equilibration
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Figure 6-21.Transient equilibration trajectories for the system furfural(1)/formic acid(2)/water (3) at
298 K. (a) Plot of the component Murphree efficiencies, Ej, as function of the Fourier number. (b) Plot
of the transient equilibration compositions of furfural and formic acid as a function of the Fourier

number.
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NMP/propylbenzene/dodecane equilibration
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Figure 6-22. Transient equilibration trajectories
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NMP(1)/propylbenzene(2)/dodecane(3) at 298 K. The initial mole fractions in the drop are x;9 = 0.0, x29

= 0.5, and x30 = 0.5. The final equilibrated composition is xj¢q = 0.338353679, x1.q = 0.238690456, and

X3.eq = 0.42295586. The NRTL parameters are provided in Table 6-1.
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NMP/propylbenzene/dodecane equilibration
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Figure 6-23. Transient equilibration in the system NMP(1)/propylbenzene(2)/dodecane(3) at 298 K.

(a) Plot of the component Murphree efficiencies, Ej, as function of the Fourier number. (b) Plot of the

transient equilibration compositions of propylbenzene and dodecane as a function of the Fourier

number.
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NMP/propylbenzene/dodecane equilibration
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Figure 6-24. Transient equilibration trajectories for the system

NMP(1)/propylbenzene(2)/dodecane(3) at 298 K. The initial mole fractions in the drop are x;o = 0.82,

x20 = 0.18, and x39 = 0.0. The final equilibrated composition is x; ¢q = 0.682507484, x,.q =0.195546114,

and x3¢q = 0.1219464. The NRTL parameters are provided in Table 6-1.
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NMP/propylbenzene/dodecane equilibration
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as function of the Fourier number. (b) Plot of the transient equilibration compositions of NMP and

propylbenzene as a function of the Fourier number.

183



Ternary Liquid-Liquid Extraction

NMP/propylbenzene/tetradecane equilibration
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Figure 6-26. Transient equilibration trajectories for the system
NMP(1)/propylbenzene(2)/tetradedecane(3) at 298 K. The initial mole fractions in the drop are xjo =
0.0, x20 = 0.5, and x30 = 0.5. The final equilibrated composition is xj¢q = 0.329380812, Xx3¢q =
0.250774108, and x3¢q = 0.41984508. The NRTL parameters for calculation of the phase equilibrium

thermodynamics are provided in Table 6-2.
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NMP/propylbenzene/tetradecane equilibration
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Figure 6-27. Transient equilibration in the system NMP(1)/propylbenzene(2)/tetradedecane(3) at 298

K. (a) Plot of the component Murphree efficiencies, £j, as function of the Fourier number. (b) Plot of the

transient equilibration compositions of propylbenzene and tetradecane as a function of the Fourier

number.
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7 Diffusion in Polymeric Systems

For modelling mixture diffusion in polymeric systems, we need to reformulate the Maxwell-Stefan

104108 The use of volume fractions

equations using volume fractions instead of mole fractions.
facilitates the application of the Flory-Huggins model for the calculation of the phase equilibrium

thermodynamics and the matrix of thermodynamic correction factors [I']. For detailed derivations, see

107, 108

our earlier publications. The M-S equations written in terms of volume fractions take the form (m

= polymer)

Ldlul < ¢j(ui_uj)+¢m(ui). i=12...n

RT &= & B B,
o 7-1
_¢'Ld'ui =i¢i¢j(ui_uj)+¢i¢m(ui). i=12..n o
zRT dz = B;/ Bl’:n s gLigens

J#i

The modified M-S diffusivities H, are related to the M-S diffusivities D, =D, , defined in terms of

Ji?

. 7 Blej v i Dime v ;
mole fractions, by: ¢,D,V,=—==D;, and ¢BD,V, = =D, . The symmetry constraint

g o
%

. . .. Pl — pr_ p’ p’ o
imposed by the Onsager Reciprocal Relations is D, = 7”V =D, = 7” v, L= 7’/ It is important

i J

N

to note that the M-S diffusivities D; are not symmetric.

7.1 Immersion precipitation process for membrane preparation

Diffusion close to phase transition regions is of importance in membrane preparation by immersion
precipitation.'” "% In order to illustrate this, let us consider diffusion in the ternary mixture consisting
of water (non-solvent, component 1), acetone (solvent, component 2) and cellulose acetate (polymer,
component m); a detailed analysis of phase equilibria and diffusion in polymer solutions is available in

our earlier publications.'”” '® The binodal and spinodal curves for this ternary mixture are shown in
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Figure 7-1; the calculations are based on the Flory-Huggins equations that relate the component

¢ 107, 108
7

activities to volume fractions, The spinodal curve defines the limit of phase stability, and

along the spinodal curve, the condition || = 0 must be satisfied, i.e. we must have I [5, =I,[;,, the

product of the off-diagonal elements is equal in magnitude to the product of the diagonal elements.* 7>

This situation implies a significant degree of thermodynamic coupling.

Curvilinear equilibration trajectories for water/acetone/CA have been reported in the immersion
precipitation process for membrane preparation.'® ''® Figure 7-1 shows the transient equilibration
trajectory when a 10% solution of Cellulose Acetate (CA) in acetone is immersed in a bath of water-rich
aqueous solution of water/acetone; we note the curvilinear trajectory has entered the meta-stable region.
This foray into the meta-stable region impacts on the membrane structure.'” ''° Tsay and McHugh'"!
present detailed modelling of the transient equilibration trajectories for water/acetone/CA systems; see
also Krishna,'"”'%®

In order to demonstrate the foray into the meta-stable region, we consider transient diffusion within a
spherical droplet of 2 mm diameter in a continuous solvent-rich phase that is representative of the
coagulation bath. The initial volume fractions in the drop are ¢p = 0.2, ¢ = 0.7, and ¢5p = 0.1. The
final equilibrated composition is @ ¢q = 0.18067, ¢ q = 0.10078, and ¢ q = 0.71855; this composition
is at one end of the tie-line with the coagulation bath of constant composition ¢; = 0.928, ¢ = 0.072,
and ¢; = 0.0.

The matrix of thermodynamic factors, calculated at the arithmetic average volume fractions of the

dispersed phase droplets between the initial and final equilibrated compositions (¢ .y = 0.19034, ¢,y =

0.34018 -0.06198

0.40039, and ¢ o, = 0.40927) is [[]= .
-0.78883  0.60362

For consistency with the Flory-Huggins description of mixture thermodynamics, the Maxwell-Stefan

equations are formulated in terms of the volume fractions; see Krishna'®” ' Following the work of
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DV

Mulder et al.'"? we take [D]:[ (l)m 0

vV
2m

}[r], where the modified Maxwell-Stefan diffusivities for

permeation of penetrants water (component 1) and acetone (Component 2) are taken to be the same as

B =8.8x10"exp(7.3¢, +7.3¢,) m’s™

Im

. Evaluated at the arithmetic
D) =6x10"exp(7.3¢, +7.34,) m’s™

for water/ethanol/CA system:

average volume fractions of the dispersed phase, we obtain

[D]{Dﬁn 0 }[r]:{2‘23353 -0.40692

x10"m?*s™. The off-diagonal element D5, is the same
0 Dsz -3.53135 2.7022

order of magnitude as the diagonal element D, indicating that coupling effects are significant. We can
also determine the “magnitude” of the Fick diffusivity |D|”2 =2.144x10™"° m? s for use in the

calculation of the Fourier number.

The component driving forces for transfer of water (1) and acetone (2) are Ag =g, -4, =0.01933,
Ag, =y, —,,, =0.59922. Particularly noteworthy is that the driving force for acetone transfer is

significantly larger than the driving force for transfer of water.

The transient Geddes equilibration trajectory follows a highly curvilinear path to equilibrium, and
exhibits a foray into the meta-stable region; see Figure 7-2(a). If coupling effects are completely
ignored, the equilibration trajectory follows a linear path in composition space, and no foray into the
meta-stable region is feasible.

Figure 7-2(b) presents a plot of component Murphree efficiencies as a function of the dimensionless

1/2

4D
Fourier number —; where the droplet diameter is taken as dgop = 2 mm. During the early stages of

drop

the equilibration process, the Murphree point efficiency of water (component 1) exhibits negative
values, indicative of uphill diffusion. As a consequence of uphill diffusion, the transient equilibration of

water exhibits a distinct composition overshoot during its approach to equilibration; see Figure 7-2(c).
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7.2 List of Tables for Diffusion in Polymeric Systems

Table 7-1. The Flory-Huggins parameters for penetrants water (anti-solvent, component 1) and
acetone (solvent, Component 2) in cellulose acetate (CA) (polymer, indicated by subscript m) at 7 =
298.15 K. The Flory-Huggins parameters are taken from Altena and Smolders'"® and Altinkaya and

114
Ozbas.

__
A+ 9,

Xp=a+ b(“2)+ C(“z)z + d(“z)3 + e(u2)4; U,
a=1.1;b=-0.42;c=4.09;d =-6.7;e =4.28;
Xm =14 x,, =0.45;

Vl =18x10° m’ mol™

¥, =73.92x10"° m® mol™

V. =0.030532 m’ mol™

Modified Maxwell-Stefan diffusivities for permeation of penetrants water (component 1) and acetone

(Component 2) are taken to be the same as for water/ethanol/CA system.''?

D, =8.8x10" exp(7.3¢, +7.3¢,) m’s™
D;, =6x10" exp(7.34, +7.3¢,) m’s”

The 1-2 friction is considered to be negligible.
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7.3 List of Figures for Diffusion in Polymeric Systems

Water/acetone/CA

cellulose
acetate (m)

Coagulation bath

0.2

10% CA/90% Acetone 0.8

LINE I I I e I
PN NI I M NN

7T RRROML T 03 07 water(1)/acetone(2)/
o o ' cellulose acetate(m);
T=298.15K
0.6
0.4
0.7 /equilibrated 7
composition 0.3
0.8

coagulation 0.2

t=0s bath
10% CA—=25 0.1
solution

0.0
acetone(2) 00 01 02 03 04 05 06 07 08 09 10  water(1)

Figure 7-1. Diffusion trajectories during the immersion precipitation process for membrane
preparation; adapted from the papers of van den Berg and Smolders,'” and Reuvers and Smolders.''’ A
10% solution of Cellulose Acetate (CA) in acetone is immersed in a bath of pure water. The transient

equilibration trajectory is indicated in a qualitative manner.
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Foray into meta-stable region
(b) (c)

water(1)/acetone(2)/CA(m); T =298.15 K

1.0
_ r ~ 08 0.215
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Fourier number, Fo =(4 |D|'? t)/ d,
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Fourier number, Fo =(4 |D|"? t)/d,

Coagulation bath water(1)/acetone(2)/

cellulose acetate(m);
T=298.15K

10% CA/70% Acetone 04
>;>;>;>;>;>'>'>'>;>;>;>;>;>;>;: .
2t sty O
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0.2 coagulation
bath

0.0
acetone 00 01 02 03 04 05 06 07 08 09 10 water

Figure 7-2. (a) Geddes equilibration trajectory in a ternary system consisting of water (non-solvent,
component 1), acetone (solvent, component 2) and cellulose acetate (polymer, component m). The
plotted data in ternary composition space are in terms of volume fractions. The equilibration trajectory
is indicated by the blue line in ternary composition space. (b) Plot of the component Murphree
efficiencies, Ej, as function of the Fourier number. (c) Transient volume fraction profiles in the polymer
solution, as function of the Fourier number. The Flory-Huggins parameters and diffusivity data are

provided in Table 7-1.
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8 Diffusion in crystalline solids and alloys

The proper description of multicomponent diffusion in metals, glasses, steels, alloys, and composites

is important in a wide variety of processes such as bonding, cladding, controlled heat treatments, and

54, 115-122

surface modification. The phenomenological description of diffusion in crystalline solids and

alloys is described in a number of texts and articles;’* "°1?! in all cases, the description is based on the
Onsager formulation of irreversible thermodynamics.*

For the specific case of a ternary mixture consisting of components 1, 2, and 3, the Onsager

formulation for the diffusion fluxes in a lattice-fixed reference frame may be written as

d (s~ 1) Ly Lo d(m-m)
(Jljz—l {LH LIZ}L dz |__lx % |17 4 (8-1)
J, VL, Ly]|RT d(ﬂz_:u3) VL, Ly |RT d('u2_'u3)
dz X% ’ dz

The Gibbs-Duhem relations constrain the chemical potential gradients: x, dd,u L+x, dc}u 2+ X, ddﬂ3 =0.
zZ z

The chemical potential gradients are related to the mole fraction gradients

d(py — 11) 0 ol%

1 dz 1 2| dz
—_— = 8‘2
RT —d(,uz—,u3) {®21 ®22:| & (82

dz dz

So, the diffusion fluxes can be related to the mole fraction gradients

dx, dx,

1 d(x) Ji 1L, L, dz 1D, D,|| d-
J)y=—=|L||® ; =—= ® =—= 8-3
) V[ ][ ] dz (sz V{LZI L, [ ] % VD, D, & (8-3)

dz dz

The Hessian of the Gibbs free-energy [@] is related to the thermodynamic correction factors

Jlny,
Fl.j =5ij +xl.ﬁ—7/’; i,j=1,2 as follows

X;
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(-x)

[(911 ®12}:i X, |:Fll 1—‘12} (8-4)
0, Oy x 1 M L, Iy

Xy

The inter-relation between the Fick, Onsager and Maxwell-Stefan formulations are

(I-x,) .
D, D12}:{L11 le}{(an ®12}=[L]i X [Fn Flz}:
D, D, L, L, |0, O, X3 1 (l—xl) I Ty

X
- -1
L - N
b, b, b, D, [Fn Flz}: (8-5)

s T 1-x LN Iy Ty
| b, Dy D, D,

x2D13(D23_D12) Dzs(szB"'(l_xz )Blz)
D, +x, D +x D,

[D13(XID23+(1_XI )Dlz) x1D23(D13_D12) ]

I_‘11 1—‘12:|
1_‘21 1_‘22

The inter-relationship between the Fick, Onsager and Maxwell-Stefan formulations are summarized in

Figure 8-1, and Figure §8-2.
8.1 The Maxwell-Stefan formulation of tracer diffusion in crystalline solids and

alloys
Consider the specific example of vacancy mediated tracer diffusion in a crystalline solid; see Figure
8-3. The three species may be identified as follows: 1 = tagged species 1*; 2 = untagged species 1; 3 =

vacancy (V). The elements of the Onsager matrix is given by'*'

[L]z a’vx, |:x1(1_'x3)_x1x2(1_f) xlxz(l_f) :| (8-6)

1=, x1x2(1_f) xz(l_xs)_xlxz(l_f)
In equation (8-6), a is the jump distance, v is the jump frequency, and f'is the correlation factor. For a

BCC crystal, for example, f= 0.727. Combining equations (2-35), (8-5), and (8-6) we obtain

(8] =

a’v | (1-x)(1-x,)—x,x, (1= 1) X (1=x)+xx, (1= f)
{ X (1=x; )+ 2,3, (1- f) (l—xl)(l—x3)—x1x3(1—f)} (8-7)

1-x,
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Performing the matrix inversion of the right member of equation (8-7), we obtain

1-x, PR T I
[B] = By By, - b, b, b, b, _ 1 n+xxf  -x (1 - x3f) (8-8)
B, B, _ N N 1-x LN x3(l—x3)a21f —xz(l—x3f) X, +x,x,f
BIZ B23 D23 D12
The Maxwell-Stefan pair diffusivities can be determined as follows
L:Bll-}szlz: 1 ’ 1 =322+x1&= 1 ’ 1 = 1 _&
13 X av. Dy x, av D, bD; x
1- 8-9
b,=a’v; D,=a’v; BlFMazv (8-9)
1-xx,f
The M-S pair diffusivity D, quantifies the correlations between jumps.
The following expression for the tracer diffusivity D* has been derived by Krishna'*
1 1-x X
I G (8-10)
D D12 Dl?)
Therefore, we derive
2
1- .
a 1/ _ x3-x3f +x = 1 ; D :x3fa2V (8-11)

D xf ’ xf
The self-diffusivity is strongly influenced by correlations.
8.2 Vacancy mediated diffusion in binary alloys

Consider the specific example of vacancy mediated diffusion in binary crystalline solids. The three
species may be identified as follows: 1 = species 1; 2 = species 2; 3 = vacancy (V). The fluxes in the

lattice-fixed reference frame are

L L, dp
[«4]:_1 e E (8-12)
J,)  V|Ly Ly|RT| du,

X X, P dz

The vacancy flux is J, +J, =—J,,. The fluxes in the laboratory-fixed reference velocity frame are
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N=Jd=x(J,+0,); Ny=d,—x,(J, +J,) (8-13)

In 2-dimensional matrix notation, the fluxes in the laboratory-fixed reference frame are

L, L, . du
N |1=x  —x |(J, 1 1-x, —x XX | 1 U dz
N, -x, 1-x, |\J, V| -x, l-x L, L, |RT . d p,
XX, P dz
’ I I (8-14)
(1-x)"L-1, (1-x)"2-x=2 LA
m‘—l : R
N,) V| L, L L RT| du
—x, L +(l-x,)2 (1-x,)—2-L x, —2
2 xl ( 2) xl ( 2) .x2 12 2 dZ

Following Belova and Murch,''™ ' we will make the usual assumption that vacancies are produced

and annihilated during an inter-diffusion process in such a way that

%:0. du, d/uzzo. du, _ﬁ%

+ = -
dz g dz & dz dz x, dz (8-13)

Therefore, the fluxes of components 1, and 2 in the laboratory-fixed reference frame can be written in

the simplified form

— 1+ x. —
N, :_i&l xleH _Ml’lz "'ﬁLzzJL %

X
Vil x X, x, 2 )RT dz
| | (8-16)
j— + —
N o Lflmn),  (Hn-v), w1 du
Vi x X, X, RT ° dz
The following expression can be derived for the inter-diffusion coefficient in a binary alloy
1 1 du 1 1 du
N =-=D, —x—+;, N,=—= —x,—=;
1 V Inter RT 1 dZ 2 V Inter RT 2 dZ
(8-17)

Inter — 12 22 T 22 12

1
X5 Xy X, X X

X

In the Manning approach,'”® the phenomenological coefficients are directly related to the tracer

diffusion coefficients D;, D, by

Ly=xD|1+— 2P\ _opifie 2ol g o 2eeDD,
M, (x,D; +x,D; ) M, (xD; +x,D;) M, (%D +x,D;)
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2
where M, =1—f, and f'is the correlation factor. For a BCC crystal, for example, f=0.727.

The following expression can be derived for the inter-diffusion coefficient in a binary alloy

2xx,(D; - D)

= (%,D; +x,D})S; S= ”MO(xlDszDS)(xsz”lD;)

Inter —

(8-19)

- - . 118-120
where S is the vacancy-wind correction factor.

8.3 The Maxwell-Stefan-Darken formulation for inter-diffusion in a binary alloy

Darken’ derived a relation for the inter-diffusion flux of the components 1 and 2 in a binary alloy, in

a laboratory-fixed reference frame

1 1
N,=-2D,, % D=p,,T: F=(l+—a Mlj; D

- =x,D, +x,D, 8-20
V in dZ 6111 Xl 21 12 ( )

Inter

The Maxwell-Stefan inter-diffusivity may be interpolated using the information on the unary tracer

diffusivities of the two constituents of the alloy, D;,D;. The thermodynamic correction factor,

= (1 + %j , 1s also referred to as the Darken correction factor. Essemtially, the Darken expression
nx,

for the inter-diffusion coefficient in binary alloys is a special, limiting, case of the Manning approach''™®

120'in which correlation effects are neglected and the matrix of Onsager coefficients is assumed to be

diagonal

* *

L,=xD;; L,=x,D,; L,=0; D,

nter:('XZDl*—i_xlD;); S=l (8-21)
As illustration of the accuracy of the Maxwell-Stefan-Darken equation (8-21). Figure 8-4 presents a

re-analysis of the experimental data of Reynolds et al.'** for inter-diffusion in Au(1)-Ni(2) alloy. The

predictions of the Fick inter-diffusivity from data on the unary tracer diffusivities of the two constituents

of the alloy, D;,D,, along with the thermodynamic correction factor, T = (1+ Zin 7 ], is in good
nx,

agreement with the experimental data on the Fick inter-diffusion coefficient.
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8.4 The Maxwell-Stefan formulation for inter-diffusion in a ternary alloy

Consider the vacancy mediated diffusion in ternary crystalline solids. The four species may be
identified as follows: 1 = species 1; 2 = species 2; 3 = species 3; 4 = vacancy (V). Following Belova and
Murch,''™® ''? we will make the usual assumption that vacancies are produced and annihilated during an

inter-diffusion process in such a way that

d d
by o, Bty Do s o A 2 di X di (8-22)
dz dz dz dz dz x, dz  x; dz
In the lattice-fixed reference frame, we write the Onsager relations for the diffusion fluxes as
L, i L %
J X X X ' dz
‘ 1L, L, Ly|1]| d
J2 P 21 22 /23 |- . /u2 (8_23)
J Vix, x, x5 |RT dz
’ L, L, L du,
—_ == —= 3
| X X Xy | dz

The vacancy flux is

L

Jadd =g, ——ip @ Ly di 1,

Vv dz V " dz V ~ dz
L=L,+L, +L, (8-24)
L, =Ly,+Ly+Ly
Ly=L;+Ly+Ly

The fluxes in the laboratory-fixed reference velocity frame are
N, =J,-x(J,+J,+Jy); Ny=J,-x,(J,+J,+J;); Ny=J,-x,(J,+J,+J;)=—N,-N, (8-25)

Combining equations (8-23), (8-24), and (8-25), we obtain

Ly L, Ly dp

el

N, l-x, —-x, —-x |(J, | l-x, —-x,  —-x l)fl zz 23 | ddz
N,|=| —x, 1-x, —-x, ||J,|=—=| —x, 1-x, -—x, ||[& 2 AE . :2 (8-26)

N B B - J Vi B - X, X X z

3 X3 X3 X3 3 X3 X3 X3 du

Ly, L, Ly X, ——

L X X Xy dz
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Invoking xl%+x b __, 14
4

2 dz P odz

, we derive the following relations for the two independent fluxes

in the laboratory-fixed reference frame

by o poxho Le b oxboxo ] ( d
Nl _l xl x3 x3 x2 x3 x2 x3 L ! dZ
(NzJ Nz i_i_ XL | XL i i_l‘z x,L, |RT ) du,
XX, X X, X, X X, dz

where (8-27)

L] :Ln +L21 +L31
Ly=L,+Ly+L,
Ls = L13 +L23 +L33

The inter-diffusion fluxes in a ternary alloy, in a laboratory-fixed reference frame are described by a

matrix of Fickian inter-diffusivities

dx, I-x, x X X dx,

(NI]:—L|:D” D12:| dZ =_i Bl3 DIZ DIZ Bl3 [F] E

N, VD, D, & Vi x N x, l-x N X, & (8-28)
dz b, b, D, D, dz

Ny=-N, =N,

From experimental data on the matrix of Fickian inter-diffusivities, [D], the Maxwell-Stefan pair
diffusivities D;; can be backed-out using the following relations

l-x, x, X,

+ — + 4
[B]: |:B11 B12:| — Dl3 D12 BIZ B13 _ |:F11 FIZ :|{D11 D12:|
B21 Bzz Xy le Fzz D21 Dzz

-2y +
b, by, Db, D, (8-29)
L=B”+x2_312; Lszz*‘xlBZI; 1 _ 1 _i:L_ﬁ
13 X D, X, D, by x Dy x

As illustration of the backing-out procedure for determining the Maxwell-Stefan pair diffusivities Dj;

we consider the published experimental inter-diffusivity data for Cu(1)/Fe(2)/Ni(3) system at 1273 K;

9. 125,126 o0 Figure 8-5. The thermodynamic correction factors are determined from the regular

solution model G = A4,x,x, + AyxX,x, + Ay x.x,; A, =33, A,=-5 4,=5 kImol'. The

backed-out data on the Maxwell-Stefan pair diffusivities D for Cu(1)/Fe(2)/Ni(3) system at 1273 K
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1/2

using equation (8-29) are shown in Figure 8-6, in which the x-axis is |[D| *, i.e. the square-root of the

experimental data on the Fick inter-diffusivity matrix, that is independent of the component numbering.
The backed-out Maxwell-Stefan pair diffusivities D;; show only a small spread in values over a wide
range of compositions.

The extension of the Darken analysis to inter-diffusion in ternary alloys is provided by Belova and
Murch;'"® ' these allow the determination of the Fick inter-diffusivity matrix on the basis of the

information of the unary tracer diffusivities of components 1, 2 and 3. For the special case in which the

e L L . L . L .
Onsager matrix is diagonal, and the Darken approximation —-=D/; —2=D,; —2=D, holds,
X X X3

the inter-diffusion fluxes are calculable from the tracer diffusivities of the individual species

& L
N1 =—i D1 _X1D1* +X1D: _X1D; +X1D: Fll Flz dz =_L[B]—1 [1_,] dz
N, V| —x,D +x,D; D,-x,D,+x,D; || T, Ty ]| dx, V dx, (8-30)
dz dz

21 22

N,=-N,-N,

Combining equations (8-29), and (8-30) we obtain

l-x, x, DA

+ - + * * * * * -1
[B]{B“ Bn}: b, b, b, D, :{Dl—xlDl+xlD3 —x,D; +x,D; }

By Byp| |_ X% X% l-x x —-x,D; +x,D, D, -x,D, +x,D, (8-31)
BIZ BZ3 BZ3 BIZ
1 D, -x,D,+x,D;  xD,—x,D;
" DD +x,D.D. +xD.D. { %D —x,D. D' —xD +xD. }

The Maxwell-Stefan pair diffusivities D; can be estimated from the tracer diffusivities D, ,D;,D; from

the following interpolation formulae
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D, D,

D, = xle* +x1D; + X, -
3
. . D'D.
B, =x,D, +x,D; +x, —2 (8-32)
D2
. . D.D;
Dy, =x,D, +x,D, +x, #
1

Figure 8-7 presents a comparison of the experimental data on the square-root of the experimental data

for Cu(1)/Fe(2)/Ni(3) system at 1273 K."" '** 2% on the Fick inter-diffusivity matrix, |p|"*, with the

estimations using the Maxwell-Stefan-Darken model, using equations (8-28), and (8-32). The agreement

with the experimental data on | D|”2 is reasonably good; no significant improvements result when using

118,119
h 5

the more complete model of Belova and Murc that includes the vacancy-wind corrections.

8.5 Uphill diffusion in PbS(1)/PbTe(2)/PbSe(3) mixtures

For ternary PbS(1)/PbTe(2)/PbSe(3) crystalline mixtures, also represented as Pb(Sx;TexxSexs) with x;
+ x2 + x3 =1, the spinodal curve is described by the vanishing of the determinant of the matrix of
thermodynamic factors, i.e. [[]=0. The matrix of thermodynamic factors [F] may be calculated using
the sub-regular solution model with parameters provided in Table 1 of Kokkonis and Leute.'>” For T =

823 K, the spinodal curve is plotted in Figure 8-8.

In homogeneous single-phase regions, sizable magnitudes of cross-coefficients of the Fick diffusivity
matrix [D]:|A|”2[F] often lead to serpentine equilibration trajectories and uphill diffusion.”” To

demonstrate this let us consider inter-diffusion of PbS(1)/PbTe(2)/PbSe(3) mixtures that ensues when
two different compositions (in the left and right compartments in Figure 8-8 are brought in contact. The
initial composition of the left compartment is: x; 1 = 0.3, x, 1= 0.0 and x3 = 0.7. The initial composition
of the right compartment is: x;r = 0.2, xor = 0.5, and x3 g = 0.3. The composition at equilibrium is xj ¢q
=0.25, x2q = 0.25 and x3q = 0.5. The transient equilibration process is described by the coupled two-

dimensional matrix equation
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-2
X, +x D D X;p — X
(xlj:l( 1L 1,R )+lerf z { 11 12} ( IR ILJ (8-33)
X, 2\ X%y, + Xy 2 N4t | Dy Dy, Xogr X

At the equilibrated composition, xj¢q = 0.25, X2 = 0.25 and x3q = 0.5, the values of the elements of

0.832 0.52

. The scalar diffusivity |A|1/2 is assumed to
0.499 0.77

the matrix of thermodynamic factors is [F] 2{

832 0.52
have the value |A|”2 =1x107* m*™; therefore, [D]= |A|l/2[r] - {0 0 07

x10"*m?s™ . Due to the
0.499 0.77

large values of the off-diagonal elements, the transient equilibration trajectories follow curvilinear
trajectories in either compartment. Particularly noteworthy is the transient overshoot (left compartment)

and undershoot (right compartment) of the PbTe composition.

8.6 Uphill diffusion of C in austenite: Darken experiments

One of the very first experimental evidence of uphill diffusion is available in the classic experiments
reported by Lawrence Stamper Darken,” who was one of the first to recognize the need to use activity
gradients as proper driving forces when setting up the phenomenological relations to describe diffusion.
Two austenite bars of different compositions (0.48% C, 3.8% Si), and (0.45% C, 0.05% Si) are welded
together. The Carbon in the high-Si bar has a higher activity than the bar with the lower Si content; the
calculated values of these activities are 0.051, and 0.024 respectively.'?® Carbon was allowed to diffuse
for 13 days at 1323 K; after this period the bars are quenched and the composition profiles determined
as shown in Figure 8-9(a). The high C content near the surface of the austenite bar on the right, imparts
the required “hardness” to steel. The process of hardening of steel by “carburizing” is reliant on uphill
transport of carbon from the high-Si bar to the low-Si bar, despite the fact that the initial compositions
of carbon are practically the same in the two adjoining bars.

Figure 8-9(b) shows the corresponding profiles of the activity of C, calculated using the regular
solution theory, the transport of C is down the gradient of the component activity.

Three quotes from the Darken paper,” summarize the foregoing arguments (see Figure 8-10):
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“the driving force in an isothermal diffusion process may be regarded as the gradient of the chemical
potential,”,

“for a system with more than two components it is no longer necessarily true that a given element
tends to diffuse toward a region of lower concentration even within a single phase region”, and

“departure from the behavior of an ideal solution may be so great that the concentration gradient and
the chemical potential gradient, or activity gradient, may be of different sign, thus giving rise to uphill
diffusion”.

The over- and under-shoots in the %C are adequately modelled by equation (8-33) that is based on the

480 34

work of Kirkaldy'® with the values of the Fick diffusivity matrix [D]= { 0 23

}<1013 m?®s?. The

finite value of the off-diagonal element D, reflects the dependence of the activity of C (species 1) on

the composition of Si (component 2).

8.7 Uphill diffusion of Ni in Co/Fe/Ni ternary alloys

Another convincing confirmation of the conclusions reached in the Darken experiments are provided
by the experimental data of Vignes and Sabatier*™ *! for inter-diffusion between the left and right
compartments of Co(1)/Fe(2)/Ni(3) mixture, annealed to a temperature of 1588 K. The initial atom
fraction of Ni in the left and right bars are identical and equal 0.5. The arithmetic averaged atom
fractions of Co(1)/Fe(2)/Ni(3) mixture are xieq = 0.25, x2q = 0.25 and x3.q4 = 0.5. However, the
absence of differences in the Ni compositions is no hindrance to transport of Ni, engendered by
diffusional coupling effects. Their experimental data, demonstrating uphill diffusion can be simulated
with excellent accuracy using equation (8-33); the results of these simulations, but not the experiments,
are presented in Figure 8-11. The atom fraction of each component is measured on either side of the
Matano plane, at = 17 h after the start of the simulation are shown. In the simulations, the value of the

0.7 0.02

Fick diffusivity matrix is chosen to be [D]=
0.026 1.7

}x 10" m?s™; this choice is on the basis of
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132
1.

the experimental data presented in Table 2b of Divya et a The experimental trajectory, plotted in

ternary composition space, follows a serpentine path.

8.8 Uphill diffusion in K,O/SrO/SiO, mixtures

To illustrate the diffusional characteristics of multicomponent glasses, let us consider a set of

experiments reported by Varshneya and Cooper.'”

Two glass slabs with different compositions of
K,0/SrO/Si0O; were brought into contact at time /=0 and the transient concentration distributions
determined. The wt% of each component is measured on either side of z = zy =0, measured at t =4.55 h

after the start of the experiment are shown in Figure 8-12(a). The over- and under-shoots in the SrO

concentrations are adequately modelled by equation (8-33), wherein the matrix of Fick diffusivities have

1 -0.267
}xlo13 m?s’.

the values [D]= {_1 22 033

The transient equilibration trajectories, plotted in 2D and 3D composition space follow serpentine
trajectories; see Figure 8-12(b). The non-monotonous equilibration trajectory observed for SrO in
Figure 8-12( signals uphill diffusion; such phenomena are of importance in the processing of ceramics,
cements, alloys, steels, and composites.'”” ** We note that the transient equilibration becomes

monotonic for the uncoupled diffusion process.

8.9 Uphill diffusion in Fe/Mg/Ca in garnet

Let us examine the experimental data of Vielzeuf and Saul'*’ for inter-diffusion of Fe/Mg/Ca
mixtures in garnet, a precious stone consisting of a deep red vitreous silicate mineral. Garnets are
nesosilicates having the general formula X3Y>(Si104)3. The X site is usually occupied by divalent cations
(Ca, Mg, Fe, Mn)2+ and the Y site by trivalent cations (Al Fe, Cr)3+ in an octahedral/tetrahedral
framework with [SiO4]* occupying the tetrahedra. A diffusion “couple” with two different
compositions are brought into contact at time ¢ = 0; see Figure 8-13(a). The driving forces for the three
components are (in atom fractions): Ax, =-0.15; Ax, =0.01; Ax; =0.14. The composition profiles

on either side of the interface marker (z = 0) are monitored at various time intervals. The composition
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profiles at = 100 h (cf. Figure 8-13(a)) shows spatial over- and under-shoot in the composition profile
for Mg, whose driving force is significantly lower than that of the two partner atoms. In ternary
composition space, the equilibration trajectory is serpentine in shape; see Figure 8-13(b).

The modelling of the experimental data Vielzeuf and Satil'*®

for inter-diffusion of Fe/Mg/Ca mixtures
in garnet proceeds along similar lines to the foregoing examples. The overshoot in the equilibration of

Mg is adequately modelled wusing the values of the Fick diffusivity matrix

[D]:{s.% -1.02

x10™" m?*s?
-55 1.18

in equation (8-33); see Figure 8-13(a). Neglect of diffusion
coupling effects results in linear, monotonic, equilibration. The non-monotonous equilibration trajectory
observed for Mg in Figure 8-13(a) signals uphill diffusion; such phenomena are of importance in the

. . . 122,134
processing of ceramics, cements, alloys, steels, and composites. 3
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8.10 List of Figures for Diffusion in crystalline solids and alloys

Onsager vs Maxwell-Stefan
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the general case of diffusion is
widely known.

Figure 8-1. Onsager formulation for diffusion in ternary mixtures.

205



Diffusion in crystalline solids and alloys

Onsager vs Maxwell-Stefan vs Fick
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Figure 8-2. Inter-relation between the Onsager, and Maxwell-Stefan formulations.
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Figure 8-3. The Maxwell-Stefan formulation of vacancy-mediated tracer diffusion in BCC crystal.

V= jump
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Maxwell-Stefan-Darken: D=
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Alloys. Acta Metallurgica 1957, 5, 29-40.

Figure 8-4. The Maxwell-Stefan-Darken description of inter-diffusion in Au(1)-Ni(2) alloy. The

experimental data are from Reynolds et al.'**
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Inter-Diffusivity in Cu/Fe/Ni alloys
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Dependence of Interdiffusion Coefficients in Cu—Fe—Ni System. Van Loo, F. J. J. Thermodynamic and Kinetic Study of Diffusion
The Physics of Metals and Metallography 2013, 114, 54-62. Paths in the System Cu-Fe-Ni. Metall. Mater. Trans. A 1996,

27A, 2229-2238.

Laboratory-fixed reference frame for inter-diffusion fluxes
[D] determined from ternary couples with common intersection compositions

Figure 8-5. Published experimental inter-diffusivity data for Cu(1)/Fe(2)/Ni(3) system at 1273 K.'"*"

125,126
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Figure 8-6. Backed-out data on the Maxwell-Stefan pair diffusivities for Cu(1)/Fe(2)/Ni(3) system at

1273 K. 12126 The Danielewski data are those reported by Belova et al.'"” as Sample 6 — Sample 15.
The x-axis is |D|1/2 , 1.e. the square-root of the experimental data on the Fick inter-diffusivity matrix, that

is independent of the component numbering.
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Figure 8-7. Comparison of the experimental data for Cu(1)/Fe(2)/Ni(3) system at 1273 K.''*- 123126 op

the square root of the Fick inter-diffusivity matrix, D|1/2 , with the estimations using the Maxwell-

Stefan-Darken model.
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PbS(1)/PbTe(2)/PbSe(3) interdiffusion
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Figure 8-8. The equilibration trajectory for inter-diffusion in ternary PbS(1)/PbTe(2)/PbSe(3)

crystalline mixtures at 823 K. The left and right compartments of a diffusion couple are maintained at

two different compositions as indicated. Also plotted (continuous red line) is the spinodal curve,

calculated at 823 K. The matrix of thermodynamic factors [F] is calculated using the sub-regular

solution model with parameters provided in Table 1 of Kokkonis and Leute.'”’
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Figure 8-9. (a) Experimental data of Darken’ for inter-diffusion between the left and right austenite
bars consisting of C/Si/Fe mixtures, annealed to a temperature of 1323 K. The wt% of each component
is measured on either side of the Matano plane, at ¢t = 13 days after the start of the experiment are
shown. The calculations of the coupled diffusion model are based on the Fick diffusivity matrix

129

determined by Kirkaldy for this experiment. =" (b) The corresponding profiles of the activity of C,

calculated using the regular solution theory,
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Takeaways from Lawrence
Stamper Darken (1909 — 1978)

Darken, L. S. Diffusion of Carbon in Austenite with a Discontinuity in Composition, Trans. AIME 1949,
180, 430-438.

..the driving force in an isothermal diffusion process may be
regarded as the gradient of the chemical potential...

..for a system with more than two components it is no longer
necessatrily true that a given element tends to diffuse toward a
region of lower concentration even within a single phase region...

..departure from the behavior of an ideal solution may be so great
that the concentration gradient and the chemical potential
gradient, or activity gradient, may be of different sign, thus giving
rise to uphill diffusion...

Figure 8-10.Three key take-aways from the classic paper of Darken.”
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Vignes-Sabatier Experiments
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Figure 8-11. (a) Simulations of transient inter-diffusion between the left and right compartments of
Co/Fe/Ni mixture, annealed to a temperature of 1588 K. The atom fraction of each component on either
side of the Matano plane, at ¢+ = 17 h after the start of the simulation are shown. (b) Equilibration
trajectories in composition space. These simulations are designed to match the experimental data of

. . 130,131
Vignes and Sabatier °
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Figure 8-12. (a) Experimental data of Varshneya and Cooper'> for inter-diffusion between the left
and right slabs consisting of K,O/SrO/SiO, mixtures. The wt% of each component is measured on either
side of the Matano plane, measured at ¢ = 4.55 h after the start of the experiment are shown. (b)

Equilibration trajectories in 2D and 3D composition space.
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Fe/Mg/Ca Diffusion Couple
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Figure 8-13. (a) Experimental data of Vielzeuf and Saul'*® for inter-diffusion between the left and
right slabs containing Fe/Mg/Ca mixtures. The atom % of each component is measured on either side of
the Matano plane, measured at # = 100 h after the start of the experiment are shown as function of the

distance. (b) Equilibration trajectories in 3D composition space.
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9 M-S formulation with generalized driving force

The analysis of the diffusion processes in the foregoing sections were restricted to isothermal, isobaric
systems in the absence of external body forces such as centrifugal forces and electrostatic potential
gradients. The important persuasive advantage of the Maxwell-Stefan formulation

X, XX nx N, -xN. &xJ,—-xJ.
R ey TR SRR TS Sl LR 1)

RT o D ¢, b, ¢ b,

ij J=1 t =i J=1

is that equation (9-1) can be extended, elegantly, to include the contribution of pressure gradients, and

external body forces. The treatment below follows earlier works." 3¢ 137

9.1 Irreversible Thermodynamics and the M-S equation

The theory or irreversible thermodynamics is described in several excellent texts.” "% Our

7 and Standart et al." ® The starting point for our

treatment essentially follows that of Lightfoot,
analysis is the rate of entropy production due to n-component diffusion; see Equation (2.3.1) of Taylor

and Krishna.! The rate of entropy production is a product of the “flux” j, and the driving force

(VT/U:'_F’)'
13 ~o=) .

(7=—? (Vf,ui—FiquzO (9-2)
i=1

where j, = p,(u,—v)=px (u,—v) is the mass diffusion flux of species i with respect to the mass

average reference velocity v; u, = A

is the specific chemical potential of species i with units of J kg™';

l

M , is the molar mass of of species i with units kg mol™; V., u, 1s the isothermal gradient of the specific

chemical potential; F, represents the force acting per kg of species i. F: represents the body force
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acting per mole of species i, p, I;,- =c¢F; F = % The requirement o >0 follows from the second

law of thermodynamics.

Under the action of external body forces, linear momentum will be conserved

N dv . .
-Vp+ Z p. Fi=p, = +V e 7 = conservation of linear momentum
t

i=1

4 = —+ v eV =material derivative following mixture velocity
dt ot (9-3)
—in+Za)i Fi :ﬂ+iv-r

pz i=1 dt pt

where v is the mass average mixture velocity, T is the stress tensor and @; is the mass fraction of species

In diffusion processes of relevance to chemical engineering mechanical equilibrium is established far
quicker than thermodynamic equilibrium and we may safely assume

dv 1 1 S
—+—Verx0=-—Vp+)» o F 9-4
dt  p, P, 21 e

Adding the vanishing quantity 0 = _va + Z o, l;, to the driving forces in equation (9-2):

t i=1

1 n ~ ~ 1 n ~
O-:__Z(VT ﬂi_Fi__vp-i_za)iF;j.j[
T3 P; i=1

G:_%Zpi(vr;li_l;"_pivp_‘_za)iﬁ;].(ui_V) ©-5)
i-1

t i=1

J=_%Zn:[pivr ;i_wivp_pi (E"_Zn:a)iﬁ;jj.(ui _V)ZO

i=1 i=1
The chemical potential gradient term may be expanded to explicitly include the contribution of the

pressure gradient V4, =V, 4, +V,Vp where 7, is the partial molar volume of species i with units m’

mol”', and V., 4; 1s the isothermal, isobaric gradient of the molar chemical potential. The isothermal
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gradient of the specific chemical potential is V., 4, :MLVT’ Nz +%Vp. Expressed in terms of the

i i

gradients of the molar chemical potential, equation (9-5) takes the form

O—:—%Zn:[civﬂplui +(cl.V )Vp o) (F, Za) Fj] (ul —V)ZO (9-6)

i=l i=1

It is convenient to define the generalized driving force d, :
ctRTdi = civT,plLli + (CiVi - wi)vp — P (Fi_ Z @; 151]
i=l1

pl NA_ n ~
arlmEer)

9-7)

d = EVT,pILIi + CIIIQT (ci?i_a)i)vp_

As emphasized by Lightfoot,"*” the “fearsome” quantity ¢,RTd, has a very simple physical significance:
¢,RTd, = force per unit volume of solution tending to move species i relative to the solution. With this

definition of the generalized driving force, the rate of entropy production is
:—cRZd (u,—v)=>0 (©-8)

As noted by Lightfoot,"” the rate of entropy production remains unchanged if any arbitrary reference
velocity is chosen in place of the mass average reference velocity v. With the molar average reference

velocity u we write

a——cRZd *(u,—u) —RZ—-J >0 (9-9)

i=1 zlx

It follows from the Gibbs-Duhem equation that

3'd, =0 (9-10)
i=1

Following the Onsager concepts of irreversible thermodynamics, we may set up linear relations

between the driving forces ¢,RTd, and relative velocities (u, —v), taken as representative of “fluxes”:

¢,RTd, =Z”:ﬁij (u‘j—v); i=1,2,..n (9-11)
j=l
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The Onsager Reciprocal Relations assert the symmetry constraint
B, =B i,j=12,.n (9-12)

It follows from the Gibb-Duhem constraint (9-10) that

>34, (u,-v)=0 (0-13)

j=1 i=1
Since the relative velocities (“,- —v) are mathematically independent of one another it must also

follow that
> B,=0; j=12,.n (9-14)
i=1

Due to the constraint imposed by equation (9-14), we may replace the mass average reference velocity
v in equation (9-11), by any arbitrary velocity. We may replace the reference velocity v by the species

velocity of any arbritrary species k, u, and write equation (9-11) as
¢,RTd, 2213;7(“_,-_“1()5 i=12,.n (9-15)
J=l

XX

Essentially, in the Maxwell-Stefan formulation, we take u, =u, and D, = ¢RT; 1,j=12,.n;

this results in

x 1 = R SRR R

d =—L CV_ : Fl_ F = — u. —u); l=1)27 n

i RT Tpﬂz CIRT( ivi 1) p CtRT( = i lj ~ D[j ( J l)

or (9-16)
XX, nx N.—xN. xJ —xJ

—d, =) ()= T SN L R 2
j=1 Ty J=1 G Dij = Db i

If the body forces F, represent the force acting per mole of species i, the corresponding relations are
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o 1 nox.X.
d =i V., cV.—w |\Vp— ¢cF-w) ¢F |= “L(u. —u); i=12,..n
i RT /’l RT( i i z) p CtRT[ Z k j = Dl:/« ( J 1)
or (9-17)
nXX, nx.N.—xN . noxJ —xJ
—d, = . ’(ui—uj)= S L ) i=12,.n
= j=l ¢ b, o ob;

For transport in electrolyte systems, for example, the body force F acting per mol of species i is
F. =—-zFV® where z; is the ionic charge of species i and F is the Faraday constant. Except in regions

close to electrode surfaces, where there will be charge separation (the double layer phenomena), the

condition of electro-neutrality is met Zcizi =0 and therefore chFk = [Z ckzkjFVCD =0; the
k-1 k=1

i=l1

expression for the generalized driving force simplifies to yield

X, ' (.7 v 5 Lo
d, ERT r.pHi CZRT(CiI/‘_wi)Vp+fofqu)=; ijj (uj—ul,), i=12,..n
or (9-18)
n XX n ‘x'Nz _xiN X Jz —le
-d, = Z D_../ (ul _uf): z ] ¢, D, "= ] ¢ D, 5 =12

An important advantage of the use of the M-S formulation is that the addition of the driving forces

Vp,and V® has no influence on the M-S diffusivities of the constituent binary pairs, D;;.
With the choice of u, as reference velocity, substitution of equation (9-16) into equation (9-8) gives the

following expression for the rate of entropy production

oLongyrlronl u\ wl (9-19)

i=l j=1

9.2 Separations in an ultracentrifuge

Equation (9-16) is the appropriate starting point for the analysis of separations in an ultracentrifuge.

The centrifugal force exerted per kg of component i in a multicomponent mixture is F, = Q’r where r
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is the distance from the axis of rotation, and Q is the angular velocity:

Q =2z (rotational speed expressed in revolutions per second). Equation (9-16) yields

i i

_L%_’_ 1 (Civ—wi)d_p_L(er_er)_L%-i_ 1 (ciV )d_p

""RT dr cRT "' dr  ¢RT " RT dr  ¢RT dr

(9-20)
Mechanical equilibrium is established quickly in relation to thermodynamic equilibrium in an

ultracentrifuge. At mechanical equilibrium we have

d n ~
=P Yo F = pQr (9-21)
r

i=1

Substituting equation (9-21) into equation (9-20) reesults in

dodw Ly
"" RT dr cRT

(Vi -o)p Q% (9-22)

We note that the contribution of the centrifugal force to the overall driving force is effective only

when there is a difference between the volume fraction of component 7 , c.Vi , and its mass fraction, @;

for a mixture where these differ the centrifugal force will cause relative motion of species. Components
with a higher molar mass and mass density will experience a greater force and will therefore tend to

congregate towards the periphery; this will cause a composition gradient V, u, directed inwards

tending to cause re-distribution. At thermodynamic equilibrium, the driving forces vanish and therefore
the composition distribution is described by

X, du, 1 — 2
S - V. —w. (@) -
RT dr c,RT("H o0 (9-23)

The ultracentrifuge induces a separation provided that the volume fraction c,f. is different from the
mass fraction @,. As illustration, consider the separation of the gaseous isotopes U Fg(1)/UPF4(2) at

293.15 K as described in Example 2.3.2 of Taylor and Krishna;'; see Figure 9-1. The molar masses are
M;=0.34915 kg mol™; M>=0.35215 kg mol™. The centrifuge rotates at 40000 rpm. The separation takes

place within the annular space between r=r, =10mm and r=r=60mm. The mole fraction

distribution of component 1 within the annular space as a function of the radial distance r is
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I-x,_ x 2RT

x_ l-x_ Q*\r* —r)
r=r r=rQ — eXp|:(M1 _Mz) ( 0 ) (9_24)
r=r0

The composition profiles within the annular space are shown in Figure 9-1; the heavier isotope
concentrates near the periphery. An uranium enrichment industrial facility will have a few million

centrifuges to achieve the desired degree of separation.' Separations in an ultracentrifuge may also be

viewed as uphill diffusion, engendered by the centrifugal force.

9.3 Thermal diffusion or Soret effect

The Soret effect, also called thermal diffusion, is the tendency of a mixture of two or more
components to separate due to a temperature gradient. In 1879 Charles Soret discovered that a salt
solution contained in a tube with the two ends at different temperatures did not remain uniform in
composition; the salt was more concentrated near the cold end than near the hot end of the tube; for a
review of the history and applications see Platten.'*® When steep temperature gradients are encountered,
such as in chemical vapor deposition processes, we need additionally to take account of the thermal
diffusion contribution to the molar fluxes."*!

The Maxwell-Stefan formulation can be augmented in the following form; see Kuiken"’ for detailed

derivations

Zoxx. (U, —u,
—d, :Z’J(#; i=12,...n (9-25)
where u is the augmented species velocity incorporating the thermal diffusion contribution

D’
u =u, +[—’jﬂ; i=1,2,..n (9-26)
p) T

The thermal diffusion coefficients D! have been defined in the manner of Hirschfelder et al."’ and have

the units kg m™ s, In CVD processes, thermal diffusion causes large, heavy gas molecules like WF ,

whose D/ > 0, to concentrate in cold regions whereas small, light molecules like H,, whose D] <0,
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concentrate in hot regions. Kleijn and Hoogendoorn'*' have demonstrated the importance of the

thermal diffusion contribution in the modelling of CVD processes.

. . dT ; :
In hydrocarbon reservoirs, the temperature gradient ra ~-0.03 Km';' ie. the temperature
'z

increases along the reservoir depth. Segregation is induced due to both gravity and thermal diffusion,
described by combining equations (9-18), and (9-25)

x dy 1 7 dp & xx, (! —uj) _
(ciVl,—a)i)E_jZ_;T, i=12,...n (9-27)
= y

J#i

Inserting equation (9-26) into equation (9-27), we obtain after re-arranging

x, dy, 1 = dp &xx, (DI D;\1dT XX \u—u;) .
T (@-Vr@@‘zf’[;—p—j}?ri—]; Lo oo

J=1 ij Jj=1 ij
J# J#i

T

The terms —— have the units of m*s™. The thermal diffusion coefficients are not all independent; we
Pi

have the constraint

n r_
Zl D/ =0 (9-29)
=

For the special case of a binary mixture, we write

i 1) (D Dy 1T (4 ) (9-30)
RT dz c¢RT\'"' dz P, p p, )T dz b,
Introducing the constraint D] = -D!, we obtain
_i%_;(ﬁ_w)d_f?_ﬂ P |1dT _xx () ©-31)
RT dz c¢RT\"'"' dz DB, \pp, )T dz b,

Introducing the diffusion fluxes J, = ¢x, (u, —u) =-J, =—c,x, (u, —u), we derive
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x, duy, 1 (07 )dp xlxzD p | 1dT _ J,
RT dz c¢RT\"

RT dz dz by, \ pp T dz CDIZ

(9-32)
_LM_;( 7w )d_p_Mid_T Iy
RT dz ¢RT Vdz  powb, T d cb,
Define the dimensionless thermal diffusion ratio
D/ D/
k,, = XX ) ( P ]: 1 (xlxz ] (9-33)
b, \pp,) pbP,\ 00,
Other quantities encountered are the thermal diffusion factor «;,
k Dl (1 D/
ale T1 — 1 ( j: 1 [ pl‘ j (9_34)
xx, pb,\wo,) D, pp,
The Soret coefficient is defined as
k D/ 1 D/
Sy =—I = ( J: ! [ L ] (9-35)
I pD,I\ww, ) D,T\ pp,
Equation (9-32) reduces to yield
X, du, 1 — dp 1dr _ J,
-d, = - v, - k -
'"TRT &z cRT e l)dz "Td oD, (9-36)
For segregation due to both gravity and thermal diffusion, the flux expression is
x, du 1 1dT
J, =—c,D L1 oV, —o)pg+k, —— 9-37
1 t IZ[RT dZ CtRT(l l)pg TleZJ ( )

Setting the fluxes equal to zero, the steady-state the steady-state mole fraction profiles are described

by
X, du, 1 141

= Vi—o k -
RT dz  cRT (e —an g~ T dz (9-38)

Olng,

Olnx,

Introducing the thermodynamic correction factor I’ E(1+ J we write the steady-state mole

fraction profile as
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dx — x.g 1dTr
@ R M e 2

(9-39)
d.

When D >0; S, >0; k, >0; d_);< 0; this implies that the component 1 segregates towards the

cold end; in this scenario, thermal diffusion serves to enhance the gravitational segregation effect.

d.
Conversely, when D <0; S, <0; k, <O0; d—);> 0, the component 1 segregates towards the hot

end; in this scenario, thermal diffusion acts in a direction opposite to the gravitational segregation. +

In the absence of pressure gradients, equation (9-32) simplifies to

_ X du e x,x,Df 1dr
"URT dz ' pow, T d-

(9-40)

In view of the inter-relations in Table 9-1, and introducing the Fick diffusivity

Olny,

Inx,

D, =D,I' EBIZ(I+ ], we get

5 dw e M 1dT

J=—¢b,

RT dz ' MM, T dz
d M 1dT
J, =—cD, - r_M_1dT (9-41)
dz MM, T dz
MM . do, 1 dT
jlv 2 Jl :]l :—ptDlzd—Zl—Dlr?Z
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9.4 List of Tables for M-S formulation with generalized driving force

Table 9-1. Inter-relationships between molar fluxes and mass fluxes

Molar fluxes Mass fluxes
Jy =cx (uy —u)su = xu, +x,u, Ji=po (u,—v);v=wu +o,u,
J=c¢x (“1 — XU, _xzuz) =C XX, (”1 _”2) i =po (”1 —ou - “z) = p,0,0, (”1 _”2)
5 =AM, = e, = 2 R L Y T
M1 2 M P inMi M
J, =cxx, (u1 —uz) i=1
J = M (u ) M Ji = po, (”1 _”2) =X, (”1 _“2)
= P00, ———— U —Uy ) =————— ] MM MM
MM, MM, Ji = CX\X, #(”1 - ”2)
1
M MM
=— 2 —do; do = ———dx,
G D (lel"'szz)
M, M,
1 _
— =D M =X M, +x,M,
M M, M,
M MM
dx, = do; do = 2 dx,
MM,
¢ XX, M
p 0w, MM,
dx do
J C;Dlz d_Zl’ J _ptDIZd_Zl
— MM _
dxl M da)lgc da)l: ;22dx1;p[_clM
MM,
— MM
J, = D M dw‘ ) ¢,Dy, —2 %
—P MM dz o z
M d
MMz D do, _ . J ¢ 12i_‘]1
7 P E Ji MM, dz
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9.5 List of Figures for M-S formulation with generalized driving force

Ultracentrifugation
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Figure 9-1. Separation of gaseous uranium isotopes U*°F¢(1)/U**F¢(2) by ultracentrifugation as

described in Example 2.3.2 of Taylor and Krishna.'
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10 Diffusion of Ionic Species

10.1 The Maxwell-Stefan diffusion formulation for ionic diffusion

For diffusion in n-component fluid mixtures consisting of neutral, uncharged species, the Maxwell-

Stefan (M-S) equations’*” are normally written as

T => 5 i=l2.n

J=1 ij

J#i

(10-1)

In equation (10-1), u; is the velocity of species i in a laboratory fixed reference frame, and Dj; is the

diffusivity of i-j pair in the n-component mixture. The M-S formulation is essentially a friction

formulation, and Dj; is to be interpreted as the inverse drag coefficient for the i-j pair. The Onsager

reciprocal relations demand the symmetry constraint

D,=D,; i=12,..n (10-2)
We may also define the diffusion fluxes in the laboratory-fixed reference frame

N =cu; i=12,...n (10-3)

where c; 1s the molar concentration of species i. The total molar concentration of the mixture, ¢, is also

the inverse of the mean molar volume

n
¢ =Sc =
i=l1

(10-4)

<~

A wide variety of processes of importance in the process industries involve the transport of ionic
species in bulk electrolyte liquid mixtures, within charged particles, and across charged membranes.

50, 64, 137, 143-145

Examples include electrolysis, electrodialysis, ion exchange, and fuel cells. For design and

development of such processes, it is essential to have adequate models to describe the transport fluxes.
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For transport of ionic species in electrolyte solutions, we need to consider as an additional driving force,

expressed in Joules per mole of mixture, caused by the electrostatic potential gradient

F=-zF< 10-5
z dz ( )

where z; is the ionic charge of species i and F is the Faraday constant. Except in regions close to
electrode surfaces, where there will be charge separation (the double layer phenomena), the condition of

electro-neutrality is met
Z ¢,;z; =0; electroneutrality constraint (10-6)

and therefore

Z":ck (chzk ]F— = (10-7)

Adding the contribution of the electrostatic potential gradients to the left member of equation (10-1)

yields

"X \U —U.
1 %—Ziidq): j(l ]), i=1,2,...n (10-8)
RT &= "Rl dz &% D

J ij
J

It is convenient to define a generalized driving force

x, du, F do
g =N FdD 10-
"TRT dz  CRT dz (10-9)

The second law of thermodynamics demands that the rate of entropy production be positive definite’
1 S xix/‘(ui_“/'f
az—ctRZZTZO (10-10)

The division by 2 is required because of the application of the Onsager symmetry constraint in equation
(10-2). The second law constraint does not require each of the pair M-S diffusivities to be positive
definite. Indeed, Kraaijeveld and Wesselingh'*® experimental evidence to suggest that cation-cation

diffusivities could assume negative values without violation of the second law of thermodynamics. For
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molten salt mixtures LiF-BeF,, the MD simulation data of Chakraborty'*’” show negative values of the

ion pair diffusivities, without violation of the second law constraint described by equation (10-10).

In terms of the fluxes, N, =c,u;, we may re-write equation (10-8) as
X du F do _ Z - X, N
RT dz i RT dz

i=1,2,...l’l (10_11)
J=1 y

j#i

The total current carried by the electrolyte is Fz z,N,. In many chemical process applications such as
i=1

ion exchange, no external electrical field is imposed on the system, and also there is no flow of current,

1e.
Z zZ N, = Z c;zu, =0; no current prescription (10-12)

For electrolyte concentrations smaller than about 0.01 mol L, the cation-anion friction is less than

20% of the ion - water friction and the following simplified equation holds for ionic species i

N[_:_Dii%—ciziﬂ.idg+ciun; i=12,...n—1 (10-13)
RT dz RT dz

where the D; in equation (10-13) are the ionic diffusivities. The three contributions to the molar flux of

bR 1Y

ionic species i are usually termed “diffusion”, “migration” and “convection”.
If we define the diffusion fluxes J; with respect to the solvent, species n:

J.:ci(ui—un):Nl.—ciun:—Bii%—cizif) F do, i=12,..n-1 (10-14)
RT dz RT dz’

The no-current constraint also applies to the diffusion fluxes J;:

Zz Zc, (Zcizi jun =0; no current prescription (10-15)
i=1 i=1

For aqueous electrolyte solutions, the ntz component is usually taken to be water, that is often

considered to be stagnant, i.e.

u,=0; N, =0; stagnantsolvent wierprescripton (10-16)
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10.2 Diffusivity of binary electrolytes in concentrated solutions

Let us consider a binary electrolyte solution, containing cation (C), and anion (A) with charges, zc,

and za, respectively, and stoichiometric coefficients v, and va. The sum of the stoichiometric
coefficients, V=V +V,. The species 3 is water (solvent). Let us assume that the solvent is stagnant, i.e.
u3=0. Let the molar concentration of the binary electrolyte (“salt”) be denoted as c¢s, mol L'; this is also

termed the molarity. The ionic concentrations of C and A are ¢, =V ¢, =V C,X;; €, =V, =V, CX;.
Here ¢ is the total molar concentration of the mixture, ¢, =c.+c,+c¢;. Thermodynamic non-ideality

effects are most commonly described using molalities, m., and m , expressed in terms of moles per kg
. . 1
of solvent (water). The ionic strength is 7 = E(Zf;mc +zim, )

The chemical potential of the electrolyte is
My =Veul +vuy + RT ln(mécm;A (7/c )VC (7A )VA) (10-17)
The u/',and u are chemical potentials of the cation and anion in the standard state; the superscript

m serves as a reminder that this standard state is defined in terms of the ion molalities. A mean molality
and a mean molal activity coefficient are defined. Both are given the subscript + to indicate that this is

an average (geometric mean) of the value for the cation and the anion. The mean molality is defined as

m, = (m m )”V The mean molal activity coefficient is defined in a similar way y, = ((7C )< (r,)" )”V

If the standard state chemical potential of the salt in solution is written as g =v.u. +v, ) can re-

write equation (10-17) as

p, = u + RTIn{(m. ) (7.) )= 2 +VRT In((m, 7)) (10-18)

Figure 10-1(a) shows the experimental data of Moggia and Bianco'** on the mean activity coefficient

7. of aqueous solutions of neutral electrolyte NaCl at 298.15 K. The deep valley in the molal activity

coefficient at a mean molality 72, ~ 1 mol kg™ is particularly noteworthy. The dashed line represents
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the calculations of the mean activity coefficient using the Pitzer-Mayorga'*’ activity coefficient model.
The Pitzer model is of good accuracy for the range of molalities considered.
Figure 10-1(b) shows the experimental data of Ananthaswamy and Atkinson' on the mean activity

coefficient , of aqueous solutions of neutral electrolyte CaCl, at 298.15 K. Also for this electrolyte,

the deep valley in the molal activity coefficient at a mean molality ~ 1 mol kg™ is observed. The dashed

? activity

line represents the calculations of the mean activity coefficient using the Pitzer-Mayorga'*
coefficient model. The Pitzer model is of good accuracy for the range of molalities considered. The
Pitzer model is of good accuracy for molalities 7, <2 mol kg™

For both NaCl/H,O and CaCl,/H,O, calculations of the mean activity coefficient using the Deby-

Hiickel limiting law ln(yi):—|zcz A|A\/7 , where 4 = 1.1717 kg"* mol* and the ionic strength

I = %(zémc +z2m A) are only applicable for molalities 72, < 0.01 mol kg™'; see comparisons with the

Pitzer-Mayorga'*’ activity coefficient model in Figure 10-1(a,b).

Let us define the Fick diffusivity of the binary electrolyte by the flux relation

N, —-pm (10-19)
dz

The Maxwell-Stefan diffusivity of the electrolyte, P, is defined by

N =—p| M) __pfy, Olnbr) In(y,) \dm, __ppdm, (10-20)
RT dz oln(m,)) dz dz

The thermodynamic factor, I', accounts for non-ideal solution thermodynamics , The Fick diffusivity

is related to the M-S diffusivity by

oln(y. )
D=PT=P|1+ : 10-21
( aln<mi>j (1020

At vanishingly small molalities, the Fick diffusivity of the electrolyte can be calculated on the basis of

the individual ionic diffusivities and the species charge numbers
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_ BIBZ(ZI _Zz)
7Dy —2,D,

D=bH (10-22)

151

Figure 10-2(a,b) show the calculations of Rard and Miller ~" for the thermodynamic correction factor

I' for aqueous solutions of (a) NaCl, and (b) CaCl, at 298.15 K. In both cases, the thermodynamic

correction factor I displays a minimum at a mean molality in the range 0.1 < m, < 0.2 mol kg™'. For

CaCl, we also note a maximum in the I factor at m, ~ 5.5 mol kg™,

From equation (10-21), we anticipate that the Fick diffusivity will be influenced by the
thermodynamic correction factor I'. Figure 10-3(a) shows the experimental data of Rard and Miller,""
and Chang and Myerson'>* for Fick diffusivity D of aqueous solutions of neutral electrolyte NaCl at

298.15 K. Due to the influence of I', the Fick diffusivity shows both a minimum and a maximum. At

oin(r)) |
alnofm]ﬁo’

consequently, the Fick diffusivity also tends to vanish at this spinodal composition; further discussions

saturation conditions, corresponding to 7, ~ 6.2 mol kg', we have F:D£1+

on this are provided in the paper by Chang and Myerson.'>

Entirely analogous characteristics of the Fick diffusivity are also observed in the experimental data of
Rard and Miller,"" for aqueous solutions of neutral electrolyte CaCl, at 298.15 K; see Figure 10-3(b).
The sharp reduction in the Fick diffusivity of the salts at concentrations approaching saturation, as

witnessed in Figure 10-3 are of crucial importance in crystal growth.

10.3 Thermodynamic influences on the kinetics of crystal growth

By definition, crystallization processes operate under conditions close to supersaturation. Non-ideal
thermodynamics will have a strong influence on diffusion fluxes and the kinetics of crystal growth. It is
common practice to use chemical potential differences between the supersaturated solution (the
transferring state) and the crystal (the transferred state), O':A,u/ RT :Vln(a . / ai), as the driving force
to model crystal growth kinetics;'”> '** here v is the total number of mole of ions per mole of
electrolyte.
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As illustration, Figure 10-4(a,b,c) present calculations of thermodynamic non-idealities for Potassium
Dihydrogen Phosphate (KDP)/Urea/H,O system at 303.15 K, using the parameters provided by Enqvist

et al.;'>® the molality of urea is maintained constant at 5 mol kg™'; the saturation molality of KDP in the

solution, m* = 1.70 mol kg"'. Figure 10-4(a) are calculations of the mean activity coefficient ¥, of

KDP. Figure 10-4(b) are calculations of the thermodynamic correction factor I' = (1 + %7/1))} . At the
nim,

spinodal concentration, m = 5.35 mol kg™, we have I'=0. Figure 10-4(c) presents calculations of the
activity based supersaturation, o =Au/RT = Vln(ai / a; )

Figure 10-4(d) presents the experimental data of Enqvist et al."”® on growth rate of KDP crystals, at
the [1 0 1] face and expressed in units of nm s', as a function of the supersaturation,
o=Au/RT :Vln(ai / al). As a good approximation, the growth rate is proportional to the activity
based degree of supersaturation.

The process of purification by crystallization is important in the process industries. Using the data on
activity coefficients provided in the paper by Louhi-Kultanen et al.,'”* we analyze thermodynamic non-
idealities in Na;SO4(1)/K2SO04(2)/H20O(3) mixtures under conditions relevant to crystallization

purification processes; the calculations of the activity coefficients are based on the model described in

the papers of Pitzer and Mayorga,'® and Pitzer and Kim."”® Towards this end, we calculate the 2-

dimensional matrix of thermodynamic factors, [F] , defined by

m, u, _m, Oln(y.m,) m om(y.,)
i B s B SN - N A +_’—*’; i,j= 1,2 -
" RTOm;, m; Olnm, Y J (10-23)

; m, Olnm;
The input data for the calculation of the activity coefficients y,.,,7., of the neutral electrolytes

Na;S04(1), and K,SO4(2), respectively, are provided in the paper by Louhi-Kultanen et al;'> see
equations (22) — (32), along with Table 1 of their paper.
Figure 10-5(a) presents calculations of the elements of the the 2-dimensional matrix of

thermodynamic factors, [F], NaSO04(1)/K2S04(2)/H,0O(3) mixtures at 298.15 K. The x-axis in the
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graph represents the total mixture molality, m, =m;+m,; in these calculations, the ratio of the molalities,

mi/my, of Na;SO4(1) and K,SO4(2) is held constant at the value of 0.25. The off-diagonal elements

: . . I r -
cannot be ignored, as is evidenced by the ratios of the elements —* and —2., plotted in Figure 10-5(b).
11 22

We note that at a total mixture molality, m, = 1 mol kg, the ratio —2-~ 0.5, indicating the diffusion
22

fluxes will be strongly coupled.

Let us calculate [F] for a set of conditions specified in Table 4 of Louhi-Kultanen et al.'>
The molalities of neutral electrolytes NaySO4(1) and Kj;SO4(2) in the bulk solution are
my, =0.201; m,, =0.632 mol kg

The molalities of neutral electrolytes Na,SO4(1) and K,SO4(2) at the crystal surface are
my; =0.202; m,; =0.752 mol kg™

At the arithmetic average molalities, the matrix of thermodynamic factors is calculated as follows

0.905 —0.097
Ir]= ~0333  0.706

The influence of thermodynamic coupling on the diffusion fluxes will be discussed in a later section.

10.4 Diffusion in dilute electrolyte solutions

For dilute aqueous solutions of electrolytes, 7, < 0.01 mol kg, the thermodynamic correction

m, du, _dm, ¢, di, ~ de, for the electrolyte. For each

factors are approximately unity, so ~ ;
PP Y Y RT dz dz RT dz dz

individual ionic species, n-1 in number, also, we may approximate %%z% With these
A zZ

assumptions and simplifications, equation (10-13) reduces to the Nernst-Planck equation for the flux of
individual ionic species

N=-D%_cop E AP i1y o (10-24)
dz RT dz

237



Diffusion of Ionic Species

Combining equations (10-12), and (10-24) we obtain the following expression for the diffusion potential

that is engendered due to ionic diffusion

-\ dck
O
Z == F v = (10_25)

R

S

~
T

Inserting equation (10-25) for the diffusion potential into equation (10-24) we obtain the following flux

expressions for the n-1 ionic species (recall that species n is water)

n—l
N =-p %, GEP S p L io1n e

n—1

=D S op B (10-26)

Jj=1

The requirement of electro-neutrality places a constraint on the ionic concentration gradients

<« dc; . .
z.—L=0; electroneutrality constraint (10-27)

i
z

Il
—_

7

This means that the (n-1)th concentration gradient can be eliminated

N

3 z a; _ —z dc,, . electroneutralit i
A =-z, ; y constraint (10-28)

' dz dz

The expression for the diffusion potential engendered due to ionic diffusion can be written in terms of

the (n-2) independent concentration gradients

n-2 n-2
D, e +z,,D,, e, Zy (Bk _Dn—l)de
dod - Iz dz - dz
E —— e = — k= o (10-29)
2 2
ZC./Z./D/ RT C/ b

Inserting equation (10-29) for the diffusion potential into equation (10-24) we obtain the following

expression for the ionic fluxes

n=2
Nl :_Diﬁ —ICZZIBI zzk(Bk _Dn—l)ﬂ; _1’2’ }’l—2
&, & dz (10-30)
c,z;b,

J=1

Equation (10-30) can be conveniently cast into (7-2) dimensional matrix notation
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(N)= —[D]d(c) (10-31)

dz
The elements of the (r7-2)x(n-2) dimensional square matrix of Fick diffusivities are

z.z, DD, —-D )
i I;_]l( k nl); l,k=l,2,...n—2

Dy =D,6; — =
Yc,z2ip, (10-32)
j=1

where 0, is the Kronecker delta. In the ensuing discussions equation (10-32) will also be considered to

be a manifestation of the Nernst-Planck equations. The second member of the right of equation (10-32)
quantifies the electrostatic “leash” that serves to enhance, or diminish, the ionic mobilities. Whether an
ion is accelerated or decelerated depends on the species charges, z;, and whether we have co-diffusion or
counter-diffusion. The elements of the Fick diffusivity matrix [D] are strongly concentration dependent;
the off-diagonal elements are non-zero, i.e. ionic diffusion is always coupled even for dilute solutions.
More generally, if the solvent (water) is not stagnant, we define the matrix of Fick diffusivities as

follows

(/)= {p)4) (10-33)

where we define the diffusion fluxes J; of each individual ionic species with respect to the solvent,

species n as J, =c, (ui —MW)ZNI. —c;u,. If the nth component (water, say) is stagnant, then we have

u, =0; J; =N,
The ionic concentrations c¢; are relatable to the concentrations C; of neutral electrolytes. Let v

represent the number of moles of ionic species i per mole of neutral electrolyte k. The gradients of the

ionic concentrations are related to the gradients of the concentrations of the netural electrolytes by

de, 5 dC . . .
il A Zvik - L, where ne is the number of neutral electrolytes. In matrix notation we have

to the gradients of the concentrations of neutral electrolytes by
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(V)=-[p]v] a(c) (10-34)

10.5 Re-analysis of Vinograd-McBain experiments

Consider the experimental results of Vinograd and McBain"’ in a two-compartment diffusion cell,
shown schematically in Figure 10-6. Diffusion takes place through the pores of a sintered glass disk that
separate the two compartments. Each of the two compartments is well-mixed, and the concentration
gradients are restricted to disk thickness, 6. The bottom compartment contains pure water while the top
compartment contains a mixture of aqueous solutions of HCI and BaCl,. Let cpc) and cpaciz denote the
molar concentrations, expressed in mol L™ of solution. Total ionization takes place and the system is a
quaternary mixture: 1 =H",2=CI’,3=Ba"", 4 = H,0. The concentrations of ions are: cp:= cxcl; CBat+ =

157 the ratio of

cBac2; Ccl-= (cuc1 T 2 cpaci2). In one set of experiments reported by Vinograd and McBain,
the concentrations cyci/ceaciz Was varied. By monitoring the concentrations of the three ionic species as
a function of time, Vinograd and McBain'>’ obtained the effective ionic diffusivities Do for H', CI

and Ba®". The experimentally observed ionic diffusivities are shown in Figure 10-6 as function of the

square root of the ratio of the initial ionic concentrations of H and Ba*" in the top compartment

JCuar/Coactr = /€ [Crary - With increasing values of ¢y, /cg,,, , it is observed that both Dy and

Dg,+ decrease while Dg. increases. At the start of the diffusion process, the highly mobile H' diffuses

ahead of its companion ions into the pure water compartment, creating an excess of positive charge.
This induces a diffusion potential 5CD/ 0z which acts in such a way as to comply with the no-current and

electro-neutrality prescriptions. The consequence is that the Cl” experiences an extra electrostatic “pull”,
enhancing its effective diffusivity value. The electrical potential gradient also serves to retard the

. .. . + ++ . . . . . .
motion of the positive ions H and Ba'  or in other words these ions experience a “push” in a direction

opposite to that dictated by their composition gradient driving forces. For /¢y, /cp.., =2, the
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. ++ . . . . . .
electrostatic “push” on Ba " is such as to result in a vanishing value for Dgay+. The continuous solid

lines in Figure 10-6 are the calculations of the effective ionic diffusivities

N[ . ] —
Di,eﬂ_W’ l—1,2,..l’l 1 (10_35)

l

dz

wherein the fluxes are determined from Equation (10-30).The values of the effective diffusivities D; ¢
for H', CI' and Ba"" can be determined by approximating the concentration gradients

—%z Cio " Cis ; i=12,.n—1. The concentrations ¢, correspond to those in the top well-stirred
Z

compartment: C;y =Cpuci; Coo =Crcr +2Csucns  C3o = Cpacp - I the bottom compartment, we have pure

water; all the ionic concentrations are zero c¢;; =0.We use the ionic diffusivities provided in Example
2.4.2 of Taylor and Krishna:'

P, =93x107; P,=2x10"; P, =0.85x10" m*s”.

The continuous solid lines in Figure 10-6 are the calculations of the effective ionic diffusivities using
equations (10-31), (10-32), and (10-35). The elements of the matrix [D] are determined at the average
concentration in the top and bottom compartments; this allows explicit evaluation of the fluxes and the

effective ionic diffusivities. The essential diffusion characteristics for the HCl/BaCl,/H,O mixture are

properly captured by the linearized analytic solution to the Nernst-Planck equation.

The Nernst-Planck model calculations anticipate negative values of Dg,y+ for m >2 duetoa
strong electrostatic “push”; see Figure 10-6. Negative effective diffusivities signal the possibility of
uphill diffusion for Ba®".

Figure 10-7 compares the experimental data of Vinograd and McBain'’ for effective ionic
diffusivities of H', K*, and CI in a two-compartment diffusion cell with the calculations using equations
(10-31), (10-32), and (10-35). We use the ionic diffusivities' (1 =H", 2 =CI’, 3 =K")

P, =93x107; P, =2x10"; H,=2x10" m*s™.
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In this case, the Cl is accelerated, while both cations H', and K are retarded due to the electrostatic
leash. The essential diffusion characteristics for the HCI/KCI/H,O mixture are properly captured by the

linearized analytic solution to the Nernst-Planck equation.

10.6 Effective ionic diffusivities in HC1/CaCl,/H,0 system

In Figure 7 of their paper, Nakagaki and Kitagawa'>® have reported experimental data for effective

ionic diffusivities of H', Ca™", and CI" in HCl/CaCl,/H,0 aqueous solutions. The experimental data are

Zgis© . :
Catt "Caty under conditions that the total cation

presented as function of the ratio
ZH+cH+ +ZCa++cCa++

concentration is constant in the diffusion layer; see. Their experimental data (indicated by symbols) has

been replotted in Figure 10-8. Due to the electro-neutrality restraint Zcizi =0,
i=1

z Ca++cCa++

ZeCoyp :—(ZH+CH+ +ZCa++cCa++)' With increasing values of , 1t 1s observed that

ZH+CH+ + ZCa++CCa++

both Degrrr and Degrcarr increase while Degrcr. decreases. The continuous solid lines in Figure 10-8 are

the calculations of the effective diffusivities using D, wherein the fluxes are determined

— i
ieff — dC»

l

dz

from equations (10-31), (10-32). The values of the effective ionic diffusivities D; ¢ for H", Cl'and Ca'™"
can be determined explicitly from equations (10-31), (10-32), and (10-35) by approximating the

concentration gradients —Ez% i=12,.n—1. The Nernst-Planck equations are able to capture,

dz ’
almost quantitatively, the variation of the effective ionic diffusivities as a function of

Z Ca++CCa++

. A particularly noteworthy feature of the Nernst-Planck equations is that the
ZhCry T ZcaiCoart

. . . c e . z c
predicted effective diffusivities of Ca’" approaches negative values for Cary Cars <04. We
ZH+CH+ +ZCa++cCa++

158

now examine experimental data of Nakagaki and Kitagawa " that demonstrates the possibility of uphill

diffusion.
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10.7 Uphill diffusion and transient overshoots during inter-diffusion of mixed ions

8 . . . . . .
have conducted transient inter-diffusion experiments in

Nakagaki and Kitagawa'
HCI(1)/CaCl,(2)/H,0O aqueous solutions in a diaphragm cell with two well-stirred compartments. The
top and bottom comparments are initially filled with two distinctly different concentrations of the two
electrolytes, HCI(1)/CaCly(2). The results of three experimental campaigns are reported; these are

158 the initial concentrations in the

termed Examples 1, 2 and 3; see Table 3 of Nakagaki and Kitagawa;
top and bottom compartments are specified in the schematics in Figure 10-9.

On the basis of the transient equilibration of ionic concentrations, Nakagaki and Kitagawa'*® have
determined the effective ionic diffusivities of H', Ca™", and CI. Remarkably, the effective diffusivities,
Difr, as defined by equation (10-35), of H', Ca"™", and CI are negative for, respectively, Examples 2, 1,
and 3; see Figure 10-9. Negative effective ionic diffusivities are indicative of uphill ionic transport,
engendered by the electro-static “leash”.

Our objective here is to model the transient inter-diffusion of H", Ca™", and CI  in the three sets of
experiments to examine the origin and consequences of negative effective ionic diffusivities D; e

Let us consider first the transient equilibration in Example 1 in Figure 10-9. Initially, the top
compartment contains HCI(1) and CaCl,(2) with concentrations of 0.1488 mol L™ and 0.0263 mol L™,
respectively. The initial concentrations of HCI(1) and CaCl,(2) in the bottom compartment are 0.0521

mol L™ and 0.0242 mol L™, respectively. Each of the electrolytes will undergo complete dissociation.

The final equilibrated concentrations of the three ions H', Ca™", and CI" are: 0.10045 mol L' and

0.02525 mol L™, and 0.15095 mol L' Due to the electro-neutrality restraint ZC[Z[ =0, only two of the

i=1
ionic concentrations in each compartment are independently variable; we take 1 = H', and 2 = Ca™" as
the independent species.
The transient equilibration process in the top and bottom compartments (with volumes V, and

interfacial area  A) is described in 2-dimensional matrix notation by

243



Diffusion of Ionic Species

d(cm[’) _ d(cbottom) _ _ ]vl . L. . .
V ==V =—(N)4= A. The molar fluxes N; are taken to be positive if directed
dt dt N,
. . d(ctop ) _ (Ctop - Ceq ) .
from top to bottom. At any instant of time, ¢, we have VT——[D]TA where O is the

effective thickness of the diffusion layer, and [D] is the (n-2)x(n-2) dimensional square matrix of Fick

diffusivities, defined by equation (10-32). The driving forces for ionic transport are

0.04835
(cmp —C, )= (0'00105) We note that the driving force for transport of Ca’ is significantly lower, by a

factor of about 50, than the driving force for H' transport. We define a cell constant 3 = A75 , and write

dle.,)

% = —ﬂ[D](cmp —ceq). The Fick diffusivity matrix [D] is calculable using equation (10-32). If the

diffusivity matrix is evaluated at the final equilibrated composition and considered constant, this matrix

differential equation may be integrated to obtain (cmp —ceq):exp[— ,B[D]t](cwp’o —ceq) where the

vector (ceq ) _ (pr,o +2cbott0m,0) _ (g(l)(z)(s);l-z

J mol L. An analogous expression holds for the bottom

compartment, (cbmmm —ceq): exp|— ,B[D]t](cbmmm’o _ceq) . The square matrix [Q]= eXI{— ﬂ[D]t]
quantifies the transient departure from equilibrium. The Sylvester theorem, detailed in Appendix A of

Taylor and Krishna,' is required for explicit determination of [(] =exd— ,B[D]l] For the case of two

distinct eigenvalues, 4, and A4,, of the 2-dimensional square matrix [D], the Sylvester theorem yields

exp[- B[D}] = (exp(- At ))% +exp(- ﬁizt)% where [] ] is the identity matrix with

elements J, , the Kronecker delta.

The concentration trajectories in the top and bottom compartments during transient equilibration are

presented in Figure 10-10(a,b). The diffusion equilibration of H", and CI" proceeds in a “normal”
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manner, i.e. the transport is from higher to lower concentration regions with exponential decay. The
equilibration of Ca" ions is remarkable in that a concentration overshoot is experienced in the top
compartment with a concomitant undershoot in the bottom compartment. Let us explain the
concentration overshoot in physical terms. The more mobile H' rapidly diffuses into the bottom
compartment; this creates an excess of positive charge. This excess of positive charge serves to prevent
the influx of Ca™" ions into the bottom compartment even though its concentration is higher in the top
compartment. Indeed, the requirement of electro-neutrality causes the Ca™ ions to traverse uphill from
bottom to top compartment in the interests of maintaining electro-neutrality. Uphill transport of Ca"™"
ions leads to transient overshoots in the early stages of equilibration. There is a corresponding
undershoot in the concentration of Ca' ions in the bottom compartment. Figure 10-10(b) also shows the

equilibration trajectories for Ca™" that are calculated without the influence of the electrostatic leash, i.e.
ignoring the contribution of the second term to the right of equation (10-32) and taking D, =D,0,, for

all three ionic species. Clearly, the phenomenon of uphill diffusion for Ca™ is engendered by the
electro-static leash.

The equilibration process follows serpentine trajectories in composition space; see Figure 10-10(c).

Next, we consider the transient equilibration in Example 2 portrayed in Figure 10-9 of Nakagaki and
Kitagawa."™® Initially, the top compartment contains HCI(1) and CaCl,(2) with concentrations of 0.0972
mol L™ and 0.0525 mol L, respectively. The initial concentrations of HCI(1) and CaCly(2) in the
bottom compartment are 0.1033 mol L™ and 0.0 mol L™, respectively. Each of the electrolytes will
undergo complete dissociation. The final equilibrated concentrations of the three ions H', Ca™", and CI’

are: 0.10025 mol L™ and 0.02513 mol L™, and 0.1505 mol L. The driving forces for ionic transport are

—0.00305 . e .
(cmp —C,, )= 0.02513 | We note that the driving force for transport of Ca " is significantly higher, by

a factor of about 8, than the driving force for H' transport.
The transient concentration equilibration trajectories in the top and bottom compartments transient

equilibration are presented in Figure 10-11(a,b). The diffusion equilibration of Ca™", and CI" proceeds
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in a “normal” manner, i.e. the transport is from higher to lower concentration regions with exponential
decay. The equilibration of H" ions is remarkable in that a concentration overshoot is experienced in the
bottom compartment with a concomitant undershoot in the top compartment. Let us explain the
concentration overshoot in physical terms. Due to its large driving force, Ca" gets transported quickly
into the bottom compartment where it creates an excess positive charge (recall that its charge number z,
=+ 2 is twice as high as for H"). This excess positive charge causes the efflux of H™ from the bottom
compartment to be slowed down considerably. Figure 10-11(b) also shows the equilibration trajectories

for H' that are calculated without the influence of the electrostatic leash, i.e. ignoring the contribution
of the second term to the right of equation (10-32) and taking D, =D,J, for all three ionic species. It

is evident that the phenomenon of uphill diffusion for H' is engendered by the electro-static leash. The
influence of the electrostatic leash slow down the transfer of H' from the bottom compartment, causing
an overshoot in the concentration. There is a concomitant undershoot in the concentration of H' ions in
the top compartment.

The equilibration process follows serpentine trajectories in composition space; see in Figure 10-11(c).
Next, we consider the transient equilibration in Example 3 in Figure 10-9 of Nakagaki and Kitagawa.'>®
Initially, the top compartment contains HCI(1) and CaCly(2) with concentrations of 0.0878 mol L™ and
0.0327 mol L™, respectively. The initial concentrations of HCI(1) and CaCly(2) in the bottom
compartment are 0.1116 mol L and 0.01765 mol L™, respectively. Each of the electrolytes will
undergo complete dissociation. The final equilibrated concentrations of the three ions H', Ca™", and CI’

are: 0.0997 mol L™ and 0.02517 mol L™, and 0.15005 mol L™". The driving forces for ionic transport are,

Ciip —C -0.0119
respectively, e e 2 5 Caup —Cie =0.00315 mol L. We note that the driving
rip = Caes ) 10.007525 : :

force for transport of CI is significantly lower in magnitude than the other two driving forces. Also
noteworthy is that the driving force of H™ is opposite in sign to the driving forces of Ca™" and CI".
The transient concentration equilibration trajectories in the top and bottom compartments transient

equilibration are presented in Figure 10-12(a,b). The diffusion equilibration of H" and Ca"" proceeds in
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a “normal” manner, i.e. the transport is from higher to lower concentration regions with exponential
decay. The equilibration of Cl ions is remarkable in that a concentration overshoot is experienced in the
top compartment with a concomitant undershoot in the bottom compartment. Let us explain the
concentration overshoot in physical terms. Due to its high mobility, H' gets transported quickly into the
top compartment where it creates an excess positive charge. This excess positive charge causes the
transfer of Cl" from the top compartment to be retarded down considerably, causing an overshoot in the
CI concentration in the top compartment. Figure 10-12(b) also shows the equilibration trajectories for

CI' that are calculated without the influence of the electrostatic leash, i.e. ignoring the contribution of
the second term to the right of equation (10-32) and taking D, = D,0, for all three ionic species. It is

interesting to note that even ignoring the electrostatic leash leads to overshoots and undershoots; these

over/undershoots are caused by the electro-neutrality restraint ch.zi =0.
i=1

The equilibration process follows serpentine trajectories in composition space; see Figure 10-12(c).

10.8 Fick diffusivity matrix for NaCl/Na,SO,/H,0 solutions

D, D
Rard et al."” report experimental data for elements of the Fick diffusivity matrix, { e } , for the
21 22
mixture of aqueous electrolytes NaCl (1), and Na,SO4 (2) at 298.15 K. The reported data are not for
ionic diffusivities but for the neutral electrolytes NaCl (1), and Na,SO4 (2) respectively. The matrix [D]

is defined in the solvent-fixed reference frame; see equation (10-33):

dey,a dcy,q
J D, D
( NaCl Jz_{ 11 12} dZ =—[D][V] dZ (10-36)
J Na2504 D, D, || deyasos dCyars04
dz dz

Clearly, if the water is considered to be stagnant, then we have u, =0; J, =N, For one set of

Dll D12

conditions, the four elements of the Fick matrix { }, in the solvent fixed reference frame, are

21 22
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shown in Figure 10-13(a); the plotted data are for the total molar concentration of the mixture cNaci +
cnazsos = 0.5 mol L™, The x-axis represents the fraction ¢,/ (cNaCl +CNa2SO4) in the mixture of mixed

electrolytes. We use cnaci, and cnasos to denote the concentrations of neutral electrolytes. Let us

examine the applicability of the Nernst-Planck equations for ionic species for estimation of the Fick

D, D
matrix [ a 2 } for the two neutral electrolytes NaCl (1), and Na,SOyq (2).

21 D22
Towards this end, we number the ionic species in equation (10-32) as follows:
1=CI"; 2=S0,7; 3=Na"; z;= -1, z,= -2, z3= 1. The ionic diffusivities are

D, =2x10";D,=0.6x107;D, =1.3x10" >
m S .

The ionic concentrations c¢; can be related to the concentrations of the neutral electrolytes cn,ci, and
CNa2S04

€ = Crucy 6 = Crunsoas & = Cnuct T 2Cnuaso4 - The two independent ionic concentrations are

(CIJ:[V{ CNaci J:F 0}( CNaci ]
¢, CNa2504 0 1\ Cysos

The fluxes of the neutral electrolytes are relatable to the ionic fluxes as follows

‘]N

a

a=Ja=91 Inasos =Isos =7,

D, D,
The Fick diffusivity matrix { """ B0 for neutral electrolytes, defined by equation (10-36) is

DZI D22_

D, D, 1 0]

PR RCOEC)

from equation (10-32). The estimated values are shown by the continuous solid lines in Figure 10-13(b).

where the elements of the 2x2 matrix [D] is determined

therefore {

At cNaC,/(cNaCl+cNast4) = 1, Dy;; = the Fick diffusivity of the neutral electrolyte NaCl,

_DPB(z-7)

D,
z:0;, -z, D,

=1.576x10" m’ s, Also, at this composition, the non-diagonal element, D;;= 0.
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At CNaCl/(cNaCl+CNa2SO4) = 0, Dy = the Fick diffusivity of the neutral electrolyte Na,SO,,

_Dib,(z,-2)

D,
z,D; —z,D,

=0.936x107° m?s™. Also, at this composition, the non-diagonal element, D;,= 0.

The Nernst-Plank equations are able to capture all the essential characteristics of the composition

D, D
dependence of the Fick diffusivity matrix { " Dlz} for neutral electrolytes. For quantitative
21 22

agreement with the experimental data, we need to take account of the influence of the thermodynamic

non-idealities; further details are provided by Rard et al.'”

10.9 Fick diffusivity matrix for CaCl,/HCI/H,0O solutions

Figure 10-14(a) shows the experimental data (symbols) of Leaist and Curtis'® for the elements of the

D, D
Fick diffusivity matrix [ a 12} for the mixture of aqueous electrolytes CaCl, (1), and HCI (2) at

21 22

298.15 K. The total molar concentration of the mixture €, + €y, = 0.1 mol L. The x-axis represents

the fraction ¢ cp/ (cCaC,2 +cHC,).

The continuous solid lines in Figure 10-14(a) are the estimations using the Nernst-Planck equation
(10-32). In these calculations, we number the ionic species in equation (10-32) as follows:

1=Ca™; 2=H"; 3=Cl; z= 2, z= 1, =z= -1. The ionic diffusivities are
D=0.792x107;D,=9.315x107;0,=2.0333x10” m*s™".

The ionic concentrations ¢; can be related to the concentrations of the neutral electrolytes ccacp, and
cHcl-

€ = CeucniCr = CreisCs = 2Ccucn + Cpyy

The fluxes of the neutral electrolytes are relatable to the ionic fluxes as follows (if water is considered

to be stagnant, then we have u, =0; J,=N,).

N¢

a

cn=Ne, =Nj5 Ny =Ny =N,
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At Couen /(CCaCl2+cHCZ) = 1, D = the Fick diffusivity of the neutral electrolyte CaCl,,

_DD(z-2)

z,D; —z,D,

D,

» =1.335x107 m? s Also, at this composition, the non-diagonal element, D,;= 0.

At Couen /(CCHC,2+CHC,) = 0, Dy = the Fick diffusivity of the neutral electrolyte HCI,

_DyPy(z;-2,)

D,
zD, - z,b,

=3.338x10" m*s™. Also, at this composition, the non-diagonal element, D;,= 0.

The Nernst-Plank equations (10-32) are able to capture all the essential characteristics of the

Dll D12

composition dependence of the Fick diffusivity matrix { } for neutral electrolytes.. For

21 22
quantitative agreement with the experimental data, we need to take account of the influence of the
thermodynamic non-idealities; see further discussions in Leaist and Curtis.'®

In order to appreciate the influence of the electrostatic “leash”, Figure 10-14(b) presents calculations
of the contribution of the second term in the right member of equations (10-32) to each of the elements
of [D]. The influence of the electrostatic leash is most severe on the “more mobile” HCI; this is

evidenced by the large contribution of the electrostatic leash to Dy,.

10.10 Fick diffusivity matrix for K,SO,/KOH/H,0O solutions

Figure 10-15(a) shows the experimental data (symbols) of Leaist and Curtis'® for the elements of the

D, D
Fick diffusivity matrix { ! 12} for the mixture of aqueous electrolytes K,SO4 (1), and KOH (2) at

21 D22
298.15 K. The total molar concentration of the mixture Cy,g04 +Cxoy = 0.1 mol L. The x-axis
represents the fraction ¢,/ (CK2 so4 +CKOH)'

The continuous solid lines in Figure 10-15(a) are the estimations using the Nernst-Planck equations
(10-32). In these calculations, we number the ionic species in equations (10-32) as follows:
1=SO4; 2=OH; 3=K% z= -2, z= -1, z= 1. The ionic diffusivities are

D,=1.0652x107;P,=5.281x107;P,=1.9573x10° m’s™".
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The ionic concentrations ¢; can be related to the concentrations of the neutral electrolytes ckasos4, and
CKOH : € = Cya5043Cy = Con s €3 = 2Cx 504 + Ciop -
The fluxes of the neutral electrolytes are relatable to the ionic fluxes as follows (if water is considered

to be stagnant, then we have u, =0; J, =N,): Ny ooy =Ngpy =N;; Nypy =Ny =N, .
At Craogou/ (CK2S04 +CKOH) = 1, Dy; = the Fick diffusivity of the neutral electrolyte K,SOs,

_DPiB(z-z)

Dll
z,D, —z,D,

=1.53x107 m*s™". Also, at this composition, the non-diagonal element, D,;= 0.

At CK2S04/(CK2SO4+CKOH): 0, Dy = the Fick diffusivity of the neutral electrolyte KOH,

_ 193192(23 _Zz)

D
z z,D,-z2, D,

=2.856x10" m’s”. Also, at this composition, the non-diagonal element, D;,= 0.

The Nernst-Plank equations (10-32) are able to capture all the essential characteristics of the
composition dependence of the Fick diffusivity matrix. For quantitative agreement with the
experimental data, we need to take account of the influence of the thermodynamic non-idealities; see
further discussions in Leaist and Curtis.'®

In order to appreciate the influence of the electrostatic “leash”, Figure 10-15(a) presents calculations
of the contribution of the second term in the right member of equations to each of the elements of [D].
The influence of the electrostatic leash is most severe on the “more mobile” KOH; this is evidenced by

the large contribution of the electrostatic leash to D»;.

10.11 Fick diffusivity matrix for Li,SO,/LiOH/H,0 solutions

Figure 10-16(a) shows the experimental data (symbols) of Leaist and Curtis'® for the elements of the

21 D22

D, D
Fick diffusivity matrix { ! 12} for the mixture of aqueous electrolytes Li,SO4 (1), and LiOH (2) at

298.15 K. The total molar concentration of the mixture ¢, +C0p = 0.1 mol L. The x-axis

represents the fraction ¢, ;404 / (Cuzsm + CLiOH)'
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The continuous solid lines in Figure 10-16(a) are the estimations using the Nernst-Planck equations
(10-32). In these calculations, we number the ionic species in equations (10-32) as follows:
1=SO4; 2=OH; 3=Li’; z= -2, z= -1, z;= 1. The ionic diffusivities are

D= 1.0652><10’9;B2: 5.281><1079;B3= 1.03x10” m? s'. The ionic concentrations ¢; can be related to

the concentrations of the neutral electrolytes crixsos, and crLion: € = Cpin504:C = Crions €3 = 2C1 2504 + Crion -

The fluxes of the neutral electrolytes are relatable to the ionic fluxes as follows (if water is considered

to be stagnant, then we have u, =0; J, =N,): N, 501 =Ngps =Ny; Noy =Ny =N,
At Cros0s / (cu2 sos T cLl.OH) = 1, D;; = the Fick diffusivity of the neutral electrolyte Li;SOu,

_ D;D, (Z3 — Zl)

D,
z,D; —z,D,

=1.04x107 m*s, Also, at this composition, the non-diagonal element, D,;= 0.

At Clirg0n /(CLi2SO4+CLi0H): 0, Dy = the Fick diffusivity of the neutral electrolyte LiOH,

_ B3Dz(23 _Zz)

D,, = =1.724x10"° m*s!. Also, at this composition, the non-diagonal element, D;,= 0.

z;D,-z,D,
The Nernst-Plank equations (10-32) are able to capture all the essential characteristics of the

D

Dll 12

composition dependence of the Fick diffusivity matrix [ } for neutral electrolytes. For

21 D22
quantitative agreement with the experimental data, we need to take account of the influence of the
thermodynamic non-idealities; see further discussions in Leaist and Curtis.'®

In order to appreciate the influence of the electrostatic “leash”, Figure 10-16(b) presents calculations
of the contribution of the second term in the right member of (10-32) to each of the elements of [D]. The
influence of the electrostatic leash is most severe on the “more mobile” LiOH; this is evidenced by the

large contribution of the electrostatic leash to D,.
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10.12 Fick diffusivity matrix for NaCl/MgCl,/H,O solutions

Figure 10-17 shows the experimental data (symbols) of Leaist and Al-Dhaher'®' for the elements of

14 14
the Fick diffusivity matrix {?VI gf} for the mixture of aqueous electrolytes NaCl (1), and MgCl,
21 2 |;

(2) at 298.15 K. The experimental data are for the volume averaged reference velocity frame
2 _ _

u’ = ZciViui where V; is the partial molar volume of species 7 in the mixture. The ¢ =¢,V, represent
i=1

the volume fractions. The x-axis in Figure 10-17 represents the square root of the total mixture

concentration ,/cy.c; + Cpucrn -

We number the ionic species in equations (10-32) as follows: 1=Na"; 2=Mg""; 3=CI’; z;= 1, z= 2, z3=
-1. The ionic diffusivities are D,=1.334x107;P,=0.7063x10;:D,=2.033x10° m’ s". The ionic
concentrations ¢; can be related to the concentrations of the neutral electrolytes cnaci and cmgcn:
C = Cracrs5 €2 = Caggerns €3 = 2cMgC,2 + Crucr -

The fluxes of the neutral electrolytes are relatable to the ionic fluxes as follows (if water is considered

to be stagnant, then we have u, =0; J, =N,): Ny, =Ny, =N;; Nyep =Ny, =N,.

D, D
The expression for the Fick diffusivity matrix [DM Dlz} =[D][v], used in conjunction with the
21 22

Nernst-Planck equations (10-32) for [D] , yield diffusivities in the solvent (water = component 3) fixed

Dll DIZ

reference velocity frame { } . To convert the Fick diffusivities to the volume-averaged

21 D 22 |;
reference velocity frame [

} we use the transformation (see the formulas in the Appendix to

the paper by Rard et al.'™)
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DlVl D1V2 1_6'171 _clfz}{Dll D12:|

D, Dy, | |-¢eV, l-¢,V,| Dy Dy
_ I PPN A1 vy
D, D, _ C3_V3 03V3_ {Dll Dlz}
Dy Dyn] | ol el Dy Dy (10-37)
A oV,

_ el el
=V, =V, e eV | o
oV 1-a V]| el 1+02V2 01

NE NS

where the partial molar volumes 71 are calculated using equations (16) of Leaist and Al-Dhaher.'®' The

volume fraction of the solvent water (species 3) is calculated using ¢,V =1—¢,V, —c,V, . The

continuous solid lines in Figure 10-17 are the estimations, combining equations (10-32) and equation

(10-37). We note that Nernst-Planck equations (10-32) of reasonably good accuracy for

VENact T Cagern <0.1 (mol/L)m. For higher electrolyte concentrations, there are significant deviations

due to thermodynamic non-ideality effects. The paper by Leaist and Al-Dhaher'®' provide further
discussions on the thermodynamic non-ideality effects that need to be included for better agreement
with experimental data.

10.13 Fick diffusivity matrix for NaCl/SrCl,/H,O solutions

Figure 10-18 shows the experimental data (symbols) of Leaist and Al-Dhaher'® for the elements of

the Fick diffusivity matrix [D"] for the mixture of aqueous electrolytes NaCl (1), and SrCl, (2) at 298.15

2
K. The experimental data are for the volume averaged reference velocity frame u’ = ZC;K”; where
i=1

V. is the partial molar volume of species i in the mixture. The ¢ ¥, represent the volume fractions. The
x-axis represents the square root of the total mixture concentration ,/Cy,c; + Cscp -
We number the ionic species as follows:1=Na'"; 2=Sr""; 3=CI; z;= 1, z= 2, z3= -1. The ionic

diffusivities are D, =1.334x107°;D, =0.7915x107; D, =2.033x10”° m*s™".
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The ionic concentrations ¢; can be related to the concentrations of the neutral electrolytes cnac and

CSICI2: € = Cryer3Cy = CorcrnsC3 = 2Cg00 +Craey - The fluxes of the neutral electrolytes are relatable to the

ionic fluxes: N, ., =N,,=N;; Ngo, =N, =N,.
. . . .. . D11 D12 . . . .
The expression for the Fick diffusivity matrix =[D][v], used in conjunction with the

D21 D22

Nernst-Planck equations (10-32) for [D] , yield diffusivities in the solvent (water = component 3) fixed

. D, D . com e e
reference velocity frame { ! Dlz} . To convert the Fick diffusivities to the volume-averaged
21 22 ;
V DV
reference velocity frame IVI 1V2 we use the transformation equation (10-37). The continuous solid
D, D, ;

lines in Figure 10-18 are the estimations, combining equations (10-32) and (10-37).

The Nernst-Planck  equations  (10-32) are of reasonably good accuracy for
NCyact T Csocn <0.1 (mol/L)m. For higher electrolyte concentrations, there are significant deviations

due to thermodynamic non-ideality effects. The paper by Leaist and Al-Dhaher'®' provide further
discussions on the thermodynamic non-ideality effects that need to be included for better agreement

with experimental data.

10.14 Inter-diffusion without a common ion in aqueous solutions

Following Hao and Leaist,'®® we now consider inter-diffusion in mixed electrolytes systems without a
common ion.

The following quotes from the paper by Hao and Leaist'® provides a good summary of the
discussions and calculations to follow.

When a solution of electrolyte MX interdiffuses with a solution of electrolyte NY, the transport of four
different ions (M, X, N, andY) is constrained only by electroneutrality. Because three degrees of
freedom remain, the interdiffusion of two electrolytes without a common ion can produce an

independent flow of a third electrolyte.
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At first glance the interdiffusion of electrolytes MX and NY is another two-electrolyte diffusion
problem. But since ions M, X, N, and Y will in general have different mobilities and different diffusion
speeds, ions M and X will not diffuse together as a single electrolyte component, nor will ions N and Y.
Consequently, the interdiffusion of electrolytes MX and NY cannot be described in terms of fluxes of
components MX and NY alone. Because fluxes of four different ions are constrained only by
electroneutrality, three diffusional flows are independent. These considerations suggest that an accurate
description of the interdiffusion of electrolytes MX and NY must include the flux of a third electrolyte
component: MY or NX.

For aqueous solutions of mixed electrolytes NaCl/MgSOy, there are four different ionic species Na',

1711
i=1 i=1 i=1

CI', Mg, and SO,”. Due to the electroneutrality Zcizi =0 and no-current Zlei =Zc<z.u. =0

constraints there are three independent fluxes, three independent concentrations, and three independent
concentration gradients. Inter-diffusion in aqueous solutions of mixed electrolytes NaCl/MgSO4
engenders the flow of an additional neutral electrolyte Na,SOy, as evidenced in the experiments of Hao
and Leaist.'® The diffusion characteristics of the ternary electrolyte NaCl(1)/Na,;SO4(2)/MgS04(3)
system is described a 3x3 dimensional Fick diffusivity matrix that is linearly related to the Fick
diffusivity matrix for ionic diffusion (with elements given by equations (10-32)).

Figure 10-19(a) presents calculations of the elements of the 3x3 dimensional Fick diffusivity matrix for
the ternary electrolyte NaCl(1)/Na,SO4(2)/MgSQO4(3) system in the solvent (water) fixed reference
frame. These elements can be compared with the experimental data presented in Figure 1 of Hao and

162 Note, however, the experimental data in Figure 1 of Hao and Leaist'®? are for values in the

Leaist.
volume-averaged reference velocity frame; consequently, the agreement of experimental data with

Figure 10-19(a) is not perfect.
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Consider inter-diffusion of NaCl(1)/Na;S04(2)/MgSO4(3) mixtures between two compartments. The

0.1
initial concentrations of the three neutral electrolytes in the left compartment is (c LO): 0 | mol L™,
0
0
The initial concentrations of the three neutral electrolytes in the right compartment is (c RO): 0 | mol
0.1

L. Note that the concentration of Na,SO4(2) is zero in both compartments. The matrix of diffusivities

0.05

(CLO)+(CRO) 0

[D] at the arithmentic average concentrations —————= =
0.05

mol L is calculated from the

1.897 0.105 -0.14
Nernst-Planck equations: [D]={-0.237 1.247 0.116 [x10” m® s". The transient development of
0.094 -0.073 0.803

concentrations of the ions in the Left and Right compartments (denoted by subscripts L and R) is

described by the 3-dimensional matrix equation

Jar 2

The Sylvester theorem, detailed in Appendix A of Taylor and Krishna,' is required for explicit

(c(z,0)) = (¢ ;CRO) +erf{ z [D]—”Z}M (10-38)

determination of the 3-dimensional square matrix [Q]: erf {% [D]m] For the case of three distinct
t

eigenvalues, ﬂl , ﬂz, and A, of the 3x3 dimensional Fick diffusivity matrix [D], the Sylvester theorem

yields
(o)=L WIPI=4IDl-4[r]l,
(2'1_2'2)(&1_/13) (10_39)
S ID]-2[lD]- 411, (4 )MD]-4 [ ]l[D]-4,[7]
(/12_/11)(/12_/13) (/13_2“1)(/13_’12)
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where [] ] is the identity matrix with elements J,, the Kronecker delta. The functions f (/Ii) are

calculated from f(4,)=erf {L ﬂ,l.m} .

N

Figure 10-19(b) shows the transient development of concentrations in the Left and Right
compartments. It is interesting to note the negative concentrations of the neutral electrolyte Na;SO4(2)
are experienced in the right compartment; see further explanations in the paper by Hao and Leaist.'®

A precisely analogous situation arises for diffusion in aqueous solutions of mixed electrolytes

LiCl/NaOH, there are four different ionic species Li", CI, Na', and OH". Due to the electroneutrality

n n n
chzi =0 and no-current ZZ,N = Zciziui =0 constraints there are three independent fluxes, three
i=1 i=1 i=1

independent concentrations, and three independent concentration gradients. Inter-diffusion in aqueous
solutions of mixed electrolytes LiCl/NaOH engenders the flow of an additional neutral electrolyte NaCl,
as evidenced in the experiments of Hao and Leaist.'®*

Figure 10-20(a) presents calculations of the elements of the 3x3 dimensional Fick diffusivity matrix
for the ternary electrolyte LiCI(1)/NaCl(2)/NaOH(3) system in the solvent (water) fixed reference
frame, using equations (10-32) for the Fick diffusivities in the corresponding ionic system, with three
independent ionic species. These elements can be compared with the experimental data presented in

12 Note, however, the experimental data in Figure 3 of Hao and Leaist'®*

Figure 3 of Hao and Leaist.
are for values in the volume-averaged reference velocity frame; consequently, the agreement with

Figure 10-20(a) is not perfect.

Consider inter-diffusion of LiCl(1)/NaCl(2)/NaOH(3) mixtures between two compartments. The

0.1
initial concentrations of the three neutral electrolytes in the left compartment is (c L0)= 0 | mol L.
0
0
The initial concentrations of the three neutral electrolytes in the right compartment is (c R0)= 0 | mol
0.1
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L. Note that the concentration of NaCl(2) is zero in both compartments. The matrix of diffusivities [D]

0.05

(CLO)+ (CRO) 0

at the arithmentic average concentrations, —————= =
0.05

mol L , 18 calculated from the

1.137 0.074  0.42
Nernst-Planck equations: [D]=| 0.686 1.812 -1.249|x10” m® s. The transient development of
-0.547 -0.381 3.127

concentrations of the ions in the Left and Right compartments (denoted by subscripts L and R) is
described by the 3-dimensional matrix equation (10-38).

Figure 10-20(b) shows the transient development of concentrations in the Left and Right
compartments. It is interesting to note the negative concentrations of the neutral electrolyte NaCl(2) are

experienced in the left compartment; see further explanations in the paper by Hao and Leaist.'®

10.15 Fick diffusivity matrix for LiCI/KCI/H,O solutions

Figure 10-21(a,b,c,d) shows the experimental data, as reported in Table 3 of Leaist and Kanakos'® for

. . .. . |D/ D/ . .
the elements of the Fick diffusivity matrix [ i f} , in the volume-averaged reference velocity
21 2 ;

frame, for mixtures of aqueous electrolytes LiCl (1), and KCl (2) at 298.15 K. The total molar

concentration of the mixture ¢,,, +Cx¢; is (a) 0.5 mol L™, (b) 1 mol L, (c) 2 mol L, and (d) 3 mol
L', The x-axis represents the fraction ¢,/ (CLI.C, +C1<c1)- The x-axis represents the fraction

CLict/ (CLiCI+CKCl)‘The experimental data are for the volume averaged reference velocity frame

2 _— J—
u’ = Zci V.u, where V, is the partial molar volume of species 7 in the mixture.
i=1

We number the ionic species as follows: 1=Li"; 2=K"; 3=CI’; z;= 1, z»= 1, z3= -1. The ionic diffusivities

are D,=1.03x107;D,=1.957x107;D,=2.033x10” m* s™'. The ionic concentrations ¢; can be related

to the concentrations of the neutral electrolytes crici and ckci: ¢, = ¢;,05¢, = Cry3C3 = Cricy + Ciy -
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The fluxes of the neutral electrolytes are relatable to the ionic fluxes as follows
Ny =Ny, =N;; Ny =Ng=N,.

D
D

Dll

The expression for the Fick diffusivity matrix [ 12} =[D][v], used in conjunction with the

21 22

Nernst-Planck equations (10-32) for [D] , yield diffusivities in the solvent (water = component 3) fixed

D D
reference velocity frame {D” Dlz} . To convert the Fick diffusivities to the volume-averaged
21 2 |;
14 DV
reference velocity frame | ') 2| we use the transformation equation (10-37). The continuous solid
D, D, ;

lines in Figure 10-21(a,b,c,d) are the estimations, combining equations (10-32) and equation (10-37).
We note that Nernst-Planck equations (10-32) provide estimates that are reasonably good when the
total molar concenrations are lower than about 1 mol L. At higher concentrations, thermodynamic
non-ideality effects become increasingly important. The paper by Leaist and Kanakos'® provide further
discussions on the thermodynamic non-ideality effects that need to be included for better agreement

with experimental data.

10.16 Taylor dispersion in LiCI/KCI/H;O solutions

We now demonstrate the influence of diffusional coupling effects for the mixture of aqueous
electrolytes LiCl (1), and KCI (2) at 298.15 K. In order to illustrate the consequences of diffusional
coupling, we consider Taylor dispersion for laminar flow in a circular tube. Taylor dispersion in a
binary solution is initiated by injecting a small volume AV of solution containing solute at concentration
co T Ac is injected into a carrier solution of concentration, cy. For laminar flow in a circular tube of

length L, and radius R the concentration development following the (Dirac delta) &pulse injection is

260



Diffusion of Ionic Species

AcAv expl — (L - ut)2
o [wR | R
7R ﬂ48Dt 48D

c(t)—c, = = f(D,t)Ac;

(10-40)
(L—u)

f(D,t)= Av eXp| — 55
2p?2 u’R

2R 2 Ry 4 t
48D 48D

Equation (10-40) can be generalized for a binary electrolyte solution by using 2-dimensional matrix

notation

(c())—(cy)=r([DLe)Ac) (10-41)
The Sylvester theorem, detailed in Appendix A of Taylor and Krishna,' is required for explicit
calculation of the 2-dimensional matrix f1 ([D], t ) For the case of distinct eigenvalues, 4 and A, of the
2-dimensional square matrix [D] , the Sylvester theorem yields

/plid=r(a, J)%+f (lz,l)% (10-42)

Following, Chen and Leaist'®*

the Taylor dispersion calculations are for the following set of
conditions:

Length of tube, L =2 m;

Cross-sectional averaged velocity in tube, u = 0.0025 m s™';

Radius of tube, R = 0.4 mm

The injected pulse volume is Av=2x10"° m’.

0.25
The initial concentrations of electrolytes LiCl, KCI are (CIOJ = (0 75j mol L™,
Cap :

At the concentrations cj9 =0.75 mol L, ¢o =2.25 mol L', Chen and Leaist'®* provide the values

1.23 0.09 o 2
[D]z x107 m“s .
0.59 1.87
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1.23  0.09

The eigenvalues of the matrix [D] =
0.59 1.87

}<109 are 4, =1.16x107;4, =1.94x10” m*s™".
. . Ac, 0.05 1 . . .
The excess concentrations in the pulse are re 171 o mol L, implying that there is no
)

alteration in the concentration of KCI.

Figure = 10-22 shows the transient development of the excess concentrations

(c(t))—(co)z f ([D],t)(Ac) . The Gaussian peak characteristics of LiCl is the “normal” behavior of

Taylor dispersion. However, we note that KCI1 experiences undershoots, and overshoots despite the fact
that there is no alteration in the KCI concentration in the injected pulse. The dispersion of KCI is

strongly influenced by the driving force of LiCl due to the contribution of the off-diagonal element D;.

10.17 Fick diffusivity matrix for HCI/NaOH/H,O solutions

Leaist and Wiens'® have presented a detailed analysis of the Fick diffusivity matrix [D] for the
mixture of aqueous electrolytes HCl (1), and NaOH (2) at 298.15 K. Their analysis includes the
influence of thermodynamic non-idealities. We compare their model calculations with the estimations
using the Nernst-Plank equations (10-32), that ignores thermodynamic non-idealities. The estimations of

D

Dll
the elements of
D

21

12} =[D][v] are shown in Figure 10-23(a).

22

The total molar concentration of the mixture ¢y, +Cy,0y = 0.05 mol L™, The x-axis represents the

fraction ¢/ (CHC, +cNaOH). In these calculations, we number the ionic species as follows:
1=Cl; 2=Na’; 3=H"; 4=OH: z= -1, zo= 1, z3= 1, z= -1. The ionic diffusivities are

D=2.03x 107 ;D,=1.33x 10~ ;D,=9.31x 107 D,=5.3x 10”° m*s”'. The fluxes of the neutral electrolytes

are relatable to the ionic fluxes: N, =N, =N;; N,

wort = Ny =N, -
The ionic concentrations of H and OH™ are related by K, =c;Cou¥uVou- The value of the

dissociation constant K, =107 is taken from the literature. In mixed electrolyte solutions with excess
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HCl, we have ¢, =cyy—Cy,on- In mixed electrolyte solutions with excess NaOH, we have

Cop =Cnwon —Cuci- Consequently, there is a discontinuity in the elements of [D] when the

concentrations of the two neutral electrolytes are equal; see Figure 10-23(a).
Figure 10-23(b) presents the calculations of the elements of the Fick diffusivity matrix [D] including
the influence of thermodynamic non-idealities, following the procedure as outlined in the Appendix to

the paper by Leaist and Wiens.'® The inclusion of thermodynamic non-idealities does not have a

D, D
significant influence on the values of the elements of {DH Dlz} =[D][v] because the total molar
21 22

concentration of the system is only 0.05 mol L™

In order to highlight the influence of coupling effects in ionic diffusion, we consider transient inter-
diffusion of HCl (component 1) and NaOH (component 2) between between upper and lower
compartments of a diaphragm cell as shown in the schematic in Figure 10-24(a). The experimental data
corresponding to a set of 3 experiments has been reported in the paper by Leaist and Wiens.'®> We
simulate one of these set of experiments in which the upper compartment initially contains the aqueous
electrolyte HCI (1) with a molar concentration of 0.025 mol L™ and the lower compartment initiually

contains aqueous NaOH (2) with a molar concentration of 0.075 mol L. The initial driving forces for

inter-diaphragm transport of HCI (1) and NaOH (2) are respectively, Ac,, =0.025; Ac,, =—0.075 where
Ac; is the concentration difference between the upper and lower compartments. The transient
equilibration process is described by the two-dimensional matrix expression (Ac) = eXp[— ﬂ[D]t](Aco),

where fis the cell constant. As t —» « , (AC) —(0), and the concentrations of each electrolyte in the top

and bottom compartments will be identical. The value of the integral average Fick diffusivity matrix for

these set of conditions is provided in Table 2 of Leaist and Wiens:'® [D]=

2.59 -0.68
-0.83 219

}x 107 m?

s'. The Sylvester theorem, detailed in Appendix A of Taylor and Krishna,' is required for explicit
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calculation of eXI{— ,B[D]l‘ ] For the case of distinct eigenvalues, 4 and A, of the 2-dimensional square

matrix [D], the Sylvester theorem yields

expl- DY) = (expl- w»%mp@ ﬂ%ﬁ% (1043

2.59 -0.68

The eigenvalues of the matrix [D] ={ 083 210

:|><109 are 4, =3.167x107;4, =1.613x10” m?

-1
S .

The transient approach to equilibrium of the concentration differences of HCl and NaOH are shown
by the red lines in Figure 10-24(b,c). It is interesting to note a pronounced undershoot in the
equilibration of HCI. This undershoot signifies the phenomenon of uphill diffusion, as explained by
Leaist and Wiens.'® Uphill diffusion is a common occurrence in coupled diffusion processes; see the
papers by Krishna for general background to uphill diffusion.” '°* '” The blue lines in Figure
10-24(b,c). represent correspond calculations for the transient uncoupled equilibration process in which

ionic effects are ignored and each of the electrolytes HCl and NaOH are assumed to transfer at the
diffusivities of the neutral electrolytes D,,, =3.333x107;D,,,,, =2.12x10” m* s"". For uncoupled

diffusion, there is no undershoot in the equilibration of HCI.
The enhancement in the equilibration of HCI due to counter-diffusion of NaOH has important

consequence for gas absorption processes, as discussed hereunder.

10.18 Ion diffusion and rapid reaction of HCI and NaOH

Many industrial processes involve the absorption, and subsequent reaction, of dissolved gases into
aqueous solutions. For example, absorption of gases into aqueous solutions is an important industrial
process for removal of pollutants such as SO,, NHi, CO,, and H,S from gaseous streams. The general
mechanism of simultaneous mass transfer and chemical reaction was elucidated by S. Hatta in 1928.
The reader is referred to Chapter 23 of Levenspiel'®® for background information on mass transfer with

chemical reaction. Consider the absorption of solute A from a bulk gas phase, into a solvent containing
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the reactant B with which A reacts; see schematic in Figure 10-25(a). Let the concentration of the solute
A at the gas/liquid interface be p mol L. The concentration of reactant B in the bulk liquid phase is ¢
mol L™ In the special case of a rapid irreversible reaction between A and B, the reaction occurs at a
reaction plane at a distance x; from the gas-liquid interface; at this reaction plane the concentrations of

both A and B are zero. The overall rate of reaction is dictated entirely by diffusional considerations. A

diffuses from the gas/liquid interface to the reaction plane due to the concentration gradient ( p—O)/ X,
with diffusivity Dy, and flux N, =D, (p—O)/ X, . B diffuses from the bulk liquid to the reaction place
as a result of the concentration gradient (q—O)/ X, , with diffusivity Dg, and flux Ny =D, (q—O)/ X, .

The flux across the interface is N =(DAp+DBq)/xL=(N Ax1+NBx2)/xL. We may also write

Nx,

= (N X+ Ngx, )/ p=k,x, where ki is the effective phase mass transfer coefficient. The product

k,x, = [D L+ D, EJ is the effective diffusivity for transfer. This effective diffusivity is higher than the
p

diffusivity of the reactant A. Put another way, there is an enhancement to the interphase mass transfer

process due to chemical reaction within the diffusion film of thickness xp. With increasing values of 4

, the reaction plane moves closer to the gas/liquid interface.

169

In their classic paper, Sherwood and Wei > have presented an analysis of the scenario in which the

dissolved gas A and reactant B both undergo dissociation, partial or total dissociation, in the aqueous

solution. For absorption of gaseous HCI into aqueous NaOH, both the reactants undergo complete

dissociation in the aqueous phase, forming the ions OH,H",Na",CI". The neutralization reaction is

essentially represented by the reaction of the hydrogen ion with the hydroxyl ion H" +OH <> H,O.

Due to the constraints of electro-neutrality ZCI-ZI- =0, and the no-current restriction

i=1
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Z z,N, = z c;z,u; = 0, the diffusion of each of the four ions is strongly influenced by the transport of
i=1 i=l1

each of the partner ions in the solution.

Sherwood and Wei'® used the Nernst-Planck equations to demonstrate the strong influence of
diffusonal coupling effects on the transport of individual ions and the overall rate of absorption of HCI
into aqueous NaOH. It is both illuminating, and instructive to reproduce the calculation results presented
in their paper.

Figure 10-25(b) presents a schematic of the ionic concentrations in the “double film” for absorption of
HCI into aqueous NaOH; This schematic is essentially identical to that presented in Figure 1 of

Sherwood and Wei.'® At the reaction plane, distance x; from the gas-liquid interface, we have the
instantaneous neutralization reaction H" + OH <> H,O. At this plane, the concentrations of both H”
and OH must vanish. Consequently, the concentrations of the partner ions Na“ and Cl° must equal
each other at the reaction plane; this concentration is denoted as m.

To the left of the reaction plane, we have the three ions H",Na",CI'. To the right of the reaction

lane, we have the three ions OH",Na*,Cl . Due to rapid influx of H' into the aqueous solution, C1°
p p q

gets drawn into the liquid film in order to maintain electroneutrality.

The transfer fluxes of each of the ions in either of these two zones is described by equation (10-26).

The ionic diffusivities are D,, =9.317x107;D,, =1.331x107; D, =2.023x107;D,,, =5.271x10~°

m® 5™, The ion concentrations in each of the two zones, left and right of the reaction plane, are taken to

be the arithmetic average of the concentrations at either ends of the respective regions. There is no net
transport of Na" across the gas liquid interface, and therefore its ionic flux must vanish in the region to

the left of the reaction plane, i.e. Ny, =0. Imposition of this condition results in the relation
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2
s=—L4 \/pT+ m’ +4.61pm . The condition Ny, =0 also applies to the region towards the right of

the reaction plane; imposition of this condition results in m =n, /1 6052 41 .
n

The flux across the interface is N= (DH p +BOHq)/ X, = (N X +Noyx, )/ X, or

Nx
L= (N uX + Nopx, )/ p =k, x; where ki is the effective phase mass transfer coefficient.

Figure 10-26 presents a comparison of Nernst-Planck calculations for the parameter kpxp with those

using the classic Hatta model, assuming that the reaction takes place between ‘“neutral” HCl and

“neutral” NaOH: £k, x, =(DHCI+DNGOH 1) where diffusivities of the neutral molecules are,

respectively, D, =3.32x107;D, ., =2.12x10”. The calculations presented in Figure 10-26 are

19 albeit presented in SI units.

precisely identical to those presented in Figure 2 of Sherwood and Wei,
The following summary of the results is provided by Sherwood and Wei:'® “the rapid diffusion of H'

and OH™ ions in the presence of Na’ and C1™ ions may lead to an absorption rate more than twice that

predicted by the use of molecular diffusion concepts and the Hatta theory”.

10.19 Ion diffusion and rapid reaction of HOAc¢ and NaOH

Sherwood and Wei'® have also presented an analysis of the scenario in which the dissolved gas A
reacts with reactant B under conditions such that only B dissociates into ions; see Figure 10-27. This
scenario is exemplified by the absorption of gaseous acetic acid (HOAc) into aqueous NaOH. HOAc

remains practically undissociated, whereas NaOH and NaOAc undergoes complete dissociation,
forming the ions OH,Na’,OAc. Sherwood and Wei'® used the Nernst-Planck equations to

demonstrate the significant influence of electrostatic coupling effects on the transport of individual ions
and the overall rate of absorption of HOAc into aqueous NaOH. We shall reproduce the calculation

results presented in their paper.
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Figure 10-27(b) presents a schematic of the ionic concentrations in the “double film” for absorption of
HOACc into aqueous NaOH; This schematic is essentially identical to that presented in Figure 3 of

Sherwood and Wei.'” At the reaction plane, distance x; from the gas-liquid interface, we have the
instantaneous reaction HOAc+OH <> H,O+OAc . At this plane, the concentrations of both HOAc

H" and OH must vanish. Consequently, the concentrations of the partner ions Na® and OAc™ must
equal each other at the reaction plane; this concentration is denoted as m.

To the left of the reaction plane, we have the diffusion of neutral molecules HOAc and NaOAc. The

transfer flux of HOAc is Ny,,. =Dy ( p —O)/ x, . The diffusivity of neutral, undissociated HOAc is
Dyose =1.279%107° m* 5™

To the right of the reaction plane, we have the three ions OH ,Na",OAc . OH' is the most mobile of

the ionic species, and the hydroxyl ion diffuses rapidly from the bulk aqueous solution to the reaction
plan.
The transfer fluxes of each of the ions on the right side of the reaction plane is described by by

equation (10-26). The ionic diffusivities are D,, =1.091x107;P, =1.331x10";D,, =5.271x10”° m*

-1
S .

The concentrations of each of the species to the right of the reaction plane are taken to be the

arithmetic average of the concentrations at either ends of the respective regions. There is no net

transport of Na™ across the reaction plance, and therefore its ionic flux must vanish to the right of the

reaction plane, i.e. Ny, =0; imposition of this condition results in m=n, /3.821+1 )
n

The flux across the interface is N =(Bypl+Poud)/X, = (NyouXi + NoyX, )/x,  or

Nx . . .
—L= (N noacXi T NopX, )/ p=k,x, where k_ is the effective phase mass transfer coefficient.

Figure 10-28 presents a comparison of Nernst-Planck calculations for the parameter kpxp with those

using the classic Hatta model, assuming that the reaction takes place between “neutral” HOAc and
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“neutral” NaOH. k,x, =[DHOAC+DNQOH 1} where diffusivities of the neutral molecules are,

respectively, D, =1.279x107;D,,, =2.12x10”. The calculations presented in Figure 10-28 are

1 albeit presented in SI units.

precisely identical to those presented in Figure 4 of Sherwood and Wei,
The rates of reaction including ionic diffusion are about a factor 2 higher than the estimations of the

classic Hatta model.

In many cases, the dissolved gas undergoes partial hydrolysis in the aqueous phase, e.g.
SO, +H,0 <> HSO; +H*, CO, + H,0 <> HSO; + H". Littel et al.'”® have modelled the absorption of

CO; and H5S in alkanolamine solutions, taking proper account of ionic diffusion effects and the Nernst-

Planck equations.

10.20 Diffusion of SO, in aqueous solutions

Leaist'”" has reported experimental data for diffusivity of SO, in water; see Figure 10-29(a).
Noteworthy is the decrease in the diffusivity of increasing concentration of the solute. The proper

171 We retrace the various essential

description of the diffusion of SO, is described in the paper of Leaist.
elements of the diffusion process.

Firstly, we need to consider hydrolysis of SO, in aqueous solutions and is present either as molecular

SO, or as bisulfite ion HSO;: SO, +H,0 «>HSO; +H". The degree of hydrolysis, «, defined as,

Cusos  _ Cusos

o= 3Crsos = OC;Cgpy = (l - a)c , can be calculated from

Crsoz T Cson

2 2
Cris03C a’c .. : :
K, =-1591 VisosVi _ & €Vs  Gpere  the mean activity coefficient  is calculated from

Cso2 Vso2 l-a

()=

with 4 = 1.175, and ionic strength I = ac . The hydrolysis constant K;, =0.013 mol

L' at 298.15 K. Figure 10-29(b) presents the calculations for the degree of hydrolysis as a function of
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the concentration ¢ of the solute. At vanishingly small concentrations, the dissolved SO, is almost

entirely hydrolyzed; the degree of hydrolysis decreases with increasing solute concentration.

171

Leaist " has derived the following expression for the Fick diffusivity of aqueous SO;:

D |
D:((l—a)DSOZ+%)F; r=-—= on__2 (1+0¢a n;q} where D, =1.77x107” m* s is the

“RT ¢ 2-a Olnc
. . . 2DHSO3DH . . . . . .o, .
diffusivity of molecular SO,, and D, = —"=—— can be estimated from the ionic diffusivities of
HSO3 + H

HSO; and H".

Figure 10-29(c) shows the calculations for the thermodynamic correction factor, for two different
scenarios: including or ignoring the correction for activity coefficients. Activity coefficient corrections
are not significant for diffusion of SOs.

The continuous solid lines in Figure 10-29(a) are the model estimations of the Fick diffusivity. At

2DHSO3BH

vanishingly small concentrations, ¢c > 0; D — D, = ; in dilute solutions where most of

HSO3 + H

the dissolved gas is hydrolyzed, a sharp increase in the diffusivity of SO, is a consequence of the

exceptionally high mobility of H" .

10.21 Diffusion of Acetic Acid in aqueous solutions

Leaist and Lyons'’* has reported experimental data for diffusivity of acetic acid (HOAc) in water; see
Figure 10-30(a). The analysis of the diffusion process is analogous to that of SO,, discussed in the
foregoing section.

HOAc undergoes dissociation in in aqueous solutions: HOAc <> OAc™ + H". The degree of

2 2
. .o ac .. . . .
dissociation, «, can be calculated from K, = 7 Ve where the mean activity coefficient is determined
-a
AN L o
from ln(}/i)z with 4 = 1.175, and ionic strength [ =ac. The dissociation constant

_1+\/7
K, =1.753x10" mol L at 298.15 K. Figure 10-30(b) presents the calculations for the degree of
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dissociation as a function of the concentration c of the solute. The degree of dissociation is significantly
lower than the degree of hydrolysis of SO, (cf. Figure 10-29(b). Consequently, ion diffusion effects
have a significantly lower prominence for HOAc; this manifests in a weak reduction in the Fick
diffusivity value with increased concentration of solute.

The expression for the Fick diffusivity of HOAc, presented by Leaist and Lyons'’* is formally the

same as for SO;:

aD, c ou 2 Olny, - a1
D:((l—a)DHOAC+T-jF; FERTEZZ—a(“_a 6lnc_j where D, =1.201x107 m® s is

2BOACBH

=1.95x10" m* s, is
+ D,

the diffusivity of molecular (undissociated) acetic acid, and D, =
OAc

estimated from the ionic diffusivities of OAc¢™ and H" .
Figure 10-30(c) shows the calculations for the thermodynamic correction factor, for two different

scenarios: including or ignoring the correction for activity coefficients. Activity coefficient corrections

are insignificant for diffusion of acetic acid because of the small degree of dissociation.

10.22 Diffusion of SO, in aqueous NaHSO; solutions

The removal of SO, from gaseous streams by gas absorption in aqueous solutions is an important

industrial process. In a previous section we had examined the diffusion of SO2 in aqueous solutions in
order to demonstrate the importance of hydrolysis SO, +H,0 <> HSO; +H" and inclusion of the

proper description of ionic diffusion in the analysis. In this section we examine diffusion of SO2 in

aqueous bisfulfite (NaHSOs3) solutions. The treatment here follows the model equations of Leaist,'”

and include thermodynamic non-ideality effects. Sodium bisulphite undergoes complete dissociation .

NaHSO, <> HSO; + Na" The system consists of five species: SO, (molecular), HSO;, H", Na*, and
H,0.

Figure 10-31(a) presents calculations of the elements of the Fick diffusivity matrix for the mixture of

aqueous electrolytes SO,(1), and NaHSOs (2) at 293.15 K. The x-axis represents the total molar
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concentration of the mixture Cg, +Cypus- In  these calculations, we take the fraction
Cson / (0502 +CNaHSO3) = 0.25. We note that the main coefficient D;; increases significantly as the total
concentration molar concentration Cg,, +Cy s 1S lowered. This is due to the increased degree of

hydrolysis SO, +H,0 <> HSO; + H" at low concentrations; this behavior is precisely analogous to that
observed in Figure 10-29(a).
For the calculations in Figure 10-31(b) we take the fraction ¢,/ (CSO2 + CNaHSO3) = (.75. We note that

the main coefficient Dy is significantly lower than the corresponding values shown in Figure 10-31(a).
We conclude that the coefficient D;; is higher in solutions that contain a higher proportion of the
bisulfite eolution. Ionic effects become increasingly significant at higher bisulfite concentrations. In
order to further underscore this point, Figure 10-32(a) presents calculations of the elements of the Fick

diffusivity matrix [D] for the mixture of aqueous electrolytes SO,(1), and NaHSO; (2) at 293.15 K with
varying fractions Cg, / (cSO2 +cCy, HSO3) for a total mixture concentration Cg., +Cyops = 0.001 mol L™,

We note that the main coefficient D;; progressively increases as the solution becomes increasingly
dilute in SO,. Figure 10-32(b) compares D;; with the diffusivity of molecular SO, Dy, =1.45x10

m® s”'. Due to ionic effects, there is about a five-fold increase in Dy;. lonic diffusion effects need to be
taken into consideration in the design of gas absorption processes in which the solute undergoes
hydrolysis or dissociation. Littel et al.'’® have modelled the absorption of CO, and H,S in alkanolamine
solutions, taking proper account of ionic diffusion effects and using the Nernst-Planck equations.

In order to highlight the influence of coupling effects in ionic diffusion, we consider transient inter-
diffusion of SO,(1), and NaHSOs; (2) at 293.15 K between upper and lower compartments of a
diaphragm cell as shown in the schematic in Figure 10-33(a). We simulate a scenario in which the
concentrations in the upper compartment are cioup =0.01 mol L'l, ¢20,up =0.1 mol L. The initial
concentrations in the bottom compartment are cjgpottom =0.001 mol L'l, €20 bottom =1 MmOl L. The

transient equilibration of concentrations is described by the two-dimensional matrix expression
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(Ac) = exp[— ,B[D]l](ACO), where f is the cell constant. The initial driving forces for inter-diaphragm
transport are respectively, Ac,, =0.01-0.001;Ac,, =0.1-1 where Ac; is the concentration difference

between the upper and lower compartments. As ¢ — oo, (Ac)—)(()), and the concentrations of each

electrolyte in the top and bottom compartments will be identical. The value of the Fick diffusivity

1.916 —0.003827 9 2
X s”. The Sylvester

matrix at the equilibrated composition is [D]z{ 0.249 1.021

theorem, detailed in Appendix A of Taylor and Krishna,' is required for explicit calculation of
eXI{— ,B[D]t]. For the case of distinct eigenvalues, 4, and A, of the 2-dimensional square matrix [D],

the Sylvester theorem yields

exp[- B[D)] = (exp(- A1) [[( /1]1 /1[)]]+exp(— ﬂﬂzl)% (10-44)

1.916 —0.003827 "
x10 are

The eigenvalues of the matrix [D] = { 0.249 1.021

4 =1917x107;2,=1.02x10" m?s™".

The transient approach to equilibrium are shown by the red lines in Figure 10-33(b,c). It is interesting
to note a slight undershoot in the equilibration of SO,. This undershoot signifies the phenomenon of
uphill diffusion; see the papers by Krishna for general background to uphill diffusion.”® 1% 17

The blue lines in Figure 10-33(b,c) represent correspond calculations for the transient uncoupled

equilibration process in which ionic effects are ignored both components are assumed to transfer at the
diffusivities of molecular SO, Dy, =1.45x10” m® s and neutral electrolyte D, s =1.19x107° m?

s”. For uncoupled diffusion, there is no undershoot in the equilibration of SO,.
A further important point to note is that the counter-diffusion of NaHSO; serves to enhance the

equilibration of SO,.
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10.23 Diffusion in aqueous solutions of Na,SO,/K,SO,

The process of purification by crystallization is important in the process industries. By definition,
crystallization processes operate under conditions close to supersaturation. As evidenced by the
calculations presented in Figure 10-5, thermodynamic correction factors cannot be ignored; the will
have a strong influence on diffusion fluxes and the kinetics of crystal growth. Using the data on

diffusivities and activity coefficients provided in the paper by Louhi-Kultanen et al.'*®

we analyse
diffusion in Na;SO4(1)/K2SO04(2)/H,0O(3) mixtures under conditions relevant to crystallization
processes.

Firstly, we estimate the matrix of Fick diffusivities [D] for the ternary Na,SO4(1)/K2SO4(2)/H,O(3)
mixture using the Nernst-Planck equations that ignore thermodynamic non-idealities.
Towards this end, we number the ionic species as follows: 1=Na"; 2=K"; 3=S047; z1= 1, z,= 1, z3= -1.
The ionic diffusivities are D, =1.334x107;D, =1.957x107°;D, =1.065x10° m* s'. The ionic
molalities m; can be related to the molalities of the neutral electrolytes mNaci, and mNasos

My =2y 50045y = 2My55045C3 = Crinsos T Crason (10-45)

The fluxes of the neutral electrolytes Na;SO4(1) and K;SO4(2) are relatable to the ionic fluxes as

follows

Nyarsos =5 Niasos = (10-46)

N, N,

2 2
The Fick diffusivity matrix for neutral electrolytes can be estimated by combining equations (10-32)

with equation (10-37) and invoking the equalities in equations (10-45), and (10-46).

1153

Let us calculate the fluxes for a set of conditions specified in Table 4 of Louhi-Kultanen et a

The molalities of neutral electrolytes Na,SO4(1) and K,SO4(2) in the bulk solution are
m, =0.201, m,, =0.632 mol kg
The molalities of neutral electrolytes Na;SO4(1) and K;SO4(2) at the crystal surface are

my; =0.202, m,; =0.752 mol kg™
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1.314 -0.068

x10™ m*
-0.103 1.164

At the arithmetic average molalities, the Fick diffusivity matrix is [D] ={

s™. In view of equations (10-45), and (10-46), the same values of the Fick diffusivity matrix for jonic
species, calculated from equations (10-32), also applies for the binary Na,SO4(1)/K;SO4(2) mixture of
neutral electrolytes. Ignoring thermodynamic correction factors, and assuming an effective film
thickness & =10x10"° m, the fluxes of NaySO4(1) and K;SO4(2) are

1.314 —0.068

x107°
N, B {— 0.103 1.164 } m,, —m,s y kg water 6.624x107*
N, 10x10°° -0.018

J mol m? s”'. Taking into

3 : -
m,, —m,s ) m’ solution

0.905 —0.097}
, a

account the correction for the matrix thermodynamic correction factors [F]z
-0.333 0.706

calculated in an earlier section, we can re-calculate the fluxes

1314 0068
X
N, —-0.103 1.164 0.905 —0.097 ((m,, —m; kg water 1.895x107°
= X—m™—m— =
N, 10x10°° -0.333  0.706 |\m,—m,; ) m’solution -0.013

mol m? s. We note that the flux of Na,SO4(1) is significantly higher than for the case in which
thermodynamic corrections are ignored. This is because of the coupling with the driving force of
K,SO4.

We conclude that thermodynamic corrections are of significant importance for describing the kinetics

of crystal growth, and in particular the transport of impurities.

10.24 Transient permeation across cation exchange membranes

Yang and Pintauro'’ report an interesting set of experimental data for transient transport of H', Na™,
and Cs' ions across a Nafion cation exchange membrane separating the acid and salt compartments; see
Figure 10-34(a). In the reported experiments, the initial concentrations are:

Left: salt compartment: Na,SO4 = 0.125 mol L! ; Cs2S04 = 0.0054 mol L!

Right: acid compartment: H,SO4 = 0.125 mol Lt
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The H' ions transfer from the acid to the salt compartment. Both Na', and Cs" ions transfer from the
p

salt to the acid compartment. The SO4” ions cannot cross the membrane. Due to the significantly higher

mobility of the H' ions, there is a significant influence of the diffusion potential dﬂ that tends to
y g p e

influence the mobility of the Na', and Cs" ions during the initial stages of the transience. Since the

concentration driving force of Cs™ ions is very small, the initial transience is strongly dictated by the

diffusion potential CZE; this results in the observed overshoot in the transient equilibration of Cs’. Yang
zZ

and Pintauro'” present a detailed simulation model for the experiments. For our purposes here, we wish
to demonstrate that the overshoot in the transient equilibration of Cs' ions can be rationalized by a
simplified analytic solution of the Nernst-Planck equations using matrix calculus.

Assuming total ionization, the total ionic concentrations in the left and right compartments are (1 =
H',2=Na';3=Cs",4=80,")
C0=0; ¢,,,=025 ¢,,=0.0108; c,,,=0.1304
Ciro =0.25;  Cyp0 =0.0; €350 =0.0; 4z =0.125 mol L

The equilibrated ionic concentrations are the arithmetic averages:

¢, =0.125 ¢, =0.125 ¢, =0.0054 mol L,

The cation exchange membrane prevents the transport of SO,> ions; and therefore the compositions in
the left and right compartments of SO,* ions will remain 0.1304 and 0.125, respectively. In order to
take account of the exclusion of SO4* ions from the matrix of the cation exchange membrane, we need

to impose the additional constraint for the (n-1)" species, i.e. the 4™ species.
N =0 (10-47)

This implies that the no-current relation must simplify to

n—2

n—=2
ZziNl. = Zc.z‘u. =0; no current prescription (10-48)
i=1 i=1

1l

The expression for the electrostatic potential gradient also reduces to
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:

2 d
L) z"‘Ck

z
av k=l -
dz F & (10-49)
o 2267D;
T4
The (n-2) non-zero fluxes are
n-2
N[:_D[&-;-%ZZICD,(&; =12,...n-2
dz S 1 d (10-50)
2.¢,2,D,
j=l
We define a (n-2)x(n-2) dimensional square matrix
D, =D3s, —%; ik=12,..n-2
2 (10-51)
Zc 2D,

The explicit expression for the (rn-2) non-zero fluxes can be written in (#-2) dimensional matrix notation
d
(V)= —[D]ﬂ (10-52)

The transient equilibration process in the left and right compartments is described by the (n-2)

dimensional  matrix  equations (c L —Cy ) = exp[— p [D]f](c o~ ceq) where  the  vector
( ) 0.125

(ceq): io *Cro) _ 0.125 |, and g is the cell constant. The 3x3 dimensional square matrix
0.0054

GXI{— ﬂ[D]l‘] quantifies the transient approach to equilibrium. In our calculations, we take B=2x10"
m™, that is representative of the experimental set-up. The Sylvester theorem, detailed in Appendix A of
Taylor and Krishna,' is required for explicit determination of [Q]= ex;{— ﬂ[D]t]. Equation (10-51) is
used to determine the Fick diffusivity matrix [D].

For simulations of the transient equilibration process, we use the ionic diffusivities provided in Table
3 of Yang and Pintauro'”* (1 =H",2=Na"; 3 =Cs", 4 =S04")

D, =93x10"; P, =1.33x10"; D, =2.06x10"; B, =1.33x10" m’s".
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The elements of the matrix [D] are determined at the average concentration in the left and right

compartments at any instant of time. In other words, the solution to the matrix equation

(cL —ceq): exp[— ﬁ[D]t](cLo —ceq) is carried out in time-discretized form. By choosing sufficiently

small time intervals, a good accuracy in the calculations is achieved. The simulation results for transient
approach to equilibration are shown in Figure 10-34(b). Our simple model is able to capture the
overshoot in the transient equilibration of Cs’ ions. The physical reasoning for the overshoot is as
follows. The more mobile H' ions vacate the right (acid) compartment rapidly. This creates a rapid
reduction in the positive charge in the right compartment. The SO4> are non-diffusing and cannot
participate in redressing this charge imbalance. Electroneutrality is restored by the enhanced influx of
Na’, and Cs* from the salt compartment. Consequently, both Na’, and Cs' get accelerated by
electrostatic effects. The influence of the second member of the right of equation (10-51) is relatively
large for Cs" because its concentration driving force is small.

The reasonably good match between model simulations and experiments is also indicative of the fact
that the transmembrane permeation fluxes are dictated by diffusion in the electrolyte solutions in either
compartment.

In Figure 10-35 the equilibration trajectories followed by H', Na’, and Cs' in the salt and acid
compartments, are plotted in composition space. In Figure 10-35(a), the left compartment contains
Na,;SO4 and Cs;SO4 and the right compartment contains H,SO4. The undershoot and overshoot in Cs'
correspond to the Yang-Pintauro experimental observations.

We also carried out simulations for a set of different concentrations in the left and right
compartments. The results are presented in Figure 10-35(b) for the scenario in which the left
compartment contains Na,SO4 and the right compartment contains H,SO4 and Cs;SOy; in this case no

overshoot or undershoot is experienced by Cs™" because it diffuses in the same direction as H'.
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Transient overshoots for Cs'/Na’ permeation across a cation-exchange membrane have been reported
by Sodaye et al.'” These overshoots are most likely caused by a combination of electrostatic and

thermodynamic coupling effects.

10.25 Uphill diffusion and transient overshoots in ion-exchange particles

Ion exchange is a sorption separation process that is carried out in fixed bed units in a transient
manner. Most commonly, the ion-exchange resins are solid gels, consisting of a polymeric matrix
produced by co-polymerization of styrene and a cross-linking agent, divinylbenzene, to produce a three-
dimensional cross-linked structure with ionic functional groups attached to the polymeric network.” As
illustration, Figure 10-36 shows a schematic showing an ion exchanger (IEX) particle with fixed HSO3
charges. The liquid phase surrounding the particles consists of a bulk electrolyte solution e,g, HC] and
NaCl. The electrolytes are fully ionized and the bulk liquid phase contains H', Na’, Cl" ions along with
unionized water molecules. The cation exchange particle is negative charged and disallows the influx of
CI ions; only the positively charged cations, called counter-ions, are allowed to enter or leave the
particle. If the styrene-divinylbenzene copolymer is chlormethylated and aminated, a strong-base,
anionic exchange resin is formed that contain fixed positive charges, RN*

We focus our attention to forward/reverse exchanges in which the diffusion resistance is within the
particle. The IEX particle matrix consists of fixed negative charges. Let us assume that the total
concentration of negative charges inside the matrix is crixed, €Xpressed say as equivalent (mole) per
volume of particle. Typically, the concentration of fixed negative charges is in the range of 1 to 4 equiv
L"';% this value is considerably higher than the molar concentrations of ions in the bulk electrolyte

solutions surrounding the particle. The concentration of counter ions within the particle must balance

m

crixed and therefore we have Z Z,C; = Cpq - The quantity
i=1

Sy (10-53)
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is the ionic equivalent fraction. The ionic equivalent fractions of all the counter ions sum to unity

Syt

i=1
For HCI/NaCl exchange, the negative chloride ion is excluded from the particle. The fluxes of H'(1),

and Na'(2) are

dc F do
L e

de F do
N, =-Db, —%— b, ———
: > dz ©% *RT dz

N, =-D,
(10-54)

There is no flow of current
N, +z,N, =0 (10-55)

Combining equations (10-54), and (10-55) allows the determination of the electrostatatic potential
gradient engendered by intra-particle diffusion

dc dc
_.p Y a6
F do ~ 5% g, dz (10-56)

RT dz (clzlzi-)1 +CZZ§BZ)

z,b,

Introducing equation (10-56) into equation (10-54) yields the flux relations

d z,D, de, +z,D, ey
¢ dz dz
N, =-b,—L+c¢,z,D, 5 5
dz (c,z1 D, +¢,z, Dz)
(10-57)
dc, dc,
d z,b,—+z,D, —
¢ oz oz
N,=-b,—*+c¢,z,D, ; 5
0z (clz1 D, +c¢,z, Dz)
For electro-neutrality:
2, da (10-58)
dz
In view of equation (10-58), we can simplify equations (10-57)
dc dc
N1 = _Dl,eﬁ" d_zl; Nz = _Dz,eﬁ‘ d_22 (10'59)

where the effective ionic diffusivities are
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2 2 2 2
¢z, + 6,z B B ¢zt e,z
heff'_( 2D 2D )BlDZ_DZ,eﬁ_Deﬁ_ 2 2
Gz D) T 650, (C’IZ1 L 6% (10-60)
D D
2 1

Equation (10-60) is a remarkable result because the limiting values are:

¢ >0, D,

c, = 0; Deff - D,

—> D,
(10-61)

In other words, the intra-particle effective diffusivity corresponds to the diffusivity of the ion that is
present in the smaller quantity. Helfferich, perhaps the most influential researcher, in ion exchange has
termed this the “minority rule”. To quote Helfferich'* binary interdiffusion is not a democratic process

but, in the parlance of the activist 1960’s, is ruled by a participating minority!
For the exchange of ions with equal charge numbers such as for H'(1)/Na'(2), in which z, =z,, we

obtain

1
=—=D, . = ;  special case of equal charges z, =z
I At PO As TA (10-62)

b, b

D

We can also extend the foregoing analysis to diffusion of m different counter ions within the IEX
particle. Equation (10-54) is extended as follows

de, F dd
N =-D “t—czp —"—; i=12,. 10-
; TGP m (10-63)

For no flow of current, the electrostatic diffusion potential gradient that is engendered by ion diffusion

1S

dc dc de,
F 4o —ZlBldizl—Zszdizz—....—ZmBmE
RT dz e (10-69
chZkBk
k=1
Electro-neutrality demands
de, dc, dc
Lz, =2+ n =0 10-65
“ dz “ dz “n dz ( )

so we can eliminate the concentration gradient of the mth component and write
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m—1
- sz(Bk -D, )&

F do - d
= = z (10-66)
‘ Z ckZZBk
k=1
Combining equations (10-63), and (10-66)) we derive
m—1
dC sz(Dk_Dm)ddc;{
N, =-D —Liczb 12 ; i=12,..m—1 (10-67)
dZ < 2
Z oz by
j=1
We may cast equation (10-67) into (m-1)-dimensional matrix notation
d
(v)=-{p}4) (10-68)
dz
where the elements of the (m-1)x(m-1) dimensional square matrix [D] are
D, =DS5, - (CiZiB;)Zk(Bk _Bm); ik=12,..m-1
2.¢2P, (10-69)
Jj=1

For the case in which we have 3 counter-ions within the IEX particle, m = 3, equation degenerates

(10-58) to yield

dc dc
de, ZI(BI _D3)7;+22(D2 _D3)7;
N, =_B1d_+CIZIBl ( 2 2 2
z ¢z, D +c,z;D, +¢,z5 B3)
J J (10-70)
c c
de ZI(BI _193)71"'22(192 _193)72
N,=-D,—%+c,z,D, 2 2 2 :
dz (clz1 D, +c,z;D, +¢;z5 D3)
We may cast equation (10-70) into 2-dimensional matrix notation
d
(V)= —[D]ﬂ (10-71)

dz

in which the 2x2 dimensional square matrix [D] has the elements
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z\D, —D
D, :B1_C121191( 2 1( 1z 3) 2
cz /D +c,z;D, +C3Z3B3)
D. =—czD Zz(Bz_Ds)
2 e (clzlzj})l +czz§192 +C3Z3ZD3)
(10-72)
D. =—czD ZI(DI_DB)
21 242 2( zD zD 2D )
Gz Dy + 6z, + Gzt
Zz(Bz _D3)

D,, =D, -c,z,D
22 2 T 6 th
(01212’91 + 0222282 + c3z3zB3)

176

It is noteworthy that Yoshida and Kataoka'’® and Jones and Carta'’’ have set up in a different manner

z,c
using the gradients of the ionic equivalent fractions, 5" as driving forces, where L = X, defined
zZ C,.
fixed
are the ion equivalent fractions
& dX
ZN, =—Cpa D Dy —5 i=12,.m-1 (10-73)
N b odz
The elements of the (m-1)x(m-1) dimensional square matrix [Deﬁ.] is defined by
D
Dy oy = D6y — ,S 2D, (b, -b, ) ik=12,.m-1
’ Z 2,D, (10-74)
=1

For the case in which we have 3 counter-ions within the IEX particle, m = 3, and equation (10-44) yields

Dll,eﬂ D12,eﬂ:| _

_D21,eff D22,ejf

D, 0}_ 1 [XIZIBI(BI—D3) X,z,D,(D,-D,)
0 D,| (Xz,D+X,z,D,+X,z,D,)| X,2,D,(P,-B,) X,z,B,(D,-D;)

(10-75)

For the special case m=2, we have only one independent flux, and equations (10-73), and (10-74)

degenerate to yield
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dX, F do _ dx
ZlNl = _CﬁxedD dZ cftxedXZ D R dZ = /ixedDg[f' d_Zl’
ax, F do _ dx, .

z,N, == D, —=—¢,..X,2,D, =—C; r )
24V2 Sixed dz fixed X 222 RT dz Jixed ™ eff dz (10-76)

D - Xz, +X,z,
eff

Xz, +X222

b, 1)

: . . . . dD . . . . . :
The corrective action of the induced potential gradient e is mainly directed against the species that is
z

present in the higher equivalent fraction X .

For the limiting scenario X; =0, Equation (10-76) yields the minority rule

X, >0, D, —> Db,

10-
X,—0; D, b, (10-77)

For transient unary uptake within a spherical IEX particle of radius r., the radial distribution of ion

concentrations, ¢;, is obtained from a solution of a set of differential equations describing the uptake

oc,(r,t) 1 0,
it - F (AN 10-78
ot r* or (r ’) ( )

Combining equations (10-68), and (10-78)) we obtain the following differential equation describing the

transient uptake

oc,(r,t 1 0 ol 0
g (Zak C’“j (10-79)

where the elements of the (m-1)x(m-1) dimensional square matrix [D] are given by equation (10-69).

Written in terms of the ionic mole fractions, equations (10-79) take the form

oX (r1) 1 o[
A S D. 10-
81‘ (”' — ik eﬂ a ( 0 80)

where the elements of the (m-1)x(m-1) dimensional square matrix [Deﬁ] are given by equation

(10-74).
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At any time ¢, during the transient approach to thermodynamic equilibrium, the spatially averaged

concentration within the particle of radius . is obtained by integration of the radial loading profile
E(t) :irc (r, ) dr 10-81
! rc3 A ( 0-8 )

An analytical solution to equation (10-79) is only possible for the special case in which the matrix [D],

defined by equation (10-69) can be considered constant for the range of concentrations encountered

within the particle. In our simulations, we calculate the matrix [D] at the spatially averaged value Xi (1),

1.e. the diffusivity matrix is constantly updated in the time-discretized calculations.

Let us consider a particle that has the uniform concentrations (cp). At time ¢ = 0, the external surface
is brought into contact with the bulk electrolyte solution with a different composition. The surface
concentrations (c,—r) 1S maintained for the entire duration of the equilibration process; this concentration
o4).

is dictated by the ion exchange equilibrium (for further details see Wesselingh and Krishna

The expression for fractional departure from equilibrium is given by the matrix equation

0 -c..)=[0ke .o ) [O]

m=1 c

6 - 1 D
?Z—zexp{— m’n’ —[rz]l} (10-82)
Using time discretization, typically over a few thousand steps, the equation (10-82)can be written as
(c(t )) [Qj ,kco c,..)+c,,. where [QHJ 1s evaluated using the concentrations at the time step #.i,
(c(t H)) that are known from the previous time step. The numerical procedure is easily implemented in

MathCad 15. The same procedure applies to the determination of the spatial-averaged ionic equivalent

fractions, (Y(t ; )):

r

(xo-x...)=[0](X, - X,...) Eﬂii eXP{ [D—fw (10-83)

The accuracy of our methodology for determination of the spatial-averaged concentrations (f(t j)) was

established by comparison with the results of Hwang and Helfferich;'’® see Supporting Information of

. 1
our earlier paper.'®’
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We shall demonstrate the possibility of uphill diffusion and transient overshoots in ionic concentration

during transient uptake of ternary counter-ions within cation exchanger particles.

The intra-particle diffusion is described by the 2x2 dimensional square matrix [D eﬁ»] with elements

given by equation (10-75) The transient uptake of the three cations is described by a two-dimensional
matrix equation (10-83) for the fractional departure from equilibrium; the matrix [Q] quantifies the
departure from equilibrium. The Sylvester theorem, detailed in Appendix A of Taylor and Krishna,' is

required for explicit calculation of the elements of [Q]. Using time discretization, typically over a few

thousand steps, the equation equation (10-83) can be written as (f(t}.)): [Q]._1 kX o — X, )+ X

where |QO HJ is evaluated using the equivalent fractions at the time step #.i: (f(tj_l)) that are known

from the previous time step.

The experimental data of Yoshida and Kataoka'™® for transient uptake of H", Na', and Zn"" within
DOWEX 50WX10 cation exchangers provide experimental confirmation of intra-particle overshoots
and asymmetries in the forward/reverse ion exchanges. The ion exchanger particle is DOWEX 50WX10
with fixed HSOs™ charges. The cation exchange particle prevents the influx of anions from the bulk
electrolyte surrounding the particle. The zero-flux constraint of Equation (10-47) applies to anions. The

input data for the ionic diffusivities inside the pores of the ion exchanger are taken from Table III of
Yoshida and Kataoka'® B, =1.65x10"; D, =1.1x10""; D, =9.62x10"" m* s'. The ion

diffusivity of Zn>" is about an order of magnitude lower than that of H', and Na".

We simulated two experimental data sets by using the matrix equation (10-83) to quantify the
transient uptake of H', Na", and Zn"". In our simulations we used a particle radius 7, = 0.4 mm, an
average value of the sizes reported in Table II of Yoshida and Kataoka.'"

We first investigate the uptake of H'(1)/Na'(2)/Zn**(3) in IEX particle, as reported in Figure 6 of

Yoshida and Kataoka.'” Initially the particle is loaded with Na+ and is replaced by H'/Zn*"

z,c z,c z,c L .
L0 —g, 220, 2230 particleinitiallyloaded with Na*
€ fixed € fixed € fixed
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The surface of the particle in contact with bulk electrolytes such that the surface ion fractions are
maintained at

Zl Cl,r:rc ZZC3,r:rC

zZ,C
2% 2 r=rc
=0.;, —=0.0;

C fived € fixed C fixed

=0.5

The continuous solid lines in Figure 10-37(a) a shos the results of the simulation when the particle is
loaded with Na+ and is replaced H/Zn"". Also shown in Figure 10-37(a) are the experimental data
(shown by the symbols) from Figure 6 of Yoshida and Kataoka'™® for this scenario. There is good
agreement between the experimental data and the simulated uptakes; the transient overshoot in the
uptake of H' that signals uphill diffusion is properly captured by the simulations.

Next we investigate the uptake of H'(1)/Na'(2)/Zn*"(3) in IEX particle, as reported in Figure 9 of
Yoshida and Kataoka.'™ Initially the particle is loaded with H/Zn*" and is replaced by Na*

z,c zZ,¢ zye o :
=05 220 =0; 220=0.5; particleinitiallyloaded with H/Zn*"
¢ Sfixed ¢ Sfixed ¢ fixed

The surface of the particle in contact with bulk electrolytes such that the surface ion fractions are
maintained at
Zlcl,r:rc ZZCS,r:rc

z,C
2C2=re _ 1.
:0; rr@=1,

=0

C fixed C fixed C fixed

The continuous solid lines in Figure 10-37(b) shows the simulations for the scenario in which the
particle is loaded with H'/Zn"" and is replaced Na'. No overshoots or undershoots are experienced in
this scenario. Also shown in Figure 10-37(b) are the experimental data in Figure 9 of Yoshida and
Kataoka'’® for this scenario; there is good agreement between simulations and experiment. Figure
10-37(c) compares the diffusion equilibration trajectories in composition space. The two scenarios

follow completely different paths in composition space.
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Figure 10-1. (a) Experimental data of Moggia and Bianco"

Molality, m / mol kg™

¥ on the mean activity coefficient of

aqueous solutions of neutral electrolyte NaCl at 298.15 K. (b) Experimental data of Ananthaswamy and

Atkinson' on the mean activity coefficient of aqueous solutions of neutral electrolyte CaCl, at 298.15

K. The dashed lines represent the calculations of the Pitzer-Mayorga'*’ activity coefficient model.
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Thermodynamic correction factors for NaCl
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Figure 10-2. (a) Calculations of Rard and Miller'®' for the thermodynamic correction factor I' for

151

aqueous solutions of neutral electrolyte NaCl at 298.15 K. (b) Calculations of Rard and Miller °" for the

thermodynamic correction factor I" for aqueous solutions of neutral electrolyte CaCl, at 298.15 K.
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Diffusivity of neutral electrolytes NaCl and
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Figure 10-3. (a) Experimental data of Rard and Miller,””' and Chang and Myerson'>* for Fick

diffusivity D of aqueous solutions of neutral electrolyte NaCl at 298.15 K. (b) Experimental data of

Rard and Miller,"" for Fick diffusivity D of aqueous solutions of neutral electrolyte CaCl, at 298.15 K.
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Crystal growth KDP/Urea/H,0O
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Figure 10-4. (a, b, ¢) Thermodynamics for KDP/Urea/H,O system at 303.15 K, calculated using the

1'% The molality of urea is maintained constant at 5 mol kg™. (a)

parameters provided by Enqvist et a
Activity coefficient, y, of KDP. (b) Thermodynamic correction factor, I'. (c) Supersaturation, activity

based o, as a function of the molality of KDP in solution. (d) Experimental data of Enqvist et al.">> on

growth rate of KDP crystals as a function of the supersaturation, o.
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Thermodynamic correction factors for
Na,SO,/K,S0,/H20

(a)
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Figure 10-5. (a) Calculations of the elements of the the 2-dimensional matrix of thermodynamic

factors, [F] , NayS04(1)/K,S04(2)/H,0(3) mixtures at 298.15 K. The ratio of the molalities, m/m;,, of

I
Na,S04(1) and K,SO4(2) is held constant at the value of 0.25. (b) Ratio of the elements —* and

The input data for the calculations are provided in the by paper by Louhi-Kultanen et a

FZI
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Co-diffusion of Mixed lons
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Figure 10-6. Co-diffusion of H", Ba"", and CI between two well-mixed compartments. Experimental
data of Vinograd and McBain'’ for ionic diffusivities of H', Ba™", and CI in a two-compartment

diffusion cell. The continuous solid lines are the simulations based on the Nernst-Planck equations.
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Co-diffusion of Mixed lons
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Figure 10-7. Co-diffusion of H', K", and CI” between two well-mixed compartments. Experimental
data of Vinograd and McBain'’ for ionic diffusivities of H', K, and CI” in a two-compartment

diffusion cell. The continuous solid lines are the calculations using the Nernst-Planck equations.

294



Diffusion of Ionic Species

Inter-diffusion HCI(1)/CaCl,(2)/H,0(3)
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Figure 10-8. Experimental data (symbols) for effective ionic diffusivities of H', Ca™", and CI in

HC1/CaCly/H,0 aqueous solutions, scanned from Figure 7 of the paper of Nakagaki and Kitagawa'>®,

ZCa++cCa++

The x-axis is the ratio under conditions that the total cation concentration is

ZH+cH+ + ZCa++cCa++

constant in the diffusion layer. The continuous solid lines are the calculations using the Nernst-Planck

equations.
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Inter-diffusion HCI(1)/CaCl,(2)/H,0(3)

HCI(1)=0.1488 mol L' HCI(1)=0.0972 mol L' HCI(1)=0.0878 mol L'
CaCl,(2)=0.0263 mol L CaCl,(2)=0.0525 mol L1 CaCl,(2)=0.0327 mol L'
HCI(1)=0.0521 mol L' HCI(1)=0.1033 mol L' HCI(1)=0.1116 mol L'
CaCly(2)=0.0242 mol L~ CaCl,(2)=0.0 mol L' CaCl,(2)=0.01765 mol L'
Example 1 Example 2 Example 3
D, o = 3.66 x 10° m? 5" D, o = -3.31 x 10 m2 s D, o = 2.85x 10 m2 s**
D, = -2.68 x 10° m? s D, o = 0.87x 10 m2 s D, 5 = 1.05x 10° m? s-!
D3,eff = 3.15 X 10-9 m2 5.1 D3,eff = 1_29 X 10-9 mZ S-1 D3’eff = '3.06 X 10_9 mz 5_1

Figure 10-9. Experimental data for effective ionic diffusivities of H", Ca™, and CI" in HCl/CaCly/H,0O
aqueous solutions, reported in Table 3 of the paper of Nakagaki and Kitagawa'>® for three different sets

(Examples 1, 2, and 3) of initial molar concentrations of the two electrolytes in the top and bottom

compartments are as specified.
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Figure 10-10. Inter-diffusion of HCI(1)/CaCly(2)/H,O between top and bottom, well-stirred
compartments separated by a diaphragm. The initial molar concentrations of the two electrolytes in the
top and bottom compartments correspond to Example 1 in Table 3 of Nakagaki and Kitagawa."™® (a, b)
Transient approach to equilibrium of the concentrations of H', Ca"', and CI  in the top and bottom

compartments. (¢) The equilibration trajectory plotted in concentration space.
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Figure 10-11. Inter-diffusion of HCI(1)/CaCly(2)/H,O between top and bottom, well-stirred
compartments separated by a diaphragm. The initial molar concentrations of the two electrolytes in the
top and bottom compartments correspond to Example 2 in Table 3 of Nakagaki and Kitagawa.'”® (a, b)

Transient approach to equilibrium of the concentrations of H', Ca"", and CI in the top and bottom

Inter-diffusion
HCI(1)/CaCly(2)/ | &S rtaame:
H,0(3)

HCI(1)=0.1033 mol L-*
CaCl,(2)=0.0 mol L-"

T e top compartment |
0207 @ hottom compartment /
(O startffinish

compartments. (¢) The equilibration trajectory plotted in concentration space.
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Figure 10-12. Inter-diffusion of HCI(1)/CaCly(2)/H,O between top and bottom, well-stirred
compartments separated by a diaphragm. The initial molar concentrations of the two electrolytes in the
top and bottom compartments correspond to Example 3 in Table 3 of Nakagaki and Kitagawa."® (a, b)
Transient approach to equilibrium of the concentrations of H', Ca"", and CI in the top and bottom

compartments. (¢) The equilibration trajectory plotted in concentration space.
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Fick [D] NaCl/Na,SO,/Water solution

e— D iAn*
(a) = D, 2‘:; L(;),/(Nazso“(z) soluton: (b) D,;, Nernst-Planck NaCl(1)/Na,S0,(2) solution;
—A— Dy (Cracs *Cnzsos ) = 0.5 mol L D, Nernst-Planck 208.15K; )
D,, —— D,,, Nernst-Planck (Cyact *Cnazsos ) = 0-5 mol L

D,,, Nernst-Planck

N
o

Elements of Fick diffusivity matrix / 10° m? s™

B S A A
0.0 0.2 0.4 0.6 0.8 1.0

Elements of Fick diffusivity matrix / 107 m? s™

_0‘57\\\\\\\\\\\\\\\\\\\\\\\\\
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Cvact ! (Cnact *Cnazsoa)

Cact ! (Cnaci *Cnazsos)

Figure 10-13. (a) Experimental data of Rard et al."? for elements of the Fick diffusivity matrix, [D],

in the solvent fixed reference frame, for the mixture of aqueous electrolytes NaCl (1), and Na,SO4 (2) at

298.15 K. The total molar concentration of the mixture Cy,c;+Crposoa= 0.5 mol L. The x-axis

represents the fraction ¢, / (CNaCl +cNaZSO4)' (b) Calculations of the elements of the Fick diffusivity

matrix [D] using the Nernst-Planck equations for dilute solutions.
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Fick [D] CaCl,/HCIl/Water solution
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(b)

—— D,,, Electrostatic leash
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D,,, Electrostatic leash

CaCl,(1)/HCI(2) solution;
298.15 K;
(Ceaciz +ohe ) = 0.1 mol L?

Contribution of electrostatic leash/ 10° m? s™
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0.0 0.2 0.4 0.6 0.8 1.0

Ceacie! (Ccaciz * Chci)

Figure 10-14. (a) Experimental data (symbols), taken from Table 1 of Leaist and Curtis,' for the
elements of the Fick diffusivity matrix [D] for the mixture of aqueous electrolytes CaCl, (1), and HCI

(2) at 298.15 K. The continuous solid lines are the estimations using the Nernst-Planck equations. The

total molar concentration of the mixture ¢, + ¢y, = 0.1 mol L. The x-axis represents the fraction

Coucnr/] (cCaCl2 +CHC[). (b) Contributions of the electrostatic leash to each of the four elements of [D].
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Fick [D] K,SO,/KOH/Water solution
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D,,, Nernst-Planck
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Figure 10-15. (a) Experimental data (symbols), taken from Table 1 of Leaist and Curtis,' for the
elements of the Fick diffusivity matrix [D] for the mixture of aqueous electrolytes K»SO4 (1), and KOH

(2) at 298.15 K. The continuous solid lines are the simulations using the Nernst-Planck equations. The

total molar concentration of the mixture Cy,g504 +Croy = 0.1 mol L. The x-axis represents the fraction

Crasos] (CK2 sos T+ CKOH). (b) Contributions of the electrostatic leash to each of the four elements of [D].
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Figure 10-16. (a) Experimental data (symbols), taken

Fick [D] Li,SO,/LiOH/Water solution

— D11‘

0 —— D,,, Electrostatic leash
[ D,,, Electrostatic leash
ak —— D,,, Electrostatic leash
[ D,,, Electrostatic leash
2L
3L Li,SO,(1)/LiOH(2) solution;
[ 298.15K;
L (cLiZSOA *oy) = 0.1 mol L-1
B T S S

0.0 0.2 0.4 0.6 0.8 1.0

Clizsod’ (Cliosos * Clion )

from Table 1 of Leaist and Curtis,160 for the

elements of the Fick diffusivity matrix [D] for the mixture of aqueous electrolytes Li,SO4 (1), and LiOH

(2) at 298.15 K. The continuous solid lines are the estimations using the Nernst-Planck equations. The

total molar concentration of the mixture ¢;;,504 + 1,0 = 0.1 mol L. The x-axis represents the fraction

Crinsou / (Cuz sor t cLiOH). (b) Contributions of the electrostatic leash to each of the four elements of [D].
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Fick [D] NaCl/MgCl,/Water solution
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Figure 10-17. Experimental data (symbols), scanned from Figure 2 of Leaist and Al-Dhaher'®' for the
elements of the Fick diffusivity matrix [D"], in the volume-averaged reference velocity frame, for
equimolar mixture of aqueous electrolytes NaCl (1), and MgCl, (2) at 298.15 K. The continuous solid

lines are the estimations based on the Nernst-Planck equations. The x-axis represents the square root of

the total mixture concentration /¢ y,¢; + Cppecra -
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Fick [D] NaCl/SrCl,/Water solution

, Nernst-Planck
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, expt data
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Figure 10-18. Experimental data (symbols), scanned from Figure 7 of Leaist and Al-Dhaher'®' for the
elements of the Fick diffusivity matrix [D"], in the volume-averaged reference velocity frame, for
equimolar mixture of aqueous electrolytes NaCl (1), and SrCl, (2) at 298.15 K. The continuous solid
lines are the estimations using the Nernst-Planck equations. The x-axis represents the square root of the
total mixture concentration m . It is to be noted that the labels D;, and D, appear to have

been interchanged in Figure 7 of Leaist and Al-Dhaher.'®!
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Inter-diffusion NaCl/Na,S0O,/MgS0,/Water
solution
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Figure 10-19. (a) Calculations of the elements of the 3x3 dimensional Fick diffusivity matrix for the
ternary electrolyte NaCl(1)/Na;SO4(2)/MgS04(3) system in the solvent (water) fixed reference frame.
(b) Transient inter-diffusion in NaCl(1)/Na;SO4(2)/MgS0O4(3) mixtures between two slabs (L and R).

The reference diffusivity Dyer = 10°m? s
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Inter-diffusion LiCI/NaCl/NaOH/Water
solution
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Figure 10-20. (a) Calculations of the elements of the 3x3 dimensional Fick diffusivity matrix for the
ternary electrolyte LiCl(1)/NaCl(2)/NaOH(3) system in the solvent (water) fixed reference frame. (b)
Transient inter-diffusion in LiCI(1)/NaCl(2)/NaOH(3) mixtures between two slabs (L and R). The

reference diffusivity Dyer = 10° m? s
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Fick [D] LiCI/KCI/Water solution
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Figure 10-21. (a, b, ¢, d) Experimental data, as reported in Table 3 of Leaist and Kanakos'® for the
elements of the Fick diffusivity matrix [D"], in the volume-averaged reference velocity frame, for

mixtures of aqueous electrolytes LiCl (1), and KCI (2) at 298.15 K. The continuous solid lines are the
estimations using the Nernst-Planck equations. The total molar concentration of the mixture ¢, +Cxy
is (@) 0.5 mol L", (b) I mol L, (c) 2 mol L', (d) 3 mol L, The x-axis represents the fraction

cLiCl/ (cLiCI + CKCI) .
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Taylor dispersion LiCI/KCIl/Water solution
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Figure 10-22. Taylor dispersion characteristics for the mixture of aqueous electrolytes LiCl (1), and

KCI (2) at 298.15 K.
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Fick [D] HCI/NaOHWater solution

(a) Nernst-Planck estimations
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Figure 10-23. (a) Estimations using the Nernst-Planck equationsof the elements of the Fick diffusivity

matrix [D] for the mixture of aqueous electrolytes HCI (1), and NaOH (2) at 298.15 K. T The total

molar concentration of the mixture €, +Cy,oy = 0.05 mol L. The x-axis represents the fraction

e/ (s + Craon)- (b) Elements of the Fick diffusivity matrix [D] including the influence of

thermodynamic non-idealities, following the procedure as outlined in the Appendix to the paper by

Leaist and Wiens.'®
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Inter-diffusion in HCI/NaOH/Water solution
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Figure 10-24. (a) Schematic showing the inter-diffusion of HCI (1), and NaOH (2) at 298.15 K
between upper and lower compartments of a diaphragm cell, as discussed in the paper by Leaist and

165

Wiens. ™ (b, c¢) Transient equilibration in the molar concentrations of HCI (1), and NaOH (2) in the

upper and lower compartments, respectively.
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Diffusion and Reaction: HCI+NaOH

(a) Classic Hatta model (b) Sherwood & Wei analysis
Gas-liquid Reaction Bulk Gas-liquid Reaction Bulk
interface plane aqueous interface plane aqueous
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Figure 10-25. (a) Classic Hatta model for instantaneous reaction between “neutral” compounds A and
B. Because the reaction is instantaneous it occurs at a reaction plane at a distance x; from the gas/liquid
interface. (b) Ionic concentrations in the “double film” for absorption of HCI into aqueous NaOH. This

schematic is essentially as presented in Figure 1 of Sherwood and Wei.'®
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Comparison with Hatta model: HCI+NaOH
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Figure 10-26. Comparison of Nernst-Planck calculations for the parameter kx; with those using the

classic Hatta model, assuming that the reaction takes place between “neutral” HCI and “neutral” NaOH.
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Diffusion and Reaction: HOAc+NaOH

(a) Classic Hatta model
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(b) Sherwood & Wei analysis
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Figure 10-27. (a) Classic Hatta model for instantaneous reaction between “neutral” compounds A and

B. Because the reaction is instantaneous it occurs at a reaction plane at a distance x; from the gas/liquid

interface. (b) Ionic concentrations in the “double film” for absorption of HOAc into aqueous NaOH.

This schematic is essentially as presented in Figure 3 of Sherwood and Wei.'®
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Comparison with Hatta model:
HOAc+NaOH
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Figure 10-28. Comparison of Nernst-Planck calculations for the parameter kpx; with those using the

classic Hatta model, assuming that the reaction takes place between “neutral” HOAc and “neutral”

NaOH.
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Diffusivity of SO, in aqueo(tj)s solution
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Figure 10-29. (a) Experimental data of Leaist'"!

for diffusivity of SO, in aqueous solution at 298.15.
(b) Calculation of the degree of hydrolysis, a. (¢) Calculation of the thermodynamic correction factor,

I.
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Diffusivity of Acetic Acid in aqueous
(a) solution )
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Figure 10-30. (a) Experimental data of Leaist and Lyons'’* for diffusivity of Acetic Acid in aqueous

solution at 298.15. (b) Calculation of the degree of dissociation, . (c) Calculation of the

thermodynamic correction factor, I'.
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Fick Diffusivity SO,/NaHSO,/H,0
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Figure 10-31. (a, b) Calculations of the elements of the Fick diffusivity matrix [D] for the mixture of

aqueous electrolytes SO,(1), and NaHSO; (2) at 293.15 K. The x-axis represents the total molar

concentration of the mixture Cgy, +Cy, 55 For the calculations in (a) ¢, / (CSO2 + CNaHsos) = 0.25. For

the calculations in (b) ¢,/ (0302 +CNaHS03) = 0.75. The calculations follow the same procedure as

173

described by Leaist, "~ and include thermodynamic non-ideality effects.
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Fick Diffusivity SO,/NaHSO4/H,0
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Figure 10-32. (a) Calculations of the elements of the Fick diffusivity matrix [D] for the mixture of

aqueous electrolytes SO,(1), and NaHSO; (2) at 293.15 K for a total mixture concentration
Cson + Crumss = 0.001 mol L', The x-axis represents the fraction cg,, / (CSO2 "‘CNaHsos)- (b) Comparison

of D;; with the diffusivity of molecular SO, for the same set of conditions as in (a). The calculations

follow the same procedure as described by Leaist,'”” and include thermodynamic non-ideality effects.
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Inter-diffusion in SO,/NaHSO,/H,O solution

(a) schematic
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Figure 10-33. (a) Schematic showing the inter-diffusion of SOy(1), and NaHSO; (2) at 293.15 K

between upper and lower compartments of a diaphragm cell. (b, ¢) Transient equilibratrion of molar

concentrations of (b) SOx(1), and (c) NaHSOj; (2), respectively.
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Transport across cation-exchange membrane
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Figure 10-34. (a) Experimental data of Yang and Pintauro'™ for the transient equilibration of H',
Na', and Cs’ in the salt and acid compartments that are separated by a Nafion cation exchange

membrane. (b) Simulations using the Nernst-Planck equations.
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Figure 10-35. (a, b) Equilibration trajectories followed by H', Na', and Cs' in the left and right

compartments, plotted in composition space. In (a) the left compartment contains Na,SO4 and Cs;SO4

and the right compartment contains H,SOj4. In (b) the left compartment contains Na,SO4 and the right

compartment contains HSO4 and Cs;SOs.
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Figure 10-36. Schematic showing an ion exchanger particle with fixed HSO3" charges. The

surrounding liquid phase consists of a mixture of electrolytes. The electrolytes are fully ionized and the

bulk liquid phase contains anion, and two counter-ions along with unionized water molecules. The

schematic is redrawn using the information contained in Wesselingh and Krishna®
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Figure 10-37. Transient exchange of H'/Na'/Zn"" within DOWEX 50WX10 cation exchanger particle
of radius 0.4 mm. Two scenarios are considered. (a) Initially the particle is loaded with Na" and is

replaced H'/Zn"". (b) Initially the particle is loaded with H'/Zn"" and is replaced Na". (c) Plots of the

ici

ionic equivalent fractions in ternary composition space for the two scenarios. The experimental

C fixed

176

data in Yoshida and Kataoka ™ are indicated by symbols. The Nernst-Planck-Geddes model simulations

are indicated by the continuous solid lines.
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11 Diffusion in Microporous Crystalline Materials

11.1 The Maxwell-Stefan (M-S) description of diffusion

Within micro-porous crystalline materials, such as zeolites, metal-organic frameworks (MOFs), and
zeolitic imidazolate frameworks (ZIFs), the guest molecules exist in the adsorbed phase. The Maxwell-

Stefan (M-S) equations for n-component diffusion in porous materials is applied in the following

manner®® 67 179-184
du, RT RT .
B o )+ D, S, — )+t » Wy —u,,)
du, RT RT il

« b, - 5 X - +—X _

- o 1(u2 u1)+ O 3(u2 u3)+ ’ b,, m (uz um) (11-1)

_%:EXl(un _ul)+§X2(uﬂ _u3)++£Xm(uVl _um)

nl n2 nm
The left members of equation (11-1) are the negative of the gradients of the chemical potentials, with

the units N mol™; it represents the driving force acting per mole of species 1, 2, 3,..n. The u, represents

the velocity of motion of the adsorbate, defined in a reference frame with respect to the framework
material. The subscript m refers to the porous material, that is regarded as the (n+1) th component in the

mixture; the crystalline framework is considered to be stationary, i.e., uy, = 0. The term RT/ D. s

interpreted as the drag or friction coefficient between the guest species i and the pore wall. The term

RT /D, is interpreted as the friction coefficient for the i-j pair of guest molecules. The multiplier Xj in

each of the right members represents a measure of the composition of component j in the mixture
because we expect the friction to be dependent on the number of molecules of j relative to that of
component i. Since the composition fraction X;, of the material is undefined, we re-define the M-S

diffusivity for interaction of the penetrant (i.e. guest molecule) i with the pore wallas D, =D, /X, .

m
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Two different choices of composition measures have been used in the literature: (a) using the

fractional occupancies, 6, =g¢,/q,,, , and (b) using the mole fractions of the adsorbed mixture,
X, =q,/q,; these are discussed below in turn.

We start the analysis of diffusion in microporous materials by considering diffusion of adsorbed

species on a 2D surface consisting of well defined adsorption sites, such as that on graphenes.

11.2 “Vacancy mediated” diffusion of adsorbed species on 2D surface

For diffusion of adsorbed species on a two-dimensional (2D) surface made up of distinct sites, the

Maxwell-Stefan equations may be written as!? 18

1 dy, &0, .
_EEZZD_;?(ui_Mj)+_‘9(ui_uV); i=1L2.n (11-2)

J=1

In equation (11-2), @ is the fractional occupancy, and 6, is the fractional vacancy. The fractional

occupancies, &, of species i are determined from the molar loadings, gi, expressed in moles per kg of

material, and the saturation capacities, giat, for adsorption of each species

0.=1 ;. i=12.n (11-3)
Qi,sat

For the specific case of a binary mixture, the hopping of molecules from one site to another is depicted

in Figure 11-1. Using a simple lattice model, the M-S diffusivity in the limit of vanishingly small

occupancies, D, (0) = l1/1.(0)/12 , where {'=4 is the coordination number of the 2D array of lattice sites,
¢

A 1s the jump distance on the square lattice, and v,(0) is the jump frequency at vanishingly small

occupancy.'*
More generally, molecule-molecule interactions serve to influence the jump frequencies by a factor
that depends on the energy of interaction, w. For repulsive interactions, w > 0, whereas for attractive

interactions, w < 0. Using the quasi-chemical approach of Reed and Ehrlich'®® to quantify such
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interactions, the following expression is obtained for the loading dependence of the M-S diffusivities '*°

187,188

-1
Py = W({1+ﬁ] (+Qﬁiﬂi@J (114)
2(1-0) 20-9)

In equation (11-4) the following dimensionless parameters are defined

B =1-46,(1-6)1-1/9); ¢=exp(w/RT) (11-5)
In the limiting case of negligible molecule-molecule interactions, w =0, ¢=1, =1 equation (11-4)
yields
=D}, (0)(1-6)) (11-6)
Equation (11-6) implies that the M-S diffusivity is proportional to the number of unoccupied sites.

The M-S diffusivities D; quantify the correlation effects. Generally speaking, the hopping of the

more-mobile-less-strongly-adsorbed species will be slowed-down by the tardier-more-strongly-adsorbed

species. The Onsager reciprocal relations demand the symmetry

q, WBH 4Pl i=12.n (11-7)

Ji?
Consider the specific case of tracer diffusion; in this case the species 1 = tagged species 1*; 2 =

untagged species 1; 3 = vacancy (V). Equation (11-2) simplifies to yield

du,. RT RT
At _RE g i)+ 2, (1)
dz By Dy, 11-8
Al _RT o -1+ R0, (1) o
dZ Dl N 1 1 1 DlV Vv 1 Vv
The expression for the tracer diffusivity D* has been derived by Krishna'*
R 1
D =——i——
0.+6 +& (11-9)
Dl By

Equation (11-9) has been validated by Kinetic Monte Carlo simulations.'®

327



Diffusion in Microporous Crystalline Materials

An important characteristic of the foregoing description is that the vacancy flux is non-zero, and this
description is essentially a 2D analog of the “vacancy mediated” diffusion in non-porous crystalline
metal crystals, described in an earlier section. We now apply the “vacancy” description of diffusion to

microporous materials in a slightly modified form.

11.3 “Vacancy” description of diffusion in micropores

179, 189-191

In our earlier publications on n-component mixture diffusion in micropores, equation (11-1)

was applied in the following manner
1 du &0, 1 _
—HEZZD—]H(MI—M])'FE(MI), i=12.n (11_10)

In equation (11-10), & is the fractional occupancy of species i ; these are determined from the molar

loadings, ¢i, expressed in moles per kg of material, and the saturation capacities, gi s, for adsorption of

each species

0=-"2_. i=12,n (11-11)

l Qi,sal
The superscript 8 on the exchange coefficients Dif serves as a reminder that these coefficients are

defined in terms of the vacancies as composition measures in the Maxwell-Stefan description. The M-S

diffusivities D; quantify the correlation effects. Generally speaking, the hopping of the more-mobile-

less-strongly-adsorbed species within the pores will be slowed-down by the tardier-more-strongly-
adsorbed species. The P; may be interpreted as inverse drag coefficients between the species i and the
material surface. Indeed, an important persuasive advantage of the M-S equations is that the P; for

mixture diffusion often retains the same magnitude and loading dependence as for unary diffusion;®” '*"

182 we return to this point later in this article.

If p represents the mass density of the framework material, expressed commonly in the units kg m~,

and ¢, =¢q, 0, 1s the molar loading of the adsorbed species i within the micropores, expressed in the
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units of mol kg™, the intra-crystalline diffusion fluxes are N, = pqu, . Re-writing equation (11-10) in

terms of the intracrystalline fluxes we get

, R N. —q.N, .
_piﬂzz 47 "4 ; + N, ; i=12.m (11-12)
RT dZ J':‘1 qi,satqj,sat Dlj qi,sat Di

The Onsager reciprocal relations demand the symmetry
qj,satD; =qi,satDz'; l=1’2n (11-13)
If the saturation capacities of all of the individual species are (nearly) equal to one another, equation

(11-12) simplifies to

q. dlu n Hl-N,-—HiN/- N. .
—p i 2 4L |\+—L; i=12.n -
PRT dz ,Z‘( D] (-9

The important advantage of the use of equations (11-14) is that these can be elegantly combined with
the mixed-gas Langmuir model for mixture adsorption (equation (11-25)), and analytical solutions can
be derived for the membrane permeation fluxes, and effectiveness factors.'**'*°

An important disadvantage of the use of the “vacancy description” of intra-crystalline diffusion is that
the treatment is restricted to the case where all of the molecules exist in the adsorbed phase. This
implies that equation (11-12) cannot be applied to describe diffusion in meso-porous and macro-porous
materials, where a substantial portion of the molecules within the pores may exist in the “bulk™ fluid
phase, not adsorbed on the pore walls.

For a unified description of diffusion in micro-, meso-, and macro-porous materials, we abandon the

“vacancy” concept and proceed using the mole fractions as composition measures.

11.4 Unified M-S description of diffusion in porous materials
For a unified description of diffusion in porous materials, it is convenient to use as composition

measures the mole fractions of the components in the adsorbed phase, x, =g, /g, where g; is the molar

loading of adsorbate, and g, is the fotal mixture loading ¢, = Zq[ .
i=1
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In terms of mole fractions, equations (11-1) are modified as follows

du,  RT RT RT
AN SRS 8
12 13 !
dy, RT  \ RT _ RT
pa _1921 xl(uz ”1)"' ., x3(u2 ”3)+"'+ D, (uZ) (11-15)

d RT RT RT
_f B_Xl(un_ul)+D_X2(un_u3)+“'+g(un)

nl n2 n

An important, persuasive, argument for the use of the M-S formulation for mixture diffusion is that

the M-S diffusivity D, in mixtures can be estimated using information on the loading dependence of the
corresponding unary diffusivity values. Put another way, the M-S diffusivity D, can be estimated from

experimental data on unary diffusion in the porous material.

The M-S diffusivity B, has the units m® s and the physical significance of an inverse drag
coefficient. The magnitudes of the M-S diffusivities H, do not depend on the choice of the mixture

reference velocity because equation (11-1) is set up in terms of velocity differences. At the molecular
level, the Dj; reflect how the facility for transport of species i correlates with that of species j; they are
also termed exchange coefficients.

For mesoporous materials with pores in the 20 A to 100 A size range the values of the exchange
coefficient D, are the nearly the same as the binary fluid phase M-S diffusivity, D1, 5, over the entire

. 60, 108, 181, 182, 196
range of pore concentrations.”” "~ " 7

For micro-porous materials, the exchange coefficient D,
cannot be directly identified with the corresponding fluid phase diffusivity D, because the molecule-
molecule interactions are also significantly influenced by molecule-wall interactions.

The Maxwell-Stefan diffusion formulation (11-15) is consistent with the theory of irreversible

thermodynamics. The Onsager Reciprocal Relations imply that the M-S pair diffusivities are symmetric
b, =D, (11-16)

We define N as the number of moles of species i transported per m? of crystalline material per second
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N, = pqu, (11-17)

where p is the framework density with units of kg m™. Multiplying both sides of equation (11-15) by

4., the M-S equations for n-component diffusion in zeolites, MOFs, and ZIFs take the form 196-198
g, Ay XN -x N, N,
Par 2" p + o i=12,.n (11-18)

j=1 i
J#

An entirely analogous manner of writing equation (11-18) is in terms of molar concentrations c;j, in the

adsorbed phase, with units mol m™, based on the accessible pore volume, Vo (= m’ pore volume per kg

framework)
q; . \ 4,
C. =— 5 C = ci = — _
i v, ‘ 2:1‘, v, (11-19)

In terms of molar concentrations, the M-S description for intra-pore diffusion is

C. dlu_ n(x N —xN, N. ]
—pV — i L Ly L i=12.n -
P RT dz ;( D, ] D, (11-20)

ij i

The quantity pV, = ¢ is the fractional pore volume,

v kg framework \( m’ pore volume | ( m’ pore volume | . (1121)
7 {m’ framework )| kg framework m’ framework
So, we re-write equation (11-20) in the form
C. dlu, n x,.N,.—x,.Nj N. .
e Tl : +—; i=1,2..n -
RT dz ,Z‘[ D, D, (11-22)

The formulation (11-22) has been employed to develop a unified theory of mixture diffusion in both
micro-pores and meso—pores.éo’ 18118419 The fluxes N in equations (11-18), and (11-22) are defined in
terms of the moles transported per m” of the total surface of crystalline material. Alternatively, if we
just focus on fluxes inside a single pore, it is convenient to define the fluxes N; in terms of the moles

transported per m” surface of the pore, then the factor pV, =& has to be omitted in the left member of

equation (11-22).
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11.5 Thermodynamic correction factors
At thermodynamic equilibrium, the chemical potential of component 7 in the bulk fluid mixture equals
the chemical potential of that component in the adsorbed phase. For the bulk fluid phase mixture we

have

Ldy ding, L,

RT dz dz f dz’ (11-23)

The chemical potential gradients dg, /dz can be related to the gradients of the molar loadings, gi, by

defining thermodynamic correction factors I'j;

S di_op 5 di 4o 496 9
RT dz %5 " dz" RT dz “F 7 dz’ " f,dq, p oc’

i,j=1..n (11-24)
The thermodynamic correction factors I'jj can be calculated by differentiation of the model describing
mixture adsorption equilibrium. Generally speaking, the Ideal Adsorbed Solution Theory (IAST) of

Myers and Prausnitz’” is the preferred method for estimation of mixture adsorption equilibrium. In

some special case, the mixed-gas Langmuir model

b g b iy,

qi,sal 1+sz.f; (11-25)
im1

may be of adequate accuracy. Analytic differentiation of equation (11-25) yields

qi,sal 91‘ . ..
L, =9, +(—](—} iL,j=12...n (11-26)

qj,sat V

where the fractional vacancy & is defined as

6, =1-6,=1->.6, (11-27)

i=1
The elements of the matrix of thermodynamic factors I';; can be calculated explicitly from information

on the component loadings ¢; in the adsorbed phase; this is the persuasive advantage of the use of the
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mixed-gas Langmuir model. By contrast, the IAST does not allow the calculation of I';; explicitly from

knowledge on the component loadings ¢; in the adsorbed phase; a numerical procedure is required.

11.6 Explicit expression for the fluxes as function of loading gradients

By defining an n-dimensional square matrix [B] with elements

n

1 X, .
B =—+ Y —: =——: i, j=12..n
"B, ZD 7~ p, Y (11-28)

i i

we can recast equation (11-18), or equation (11-22), into the following form

q. ¢, du 3 .
=LV =———""L="N B N ; i=12,.n -
pRT H RT dz ]Z;‘ v (11-29)

Equation (11-29) can be re-written in n-dimensional matrix notation as

=[] 11D = oA L - opa L) (1130

We denote the inverse of [B] as [A]:
[B]' =[A] (11-31)

The elements of [A] cannot be determined from experimental measurements. However, A;; are

60, 67, 181,

directly accessible from MD simulations " by monitoring the individual molecular

displacements

e
o
1l
N | =
E»—A
£3
==
>|_
~
/\
7\
=

’ (rl,i (t+At) -1, (t))] '( > (rk,j (t+AD) -1, (f))]> (11-32)

1=1 k=1

In this expression »; and n; represent the number of molecules of species i and j respectively, and ry;(¢)
is the position of molecule / of species i at any time ¢. In this context we note a typographical error in

equation (11-32) as printed in earlier publications' ="

wherein the denominator in the right member
had n; instead of n;. The simulation results presented in these publications are, however, correct as the

proper formula given in equation (11-32) was used. Compliance with the Onsager Reciprocal Relations

demands
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nA;=nA;; i,j=12,.n (11-33)

11.7 M-S formulation for binary mixture diffusion

For binary mixture diffusion inside microporous crystalline materials the Maxwell-Stefan equations

(11-18) are written

_ 4 dn :xZNl_xlNZ +&

pRT dz D, D,
(11-34)

—p q, du, _ N, —x,N, +£

RT dz D, D,

The first members on the right hand side of Equation (11-34) are required to quantify slowing-down

effects that characterize binary mixture diffusion.'®'- %204

There is no experimental technique for direct
determination of the exchange coefficients P, that quantify molecule-molecule interactions.

In two-dimensional matrix notation, equation (11-24) take the form

4 A dq,
RT dz dz
. —[r (11-35)
9 du, ] dq,
RT dz dz

For the mixed-gas Langmuir model, equation (11-25), we can derive simple analytic expressions for

the four elements of the matrix of thermodynamic factors:'*

1_ (92 ql,sat 91
{Fu F12:|: 1 93 51 (11-36)
FZl F22 1 - 91 - 02 q2,sat 02 1 _ 91
QI,Sat

where the fractional occupancies, €, are defined by equation (11-25).

Let us define the square matrix [B]
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RIS D[lﬁlﬂzj 5 D,D,
1
D b D 1 D D
[B] = 1 12 12 : [3]71 _ 12 12 (11-37)
x, 1 x 4D,  xD, x,D, D x,D,
S S B 1+ + 2D, P11y
p, D, D, b, Db, D, U b, )]
In proceeding further, it is convenient to define a 2x2 dimensional square matrix [A]:
-1
RIS 1 Bl[l L 5P, J xlgﬂz
[A] _ D, D, 1 D, _ = - 12 12 (11-38)
_x_z _+i 1+x1 2+X2 1 xzD1D2 D 1+XZBI
DIZ DZ BIZ BIZ DIZ B]2 ? 12
Equation (11-34) can be re-cast into 2-dimensional matrix notation
d(q)
N)=—p|A||IT ;
() =-p[A][r 2
DI(H A0, j Bkl 94, (11-39)
(Nlj:_ P Dy, D {rn r12} dz
N, 1+)C17BZ+X27D1 x,D D, D 1+szl I, Iy %
Dy, By, Blz ’ 12 dz

The elements of [B] can be obtained by inverting the matrix [A] determined using MD simulations

d.x _x
: : . Bll BIZ _ Dl Bl2 DIZ _ -1 . e el
using equation (11-32): = =[A]" . The three M-S diffusivities can
a Do X 1 X
—_— —_— _+_ —_—
DIZ DZ DIZ
Bll B12 .
be backed-out from the four elements using;
21 22
X 1 1
D,=-—%; 1= ; D=
B, % 5 _ (11-40)
11 22
b b

12 12

For a wide variety of guest/host combinations we used MD simulations to determine the four elements

AL A, A, LA, for equimolar (¢1=¢2; c1=c>) binary mixtures for a range of total mixture loadings, ¢=

11> 712277212

q11+q2, using equation (11-32). A small but representative selection of the MD simulated data culled

60, 67, 182, 191, 196, 201, 205-210

from our previous publications are presented in the following Figures:
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Figure 11-2: CO,(1)/N2(2) mixtures in MFI zeolite

Figure 11-3: CO,(1)/N2(2) mixtures in FAU all-silica zeolite
Figure 11-4: Ne(1)/Ar(2) mixtures in CHA all-silica zeolite
Figure 11-5: Ne(1)/Ar(2) mixtures in DDR all-silica zeolite
Figure 11-6: CH4(1)/C,Hg(2) mixtures in IRMOF-1

Figure 11-7: CH4(1)/H2(2) mixtures in MgMOF-74

Figure 11-8: COy(1)/H2(2) mixtures in CuBTC

Also presented in Figure 11-2 to Figure 11-8, are the backed-out M-S diffusivities, D,,D,, using
equation (11-40). A careful examination of presented MD data in Figure 11-2 to Figure 11-8 reveal a
number of common characteristic features.

In the limit of vanishingly small loadings, or occupancies:
q—>0, -0, A,—>D;A,>D;A,—>0A,, =0 (11-41)

With increasing mixture loadings, the diagonal elements A, ,A,, are lowered below the
corresponding values of the unary M-S diffusivities D,,D, .
q,>0;, 0>0;, A, <D;A,, <D, (11-42)

The extent of lowering, caused by correlation effects, is higher for the more mobile partner species.
For the tardier species, the extent of lowering is significantly smaller.

As the total pore concentration approaches saturation, @/l diffusivities appear to converge to the same
diffusivity values:

4 Qs 01 Ay =D Ay =D A, =~ A, (11-43)

The rationalization of Equation (11-43) is provided in a subsequent section entitled Correlations

dominant scenario.
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11.8 Self-diffusivity in n-component mixtures

The expression for the self-diffusivity in n-component mixtures can be derived by considering the

mixture to be made of tagged and un-tagged species 7, in the company of other partner molecules'"'

1 1 X, X

=—+—+) = i=12,.n )
D., B B, b, (11-44)

The self-diffusivity D;s.r within is dictated by (a) species i - wall, (b) species i — species i, and (c)
species i — species j interactions. Specifically, for a binary mixture of species 1, and 2, we have

1

I x, x 1 X,
=—+—2+-L; L+ 2
Dl,self Bl BIZ Bll D

1
- 11-45
2,self Bz Blz Bzz ( )

In view of equation (11-37), we may relate the self-diffusivities to the diagonal elements of the matrix

1 x X,
__l__ _—
[B]= Bl D12 1 D12
2 _+L
Dlz Dz BIZ
1 X 1 X
=B, +2L; — =B, +2 11-46
Dl,se[f Bll D2,se[f 22 ( )

Equation (11-46) implies that the self-diffusivities experience correlation effects to a stronger extent

1. x»  _x
. _ b D, b,
than the elements of the matrices [B]= and
X, 1 x
—_— R _l_ —_—
DIZ DZ BIZ
Bl 1+xlDZ XIBIBZ
1 b, b, . . . . .
[A]= 5 D that characterize binary mixture diffusion.
[ e A et x,D D, D 1+xle
BIZ 1912 i Blz 2 »
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11.9 Degree of correlations

In order to appreciate the relative importance of correlations on the calculations of the fluxes for

: the values can be

binary mixture diffusion, we define the degrees of correlation, b, /D -

and D, /D

12 2

. . . . . L 60, 67, 182, 191, 196
determined from those backed-out from mixture MD simulations for earlier publications.” 7, 182, 191, 196,

201,205-210 e magnitude of P, relative to that of D, determines the extent to which the flux of species
1 is influenced by the chemical potential gradient of species 2. The larger the degree of correlation,
D1/Dy,, the stronger is the influence of coupling. Generally speaking, the more-strongly-adsorbed-
tardier partner species will have the effect of slowing down the less-strongly-adsorbed-more-mobile
partner in the mixture.

Figure 11-9 shows MD simulation data for the degree of correlations, B, /P,,, for diffusion of

12 2

equimolar (g; = ¢») binary mixtures (a) CO,/CHy4, (b) Ho/COs, (¢) No/CO,, (d) Ne/CO,, () CH4/Ar (f)
H,/CHy, (g) Ne/Ar, (h) CH4/C,Hg, and (i) CH4/C3Hg at 300 K in a variety of host materials. For any
guest/host combination, P, /D,, is seen to increase as the pore concentration increases; this implies that
correlation effects are expected to be stronger for high pore occupancies.

The degree of correlations is weakest in cage-type structures such as CHA, DDR and LTA; the reason
is that the molecules jump one-at-a-time across the narrow windows separating adjacent cages; CO,
molecules jump length-wise across the windows. At the other end of the spectrum, correlations are
strongest in one-dimensional (1D) channel structures (e.g. BTP-COF, MgMOF-74, NiMOF-74),
intersecting channels (e.g. MFI), and “open” structures (e.g. IRMOF-1, FAU, NaY, NaX) consisting of

large cages separated by wide windows.

11.10 Negligible correlations scenario for M-S diffusivities
For values of P, /P, > 0, and H,/D,, > 0, the contribution of the first right member of M-S

Equation (11-34) can be ignored and correlations can be considered to be of negligible importance; we

derive
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b b A, A b 0
D0 2o { : }{ 1 } (11-47)
BIZ DIZ A21 A22 O BZ

Equation (11-47) is valid, as a first approximation, for diffusion in cage-type zeolites with 8-ring

windows (CHA, LTA, DDR, ERI) and ZIF-8; see e.g. Figure 11-4, and Figure 11-5 and earlier

. s 67,191,196, 199,201,212-214
publications.”” > 7

When correlation effects are negligible, the diffusional coupling effects are solely traceable to mixture

adsorption thermodynamics, embodied in the matrix [F] .
11.11 Correlations dominant scenario for M-S diffusivities

. . . . b ) ) .
For the case in which correlation effects are dominant —->>1; —2- >>1; correlations dominant .
12 12

x,D, +x,D,

This also implies that >>1 because the sum of the adsorbed phase mole fractions add to

12

unity, i.e. x;tx; = 1. Therefore, the term 1+ﬂ+x2_191 in equation (11-38) can be simplified as

12 12

x,D, + x,D, N x,D, + x,D,

1+ , and the matrix [A] reduces to
BlZ BIZ
B[1+—X‘BZJ p, NP
1 P 'D
Al=—5——5 . ° (11-48)
X, + X, 0, D, x,D, Dz(l N x,D,
D
12 12 12
The expressions for A, and A,, can be further simplified
v x1D2 + Xle 1+xizﬂ i_ﬁ_ﬁ
D D x b, D D
12 12 1 2 1 2 (1 1_49)
B{xle ]
1D, LB ab oxn X
b, b, xy, b D b,
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The expressions for A,, and A,, for the correlations dominant scenario must be derived with more care.

The diagonal elements must degenerate to the corresponding pure component P; values at either ends of

the composition range, i.e.

Ay —>D; x—>1 x,—>0 (11-50)
and,
A, =D,y x,>1 x>0 (11-51)

Equations (11-50), and (11-51) must be satisfied for any degree of correlations, not just in the

Correlations Dominant scenario. Consider A,,. For equation (11-48) to satisfy equation (11-50) for

B >> 1; Dy >> 1 we must also satisfy the conditions
12 12

xl_Bz>> 1’ x2_Bl>>1 (11_52)
12 12

because, otherwise, (11-50) will be violated. Invoking equation (11-52) we obtain from equation

(11-48)
b X b X
A= xlD X 1x > Ay = sz X 2x
1222 X% 14500 X % (11-53)
x b, b D, x, b D D,

The M-S diffusivity matrix [A] for the correlations dominant scenario yields the remarkably simple

result
[ A] _ 1 N 1 9 49
i+ﬁ Xy Xy iﬁ-& 9 49 (11-54)
Bl BZ Dl DZ
Remarkably, in this scenario, A,, =A,,, and A,, =A,,. For equimolar mixtures, x, =Xx,, all the four

elements of [A] are equal to one another.
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The dominant correlations scenario is a good approximation under pore saturation conditions.'” An

extensive and detailed validation of equation (11-54) at pore saturation conditions is provided in our

earlier works.!” 21

11.12 Onsager formulation for diffusion in micropores
In the Onsager formulation, the fluxes are linearly related to the chemical potential gradients by

defining a matrix of Onsager coefficients [L]

N L L %
o P | Fn dz ;  Onsager formulation (11-55)
NZ RT LZI L22 %
dz

L,=L, (11-56)

The units of the elements of the Onsager matrix in microporous materials are mol kg m* s™. The
Onsager formulation suffers from the major disadvantage that the diagonal elements L;; and L, cannot
be identified with the corresponding values L, and L, for unary transport of species 1 and 2.°” The

inter-relationship between [A] and [L] is

-] % 7| (157

0 ¢,
In the correlations dominant scenario, the elements of the Onsager matrix [L] = [A]{q1 q()} can be
2
determined by combining equations (11-54), and (11-55):
[L]= [A]{ql 0 } = ;{ % qlzz} correlations dominant
0 @] % ,%|99, ¢ (11-58)

1 2
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11.13 List of Figures for Diffusion in Microporous Crystalline Materials

Diffusion of Adsorbed Species on 2D surface

d dl RT RT
—f:—RT ;Zpl = D, 92(”1 _”2)+B—1V‘9V(”1 _MV)
—%z—Rlenp2 = RY Hl(uz —M1)+£9V(u2 _uV)

dZ dZ Bl 2 192 Vv \
D

Fractional

vacancy
2 L
1, -
B,V =—a’v. Exchange coefficient ‘
' 4 quantifying
correlations ‘

Figure 11-1. The Maxwell- Stefan description of hopping of molecules on a 2D surface.
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(b)

MFI zeolite; 300 K;
1.6

o MD;CO,(1)/N,(2) & —O- B
1 @E 14 —@— D, from mixture MD
A
e Z E 0B
c & 12 E —@m— D, from mixture MD
5 y g
N 01 ?} 1.0 B
N F Q2 r
< B S 0.8 - MFI zeolite; 300
z 2 -
S I 3 - MD;CO,(1)/N,(2)
< e A, £ 06 2
< 0.01 & b S
. : B g 04F
< r O A22 5, E
- —®— A12_A21 T;) 0.2 ;
x C
0.001 ‘ ‘ — £ 00

o
N
EEN
D
o
N
N
o

Total mixture loading, g,/ mol kg'1 Total mixture loading, g,/ mol kg'1

Figure 11-2. MD simulated values of A,,A,,,A,,, along with the backed-out M-S diffusivities,

D,,D, for equimolar (g1=g) binary CO,(1)/N»(2) mixtures in MFI zeolite at 300 K plotted as a function

of the total mixture loading ¢i= q1+q>.
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(a)

10 FAU (all silica); 300 K;

MD;CO,(1)/N,(2)

o
-—

8 2 -1
Ay Ay Ay Ay 1107 M s

©— A=Ay,
0.01\\\\\\\\\\\\\\\\\\\\\\\\\

0 2 4 6 8 10

Total mixture loading, g,/ mol kg'1

Figure 11-3. MD simulated values of A,,A,,,A

120

(b)

Maxwell-Stefan diffusivities, B,, B,/ 10° m’s™

—O— 91
—@— D, from mixture MD
— DZ

~ FAU (all silica); 300'K;®8
" MD;CO,(1)/N,(2)

0 2 4 6 8 10 12

Total mixture loading, g,/ mol kg'1

,,» along with the backed-out M-S diffusivities,

D,,D, for equimolar (g;=¢>) binary CO,(1)/N»(2) mixtures in FAU all-silica zeolite at 300 K plotted as a

function of the total mixture loading ¢= g1+¢>.
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(a) (b)

10 £ CHA; 300 K; MD: ‘o 20
E Ne(1)/Ar(2); E 48
- o
(\"w ) T 18 B
£ QA qar
2 Q. FE -0 b
Y 8 i —e— D, from mixture MD
<; 0.1 g % 1.0 g - B,
< r g€ 08F _g b,from mixture MD
& L © F
< S 06F
& 7NN 0
i B fa 3 020 CHA; 300 K; MD;
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0001 T Y T B I A A g 0.0*\\\\\\\\\\\\\\\\\\\\
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Total mixture loading, g,/ mol kg Total mixture loading, g, / mol kg'1

Figure 11-4. MD simulated values of A,,A,,,A,,, along with the backed-out M-S diffusivities,
D,,D, for equimolar (¢i=¢g>) Ne(1)/Ar(2) mixtures in CHA all-silica zeolite at 300 K plotted as a

function of the total mixture loading ¢= g1+¢>.
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(a) (b)

10 ¢ 2.0 —o— B,
F DDR; 300 K; MD; .
- Ne(1)/Ar(2); 18 —e— D, from mixture MD
: 1.6 b,

—— D, from mixture MD

1.4
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1.0
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Maxwell-Stefan diffusivities, D,, D, / 108 m?s™”
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d D ‘o
L —®— A=A, 02
0001 N T T 00 |
0 1 2 3 4 5 6 0 2 4 6
Total mixture loading, g,/ mol kg™ Total mixture loading, g, / mol kg™

Figure 11-5. MD simulated values of A,,A,,,A,,, along with the backed-out M-S diffusivities,
D,,D, for equimolar (q1=¢>) binary Ne(1)/Ar(2) mixtures in DDR all-silica zeolite at 300 K plotted as a

function of the total mixture loading ¢= g1+¢>.
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(@)

IRMOF-1; 300 K;
MD;CH,(1)/C,H,(2)

10

-8 2 -1
Agpr Mgy Ayys Ay, 1107 M s
o

®— A=Ay,

0 2 4 6 8 10 12 14 16 18

0.01

Total mixture loading, g,/ mol kg™

Figure 11-6. MD simulated values of A, ,A,,,A

122

(b)

Maxwell-Stefan diffusivities, D,, £,/ 10° m*s”

—0— b,
—@— D, from mixture MD
—0— b,
—m— D, from mixture MD

IRMOF-1; 300 K;
MD;CH,(1)/C,H,(2)

0 5 10 15 20 25 30

Total mixture loading, g,/ mol kg”

,,» along with the backed-out M-S diffusivities,

D,,D, for equimolar (g1=¢>) binary CH4(1)/C,Hs(2) mixtures in IRMOF-1 at 300 K plotted as a function

of the total mixture loading ¢= ¢q1+¢>.
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(a) (b) —o— B,

MgMOF-74; 300 K; MD; —@— D, from mixture MD
100 p  CHJ(1)/H,(2); - -0 B,

—— D, from mixture MD
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Figure 11-7. MD simulated values of A,,A,,,A,,, along with the backed-out M-S diffusivities,
D,,D, for equimolar (q1=¢g>) binary CHa4(1)/H»(2) mixtures in MgMOF-74 at 300 K plotted as a

function of the total mixture loading ¢= ¢q1+q>.
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—O— D1
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Figure 11-8. MD simulated values of A,,A,,,A,,, along with the backed-out M-S diffusivities,

D,,D, for equimolar (g;=g,) binary CO(1)/H»(2) mixtures in CuBTC at 300 K plotted as a function of

the total mixture loading g= ¢1+q>.
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Figure 11-9. MD simulation data for the degree of correlations, D, /D
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represent the pore concentration, c;, based on accessible pore volume.

(h) CH4/C;Hs, and (i) CH4/C3Hg at 300 K in a variety of host materials. The x- axes
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12 Nomenclature

Latin alphabet

ai
b;
[B]
Ci
Ct

Cfixed

D; seir

D>

component activity, dimensionless
. . . . -1
parameter in the pure component Langmuir adsorption isotherm, Pa
. . . )

matrix of inverse M-S coefficients, m™ s

. . . -3
molar concentration of species 7, mol m

. . 3

total molar concentration of mixture, mol m

. .. . . 3
molar concentration of fixed charges in ion exchanger particle, equiv m
generalized driving force, m™
bubble diameter, m
droplet diameter, m
. . .. 2 -1
ion diffusivity, m” s

. .. .. . . 2 -1

diffusivity characterizing molecule-wall interactions, m” s

M-S diffusivity at zero-loading in microporous materials, m* s™

M-S exchange coefficient for binary mixture, m* s
M-S binary pair diffusivity, m* s™

modified M-S diffusivity for binary penetrant pair i-j, m” s™
modified M-S diffusivity for penetrant i in polymer m, m*s™

tracer diffusivity, m* s
self-diffusivity of species i, m* s

Fick diffusivity for binary 1-2 mixture , m* s™
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Nomenclature

[D] Fick diffusivity matrix, m* s

D Determinant of the Fick diffusivity matrix, m* s

D[ Square-root of determinant of [D], m? s’

D! thermal diffusion coefficient, kg m™ s™!

E; Component Murphree efficiency, dimensionless
f correlation factor for diffusion crystalline metals, dimensionless
fi partial fugacity of species i, Pa
fi total fugacity of bulk fluid mixture, Pa

F Faraday constant, 9.65x10* C mol™

Fo Fourier number, dimensionless

he froth height on distillation tray, m

[] ] Identity matrix, dimensionless
Ji mass diffusion flux of species i with respect to v, kg m?s™

Ji molar diffusion flux of species i with respect to  , mol m?s™

[L] Onsager matrix, m” s

M, molar mass of species 7, kg mol™

n number of species in the mixture, dimensionless

N molar flux of species i in laboratory fixed reference frame, mol m?s™

i molar flux of species i with respect to material framework, mol m™ s™

N; molar flux of total mixture in laboratory fixed reference frame, mol m?s!
pi partial pressure of species i in mixture, Pa

Dt total system pressure, Pa

qi molar loading of species i, mol kg™

Gisat molar loading of species i at saturation, mol kg'1
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Nomenclature

qi total molar loading of mixture, mol kg™

[Q] matrix quantifying fractional departure from equilibrium, dimensionless
r radial direction coordinate, m

e radius of particle m

R gas constant, 8.314 J mol” K!

t time, S

T absolute temperature, K

Xi mole fraction of component i in bulk fluid phase, dimensionless

Xi ionic equivalent fraction of species 7 inside IEX particle, dimensionless
Vi mole fraction of component 7 in bulk vapor phase, dimensionless

u molar average mixture velocity, ms™

u; velocity of motion of adsorbate species i with respect to the framework material, m s™
u' augmented species velocity to account for thermal diffusion, m s™

v mass average mixture velocity, m s™

7,. partial molar volume of species i, m® mol™

v mean molar volume of mixture, m’ mol™

Vyubie bubble rise velocity, m s~

Virop droplet rise velocity, m s™

Vo pore volume, m’ kg™

z direction coordinate, m

zZ charge on species i, dimensionless

VA compressibility factor, dimensionless

Greek alphabet
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Nomenclature

Hi

7

cell constant, dimension depends on the context

activity coefficient of component i, dimensionless

length of diffusion path, m

Kronecker delta, dimensionless

fractional pore volume of microporous material, dimensionless
thermodynamic correction factors, dimensionless

matrix of thermodynamic factors, dimensionless
Square-root of determinant of [F] , dimensionless

fractional occupancy of component i, dimensionless
fractional occupancy of adsorbed mixture, dimensionless
fractional vacancy, dimensionless

Hessian of the Gibbs free energy, dimensionless
eigenvalue of Fick diffusivity matrix, m* s™'

matrix of M-S diffusivities, m* s

Square-root of determinant of [A] ,m’ s’

molar chemical potential, J mol™

dimensionless partial pressures, bjp;, dimensionless
framework density of adsorbent, kg m™

rate of entropy production, J m>s' K

stress tensor, Pa

volume fraction of i , dimensionless

fugacity coefficient of component i, dimensionless

matrix of dimensionless fluxes, dimensionless
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Nomenclature

() electrostatic potential, V

V4 interaction parameter in Flory-Huggins model, dimensionless
w; mass fraction of component i, dimensionless

Q angular velocity, s

Subscript

eq equilibrium value

E entering stage

1 referring to component i

Inter Inter-diffusion in metallic alloys

L leaving stage

n referring to component n

t referring to total mixture

\% vacancy

Superscript

mass mass average reference velocity frame

volume volume average reference velocity frame

0 coefficient defined using the M-S formulation in terms of vacancies

Matrix notation

() column matrix

[] square matrix
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Nomenclature

Vector notation

\% gradient

Ve divergence
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