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1 Preamble 

This Supplementary Material accompanying our article Diffusing Uphill with James Clerk Maxwell 

and Josef Stefan provides detailed derivations of the Maxwell-Stefan diffusion equations, along with 

solutions to the model equations describing transient equilibration in  gaseous mixtures, 

multicomponent distillation, ternary liquid-liquid extraction, mixed electrolyte solutions, ion exchange 

processes, reverse osmosis, solid crystals, metal alloys, silicates, and microporous materials. All the 

necessary data inputs, and calculation methodologies are provided in the Supplementary Material. 

Procedures for estimation of diffusivities are discussed. This should enable the interested reader to 

reproduce all the calculations and results presented and discussed in the review article.  

For ease of reading, this Supplementary Material is written as a stand-alone document; as a 

consequence, there is some overlap of material with the main manuscript.  
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2 Phenomenological relations for n-component diffusion 

Before setting up the proper phenomenological relations between the diffusion fluxes and the driving 

forces, we first consider the various choices of concentration measures, and reference velocities. The 

treatment below is essentially a summary of Chapter 1 of Taylor and Krishna.1 

2.1 Concentration measures 

A summary of the wide variety of concentration measures for n-component mixtures that are 

encountered in practice are summarized in Table 2-1. 

2.2 Diffusion fluxes and reference velocities 

If ui denotes the ensemble average velocity of component i with respect to a laboratory-fixed (i.e. 

stationary) coordinate reference frame, the molar flux of component  i  in the laboratory-fixed reference 

frame is i i iN c u  and the molar flux of the mixture is 
1

n

t i
i

N N


 . The modelling and design of 

separation and reaction equipment requires calculation of the diffusion fluxes, iJ ; these are defined with 

respect to an arbitrarily chosen reference velocity of the fluid mixture, u : 

  niuucJ iii ,..2,1;   (2-1)

Most commonly, we choose u  as the molar average velocity of the mixture 

1 1 2 2
1

n

i i n n
i

u xu x u x u x u


    
 

(2-2)

Only n-1 of the fluxes iJ  are independent because the diffusion fluxes sum to zero 





n

i
iJ

1

0
 

(2-3)

The molar fluxes iN  in the laboratory fixed reference frame are related to the diffusion fluxes iJ  by 
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



n

i
ittiiiii NNNxJucN

1

;
 

(2-4)

The molar diffusion flux can also be defined with respect to other reference velocities; some 

commonly used ones are summarized in Table 2-2. 

For ideal gas mixtures, the molar average mixture velocity equals the volume average mixture 

velocity. The mass average reference velocity frame is convenient to use when the equations of 

conservation of mass need to be solved in conjunction with the momentum balance relations.  For 

diffusion of ions in dilute aqueous solutions, it is convenient to define the diffusion fluxes with respect 

to water (the nth component). The volume average mixture velocity is convenient for liquid mixtures. 

2.3 The Generalized Fick’s law for n-component diffusion 

Choosing the mole fraction gradients as the driving forces, the diffusion fluxes 

  niuucJ iii ,..2,1;   with respect to the molar average reference velocity may expressed as linear 

functions of the (n-1) independent driving forces, by defining a (n-1) (n-1) dimensional Fick 

diffusivity matrix  D  

       1
( ) t

d x d x
J c D D

dz dzV
   

 
(2-5)

where  
1

n

k k
k

V x V


   is the mean molar volume of the mixture. 

2.4 Other choices of reference velocities in the definition of [D] 

The Fick diffusivity matrix  D  is defined in equation (2-5) in terms of molar diffusion fluxes, iJ , 

that are, in turn, defined with respect to the molar average reference velocity frame u . Other choice of 

fluxes and reference velocities are encountered in the chemical engineering literature; see Section 3.2.2 

of Taylor and Krishna.1 See also Table 2-2. 
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For mass diffusion fluxes,  
1

; 1,2,.. ; 0
n

i i i i
i

j u v i n j


     defined with respect the mass average 

mixture velocity 
1

n

i i
i

v u


 , we write    
dz

d
Dj mass

t

)( . 

The mass fractions are related to the mole fractions xi  

M
M

M

M

c

c
x

M

Mx

Mx

Mx

i

i
n

i i

i

i

i

t

i
i

ii
n

i
ii

ii

t

i
i







 


 11

; , where Mi is the molar mass of species i, with 

the units kg mol-1, and  M  is the mean molar mass of the mixture is 








 n

i i

i

n

i
ii

M

MxM

1

1

1


. The 

mixture mass density is related to the total molar concentration of the mixture 
1

t tc M M
V

   .  

For molar diffusion fluxes,   



n

i

volume
ii

volume
ii

volume
i JVniuucJ

1

0;,..2,1;  defined with 

respect the volume average mixture velocity 



n

i
iii

volume uVcu
1

, we write    
dz

cd
DJ volumevolume )( . This 

is a common choice in the experimental determination of diffusivities.  

For n-component mixtures, the numerical values of the elements of  D ,  massD , and  volumeD  are 

different.  However, the determinants of the corresponding matrices are equal to one another.1 

volumemass DDD   (2-6)

For the special case of a binary mixture, n = 2,  
  12

2211

21
112

2

2

1

1

21
1 ;

1

dx
MxMx

MM
dd

MM

MM
dx














 


, 

and the Fick diffusivity is the same for the three different choice of reference velocity frames1 
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 

 

 

1
1 1 1 12

1
1 1 1 12

1
1 1 12

t

t

volume volume
i

d
j u v D

dz
dx

J c u u c D
dz

dc
J c u u D

dz

    

   

   

 (2-7)

The inter-relationship between J1 and j1 is summarized in Table 2-3. 

The formulae for transformation of the Fick diffusivity matrix from one reference frame to another are 

provided in Section 3.2.4 of Taylor and Krishna.1 For example, for a ternary mixture, n = 3, the 

transformation between  D , and  massD  is  

            

 
1

2

1

2

1

23

23
2

13

13
2

23

23
1

13

13
1

11

0

0

0

0

111

111

;;




















































































x

x

x

x

x

x

x

x

x

x

A

ADADADAD massmass
















 (2-8)

For the ternary mixture of nC8H18(1)/nC10H22(2)/1-methylnapthalene(3) with mass fractions 1 = 

0.3333,  2 = 0.3333,   3 = 0.3333 at 295.65 K, Leahy-Dios et al.2 report experimental data on the Fick 

diffusivity matrix in the mass average reference velocity frame:   129 sm10
4.242.0

93.099.1 










massD ; 

the large magnitudes of the off-diagonal elements are particular noteworthy. The corresponding mole 

fractions of the three components are x1 = 0.384, x 2 = 0.308, x 3 = 0.308. On transformation using 

equation (2-8), we obtain the matrix of Fick diffusivities in the molar average reference velocity frame 

  129 sm10
47.2333.0

07.192.1 










D . 

For a ternary mixture, n = 3, the transformation between  D , and volumeD    is given by equation 

(2-9). Alimadadian and Colver;3 report the elements of the Fick matrix volumeD    in the volume average 

reference velocity frame for acetone(1)/benzene(2)/methanol(3) mixtures at 9 different compositions. At 
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x1 = 0.350, x2 = 0.302, x3 = 0.348, 9 2 13.819 0.42
10 m s

0.561 2.133
volumeD          

. The partial molar volumes 

are 6 6 6 3 -1
1 2 374.1 10 ; 89.4 10 ; 40.7 10 m  molV V V        . Using equation (2-9), we can convert 

to the molar average reference velocity frame to obtain   9 2 13.651 0.069
10 m s

0.300 2.303
D   

   
; see 

Example 3.2.1 of Taylor and Krishna1 for further calculation details. 

         

 
   

   

1 1

1 1
1 3 2 3 3

12 2
1 3 2 3

; ;

1
;

1

volume volume

k k
k

D A D A D A D A

x x
V V V V

V VA V x V
x x

V V V V
V V

 



       
     

  
      


 (2-9)

 

2.5 The Onsager relations for n-component diffusion 

Lars Onsager was amongst the first to recognize the limitations of Fick’s law. In his classic paper 

published in 1945 entitled Theories and Problems of Liquid Diffusion, Onsager4 wrote The theory of 

liquid diffusion is relatively undeveloped… It is a striking symptom of the common ignorance in this 

field that not one of the phenomenological schemes which are fit to describe the general case of 

diffusion is widely known. In the Onsager formalism for n-component mixture diffusion, the diffusion 

fluxes iJ  are postulated to be linearly dependent on the chemical potential gradients, dzd i , of each 

of the species present in the mixture. Only (n-1) of the chemical potential gradients 
dz

d i  are 

independent, because of the Gibbs-Duhem relationship 

02
2

1
1 

dz

d
x

dz

d
x

dz

d
x n

n

 
 

(2-10)

It is convenient, therefore, to choose the (n-1) independent chemical potential gradients 
 

dz

d ni  
 as 

driving forces for diffusion. In (n-1) dimensional matrix notation, the Onsager formulation is written as 
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   1 1
( ) nd
J L

RT dzV

  
   

 
 (2-11)

where  
1

n

k k
k

V x V


   is the mean molar volume of the mixture. For example, for an ideal gas mixture 

tV RT p .The units of the elements Lij are the same as those for Fick diffusivities, i.e. m2 s-1. The 

matrix of Onsager coefficients  L  is symmetric because of the Onsager Reciprocal Relations (ORR)5 

jiij LL 
 (2-12)

For insightful and robust discussions on the validity of the Onsager relations, see Truesdell.6 

In proceeding further, we define a (n-1) dimensional matrix   , that is the Hessian of the molar Gibbs 

free energy, G 

2 21 1
; , 1,2 1ij ji

i j i i

G G
i j n

RT x x RT x x

 
      

   


 
(2-13)

where G, the molar Gibbs free energy for the n-component mixture, is the sum of two contributions 





n

i
ii

ex
n

i
ii

ex xRTGxxRTGG
11

)ln(;)ln( 
 

(2-14)

where i  is the activity coefficient of component i. Equation (2-14)  can also be written in terms of the 

i , that is the chemical potential or partial molar Gibbs free energy: 





n

i
iixG

1


 

(2-15)

When carrying out the partial differentiations of G, required in equation (2-13), it is important to note 

that all n of the mole fractions cannot be varied independently.  So, we re-write equation (2-15) in terms 

of the n-1 independent mole fractions 

  n

n

i
nii

n

i
ii xxG   





1

11  
(2-16)

In view of equations (2-13) and (2-16),  we obtain  
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   1 1
; , 1, 2 1

j ni n
ij ji

j i

i j n
RT x RT x

     
      

 


 
(2-17)

Combining equations (2-11), and  (2-17) we get  

    1
( )

d x
J L

dzV
    (2-18)

The inter-relationship between the Fick, and Onsager formulations are 

        1 1
( )

d x d x
J L D

dz dzV V
    

 
(2-19)

and therefore  

    D L   (2-20)

2.6 The Maxwell-Stefan formulation for n-component diffusion 

The Maxwell-Stefan approach, that we adopt in this article, has its origins in the pioneering works of 

James Clerk Maxwell 7 and Josef Stefan 8 who analyzed diffusion in ideal gas mixtures. The Maxwell-

Stefan (M-S) formulation is best understood by considering z-directional diffusion in a binary gas 

mixture consisting of species 1 and 2, contained within the control volume shown schematically in 

Figure 2-1. The cross-sectional area available for diffusion is 1 m2 and the length of the diffusion path is 

dz .  If the change in the partial pressure of component i across the diffusion distance dz  is idp , the 

force acting on species i per m3 is 
dz

dpi . The number of moles of species i per m3, 
RT

p
c i

i  , and 

therefore the force acting per mole of species i is 
dz

dp

p

RT i

i

  which for an ideal gas mixture at constant 

temperature also equals the chemical potential gradient 
dz

d i . This force is balanced by friction 

between the diffusing species 1 and 2, each diffusing with a velocity iu  (cf. Figure 2-2). We may expect 

that the frictional drag to be proportional to the velocity difference  21 uu  , and we write 

 1
2 1 2

12

d RT
x u u

dz Ð


    where the term 

12Ð

RT
 is to be interpreted as the drag coefficient. The multiplier 



Phenomenological relations for n-component diffusion 
   

15 
 

x2 in the right member represents the mole fraction of component 2; this factor is introduced because we 

expect the friction to be dependent on the number of molecules of component 2 relative to that of 

component 1. The Maxwell-Stefan diffusivity 12Ð  has the units m2 s-1 and the physical significance of 

an inverse drag coefficient. The extension to n-component mixtures is intuitively obvious and can be 

written for component 1, for example as follows  

     1
2 1 2 3 1 3 1

12 13 1

........ n n
n

d RT RT RT
x u u x u u x u u

dz Ð Ð Ð


         (2-21)

The corresponding relations for components 2, 3, ..n are written down in an analogous manner. The left 

member of equation (2-21)) is the negative of the gradient of the chemical potential, with the units N 

mol-1; it represents the driving force acting per mole of species 1. The term ijÐRT  is interpreted as the 

drag coefficient for the i-j pair. The multiplier xj in each of the right members represents the mole 

fraction of component j; this factor is introduced because we expect the friction to be dependent on the 

number of molecules of j relative to that of component 1. The M-S diffusivity ijÐ  has the units m2 s-1 

and the physical significance of an inverse drag coefficient. The magnitudes of the M-S diffusivities ijÐ  

do not depend on the choice of the mixture reference velocity because Equation (2-21) is set up in terms 

of velocity differences. Equation (2-21) may be re-written as  

 








n

j ij

jiji

ij

Ð

uux

dz

d

RT 1

1 

 

(2-22)

Multiplying both sides of equation (2-22) by xi we get 

     














n

j ijt

jjiiij
n

j ij

jjiiij
n

j ij

jijiii

ijijij

Ðc

ucxucx

Ð

uxxuxx

Ð

uuxx

dz

d

RT

x

111



 

(2-23)

Introducing the expressions for fluxes i i i t i iN c u c x u   and i i i tJ N x N   in equation (2-23), we get 

ni
Ðc

JxJx

Ðc

NxNx

dz

d

RT

x n

j

n

j ijt

jiij

ijt

jiijii

ij ij

,2,1;
1 1







  
 
 



 

(2-24)
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The Maxwell-Stefan diffusion formulation  (2-24) is consistent with the Onsager formulation; the 

Onsager Reciprocal Relations imply that the M-S pair diffusivities are symmetric  

njiÐÐ jiij ...2,1,; 
 (2-25)

The second law of thermodynamics dictates that the rate of entropy production must be positive 

 
0

11 1

11




 




n

i
i

ni
i

n

i

i J
dz

d

T
J

dz

d

T


 

(2-26)

Insertion of the Maxwell-Stefan equation (2-24) into equation (2-26) we obtain on re-arrangement9 

0
2

1

1 1

2
 

 

n

i

n

j
ji

ij

ji
t uu

Ð

xx
Rc

 
(2-27)

The term 
dz

d

RT

x ii 
 on the left hand member of equation (2-24) is the generalization of the mole 

fraction gradients, used as driving forces for ideal gas mixtures. 

For non-ideal liquid mixtures, the chemical potential of component i, i  are related to the gradients of 

the component activities, iii xa  , where i  is the activity coefficient: 

   iiiiii xRTaRT  lnln 00   (2-28)

For gaseous mixtures at high pressure, the chemical potential of component i, i  are related to the 

gradients of the component fugacities, i i i i if p x p   : 

   0 0ln lni i i i i i tRT f RT x p        (2-29)

where i  is the fugacity coefficient and pt is the total gas pressure. 

In proceeding further, it is convenient to express the left member of equation (2-24) in terms of the 

mole fraction gradients by introducing an (n-1) (n-1) matrix of thermodynamic correction factors   : 

12,1,;
ln

;
ln 1

1

 




nji
x

x
dz

dx

dz

ad
x

dz

d

RT

x

j

i
iijij

j
n

j
ij

i
i

ii 






 
(2-30)

For non-ideal ternary liquid mixtures, the elements of    can be calculated from Van Laar, Wilson, 

UNIQUAC or NRTL models describing phase equilibrium thermodynamics.1, 10  
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The analogous expression for high pressure gaseous mixtures is 

12,1,;
ln

;
ln 1

1

 




nji
x

x
dz

dx

dz

fd
x

dz

d

RT

x

j

i
iijij

j
n

j
ij

i
i

ii 






 
(2-31)

In this case, the elements of    can be calculated by analytic differentiation of an Equation of State 

(EOS) such as the Peng-Robinson (PR) EOS; for further details see Krishna and van Baten.11 For binary 

mixtures, explicit analytic expressions for 
1

1
1

1

1
1

lnln

x
x

x

f
x ij 





  for PR EOS are provided in the 

paper by Tuan et al.12 

We also define a (n-1) (n-1) matrix of inverse M-S diffusivities  B  whose elements are given by 

1...2,1,;
11

; )(
1











 






nji
ÐÐ

xB
Ð

x

Ð

x
B

inij
ijiij

n

k ik

k

in

i
ii

ik  

(2-32)

Combining equations (2-24), (2-30), (2-31), and (2-32), we can re-cast equation (2-24) into (n-1) 

dimensional matrix notation 

                     11 1
( ); ( ) t t

t

d x d x d x d x
B J J c B c

dz c dz dz dzV

               (2-33)

where we have additionally defined  

    1 B  (2-34)

The inter-relationships between the Fick, Onsager, and the Maxwell-Stefan diffusivities is 

           

             

1
;

1 1 1
( )

D B L

d x d x d x
J L D

dz dz dzV V V

      

        
 (2-35)

Equation (2-35) underscores the direct influence of mixture thermodynamics on the elements Dij of the 

matrix of Fick diffusivities  D . 

For an ideal gas mixture, the thermodynamic correction factors  ij ij   and equation (2-35) reduces 

to  
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    mixture gas ideal];[1 DB  
 (2-36)

For a binary mixture, n = 2, equation (2-24)  simplifies to  

 
12

211211

Ðc

JxJx

dz

d

RT

x

t






 
(2-37)

Introducing the constraints 12 JJ  , and 12 1 xx  , equation (2-37) yields 

dz

dx
Dc

dz

dx
Ðc

dz

d

RT

x
ÐcJ ttt

1
12

1
12

11
121 



 
(2-38)

in which the Fick diffusivity for binary mixture is 

 1212 ÐD  (2-39)

For a ternary mixture, n = 3, equation (2-35) gives the following explicit expression for the four 

elements of the Fick diffusivity matrix 

1

32 1
1

23 12 23 12 1311 12 11 12

21 22 21 2231 2
2

12 23 13 12 13

1 1

1 1

xx x
x

Ð Ð Ð Ð ÐD D

D D xx x
x

Ð Ð Ð Ð Ð


  

    
                       

 (2-40)

The matrix inversion in equation (2-40) can performed explicity and we obtain 

    
    

11 12 11 12 11 12

21 22 21 22 21 22

13 1 23 1 12 1 23 13 12

2 13 23 12 23 2 13 2 1211 12

21 22 1 23 2 13 3 12

;

1

1

D D

D D

Ð x Ð x Ð x Ð Ð Ð

x Ð Ð Ð Ð x Ð x Ð

x Ð x Ð x Ð

        
             
   
 

             

 (2-41)

The determinant of   B  for a ternary mixture is 

123132231

231312

2313

3

2312

2

1312

1 ;
1

ÐxÐxÐx

ÐÐÐ

ÐÐ

x

ÐÐ

x

ÐÐ

x
B







 
(2-42)

The quantity 
1/2 12 13 23

1 23 2 13 3 12

Ð Ð Ð

x Ð x Ð x Ð
 

 
 can be interpreted as a measure of the “average” 

magnitude of M-S diffusivity in the ternary mixture.  
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For stable single phase fluid mixtures, we must have 0 . In view of equation (2-35)  the condition 

of phase stability translates to 

stability phase;0;0 D
 (2-43)

Equation (2-43) implies that all the eigenvalues of the Fick matrix [D] are positive definite. It is 

interesting to note that thermodynamic stability considerations do not require the diagonal elements Dii 

to be positive. If recourse is made to the kinetic theory of gases, it can be shown that the diagonal 

elements iiD  are individually positive for mixtures of ideal gases. The off-diagonal elements )( jiDij   

can be either positive or negative, even for ideal gas mixtures.  Indeed, the sign of )( jiDij   also 

depends on the component numbering. 

The condition for phase stability in a binary fluid mixture is 

12 0; 0; phase  stabilityD    (2-44)

The occurrence of 0  implies vapor/liquid or liquid/solid phase transitions. 
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2.7 List of Tables for Phenomenological relations for n-component diffusion 

Table 2-1. Concentration measures 

Concentration measure units Inter-relation, constraint 

xi, mole fraction of species i - 

1

1

; 1

i
n

i i i
i in

iit i

i i

c M
x M x

c M
M




 



   


 

i, mole fraction of species i - 

1

1

; 1
n

i i i i i
i in

it
i i

i

x M x M

Mx M

 
 



   


 

ci, molar density of species i mol m-3 

1

1
; mixture molar density=

n
i

i i t
ii

c c c
M V




    

i, mass density of species i kg m-3 

1

; mixture mass density
n

i i i i t
i

c M  


    

Mi, molar mass of species i kg mol-1 

1

mean molar mass of mixture
n

i i
i

M x M


   

iV , partial molar volume of 

i 

m3 mol-1 

1

1
mean molar volume of mixture

n

i i
i t

V x V
c

    

i , volume fraction of 

species i 

- 
i i ic V   

fi, fugacity of species i Pa 

1

total mixture fugacity
n

i t
i

f f


   

i, molar chemical potential 

of species i 

J mol-1 0 lni i iRT f    
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Table 2-2. Choice of reference velocity frame. 

Reference velocity Constraint on molar fluxes 

1

molar average mixture velocity
n

i i
i

u xu


   



n

i
iJ

1

0  

1

mass average mixture velocity
n

i i
i

v u


   
1

0
n

i
i

i i

J
x




  

1 1

volume average mixture velocity
n n

V
i i i i i

i i

u c Vu u
 

     
1

0
n

i i
i

V J


  

1

velocity of component 
n

n in i
i

u u n


   
0nJ   
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Table 2-3. Inter-relation between J1 and j1 for binary mixture 

Molar fluxes Mass fluxes 

 
   

 

 

1 1 1 1 1 2 2

1 1 1 1 1 2 2 1 2 1 2

1 2
1 2

1 2

1 1 2 1 2

1 1 2 1 2 1
1 2 1 2

;

; ;

t

t t

t
t

t

t

J c x u u u x u x u

J c x u x u x u c x x u u

x M x M c
M M M

J c x x u u

M M
J u u j

M M M M

 

 

   

    

  

 

  

 

 
   

   

 

1 1 1 1 1 2 2

1 1 1 1 1 2 2 1 2 1 2

1

1 1 2 1 2 1 2 1 2

1 2 1 2
1 1 2 1 2 1

;

;

t

t t

i i i i i
i t tn

t
i i

i

t t

t

j u v v u u

j u u u u u

x M x M
c M

Mx M

j u u c x x u u

M M M M
j c x x u u J

M M

   

     
 


 


   

    

   

   

  


 

 
1 2 1 2

1 1 1 12 2

1 1 2 21 2

1 2

1 2
1 1 2 2

1 2

2

1 2
1 1 1 12

1 2

1 2

1 2 1 2

1

;

1
;

;

t

t

M M M M
dx d d dx

x M x M

M M

M x M x M
M MM

M MM
dx d d dx

M M M

c x x M

M M

 
 

 

 

 

 
 

 
 

   

 



 

1
1 12

2

1 1
1 2

1
1 12

1 2

1 2 1
1 12 1

;

;

t

t
t

t

t

dx
J c D

dz

M
dx d c

M M M

dM
J D

M M dz

M M d
J D j

dzM







 

 

 

  

 

1
1 12

1 2
1 12

1 2 1
1 12

1
1 12 1

1 2

;

t

t t

t

t

d
j D

dz
M M

d dx c M
M

M M dx
j c D

dzM

dxM
j c D J

M M dz



 

 

 

 

  
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2.1 List of Figures for Phenomenological relations for n-component diffusion 

 

Figure 2-1. A force balance on a control volume containing an ideal gas mixture. 
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3 Diffusion in Ideal Gas Mixtures 

For an ideal gas mixture, the thermodynamic correction factors  ij ij   and the Maxwell-Stefan 

diffusion equations  

  

ni
Ðc

JxJx

Ðc

NxNx

dz

d

RT

x n

j

n

j ijt

jiij

ijt

jiijii

ij ij

,2,1;
1 1







  
 
 



 

(3-1)

simplify to yield 

ni
Ðc

JyJy

Ðc

NyNy

dz

dy n

j

n

j ijt

jiij

ijt

jiiji

ij ij

,2,1;
1 1







  
 
 

 

(3-2)

For mixtures of ideal gases for which the Ðij are independent of composition the second-law 

requirement 

0
2

1

1 1

2
 

 

n

i

n

j
ji

ij

ji
t uu

Ð

xx
Rc

 
(3-3)

can only be satisfied if 

mixtures) gas (ideal;0ijÐ
 (3-4)

Equation  (3-4) was first derived by Hirschfelder, Curtiss and Bird.13  For non-ideal fluid mixtures the 

Ðij are composition dependent in general and a result analogous to equation (3-4) cannot be derived.9 

3.1 The M-S pair diffusivities Ðij in gaseous mixtures 

The M-S pair diffusivities Ðij for gaseous mixtures at low pressures, below about 10 bar, can be 

estimated to a good level of accuracy using the Fuller-Schettler-Giddings (FSG)14 method.  

    
12

23/1
2

3/1
112

75.17

12 sm
1043.1 








vvMp

T
Ð

 
(3-5)
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where p is the pressure (expressed in bars), 

21

12 11
2

MM

M


  is the mean molecular weight of the 

mixture (expressed in g mol-1), 1v ,  and 2v  are the diffusion volumes (expressed in cm3 mol-1) whose 

values are obtained by summing the contributions of the volumes of the constituent atoms in the 

molecular species (the values are tabulated in Table 11.1 of Reid, Prausnitz, and Poling15). According to 

the FSG estimation procedure, the product of Ð12 and the total pressure, p, is a function only of 

temperature and is also independent of composition.  

In generalizing the FSG method to dense gas mixtures, it is important realize that equation (3-5) 

implies that, at constant temperature, the M-S diffusivity is inversely proportional to the molar density 

of the gas phase. For dense gases, the total mixture molar density of the gas phase is 
ZRT

p
ct   where Z 

is the compressibility factor. Consequently, the M-S diffusivity for dense gases can be estimated by 

correcting the original FSG equation by introducing the compressibility factor Z; see Krishna and van 

Baten11 for further details 

     Z
vvMp

T
Ð

23/1
2

3/1
112

75.17

12

1043.1








 
(3-6)

Due to the introduction of the compressibility factor, Z, the M-S diffusivity 12Ð  becomes dependent on 

mixture composition. The molar density of the mixture is 
ZRT

p
ct  , and therefore Equation (3-6) 

anticipates that 12Ðct  is constant at constant temperature T. 

3.2 The Loschmidt tube experiments of Arnold and Toor 

Arnold and Toor16 report experimental data on the transient equilibration of CH4(1)/Ar(2)/H2(3) gas 

mixtures of two different compositions in the top and bottom compartments of a Loschmidt tube of total 

length; see Figure 3-1. The temperature is 307 K and the total pressures is 101.3 kPa. Each compartment 

has a length, 4.0  m. The initial compositions in the two compartments are 
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0.0 = 0.485; = 0.515; = ;0 :t(-)compartmen  botttom

0.491 = 0.509; = 0.0; =;0 :)(t compartmen  top
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The final equilibrated compositions are y1,eq = 0.2575, y2,eq = 0.497 and y3,eq = 0.2455. For the ternary 

CH4(1)/Ar(2)/H2(3) gas mixture, the binary pair diffusivities calculated using the Fuller-Schettler-

Giddings (FSG)14 method for T = 307 K and pt = 101.3 kPa. are: 

-125
23

5
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5
12 s m1033.8;1072.7;1016.2   ÐÐÐ .  

At the equilibrium composition, y1,eq = 0.2575, y2,eq = 0.497 and y3,eq = 0.2455, the elements of the 

Fick diffusivity matrix [D] can be calculated using  (cf. Equation  (2-41) , with 
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The result is   1-25 s m10
6.407163.63675

51.784054.45895 







D . The large off-diagonal elements indicate strong 

diffusional coupling for transfer of all components. 

We note that the driving force for Ar is significantly lower than that of its two partner species. The 

analytic solution for transient equilibration trajectories in the two compartments is given in Section 5.5 

of Taylor and Krishna.1 In two-dimensional matrix notation, the equilibration trajectories are described 

by 
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In equation (3-8), the dimensionless distance coordinate 


 z
  where  is the length of each of the two 

tube segments; 1  and 2  are distinct eigenvalues of the 2-dimensional Fick diffusivity square matrix 

 D , that may be evaluated at the final equilibrated composition. We also note in passing that there are 

two typographical errors in Equation (5.5.6) of Taylor and Krishna;1 Equation (3-8) is the correct one to 

use.  See also Ravi17 for further clarifications on this topic. 

Figure 3-1(a) shows the composition profiles at time t = 0.05 h from the start of the equilibration 

process. Due to strong coupling effects, the composition profile of Ar shows both overshoot (top 

compartment) and undershoot (bottom compartment).  

At any time t, the integral averaged compositions in the bottom compartment are described by 
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(3-9)

Figure 3-1(b) compares the transient equilibration trajectories calculated using equation (3-9) with the 

experimental data of Arnold and Toor;16 there is excellent agreement between the two sets. The transient 

equilibration processes for CH4, and H2 are “normal”, inasmuch as their equilibration are monotonous. 

The equilibration of Ar, however, shows an overshoot (in top compartment) and an undershoot (in 

bottom compartment). Such over- and under-shoots signal the occurrence of uphill diffusion engendered 

by diffusional coupling effects.  In ternary composition space, the equilibration process follow 

serpentine trajectories; see Figure 3-1(c) 

3.3 Two-bulb experiments of Duncan and Toor 

One of the first set of experiments to demonstrate uphill diffusion were reported by Duncan and 

Toor18 for ternary H2(1)/N2(2)/CO2(3) gas mixtures. The experimental set-up consisted of a two bulb 
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diffusion cell, pictured in Figure 3-2. The two bulbs are connected by means of an 86 mm long capillary 

tube. The length of the diffusion path, 086.0  m.  Since the two bulbs are sealed there is no net 

transfer flux out of or into the system, i.e. we have conditions corresponding to equimolar diffusion 

1 2 30; 0; i iu N N N N J     .  

The initial compositions (mole fractions in the two bulbs, Bulb A and Bulb B, are 

0.0 = 0.5; = 0.5; = :B Bulb

0.5 = 0.5; = 0.0; = :A Bulb

321

321

yyy

yyy

   

The experimental data on the transient approach to equilibration are indicated by the symbols in 

Figure 3-3Figure 3-2.(a). We note that despite the fact that the driving force for nitrogen is practically 

zero, it does transfer from one bulb to the other, exhibiting over-shoot and under-shoot phenomena 

when approaching equilibrium. The transient equilibration trajectories of H2, and CO2 are “normal”, 

with their compositions in the two bulbs approaching equilibrium in a monotonous manner. 

The Maxwell-Stefan equations (3-2) allow a quantitative explanation of the experimental data; the 

model calculations are presented in Example 5.4.1 of Taylor and Krishna.1 The M-S diffusivities 

calculated using the Fuller-Schettler-Giddings (FSG)14 method for the three binary pairs at T = 308.3 K 

are -125
23

-125
13

-125
12 s m1068.1;s m108.6;s m1033.8   ÐÐÐ .  

The compositions in the two bulbs equilibrate after several hours to y1,eq = 0.25, y2,eq = 0.5 and y3,eq = 

0.25. At this equilibrium composition the elements of the Fick diffusivity matrix [D] can be calculated 

using Equation  (3-7); the result is   1-25 s m10
15.283.3

11.068.7 










D . The large magnitude of the 

off-diagonal element D21 indicate strong diffusional coupling for transfer of nitrogen. 

If the Fick diffusivity matrix is assumed constant during the entire equilibration process, the transient 

equilibration trajectories can be expressed in two-dimensional matrix notation  
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where  is the cell constant. From the information provided by Duncan and Toor,18 the value of the cell 

constant is calculated as 9895.0  m-2. 

The Sylvester theorem, detailed in Appendix A of Taylor and Krishna,1 is required for explicit 

calculation of the 2×2 square matrix   













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DD
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1211exp  . For the case of distinct eigenvalues, 

1  and 2  of the 2-dimensional square matrix  D , the Sylvester theorem yields 
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(3-11)

In equation (3-11),  I  is the identity matrix with elements ik . 

The continuous solid lines in Figure 3-3(a) are the calculations of the composition trajectories using 

Equations (3-10) and (3-11); these calculations are performed using MathCad 15.19 There is excellent 

agreement with the experimental data of Duncan and Toor;18 this validates the assumption of constant 

Fick diffusivity matrix, calculated at the final equilibrated composition. In ternary composition space, 

the equilibration trajectories follow serpentine paths in either of the two bulbs; see Figure 3-3(b) 

At any time t, the instantaneous fluxes may be calculated   

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. Figure 

3-3(c) presents the calculations of the instantaneous fluxes. At time t = 0, there is no driving force of 

species 2 (nitrogen), but its flux is non-zero because of the non-zero contribution of  

 )0()0( 1121  tytyD
c

BA
t


. 

The composition of N2 in Bulb A continues to decrease during the time interval 10 tt  ; 

concomitantly, the composition of  N2 in Bulb B continues to increase; the diffusion of nitrogen is in an 

up-hill direction. The occurrence of uphill diffusion is not in violation of the second law of 

thermodynamics; the second law requires that the total rate of entropy produced by all diffusing species 

should be positive definite 
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For equimolar diffusion of ideal ternary gas mixtures, equation (3-12) simplifies to 
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For diffusion across a film thickness , with boundary conditions 
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In equation (3-14), we use the arithmetic average vapor compositions 
2

0
,

ii
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
   as a good 

approximation. The individual rates of the instantaneous entropy production 
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  are plotted in Figure 3-3(c). We note that the rate of entropy 

production by nitrogen (species 2) is negative during the time interval 10 tt  .  However, the second 

law of thermodynamics is not violated because the other two species, hydrogen and carbon dioxide 

produce entropy at significantly higher rates, ensuring that 0  is satisfied during the entire time 

duration. 

3.4 Two-bulb experiments of Taviera, Cruz and Mendes 

Taveira et al.20 report experimental results for transient equilibration of He(1)/N2(2)/CO2(3) gas 

mixtures, in a two-bulb diffusion cell that are similar to that used by Duncan and Toor.18 Figure 3-4 the 

Taveira set-up; the two bulbs are connected by means of a 153 mm long capillary tube; i.e. the length of 

the diffusion path, 153.0  m. The temperature, T = 298 K and total pressure, pt = 40 kPa. The initial 

compositions (mole fractions in the two bulbs, Bulb A and Bulb B, are  

0.5 = 0.5; = 0.0; = :B Bulb

0.0 = 0.5; = 0.5; = :A Bulb
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Since the two bulbs are sealed there is no net transfer flux out of or into the system, i.e. we have 

conditions corresponding to equimolar diffusion: 1 2 30; 0; i iu N N N N J     .  

The experimental data on the transient approach to equilibration are indicated by the symbols in 

Figure 3-5(a). We note that despite the fact that the driving force for nitrogen is zero, it does transfer 

from one bulb to the other, exhibiting over-shoot and under-shoot phenomena when approaching 

equilibrium. The transient equilibration trajectories of He, and CO2 are “normal”, with their 

compositions in the two bulbs approaching equilibrium in a monotonous manner. 

The Maxwell-Stefan equations (3-2) allow a quantitative explanation of the experimental data. The 

M-S diffusivities calculated using the Fuller-Schettler-Giddings (FSG)14 method for the three binary 

pairs at T = 298 K are  

-125
23

-125
13

-125
12 s m101.4;s m107.14;s m108.17   ÐÐÐ   

The compositions in the two bulbs equilibrate after several hours to y1,eq = 0.25, y2,eq = 0.5 and y3,eq = 

0.25. At this equilibrium composition the elements of the Fick diffusivity matrix [D] can be calculated 

using Equation  (3-7); the result is   1-25 s m10
2.583.7

25.045.16 










D . The large magnitude of D21 

indicate strong diffusional coupling for transfer of nitrogen.  

If the Fick diffusivity matrix is assumed constant during the entire equilibration process, the transient 

equilibration trajectories are described by Equations (3-10) and (3-11);. From the details provided by 

Taveira et al.,20 the value of the cell constant is calculated as 38.4  m-2.  

The continuous solid lines in Figure 3-5(a) are the explicit calculations of the composition trajectories 

using Equations (3-10) and (3-11); these calculations are performed using MathCad 15.19 There is 

excellent agreement with the experimental data of Taveira et al.;20 this validates the assumption of 

constant Fick diffusivity matrix, calculated at the final equilibrated composition. In ternary composition 

space, the equilibration trajectories follow serpentine paths in either of the two bulbs; see Figure 3-5(b). 
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At any time t, the instantaneous fluxes may be calculated from   


















)()(

)()(

)(

)(

22

11

2

1

tyty

tyty
D

c

tN

tN

BA

BAt


; 

Figure 3-5(c) presents the calculations of the instantaneous fluxes. At time t = 0, there is no driving 

force of species 2 (nitrogen), but its flux is non-zero because of the non-zero contribution of 

 )0()0( 1121  tytyD
c

BA
t


. 

The composition of N2 in Bulb A continues to increase during the time interval 10 tt  ; 

concomitantly, the composition of  N2 in Bulb B continues to deccrease; the diffusion of nitrogen is in 

an up-hill direction. The occurrence of uphill diffusion is not in violation of the second law of 

thermodynamics; the second law requires that the total rate of entropy produced by all diffusing species 

should be positive definite. The individual rates of entropy production 
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tyty

yty
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  are plotted in Figure 3-5(d). We note that the rate of entropy 

production by nitrogen (species 2) is negative during the time interval 10 tt  .  However, the second 

law of thermodynamics is not violated because the other two species, helium and carbon-dioxide 

produce entropy at significantly higher rates, ensuring that 0  is satisfied during the entire time 

duration. 

3.5 Composition profiles within the capillary connecting bulbs 

The analysis of the diffusion process at time t = 0 in the Duncan and Toor18  and Taveira et al.20 

experiments for  ternary H2(1)/N2(2)/CO2(3) and He(1)/N2(2)/CO2(3) gas mixtures are of particular 

interest, because this situation triggers uphill diffusion of N2 in both these systems. We analyze the 

ternary diffusion process at time t = 0 under the assumption of quasi-steady state for the compositions at 

either end of the capillary maintained at the initial bulb compositions. In the Duncan-Toor experiments, 
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the initial compositions are 
0.00000 = 0.5; = 0.5; = :B Bulb

0.5 = 0.5; = 0.0; = :A Bulb
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. In the Taveira experiments, the 

initial compositions are 
0.5 = 0.5; = 0.0; = :B Bulb

0.0 = 0.5; = 0.5; = :A Bulb
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Krishna and Standart21 have developed exact solutions to the Maxwell-Stefan equations (3-2) for 

explicit evaluation of the fluxes for steady-state transfer across a film of thickness . The Krishna-

Standart solution, as applied to equimolar diffusion of ternary gas mixtures is detailed hereunder; see 

also the Supplementary Material accompanying the paper by Krishna.22 

We define a dimensionless distance: 


 z
  and re-write Maxwell-Stefan equations (3-2) in two-

dimensional matrix notation as follows 
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In equation (3-15) we define a two-dimensional square matrix of dimensionless fluxes 
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For steady-state transfer across a film, the matrices    and    are both -invariant. Therefore 

(3-15) represents a system of coupled ordinary differential equations with constant coefficients     and 

  . The system of equations can be solved analytically to obtain the mole fraction profiles within the 

length of the capillary connecting the two tubes                yyIIyy  
0

1
0 expexp  

where  I  is the identity matrix with Kronecker delta ik  as elements. 
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The Sylvester theorem, detailed in Equation (A.5.17) of Taylor and Krishna,1 is required for explicit 

calculation of           1expexp  II . For equimolar diffusion, one of the eigenvalues of 
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vanishes; see Krishna and Standart21 for details. 

Explicitly, the two eigenvalues are 
tcÐÐ

N
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application of Sylvester’s theorem for evaluation of        1exp  I  has to be done with care, because 

  1exp 2
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 needs to be evaluated by use of L’Hôpital’s rule:   1
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. The two independent fluxes can be evaluated 

explicitly  
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(3-16)

The Fick diffusivity matrix  0D  is evaluated at    0;0;0 yyz  . The quasi-steady-state 

fluxes in the Duncan-Toor experiments are 35.9;
17.8

5.17
3

2
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For the determination of the composition profiles, we need to evaluate           1expexp  II ; by 

use of L’Hôpital’s rule: 
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(3-17)

The composition profiles within the capillary in the Duncan-Toor and Taveira experiments are shown 

in Figure 3-6. In both sets of experiments, the variation of the compositions of N2 is not monotonic, but 

shows a sharp minimum; this maximum is a direct result of uphill diffusion at t = 0.  

3.6 Uphill diffusion in He/N2/O2 mixtures: Heliox therapy 

In diffusion processes in lung airways, normally four gases are involved: O2, CO2, N2, and H2O; the 

Maxwell-Stefan equations (3-2) are commonly used to model pulmonary gas transport.23-29 The 

transport of the fresh breathed-in air towards the acini of human beings with chronic obstructive 

bronchopneumopathy, such as asthma, is rendered difficult due to bronchoconstriction and other 

factors.29-31 Such patients need some respiratory support to allow the oxygen to be transported through 

the proximal bronchial tree and then diffused in the distal one. One such support system consists of the 

inhalation of a mixture of heliox (20% O2; 80% He), that facilitates the transport of oxygen, and 

exhalation of CO2. 

We now demonstrate the phenomena of uphill diffusion of O2 in ternary He(1)/N2(2)/O2(3) mixtures.  

For purposes of demonstration we use the same set-up as in the Taveira experiments; see Figure 3-7. 

The two bulbs are connected by means of a 153 mm long capillary tube, i.e. the length of the diffusion 

path 153.0  m. The temperature, T = 298 K and total pressure, pt = 100 kPa. The initial compositions 

(mole fractions in the two bulbs, Bulb A and Bulb B, are taken as 
0.2 = 0.8; = 0.0; = :B Bulb

0.2 = 0.0; = 0.8 = :A Bulb

321

321

yyy

yyy
. 

This implies that the driving forces for transfer of O2 is zero at time t = 0. Since the two bulbs are sealed 

there is no net transfer flux out of or into the system, i.e. we have conditions corresponding to equimolar 

diffusion: 1 2 30; 0; i iu N N N N J     .  

Using the Fuller-Schettler-Giddings (FSG) estimation procedure,14 the M-S diffusivities of the 

constituent binary pairs are 08.2;45.7;1.7 231312  ÐÐÐ 10-5 m2 s-1.   The compositions in the 
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two bulbs equilibrate after several hours to y1,eq = 0.4, y2,eq = 0.4, and y3,eq = 0.2. At this equilibrium 

composition the elements of the Fick diffusivity matrix [D] can be calculated using Equation  (3-7); the 

result is   1-25 s m10
2.88392.8584-

0.05467.2533 







D . The large magnitude of D21 indicate strong diffusional 

coupling for transfer of nitrogen. 

If the Fick diffusivity matrix is assumed constant during the entire equilibration process, the transient 

equilibration trajectories are described by are described by Equations (3-10) and (3-11); the value of the 

cell constant is calculated as 38.4  m-2. The continuous and dashed lines in Figure 3-8(a) are the 

explicit calculations of the composition trajectories using Equations (3-10) and (3-11); these 

calculations are performed using MathCad 15.19 Particularly noteworthy are the transient overshoot and 

undershoot experienced by O2 during transient equilibration. The overshoot arises because O2 gets 

dragged uphill during the early transience; In ternary composition space, the equilibration trajectories 

follow serpentine paths in either of the two bulbs; see Figure 3-8(b). 

At any time t, the instantaneous fluxes may be calculated from   




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Figure 3-8(c) presents the calculations of the instantaneous fluxes. At time t = 0, there is no driving 

force of species 3 (oxygen), but its flux is non-zero because of coupled transfers. 

The occurrence of uphill O2 diffusion is not in violation of the second law of thermodynamics; the 

second law requires that the total rate of entropy produced by all diffusing species should be positive 

definite. The individual rates of entropy production    )()(
2)(

1
tyty

yty
N

R
iBiA

iBiA
ii 





  are 

plotted in Figure 3-8(d). We note that the rate of entropy production by oxygen (species 2) is negative 

during the time interval 10 tt  .  However, the second law of thermodynamics is not violated because 

the other two species, helium and nitrogen produce entropy at significantly higher rates, ensuring that 

0  is satisfied during the entire time duration. 
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An alternative way to demonstrate the phenomenon of uphill O2 diffusion is to model the ternary 

He(1)/N2(2)/O2(3) mixture diffusion as inter-diffusion between two cylindrical Loschmidt tubes each of 

length    as pictured in  Figure 3-9. For comparison with the experimental data as reported in Figure 3 

of Bres and Hatzfeld,23 we take the tube length, 1  m. The initial compositions in the two 

compartments are 
0.2 = 0.8; = 0.0; = ;0 :)t(compartmen  top

0.2 = 0.0; = 0.8; =;;0 :)(t compartmen bottom

321

321

yyyz

yyyz






. 

The final equilibrated compositions are y1,eq = 0.4, y2,eq = 0.4 and y3,eq = 0.2. At this equilibrium 

composition the elements of the Fick diffusivity matrix [D] can be calculated using Equation  (3-7); the 

result is   1-25 s m10
2.88392.8584-

0.05467.2533 







D . Coupling effects appear to be non-negligible.  

Figure 3-9(a,b) show the transient equilibration of O2 in the (a) top, and (b) bottom compartments at the 

positions 35.0z , and 5.0z , calculated using equation (3-8). The overshoot of O2 

composition in the bottom compartment signals uphill diffusion; this overshoot has been verified in the 

experimental data presented in Figure 3 of Bres and Hatzfeld.23 The corresponding transient 

equilibration of O2 in the top compartment tube displays undershoots. If coupling effects are ignored 

entirely, no oxygen transport in feasible.  Put another way, the efficacy of heliox therapy relies on uphill 

transfer of oxygen.   

In ternary composition space, the equilibration trajectories at 5.0z  follow serpentine trajectories 

as shown in Figure 3-10. The equilibration trajectories are practically indistinguishable from those 

determined using the two-bulb diffusion set-up; see Figure 3-8(b). 

3.7 Uphill diffusion in He/N2/O2/CO2 mixtures: Heliox therapy 

We now demonstrate the phenomena of uphill diffusion of both O2 and CO2 in quaternary 

He(1)/N2(2)/O2(3)/CO2(4) mixtures. For purposes of demonstration we use the same set-up as in the 

Taveira experiments; see Figure 3-11. The two bulbs are connected by means of a 153 mm long 

capillary tube, i.e. the length of the diffusion path 153.0  m. The temperature, T = 298 K and total 
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pressure, pt = 100 kPa.  The initial compositions (mole fractions in the two bulbs, Bulb A and Bulb B, 

are taken as 
0.06 =0.15; = 0.79; = 0.0; = :B Bulb

0.06 =0.15; = 0.0; = 0.79; = :A Bulb

4321

4321

yyyy

yyyy
. This implies that the driving forces for 

transfer of both O2 and CO2 are zero at time t = 0. Since the two bulbs are sealed there is no net transfer 

flux out of or into the system, i.e. we have conditions corresponding to equimolar diffusion: 

1 2 30; 0; i iu N N N N J     . Using the Fuller-Schettler-Giddings (FSG) estimation 

procedure,14 the M-S diffusivities of the constituent binary pairs are 

;64.1

;64.1;08.2

;87.5;45.7;1.7

34
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
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10-5 m2 s-1.   

The compositions in the two bulbs equilibrate after several hours to y1,eq = 0.395, y2,eq = 0.39, y3,eq = 

0.15, and y4,eq = 0.06. At this equilibrium composition the elements of the Fick diffusivity matrix [D] 

can be calculated using   1
[ ]D B

 ; the result is 

1-25

333231

232221

131211

s m10

2.7570.0989-1.1633-

0.2391-2.56872.9906-

0.2377-0.1863-6.8633



































DDD

DDD

DDD

. 

If the Fick diffusivity matrix is assumed constant during the entire equilibration process, the transient 

equilibration trajectories, written in 3-dimensional matrix form, are 
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(3-18)

where 38.4  m-2 is the cell constant. The Sylvester theorem, detailed in Appendix A of Taylor and 

Krishna,1 is required for explicit calculation of the 3×3 square matrix  





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Q
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131211

exp  . 

For the case of distinct eigenvalues, 1 , 2 ,  and 3  of the 3-dimensional square matrix  D , the 

Sylvester theorem yields 
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(3-19)

where  I  is the identity matrix with elements ik . 

Figure 3-12(a,b) presents the composition trajectories in Bulb A, and Bulb B during transient 

approach to equilibrium in the two-bulb diffusion apparatus for He(1)/N2(2)/O2(3)/CO2(4) mixtures. We 

note that both O2 and CO2 exhibit overshoots and undershoots during transient equilibration; uphill 

diffusion manifest during the time interval 10 tt  .  On the other hand, the equilibration trajectories of 

He and N2 are both monotonous. 

Figure 3-13(a,b) present calculations of the instantaneous fluxes 
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 during transient approach to equilibrium in the two-

bulb diffusion apparatus for He(1)/N2(2)/O2(3)/CO2(4) mixtures. During the time interval 10 tt  , the 

fluxes of both O2 and CO2 are negative, signaling the phenomena of uphill diffusion. Uphill diffusion 

contributes significantly to inhalation/exhalation of O2 and CO2 for patients with breathing difficulties. 

Figure 3-14 (a,b) show calculations of the individual rates of entropy production 
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tyty

yty
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iBiA

iBiA
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 . During the time interval 10 tt  , both O2 and CO2 consume 

entropy, i.e. 0;0 43   . The other two components produce entropy at a such a high rate as to 

prevent the violation of the second law requirement 04321   . 

Replacing Helium with either Argon or SF6, leads to equilibration trajectories for which the 

phenomena of uphill diffusion is imperceptibly small. This is evidenced in Figure 3-15 (a,b)that present 

comparisons of the composition trajectories of (a) O2, and (b) CO2 in Bulb A for transient equilibration 

of He(1)/N2(2)/O2(3)/CO2(4), Ar(1)/N2(2)/O2(3)/CO2(4), and SF6(1)/N2(2)/O2(3)/CO2(4) mixtures.  This 
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leads us to conclude that the uphill diffusion phenomena is engendered by large differences in the binary 

pair M-S diffusivities. 
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3.8 List of Figures for Diffusion in Ideal Gas Mixtures 

 

 

Figure 3-1. (a, b) The Loschmidt tube experiment of  Arnold and Toor16 on the transient approach to 

equilibrium for CH4(1)/Ar(2)/H2(3) gas mixtures. The plotted data (symbols) are spatially averaged 

compositions in the top and bottom compartments. The continuous solid lines are the model calculations 

as presented in Example 5.5.1 of Taylor and Krishna.1 (c) The equilibration trajectories plotted in 

ternary composition space. 
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Figure 3-3. (a) Experimental data of Duncan and Toor18 on the transient approach to equilibrium in 

the two-bulb diffusion experiments for H2(1)/N2(2)/CO2(3) mixtures. The continuous solid lines are the 

transient equilibration trajectories calculated using the Maxwell-Stefan equations, as presented in 

Example 5.4.1 of Taylor and Krishna.1 (b) The equilibration trajectories plotted in ternary composition 

space. (c) Calculations of the instantaneous fluxes of the three components as a function of time. (d) 

Calculations of the individual rates of entropy production of the three species.  
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Figure 3-4. The two-bulb diffusion experimental set-up of Taveira et al.20 with He(1)/N2(2)/CO2(3) 

gas mixtures.   
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Figure 3-5. (a) Experimental data of Taveira et al.20 on the transient approach to equilibrium in the 

two-bulb diffusion experiments for He(1)/N2(2)/CO2(3) mixtures. The continuous solid lines are the 

transient equilibration trajectories calculated using the Maxwell-Stefan equations. (b) The equilibration 

trajectories plotted in ternary composition space. (c) Calculations of the instantaneous fluxes of the three 

components as a function of time. (d) Calculations of the individual rates of entropy production of the 

three species as a function of time.  
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Figure 3-6. Quasi-steady compositions profiles within the capillary connecting the two bulbs in the 

experiments of (a) Duncan and Toor18 on the transient approach to equilibrium in the two-bulb diffusion 

experiments for H2(1)/N2(2)/CO2(3) mixtures, and (b) Taveira et al.20 on the transient approach to 

equilibrium in the two-bulb diffusion experiments for He(1)/N2(2)/CO2(3) mixtures. 
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Figure 3-7. The two-bulb diffusion set-up for He(1)/N2(2)/O2(3) mixtures. 
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Figure 3-8. (a) Transient approach to equilibrium for He(1)/N2(2)/O2(3) mixtures in the two-bulb 

diffusion set-up, calculated using the Maxwell-Stefan equations. (b) The equilibration trajectories 

plotted in ternary composition space. (c) Calculations of the instantaneous fluxes of the three 

components. (d) Calculations of the individual rates of entropy production of the three species.  
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Figure 3-11. The two-bulb diffusion set-up for He(1)/N2(2)/O2(3)/CO2(4) mixtures.  
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Figure 3-12. Composition trajectories in Bulb A, and Bulb B during transient approach to equilibrium in 

the two-bulb diffusion apparatus for He(1)/N2(2)/O2(3)/CO2(4) mixtures. 
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Figure 3-13.Instantaneous fluxes during transient approach to equilibrium in the two-bulb diffusion 

apparatus for He(1)/N2(2)/O2(3)/CO2(4) mixtures. 
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Figure 3-14. The individual rates of entropy production during transient approach to equilibrium in 

the two-bulb diffusion apparatus for He(1)/N2(2)/O2(3)/CO2(4) mixtures. 
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Figure 3-15. Comparison of the composition trajectories of (a) O2, and (b) CO2 in Bulb A for transient 

equilibration of He(1)/N2(2)/O2(3)/CO2(4), Ar(1)/N2(2)/O2(3)/CO2(4), and SF6(1)/N2(2)/O2(3)/CO2(4) 

mixtures. 
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4 Multicomponent Distillation 

4.1 Murphree point efficiencies 

Design and simulation procedures for distillation are commonly based on the equilibrium stage 

model, developed by Sorel more than a hundred years ago.32 Departures from thermodynamic 

equilibrium between the vapor and liquid phases on a distillation tray are commonly accounted for by 

introducing the component Murphree point efficiencies 

ni
y

y

yy

yy

yy

yy
E

iE

iL

eqiiE

eqiiL

eqiiE

iLiE
i ,...2,1;11
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(4-1)

where iEy , and iLy  are, respectively, the vapor phase mole fractions, entering and leaving a tray, and 

eqiy ,  is the vapor composition in thermodynamic equilibrium with the liquid leaving the tray. See 

schematic in Figure 4-1. For a tray in thermodynamic equilibrium, the component efficiencies are 100% 

for each component. Mass transfer resistances on either side of the vapor/liquid interface reduce the 

component efficiencies to values below 100%. For binary distillation, the Murphree component 

efficiencies are bounded, i.e. 10 2,1  EE .  For multicomponent distillation, with the number of 

species 3n , coupled diffusion effects in either vapor or liquid phases cause the component 

efficiencies to be distinctly different from one another, 321 EEE  . Phenomena such as osmotic 

diffusion, diffusion barrier, and uphill diffusion lead to component efficiencies that are unbounded (

iE ), zero ( 0iE ), or negative ( 0iE ); this has been demonstrated in several experimental and 

theoretical studies.33-41 The values of the component Murphree efficiencies influence the composition 

profiles along the height of distillation columns. 

Levy et al.42 have put forward the following two “rules” regarding that are applicable to  continuous 

azeotropic distillation columns operating with each stage in thermodynamic equilibrium: 
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 Rule 1: If the simple distillation boundary is perfectly linear, then the steady-state composition 

profile in a continuous distillation column cannot cross the boundary from either side. 

 Rule 2: If the simple distillation boundary is curved, then the steady-state composition profile 

in a continuous distillation column cannot cross the boundary from the concave side but may 

cross the boundary from the convex side when moving from the product compositions inward. 

Consider, for example, the system water/methanol/2-propanol; the residue curve maps for this system 

are shown in Figure 4-2(a). A straight-line distillation boundary connects the binary water/2-propanol 

azeotrope with pure methanol and divides the composition space into two regions.  According to Rule 1, 

the column composition trajectories cannot cross this straight line distillation boundary, whichever side 

the feed is located. For either of the two feed locations, F1 and F2 in Figure 4-2(a)m boundary crossing 

is forbidden.  

For the system acetone/chloroform/methanol we have three binary and one ternary azeotrope dividing 

the composition space into four regions by means of four distillation boundaries, that are all curved; see 

the residue curve map shown in Figure 4-2(b). According to Rule 2, the column trajectory obtained for 

operation with the feed located on the concave side of a boundary, with say composition indicated by F1 

is able to cross that boundary. This has been demonstrated experimentally by Li et al.43 Conversely, if 

the feed is located on the convex side, with say composition indicated by F2 the boundary cannot be 

crossed.42   

In a series of papers, Springer et al. 35, 37, 39, 40  have reported a set of experiments in a bubble-cap tray 

column operating at total reflux for homogeneous azeotropic distillation using mixtures: 

water/ethanol/acetone, water/ethanol/methanol, water/ethanol/methylacetate,  

water/ethanol/methanol/acetone to demonstrate that the Levy rules are violated. The experimental set-up 

used by Springer can be viewed at: http://krishna.amsterchem.com/distillation/. A schematic of the 

experimental set-up is shown in Figure 4-3. The set-up consists of a 12-stage distillation column 

wherein all the experiments were conducted under total-reflux conditions at 101.3 kPa.  The condenser 
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is a total condenser, and is considered to be stage 1. The numbering of the stages is downwards, and the 

Stage 12 is the partial reboiler. Stages 2, to 11 are bubble-cap trays.  

For rationalization and quantitative description of the observed experimental boundary crossing 

phenomena, Springer et al.35, 37, 39, 40 used rigorous non-equilibrium (NEQ) stage-wise contacting model, 

as implemented in ChemSep.32, 44 The NEQ model uses the Maxwell-Stefan formulation for diffusion in 

the vapor and the two liquid phases. The important conclusion reached in their work is that boundary 

crossing effects are primarily attributable to diffusional coupling effects, that cause the component 

Murphree efficiencies to be unequal to one another. Unequal component efficiencies cause column 

composition trajectories to deviate from those of the residue curve maps.  Put another way, the NEQ 

model does not follow the tramline guides of the RCM. 

Our earlier detailed analysis of the Springer experiments show that the interphase mass transfer 

process is dominated by molecular diffusion in the gaseous mixture inside the dispersed bubbles on the 

tray.45  For demonstrating the phenomenon of (a) uphill diffusion and (b) boundary crossing, we adopt 

the Geddes model for transient equilibration of vapor bubbles rising through the liquid on a tray.46 

4.2 Geddes model for transient equilibration inside vapor bubble  

For a ternary mixture, the diffusion, in either the dispersed vapor bubbles or in the continuous liquid 

phase surrounding the bubbles, is described by the generalized Fick’s law     
dz

xd
DcJ t)(  in which 

the two-dimensional matrix of Fick diffusivities [D] is a product of two matrices     D . The 

vapor phase can often be considered to thermodynamically ideal; in this event, the matrix of 

thermodynamic factor degenerates to the identity matrix 2,1,;  jiijij  . The matrix    to be 

expressed explicitly in terms of the M-S diffusivities of the constituent binary pairs in the ternary 

mixture: 
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Let us consider the dispersion to consist of uniform and rigid vapor bubbles of diameter, bubbled . The 

transient equilibration process within a rigid spherical bubble is described by Geddes model that was 

originally developed for describing binary diffusion inside vapor bubbles on distillation trays.46 For 

ternary mixtures, the Geddes model can be written in two-dimensional matrix equation1, 47 

        
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(4-2)

In equation (4-2),  0y  denotes the vapor composition entering the tray. The Sylvester theorem, 

detailed in Appendix A of Taylor and Krishna,1 is required for explicit calculation of the composition 

trajectories described by the Geddes model. For the case of two distinct eigenvalues, 1 , 2  of the 2-

dimensional square matrix  D , the Sylvester theorem yields 
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In equation (4-3),  I  is the identity matrix with elements ik . The functions  if   are calculated from  
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For diffusion in quaternary mixtures, the Fick diffusivity matrix is 3-dimensional. For the case of 

three distinct eigenvalues, 1 , 2 , and 3  of the 3-dimensional square matrix  D , the Sylvester 

theorem yields 
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For vapor bubbles rising on a sieve or bubble-cap tray, the effective contact time of the dispersed 

phase bubbles with the surrounding continuous phase is bubblef Vht  , where hf is the froth dispersion 
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height, and bubbleV  is the bubble rise velocity. The fractional approaches to equilibrium for contact time t, 

also termed as the Murphree efficiencies,48-50 are calculated from 
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(4-6)

We now apply the Geddes model to rationalize the boundary crossing effects for 

water(1)/ethanol(2)/acetone(3), water(1)/ethanol(2)/methanol(3), and 

water(1)/ethanol(2)/methylacetate(3), and water(1)/ethanol(2)/methanol(3)/acetone(4) mixtures.  

4.3 Boundary crossing in water/ethanol/acetone mixture 

As an example of boundary crossing in homogeneous azeotropic distillation, we present the 

experimental results for Run T2-26 for water(1)/ethanol(2)/acetone(3) mixture in Figure 4-4. In Run T2-

26, the condenser composition is left of the distillation boundary.  Therefore, the residue curves dictate 

that the reboiler composition should be in the top left corner, rich in ethanol. The measured 

compositions along the column operating at total reflux shows that the reboiler composition is towards 

the right of the distillation boundary, and is rich in water. Boundary crossing occurs at stage 2, just 

below the total condenser. 

For Run T2-26, the values of  eqEE yyy ,222   are plotted in Figure 4-5(a). We note that the 

ethanol driving force   0,222  eqEE yyy for Stages 2 – 9,   0,222  eqEE yyy  for Stage 10, and 

  0,222  eqEE yyy  for Stage 11. The values of the Murphree efficiency 2E  for ethanol is negative 

on Stage 10; on Stage 11, 12 E ; see in Figure 4-5(b). This implies reverse or uphill diffusion on stages 

10  and 11; the transfer of ethanol is dictated by the driving forces of the other two components

 eqEE yyy ,111  , and  eqEE yyy ,333  , that are both finite.35 

We shall demonstrate below that the boundary crossing is primarily due to the factor that the 

Murphree efficiency of water is higher than that of ethanol, i.e.  21 EE  . 
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To rationalize and quantify the phenomena of boundary crossing, consider a specific tray for which 

the composition of the vapor entering is y10 = 0.075, y20 = 0.5, and y30 = 0.425. This composition is right 

of the distillation boundary. For total reflux operations, the compositions of the liquid leaving that stage 

will be equal to that of the vapor entering the stage, i.e. x1 = 0.075, x2 = 0.5, and x3 = 0.425. The 

composition of vapor in equilibrium with the liquid leaving the tray can be determined using the NRTL 

parameters provided in Table 4-1. The bubble point temperature is 336.6 K and the equilibrium 

composition is y1,eq = 0.04869,  y2,eq = 0.29898, and y3,eq = 0.65233. The equilibrium composition is also 

right of the distillation boundary, as is to be expected. The driving forces are 0.02631,1101  eqyyy , 

and 0.20102,2202  eqyyy . Both driving forces are positive, i.e. directed from vapor to the liquid 

phase.   

The values of the vapor phase M-S diffusivities of the binary pairs, calculated using the Fuller-

Schettler-Giddings (FSG)14 method, are 125
231312 sm10856.0;72.1;98.1  ÐÐÐ . These 

diffusivities are independent of composition. The differences in the binary pair diffusivities cannot be 

ignored, as we demonstrate below. At the average composition between the entering compositions and 

the equilibrated compositions, use of the Fick diffusivity matrix 
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m2 s-1 in which the D21 is seen to non-negligible in comparison with D22.  We can also determine a 

“magnitude” of the Fick diffusivity for use in the calculation of the Fourier number: 52/1
1027.1 D  

m2 s-1 in order to plot the results in terms of dimensionless Fourier number 
2

2/1
4

bubbled

tD
.  

The diffusion equilibration trajectory, calculated using the Geddes model is shown in Figure 4-6(a). 

The curvilinear equilibration trajectory crosses the distillation boundary during a portion of this traject. 

Figure 4-6(b) presents a plot of the component Murphree efficiencies, Ei, as function of the Fourier 
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number 
2

2/1
4

bubbled

tD
. The Murphree point efficiency of ethanol, E2, is the lowest; this is because of the 

negative contribution of 121 yD  ; the Murphree point efficiency of water, E1, is higher than that of 

ethanol: E1 > E2. Due to E1 > E2, a larger proportion of water is transferred to the liquid phase as 

compared to ethanol; this implies that the vapor phase is poorer in water than predicted by calculations 

based on equal component efficiencies. The hierarchy of point efficiencies E1 > E2  E3 is in agreement 

with the experimentally determined values for Stages 2 to 9; see Figure 4-5(b). 

The contact time of the bubble with the liquid phase is finite. For a 4.5 mm bubble, with a rise 

velocity of 0.2 m s-1 in a dispersion of height 9.2 mm, the contact time t = 0.046 s; these are the input 

parameters used by Springer et al. in the NEQ model implementation.37 For this contact time, the 

composition of the vapor bubble leaving the tray is y1 =0.05212, y2 = 0.35762, and y3 = 0.59026. This 

vapor composition is on the left side of the distillation boundary, and is indicated by the circle with 

cross-hair in Figure 4-6(a). Such boundary crossing is observed in Run T2-26 of the experiments of 

Springer et al.;35, 37, 39, 40 cf. Figure 4-4.  

For various vapor compositions entering any given stage, we have plotted in Figure 4-6(c) the actual 

composition vector  0,ii yy  , calculated from the Geddes model (taking bubble diameter of 4.5 mm, 

and contact time t = 0.046 s) along with the equilibrium vector  0,
*

ii yy  . The angle between the 

Geddes trajectory, also called the NEQ (non-equilibrium) trajectory (blue line) and the EQ trajectory 

(pink line) increases when the differences in the component efficiencies increases.51 If all the 

component efficiencies were equal to one another, the angle between the NEQ and EQ vectors would be 

zero.  We also note from Figure 4-6(c) that for entering vapor compositions that lie to the left of the 

distillation boundary, no boundary crossing is observed. 

As illustration, consider a specific tray for which the composition of the vapor entering is y10 = 0.075, 

y20 = 0.7, and y30 = 0.225; this composition is left of the distillation boundary. For total reflux 

operations, the compositions of the liquid leaving that stage will be equal to that of the vapor entering 
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the stage, i.e. x1 = 0.075, x2 = 0.7, and x3 = 0.225. The composition of vapor in equilibrium with the 

liquid leaving the tray can be determined using the NRTL parameters provided in Table 4-1. The bubble 

point temperature is 335.5 K and the equilibrium composition is y1,eq = 0.05487,  y2,eq = 0.4719, and y3,eq 

= 0.47322. The equilibrium composition is also left of the distillation boundary, as is to be expected. 

The driving forces are 0.02013,1101  eqyyy , and 0.2281,2202  eqyyy . Both driving forces are 

positive, i.e. directed from vapor to the liquid phase.   

The values of the vapor phase M-S diffusivities of the binary pairs, calculated using the Fuller-

Schettler-Giddings (FSG)14 method, are 125
231312 sm10877.0;76.1;03.2  ÐÐÐ . These 

diffusivities are independent of composition. The differences in the binary pair diffusivities cannot be 

ignored, as we demonstrate below. At the average composition between the entering compositions and 

the equilibrated compositions, the Fick diffusivity matrix is calculated 
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which the D21 is seen to non-negligible in comparison with D22.  We can also determine a “magnitude” 

of the Fick diffusivity for use in the calculation of the Fourier number: 52/1
1032.1 D  m2 s-1 in 

order to plot the results in terms of dimensionless Fourier number 
2

2/1
4

bubbled

tD
.  

The diffusion equilibration trajectory, calculated using the Geddes model is shown in Figure 4-7(a). 

The curvilinear equilibration trajectory remains to the left the distillation boundary during the entire 

traject. see Figure 4-7(b) presents a plot of the component Murphree efficiencies, Ei, as function of the 

Fourier number 
2

2/1
4

bubbled

tD
. The Murphree point efficiency of ethanol, E2, is the lowest; this is because of 

the negative contribution of 121 yD  ; the Murphree point efficiency of water, E1, is higher than that of 

ethanol: E1 > E2. Due to E1 > E2, a larger proportion of water is transferred to the liquid phase as 

compared to ethanol; this implies that the vapor phase is poorer in water than predicted by calculations 
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based on equal component efficiencies. The hierarchy of point efficiencies E1 > E2  E3 is in agreement 

with the experimentally determined values for Stages 2 to 9; see Figure 4-5(b). 

The contact time of the bubble with the liquid phase is finite. For a 4.5 mm bubble, with a rise 

velocity of 0.2 m s-1 in a dispersion of height 9.2 mm, the contact time t = 0.046 s; these are the input 

parameters used by Springer et al. in the NEQ model implementation.37 For this contact time, the 

composition of the vapor bubble leaving the tray is y1 = 0.05751, y2 = 0.53831, and y3 = 0.40418. This 

vapor composition is also the left side of the distillation boundary, and is indicated by the circle with 

cross-hair. No boundary crossing possible for the chosen vapor composition entering the tray. 

4.4 Boundary crossing in water/ethanol/methanol mixture 

The experimental data for Run T4-13 with water(1)/ethanol(2)/methanol(3) mixture are shown in 

Figure 4-8, In Run T4-13, the condenser composition is left of the distillation boundary. Therefore, the 

residue curves dictate that the reboiler composition should be in the top left corner, rich in ethanol.  The 

measured compositions along the column operating at total reflux shows that the reboiler composition is 

towards the right of the distillation boundary, and is rich in water. Also shown in Figure 4-8, are the  

Murphree component efficiencies along the column for Run T4-13. We shall demonstrate below that the 

boundary crossing is primarily due to the factor that the Murphree efficiency of water is higher than that 

of ethanol, i.e.  21 EE  . 

Consider distillation of water(1)/ethanol(2)/methanol(3) mixture in a tray column operating at total 

reflux at a total pressure of 101.3 kPa. For a specified tray, the composition of the vapor entering the 

tray is y10 = 0.082, y20 = 0.68, and y30 = 0.238. This composition is right of the distillation boundary. For 

total reflux operations, the compositions of the liquid leaving that stage will be equal to that of the vapor 

entering the stage, i.e. x1 = 0.082, x2 = 0.68, and x3 = 0.238. The composition of vapor in equilibrium 

with the liquid leaving the tray can be determined using the NRTL parameters provided in provided in 

Table 4-1. The bubble point temperature is 348 K and the equilibrium composition is y1,eq = 0.06767,  

y2,eq = 0.59691, and y3,eq = 0.33542. The final equilibrated composition is also right of the distillation 
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boundary, as is to be expected. The driving forces are 0.01433,1101  eqyyy , and 

0.08309,2202  eqyyy . Both driving forces are positive, i.e. directed from vapor to the liquid 

phase.   

The values of the vapor phase M-S diffusivities of the binary pairs, calculated using the Fuller-

Schettler-Giddings (FSG)14 method, are 125
231312 sm1036.1;72.2;1.2  ÐÐÐ . These 

diffusivities are independent of composition. The differences in the binary pair diffusivities cannot be 

ignored, as we demonstrate below. At the average composition between the entering compositions and 

the equilibrated compositions, the Fick diffusivity matrix is calculated 
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
D  m2 s-1 in which the D21 is seen to non-negligible in comparison with 

D22.  We can also determine a “magnitude” of the Fick diffusivity for use in the calculation of the 

Fourier number: 52/1
108.1 D  m2 s-1 in order to plot the results in terms of dimensionless Fourier 

number 
2

2/1
4

bubbled

tD
. 

The diffusion equilibration trajectory, calculated using the Geddes model is shown in Figure 4-9(a). 

The curvilinear equilibration trajectory crosses the distillation boundary during a portion of this traject. 

Figure 4-9(b) presents a plot of the component Murphree efficiencies, Ei, as function of the Fourier 

number. The Murphree point efficiency of ethanol, E2, is the lowest; this is because of the negative 

contribution of  121 yD  ; the Murphree point efficiency of water, E1, is higher than that of ethanol: E1 > 

E2. Due to E1 > E2, a higher proportion of water is transferred to the liquid phase as compared to 

ethanol; this implies that the vapor phase is poorer in water than predicted by calculations based on 

equal component efficiencies. The hierarchy of point efficiencies E1 > E2  E3 is in agreement with the 

experimentally determined values shown in Figure 4-8(b). 

The contact time of the bubble with the liquid phase is finite. For a 4.5 mm bubble, with a rise 

velocity of 0.2 m s-1 in a dispersion of height 9.2 mm, the contact time t = 0.046 s; these are the input 
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parameters used by Springer et al.35, 37, 39, 40 in the NEQ model implementation.37 For this contact time, 

the composition of the vapor bubble leaving the tray isy1 =0.06856, y2 = 0.61221, and y3 = 0.31943. This 

vapor composition is on the left side of the distillation boundary. Such boundary crossing is observed in 

Run T4-13 of the experiments of Springer et al.37 (cf. Figure 4-8).  

For various vapor compositions entering any given stage, we have plotted in Figure 4-9(c) the actual 

composition vector  0,ii yy  , calculated from the Geddes model (taking bubble diameter of 4.5 mm, 

and contact time t = 0.046 s) along with the equilibrium vector  0,
*

ii yy  . The angle between the NEQ 

trajectory (blue line) and the EQ trajectory (pink line) increases when the differences in the component 

efficiencies increase. If all the component efficiencies were equal to unit, the NEQ and EQ trajectories 

would coincide.  We see from Figure 4-9(c) that the NEQ trajectory has a tendency to cut across to the 

right of the EQ trajectory, precisely as has been observed in Run T4-13; cf. Figure 4-8. 

4.5 Boundary crossing in water/ethanol/methylacetate mixture 

The experimental data for Run T3-23 with water(1)/ethanol(2)/methylacetate(3) mixture are shown in 

Figure 4-10. In Run T3-23, the condenser composition is left of the distillation boundary. Therefore, the 

residue curves dictate that the reboiler composition should be in the top left corner, rich in ethanol.  The 

measured compositions along the column operating at total reflux shows that the reboiler composition is 

towards the right of the distillation boundary, and is rich in water. Also shown in Figure 4-10 are the  

Murphree component efficiencies along the column for Run T4-13. We shall demonstrate later that the 

boundary crossing is primarily due to the factor that the Murphree efficiency of water is higher than that 

of ethanol, i.e.  21 EE  . 

Consider distillation of water(1)/ethanol(2)/methylacetatel(3) mixture in a tray column operating at 

total reflux at a total pressure of 101.3 kPa. For a specified tray, the composition of the vapor entering 

the tray is y10 = 0.095, y20 = 0.6345, and y30 = 0.2705. The chosen vapor composition is right of the 

distillation boundary. For total reflux operations, the compositions of the liquid leaving that stage will 

be equal to that of the vapor entering the stage, i.e. x1 = 0.095, x2 = 0.6345, and x3 = 0.2705. The 
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composition of vapor in equilibrium with the liquid leaving the tray can be determined using the NRTL 

parameters provided in Table 4-1. The bubble point temperature is 337 K and the equilibrium 

composition is y1,eq = 0.06324,  y2,eq = 0.36863, and y3,eq = 0.56813.  The final equilibrated composition 

is also right of the distillation boundary, as is to be expected. The driving forces are 

0.03176,1101  eqyyy
, and 

0.26587,2202  eqyyy
. 

The values of the vapor phase M-S diffusivities of the binary pairs, calculated using the Fuller-

Schettler-Giddings (FSG)14 method, are 125
231312 sm10791.0;62.1;2  ÐÐÐ ; these 

diffusivities are independent of composition. The differences in the binary pair diffusivities cannot be 

ignored, as we demonstrate below. At the average composition between the entering compositions and 

the equilibrated compositions, the Fick diffusivity matrix is calculated 
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D  m2 s-1 in which the D21 is seen to non-negligible in comparison with 

D22. We can also determine a “magnitude” of the Fick diffusivity for use in the calculation of the 

Fourier number: 52/1
1022.1 D  m2 s-1 in order to plot the results in terms of dimensionless Fourier 

number 
2

2/1
4

bubbled

tD
. 

The diffusion equilibration trajectory, calculated using Geddes model is shown in Figure 4-11(a). The 

curvilinear equilibration trajectory crosses the distillation boundary during a portion of this traject. 

Figure 4-11(b) presents a plot of the component Murphree efficiencies, Ei, as function of the Fourier 

number. The Murphree point efficiency of ethanol is the lowest; this is because of the negative 

contribution of the 121 yD  . The hierarchy of point efficiencies E1 > E2  E3 is in agreement with the 

experimentally determined values shown in Figure 4-10. A lower amount of ethanol is transferred to the 

liquid phase than predicted by an uncoupled equation; i.e. the vapor phase is richer in ethanol. The 

component efficiency of water is higher than that of partner species; see Figure 4-11(b). Water is the 

least volatile of the three components, and its transfer is directed from vapor to the liquid phase; a 
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higher efficiency of water ensures that the liquid phase is richer in water than anticipated on the basis of 

equal component efficiencies. 

The contact time of the bubble with the liquid phase is finite. For a 4.5 mm bubble, with a rise 

velocity of 0.2 m s-1 in a dispersion of height 9.2 mm, the contact time t = 0.046 s; these are the input 

parameters used by Springer et al. in the NEQ model implementation.37 For this contact time, the 

composition of the vapor bubble leaving the tray is y1 =0.06778, y2 = 0.45057, and y3 = 0.48165. This 

vapor composition is on the left side of the distillation boundary. Such boundary crossing is observed in 

Run T3-23 of the experiments of Springer et al.35, 37, 39, 40 (cf. Figure 4-10). The component efficiency of 

water is higher than that of partner species; see Figure 4-11(b). Water is the least volatile of the three 

components, and its transfer is directed from vapor to the liquid phase; a higher efficiency of water 

ensures that the liquid phase is richer in water than anticipated on the basis of equal component 

efficiencies.  

For various vapor compositions entering any given stage, we have plotted in Figure 4-11(c), the actual 

composition vector  0,ii yy  , calculated from the Geddes model (taking bubble diameter of 4.5 mm, 

and contact time t = 0.046 s) along with the equilibrium vector  0,
*

ii yy  . The angle between the NEQ 

trajectory (blue line) and the EQ trajectory (pink line) increases when the differences in the component 

efficiencies increase. If all the component efficiencies were equal to unity, the NEQ and EQ trajectories 

would coincide. We see from Figure 4-11(c) that the NEQ trajectory has a tendency to cut across to the 

right of the EQ trajectory, precisely as has been observed in Run T3-23; cf. Figure 4-10. 

We also note from Figure 4-11(c) that for entering vapor compositions that lie to the left of the 

distillation boundary, no boundary crossing is observed. As illustration, consider a specific tray for 

which the composition of the vapor entering is y10 = 0.075, y20 = 0.6, and y30 = 0.325; this composition 

is left of the distillation boundary. For total reflux operations, the compositions of the liquid leaving that 

stage will be equal to that of the vapor entering the stage, i.e. x1 = 0.075, x2 = 0.6, and x3 = 0.325. The 

composition of vapor in equilibrium with the liquid leaving the tray can be determined using the NRTL 
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parameters provided in Table 4-1. The bubble point temperature is 336 K and the equilibrium 

composition is y1,eq = 0.0508,  y2,eq = 0.34186, and y3,eq = 0.60735. The equilibrium composition is also 

left of the distillation boundary, as is to be expected. The driving forces are 0.0242,1101  eqyyy , 

and 0.25814,2202  eqyyy . Both driving forces are positive, i.e. directed from vapor to the liquid 

phase.   

The values of the vapor phase M-S diffusivities of the binary pairs, calculated using the Fuller-

Schettler-Giddings (FSG)14 method, are 125
231312 sm10787.0;61.1;98.1  ÐÐÐ . These 

diffusivities are independent of composition. The differences in the binary pair diffusivities cannot be 

ignored, as we demonstrate below. At the average composition between the entering compositions and 

the equilibrated compositions, the Fick diffusivity matrix is calculated 
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which the D21 is seen to non-negligible in comparison with D22.  We can also determine a “magnitude” 

of the Fick diffusivity for use in the calculation of the Fourier number: 52/1
102.1 D  m2 s-1 in order 

to plot the results in terms of dimensionless Fourier number 
2

2/1
4

bubbled

tD
.  

The diffusion equilibration trajectory, calculated using the Geddes model is shown in Figure 4-12(a). 

The curvilinear equilibration trajectory remains to the left the distillation boundary during the entire 

traject. Figure 4-12(b) presents a plot of the component Murphree efficiencies, Ei, as function of the 

Fourier number 
2

2/1
4

bubbled

tD
. The Murphree point efficiency of ethanol, E2, is the lowest; this is because of 

the negative contribution of 121 yD  ; the Murphree point efficiency of water, E1, is higher than that of 

ethanol: E1 > E2. Due to E1 > E2, a larger proportion of water is transferred to the liquid phase as 

compared to ethanol; this implies that the vapor phase is poorer in water than predicted by calculations 
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based on equal component efficiencies. The hierarchy of point efficiencies E1 > E2  E3 is in agreement 

with the experimentally determined values shown in cf. Figure 4-10. 

The contact time of the bubble with the liquid phase is finite. For a 4.5 mm bubble, with a rise 

velocity of 0.2 m s-1 in a dispersion of height 9.2 mm, the contact time t = 0.046 s; these are the input 

parameters used by Springer et al. in the NEQ model implementation.37 For this contact time, the 

composition of the vapor bubble leaving the tray is y1 = 0.05432, y2 = 0.42158, and y3 = 0.5241. This 

vapor composition is also the left side of the distillation boundary, and is indicated by the circle with 

cross-hair. No boundary crossing possible for the chosen vapor composition entering the tray. 

4.6 Boundary crossing in water/ethanol/methanol/acetone mixtures 

Experimental data for Murhpree efficiencies for quaternary 

water(1)/ethanol(2)/methanol(3)/acetone(4) mixtures were determined by Springer et al.39 The 

experiments were carried out in a 12-stage bubble cap distillation column wherein all the experiments 

were conducted under total-reflux conditions at 101.3 kPa. Table 4-3 provides the data on the liquid 

compositions leaving each stage for Run Q6. The experimental composition trajectories in the column 

are indicated by the blue circles in Figure 4-13. The data are plotted in ternary composition space by 

combining the mole fractions of methanol and acetone in the left bottom vertex in Figure 4-13.  Table 

4-2 provides the NRTL parameters used in the calculation of the vapor/liquid phase equilibrium. 

Two distillation boundaries are shown in Figure 4-13: the “acetone” boundary is the same as for the 

water/ethanol/acetone mixture; the “methanol” boundary is the same as for the water/ethanol/methanol 

mixture.  The experimental data shows that both the “acetone” and “methanol” boundaries are crossed 

in Run Q6. Also shown as insets are the Murphree component efficiencies and component driving 

forces. The component Murphree efficiency of methanol is negative on stage 3, and slightly exceeds 

unity on stage 4. This implies that uphill diffusion of methanol manifests on stage 4. The reason is to 

found in the fact that the driving force of methanol is practically zero on these two stages; the direction 

of transport of methanol is dictated by the transfer of the three partner species in the mixture: water, 
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ethanol, and acetone. The boundary crossing is primarily due to the fact that the Murphree efficiency of 

water is higher than that of ethanol, i.e.  21 EE  . 

We now  demonstrate that the phenomenon of uphill diffusion on stage 4 can be rationalized on the 

basis of the Geddes model for transient diffusion within a spherical bubble. The bubble diameter used in 

the simulations correspond to the value determined experimentally to be 4.5 mm. In the experimental 

set-up of Springer et al.39 the vapor/liquid contact time on the tray is 0.046 s. 

The composition of the vapor entering the tray is y10 = 0.0614, y20 = 0.5527, y30 = 0.1868, and y40 = 

0.199. For total reflux operations, the compositions of the liquid leaving that stage will be equal to that 

of the vapor entering the stage, i.e. x1 = 0.0614, x2 = 0.5527, x3 = 0.1868, and x4 = 0.199. The 

composition of vapor in equilibrium with the liquid leaving the tray can be determined using the NRTL 

parameters provided in Table 4-2. The bubble point temperature is 337 K and the equilibrium 

composition is y1,eq = 0.03846,  y2,eq = 0.35035, y3,eq = 0.19685, and y4,eq = 0.41435.  The driving forces 

are 
0.02294,1101  eqyyy

, 
0.20235,2202  eqyyy

, and 
-0.01005,3303  eqyyy

. 

The values of the vapor phase M-S diffusivities of the binary pairs, calculated using the Fuller-

Schettler-Giddings (FSG)14 method, are provided in Table 4-4. The differences in the binary pair 

diffusivities cannot be ignored, as we demonstrate below. At the average composition between the 

entering compositions and the equilibrated compositions, the Fick diffusivity matrix is calculated   from 

  1
[ ]D B

 : 1-25

333231

232221

131211

s m10

1.302450.02717-0.23304-

0.20879-1.006610.55018-
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
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
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














DDD

DDD

DDD

; the off-diagonal 

elements are non-negligible. We can also determine a “magnitude” of the Fick diffusivity for use in the 

calculation of the Fourier number: 53/1
10394.1 D  m2 s-1 in order to plot the results in terms of in 

terms of dimensionless Fourier number 
2

2/1
4

bubbled

tD
. Figure 4-14 presents the Geddes model calculations 

for the Murphree point efficiencies on Stage 4. The inlet compositions on the stages are as specified in 
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Table 4-3. The x-axis is dimensionless Fourier number 
2

3/1
4

bubbled

tD
. For stage 4, we note that the efficiency 

of methanol exceeds unity, indicating uphill diffusion. This is in accord with the data of Springer et al.39 

in Figure 4-13. 

Figure 4-15 shows the equilibration trajectory for water(1)/ethanol(2)/methanol(3)/acetone(4) 

mixtures for entering vapor compositions 019.0;08.0;79.0;111.0 1111  EEEE yyyy . We note that 

the equilibration trajectory has crossed the water/ethanol/acetone “distillation boundary”. These 

calculations provide a rationalization of the experimental observation of boundary crossing in Figure 

4-13. 

4.7 Boundary crossing in water/methanol/2-propanol mixtures 

Let us consider the system: water(1)/methanol(2)/2-propanol(3) has one binary azeotrope, as indicated 

in Figure 4-16(a). We note that the boundary is very nearly a straight line. According to boundary 

crossing rules of Levy et al.42 it is not possible to cross a straight-line boundary. But these remarks 

regarding boundary crossing are based on the use of the EQ stage model.  

In order to see whether the introduction of mass transfer resistance has an influence on the column 

composition trajectories (a boundary crossing phenomenon) for this homogeneous ternary azeotropic 

system, we carried out the simulations with both EQ and NEQ stage models for a 12-stage column 

operating at total reflux. The feed composition was chosen to be x1 = 0.05, x2 = 0.8 which is located in 

on the left side of the distillation boundary, see Figure 4-16(b) and fixed on stage 1 (condenser). The EQ 

(green triangular markers) and NEQ (red circular markers) composition trajectories are seen to follow 

completely different composition trajectories; see see Figure 4-16(b). The NEQ model predicts that the 

bottom product composition corresponds to (nearly) pure water whereas the EQ model predicts the 

bottom product to consist of (nearly) pure 2-propanol. The NEQ model crosses the distillation boundary. 

We shall demonstrate below that the boundary crossing is primarily due to the factor that the 

Murphree efficiency of water is higher than that of ethanol, i.e.  21 EE  . 
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Consider distillation of water(1)/methanol(2)/2-propanol(3) mixture in a tray column operating at total 

reflux at a total pressure of 101.3 kPa. For a specified tray, the composition of the vapor entering the 

tray is y10 = 0.12, y20 = 0.62, and y30 = 0.26. The chosen vapor composition is right of the distillation 

boundary. For total reflux operations, the compositions of the liquid leaving that stage will be equal to 

that of the vapor entering the stage, i.e. x1 = 0.12, x2 = 0.62, and x3 = 0.26. The composition of vapor in 

equilibrium with the liquid leaving the tray can be determined using the NRTL parameters provided in 

Table 4-1. The bubble point temperature is 344 K and the equilibrium composition is y1,eq = 0.0742,  

y2,eq = 0.76109, and y3,eq = 0.1647. The final equilibrated composition is also right of the distillation 

boundary, as is to be expected.The driving forces are 
0.0458,1101  eqyyy

, and 

-0.14109,2202  eqyyy
. 

The values of the vapor phase M-S diffusivities of the binary pairs, calculated using the Fuller-

Schettler-Giddings (FSG)14 method, are 125
231312 sm1012.1;73.1;67.2  ÐÐÐ ; these 

diffusivities are independent of composition. At the average composition between the entering 

compositions and the equilibrated compositions, the Fick diffusivity matrix is calculated 

  510
1.212230.98755-

0.0543-2.33042 







D  m2 s-1 in which the D21 is seen to non-negligible in comparison with 

D22. We can also determine a “magnitude” of the Fick diffusivity for use in the calculation of the 

Fourier number: 52/1
1066.1 D  m2 s-1 in order to plot the results in terms of dimensionless Fourier 

number 
2

2/1
4

bubbled

tD
. 

The diffusion equilibration trajectory, calculated using Geddes model is shown in Figure 4-17(a). The 

curvilinear equilibration trajectory crosses the distillation boundary during a portion of this traject. The 

contact time of the bubble with the liquid phase is finite. For a 4.5 mm bubble, with a rise velocity of 

0.2 m s-1 in a dispersion of height 9.2 mm, the contact time t = 0.046 s. For this contact time, the 

composition of the vapor bubble leaving the tray is y1 =0.07685, y2 = 0.73677, and y3 = 0.18638. The 
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composition of the vapor leaving the tray is to the left of the distillation boundary. The vapor phase is 

poorer in methanol than predicted by the equilibrium model. 

Figure 4-17(b)  presents a plot of the component Murphree efficiencies, Ei, as function of the Fourier 

number. The Murphree point efficiency of methanol is the lower than that of water; this is because of 

the negative contribution of the 121 yD  . The driving force of methanol is directed from the vapor to the 

liquid phase. Due to the lower efficiency of methanol, a smaller amount of methanol is transferred to the 

liquid phase than predicted by a model that assumes equal component efficiencies for all components; 

i.e. in other words, the vapor phase is poorer in methanol.  

Figure 4-17(c) compares the NEQ and EQ vector trajectories. 

Pelkonen et al.52 performed total reflux experiments with the system water/methanol/2-propanol in a 

packed distillation column and showed that if the composition at the top of the column is located on the 

distillation boundary (i.e. the line connecting pure methanol with the methanol/2-propanol binary 

azeotrope) the experimentally measured composition profiles end up with a reboiler composition that is 

rich in water. The measured composition trajectories can be simulated very well using a nonequilibrium 

(NEQ) stage model incorporating the Maxwell-Stefan diffusion equations. On the other hand, an 

equilibrium (EQ) stage model (i.e. a model in which the component efficiencies are each taken to 100%) 

predicts that the reboiler compositions corresponds to pure 2-propanol. Pelkonen et al.52, 53 also 

performed similar experiments with the quaternary system acetone-methanol-isopropanol-water, with 

the composition near the top of the column chosen to lie on the distillation boundary and obtained the 

same dramatic differences between the predictions of the NEQ and EQ models. The NEQ model 

predictions were in accord with the experiments.  

4.8 Uphill diffusion in acetone/chloroform/methanol mixtures 

For the system acetone/chloroform/methanol we have three binary and one ternary azeotrope dividing 

the composition space into four regions by means of four distillation boundaries, that are all curved; see 

the residue curve map shown in Figure 4-18(a). According to Rule 2 of Levy et al.42, boundary crossing 
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is not forbidden if the feed is located on the concave side of the distillation boundary, say as indicated in 

Figure 4-18(a). 

We now demonstrate the possibility of uphill diffusion in this system. 

Consider distillation of acetone(1)/chloroform(2)/methanol(3) mixture in a sieve tray column 

operating at total reflux at a total pressure of 101.3 kPa. For a specified tray, the composition of the 

vapor entering the tray is y10 = 0.486, y20 = 0.46, and y30 = 0.054. The chosen vapor composition lies on 

the concave side of the distillation boundary. For total reflux operations, the compositions of the liquid 

leaving that stage will be equal to that of the vapor entering the stage, i.e. x1 = 0.486, x2 = 0.46, and x3 = 

0.054. The composition of vapor in equilibrium with the liquid leaving the tray can be determined using 

the NRTL parameters provided in Table 4-1. The bubble point temperature is 334.6 K and the 

equilibrium composition is y1,eq = 0.49042,  y2,eq = 0.38374, and y3,eq = 0.12584.  The final equilibrated 

composition is on the convex side of the distillation boundary; boundary crossing is not forbidden. The 

driving forces are 
-3

,1101 104.41582  eqyyy
, and 

0.07626,2202  eqyyy
. 

The values of the vapor phase M-S diffusivities of the binary pairs, calculated using the Fuller-Schettler-

Giddings (FSG)14 method, are 125
231312 sm1093.0;1.1;59.0  ÐÐÐ ; these diffusivities are 

independent of composition. At the average composition between the entering compositions and the 

equilibrated compositions, the Fick diffusivity matrix is calculated   510
0.770880.16128

0.237880.85691 







D  m2 

s-1 in which both off-diagonal elements are seen to non-negligible in comparison with the diagonal 

elements. We can also determine a “magnitude” of the Fick diffusivity for use in the calculation of the 

Fourier number: 52/1
1079.0 D  m2 s-1 in order to plot the results in terms of dimensionless Fourier 

number 
2

2/1
4

bubbled

tD
. 

The diffusion equilibration trajectory, calculated using Geddes model is shown in Figure 4-18(b). The 

contact time of the bubble with the liquid phase is finite. For a 4.5 mm bubble, with a rise velocity of 
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0.2 m s-1 in a dispersion of height 9.2 mm, the contact time t = 0.046 s. For this contact time, the 

composition of the vapor bubble leaving the tray is y1 = 0.48372, y2 = 0.40845, and y3 = 0.10783. The 

composition of the vapor leaving the tray remains on the concave side off the distillation boundary.  

Figure 4-18(c) presents a plot of the component Murphree efficiencies, Ei, as function of the Fourier 

number. The Murphree point efficiency of acetone is negative because the positive contribution of 

212 yD   is opposite in sign to the diagonal contribution 111 yD  . Put another way, uphill diffusion of 

acetone occurs.  

4.9 Uphill diffusion in water/ethanol/tert-butanol mixtures 

For the system water/ethanol/tert-butanol (=2-methyl-2-propanol) there are two binary azeotropes 

dividing the composition space into two distinct regions boundaries, that are all curved; see the residue 

curve map shown in Figure 4-19(a). Experimental data of Krishna et al.33 for distillation of 

water/ethanol/tert-butanol mixtures in a sieve tray distillation column, operating under total reflux 

conditions, have demonstrated the occurrence of negative component efficiencies. Our objective here is 

to investigate the origins of negative efficiencies by using the Geddes model for vapor phase 

equilibrium within a spherical bubble.  We now demonstrate the possibility of uphill diffusion in this 

system. 

Consider distillation of water(1)/ethanol(2)/tert-butanol(3) mixture in a sieve tray column operating at 

total reflux at a total pressure of 101.3 kPa. For a specified tray, the composition of the vapor entering 

the tray is y10 = 0.3089, y20 = 0.5558, and y30 = 0.436. The chosen vapor composition corresponds to 

Run M46 of Krishna et al.33 For total reflux operations, the compositions of the liquid leaving that stage 

will be equal to that of the vapor entering the stage, i.e. x1 = 0.3089, x2 = 0.5558, and x3 = 0.436. The 

composition of vapor in equilibrium with the liquid leaving the tray can be determined using the NRTL 

parameters provided in Table 4-1. The bubble point temperature is 352 K and the equilibrium 

composition is y1,eq = 0.27405,  y2,eq = 0.59176, and y3,eq = 0.13419.  The driving forces are 

0.03485,1101  eqyyy , -0.03596,2202  eqyyy , and 001108.0,3303  eqyyy . Particularly 
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noteworthy is the fact that the driving force of tert-butanol is about one order of magnitude lower than 

that of water, and ethanol. 

The values of the vapor phase M-S diffusivities of the binary pairs, calculated using the Fuller-

Schettler-Giddings (FSG)14 method, are 125
231312 sm1079.0;59.1;14.2  ÐÐÐ ; these 

diffusivities are independent of composition. At the average composition between the entering 

compositions and the equilibrated compositions, the Fick diffusivity matrix is calculated 

  510
1.006730.86633-

0.09042-1.9443 







D  m2 s-1 in which the D21 is seen to non-negligible in comparison 

with D22.  In other words, the flux of ethanol is strongly coupled to the flux of water. We can also 

determine a “magnitude” of the Fick diffusivity for use in the calculation of the Fourier number: 

52/1
1037.1 D  m2 s-1 in order to plot the results in terms of dimensionless Fourier number 

2

2/1
4

bubbled

tD
. 

The diffusion equilibration trajectory, calculated using Geddes model is shown in Figure 4-19(b). The 

contact time of the bubble with the liquid phase is finite. For a 4.5 mm bubble, with a rise velocity of 

0.2 m s-1 in a dispersion of height 9.2 mm, the contact time t = 0.046 s. For this contact time, the 

composition of the vapor bubble leaving the tray is y1 = 0.27742, y2 = 0.58721, and y3 = 0.13537; see 

Figure 4-19(b). It is remarkable that the composition of tert-butanol leaving the tray higher than the 

entering tray composition, whereas the EQ model anticipates that the tert-butanol composition should be 

lower than the entering composition. 

Figure 4-19(c) presents a plot of the component Murphree efficiencies, Ei, as function of the Fourier 

number. The Murphree point efficiency of tert-butanol is negative because it is being dragged uphill by 

the two partners: water and ethanol.  Further explanation of this is provided in Example 12.2.2 of Taylor 

and Krishna.1 
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4.10 List of Tables for Multicomponent Distillation 

Table 4-1. NRTL parameters for homogeneous ternary mixtures at 101.3 kPa (Gmehling & Onken, 

1977). These parameters are used along with Gij = exp(-ijij) and ij = Bij/T 

Ternary systems     

Component i Component j Bij / [K] Bji / [K] ij / [-] 

Water Methanol 594.6299 -182.6052 0.297 

Water 2-propanol 729.2208 70.6619 0.288 

Methanol 2-propanol 65.71121 -89.74272 0.304 

Acetone Chloroform -327.6945 151.8924 0.3054 

Acetone Methanol 59.42076 149.0765 0.3003 

Chloroform Methanol 671.975 -53.0728 0.2873 

Water Ethanol 624.9174 -29.169 0.2937 

Water Acetone 602.6252 330.4768 0.5103 

Ethanol Acetone 188.8983 22.83319 0.3006 

Water Ethanol 624.9174 -29.169 0.2937 

Water Methanol 594.6299 -182.605 0.297 

Ethanol Methanol 73.413 -79.1718 0.3029 

Water Ethanol 624.9174 -29.169 0.2937 

Water Methylacetate 796.8165 334.6706 0.35 

Ethanol Methylacetate 198.9705 134.162 0.3 

Water Methanol 594.629 -182.605 0.297 

Water Methylacetate 860.2462 442.4 0.383 
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Methanol Methylacetate 229.9405 284.8969 1.0293 

Water Ethanol 620.17 −20.46 0.3194 

Water Tert-butanol 1122.14 209.54 0.4917 

Ethanol Tert-butanol 250.99 −335.37 -0.1382 
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Table 4-2. The NRTL parameters for the quaternary mixture water (1) – ethanol (2) – methanol (3) – 

acetone (4) at 101.3 kPa (Gmehling & Onken, 1977). These parameters are used along with Gij = exp(-

ijij) and ij = Bij/T 

Quaternary system (homogeneous)    

Component i Component j Bij / [K] Bji / [K] ij / [-] 

Water Ethanol 624.9174 -29.169 0.2937 

Water Methanol 594.6299 -182.6052 0.297 

Water Acetone 602.6252 330.4768 0.5103 

Ethanol Methanol 73.413 -79.1718 0.3029 

Ethanol Acetone 188.8983 22.83319 0.3006 

Methanol Acetone 97.78178 107.83 0.3008 
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Table 4-3. Compositions of the liquid leaving each stage for Run Q6 of Springer. At total reflux, the 

compositions leaving each stage equals the vapor entering each stage. These compositions were 

determined by a non-equilibrium stage model that matched the column composition profiles that were 

determined in the experiments. 

Stage number x1E x2E x3E x4E 

1 0.0205 0.2865 0.1956 0.4974 

2 0.0307 0.3658 0.1986 0.4049 

3 0.0446 0.4576 0.197 0.3008 

4 0.0614 0.5527 0.1868 0.199 

5 0.0787 0.6374 0.167 0.1169 

6 0.094 0.7026 0.1412 0.0622 

7 0.1064 0.748 0.1147 0.031 

8 0.1163 0.778 0.0908 0.0149 

9 0.1245 0.7977 0.0709 0.006964 

10 0.1316 0.8103 0.0549 0.003223 

11 0.1381 0.818 0.0424 0.00148 

12 0.1462 0.825 0.0284 0.0003942 
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Table 4-4. M-S vapor phase diffusivities for the binary pairs in the quaternary Water (1) – Ethanol (2) 

– Methanol (3) – Acetone (4) system. The values are calculated using the FSG correlation at the 

temperature 340 K, the average temperature in Run Q6 in the Springer experiments. 

Parameter units i-j pair 

1-2 pair 1-3 pair 1-4 pair 2-3 pair 2-4 pair 3-4 pair 

Ðij 10-5 m2 

s-1 

2.1 2.72 1.82 1.36 0.908 1.18 
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4.11 List of Figures for Multicomponent Distillation 

 

Figure 4-1. Schematic of vapor/liquid contacting on a distillation tray, indicating transfer resistances. 
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Figure 4-2. (a) Residue curve map for the water/methanol/2-propanol system, showing a straight-line 

distillation boundary and feed locations F1 and F2 on either side of the distillation boundary. (b) 

Residue curve map for the acetone/chloroform/methanol system, showing feed locations F1 and F2 on 

the concave and convex sides of the highlighted distillation boundary respectively. 
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Figure 4-4. Residue curve maps for distillation of water(1)/ethanol(2)/acetone(3) mixtures. The blue 

circles represent the experimental data for T2-26 of Springer et al.35, 37, 39, 40 on composition trajectories 

in a bubble-cap tray column operating at total reflux implying ii yx  . 
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Figure 4-5. (a) Ethanol driving force  eqEE yyy ,222   on each stage for the system 

water(1)/ethanol(2)/acetone(3). (b) Murphree component efficiencies for the system 

water(1)/ethanol(2)/acetone(3).  

 

  

(b)

Murphree component efficiencies

(a)

Stage number

0 1 2 3 4 5 6 7 8 9 10 11 12

E
th

an
ol

 d
riv

in
g 

fo
rc

e,
 (

y 2
E
 -

 y
2

,e
q 

)

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

Stage number

0 1 2 3 4 5 6 7 8 9 10 11 12

M
ur

ph
re

e 
co

m
po

ne
nt

 e
ffi

ci
en

ci
es

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

water
ethanol
acetone

condenser
reboiler



Multicomponent Distillation    

89 
 

 

Figure 4-6.  (a) Transient equilibration trajectories for the system water(1)/ethanol(2)/acetone(3) at 

101.3 kPa.  The initial mole fractions in the rigid spherical vapor bubble are y10 = 0.075, y20 = 0.5, and 

y30 = 0.425; the final equilibrium compositions are y1,eq = 0.04869,  y2,eq = 0.29898, and y3,eq = 0.65233. 

(b) Plot of the component Murphree efficiencies, Ei, as function of the Fourier number. (c) NEQ and EQ 

trajectory vectors for various entering tray compositions for the system water(1)/ethanol(2)/acetone(3) 

at 101.3 kPa.   
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Figure 4-7. (a) Transient equilibration trajectories for the system water(1)/ethanol(2)/acetone(3) at 

101.3 kPa.  The initial mole fractions in the rigid spherical vapor bubble are y10 = 0.075, y20 = 0.7, and 

y30 = 0.225; the final equilibrium compositions are y1,eq = 0.05487,  y2,eq = 0.4719, and y3,eq = 0.47322. 

(b) Plot of the component Murphree efficiencies, Ei, as function of the Fourier number. 

  

Fourier number, Fo =(4 |D|1/2  t ) / dbubble
2

0.0 0.1 0.2 0.3

C
om

p
on

en
t M

ur
ph

re
e 

ef
fic

ie
nc

y 
, 

E
i

0.0

0.2

0.4

0.6

0.8

1.0

water
ethanol
acetone

water(1)/ethanol(2)/
acetone(3)

y10= 0.075; y20 = 0.7

Water/Ethanol/Acetone Distillation
(a) (b)

Water mole fraction

0.04 0.05 0.06 0.07 0.08

E
th

an
ol

 m
ol

e 
fr

ac
tio

n

0.3

0.4

0.5

0.6

0.7

0.8 Distillation Boundary
Geddes trajectory
EQ model
Composition Exiting 
Tray: NEQ model

y0

yeq

t = 0.046 s

water(1)/ethanol(2)/
acetone(3)



Multicomponent Distillation    

91 
 

 

 

Figure 4-8.Residue curve maps for distillation of water(1)/ethanol(2)/methanol(3) mixtures. The blue 

circles represent the experimental data for T4-13 of Springer et al.35, 37, 39, 40 on composition trajectories 

in a bubble-cap tray column operating at total reflux implying ii yx  .  
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Figure 4-9. (a) Transient equilibration trajectories for the system water(1)/ethanol(2)/methanol(3) at 

101.3 kPa.  The initial mole fractions in the rigid spherical vapor bubble are y10 = 0.082, y20 = 0.68, and 

y30 = 0.238; the final equilibrium compositions are y1,eq = 0.06767,  y2,eq = 0.59691, and y3,eq = 0.33542.  

(b) Plot of the component Murphree efficiencies, Ei, as function of the Fourier number. (c) NEQ and EQ 

trajectory vectors for various entering tray compositions for the system water(1)/ethanol(2)/methanol(3) 

at 101.3 kPa. 
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Figure 4-10. Residue curve maps for distillation of water(1)/ethanol(2)/methylacetate(3) mixtures. 

The blue circles represent the experimental data for T3-23 of Springer et al.35, 37, 39, 40 on composition 

trajectories in a bubble-cap tray column operating at total reflux implying ii yx  .  
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Figure 4-11. (a) Transient equilibration trajectories for the system 

water(1)/ethanol(2)/methylacetate(3) at 101.3 kPa.  The initial mole fractions in the rigid spherical 

vapor bubble are y10 = 0.095, y20 = 0.6345, and y30 = 0.2705; the final equilibrium compositions are y1,eq 

= 0.06324,  y2,eq = 0.36863, and y3,eq = 0.56813.  (b) Plot of the component Murphree efficiencies, Ei, as 

function of the Fourier number. (c) NEQ and EQ trajectory vectors for various entering tray 

compositions for the system water(1)/ethanol(2)/methylacetate(3) at 101.3 kPa. 
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Figure 4-12. (a) Transient equilibration trajectories for the system 

water(1)/ethanol(2)/methylacetate(3) at 101.3 kPa.  The initial mole fractions in the rigid spherical 

vapor bubble are y10 = 0.075, y20 = 0.6, and y30 = 0.325; the final equilibrium compositions are y1,eq = 

0.0508,  y2,eq = 0.34186, and y3,eq = 0.60735.  (b) Plot of the component Murphree efficiencies, Ei, as 

function of the Fourier number.  
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Figure 4-13. Experimental data (blue circles) of Springer et al.39 for Run Q6 with quaternary 

water(1)/ethanol(2)/methanol(3)/acetone(4) mixtures. Also shown as insets are the Murphree component 

efficiencies and component driving forces. 
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Figure 4-14. Geddes model calculations for the Murhpree point efficiencies on Stage 4. The liquid 

compositions leaving each stage (= vapor composition entering that stage) are as specified in Table 4-3. 

The bubble size is taken to be 4.5 mm. 
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Figure 4-15. Equilibration trajectory for water(1)/ethanol(2)/methanol(3)/acetone(4) mixtures 

calculated with the Geddes model.46 
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Figure 4-16.  (a) Residue curve map for the water/methanol/2-propanol system, showing a straight-

line distillation boundary and feed locations F1 and F2 on either side of the distillation boundary. (b) 

Comparison of EQ and NEQ distillation trajectories. 
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Figure 4-17.  (a) Transient equilibration trajectories for the system water(1)/methanol(2)/2-

propanol(3) at 101.3 kPa.  The initial mole fractions in the rigid spherical vapor bubble are y10 = 0.12, 

y20 = 0.62, and y30 = 0.26. The final equilibrium compositions are y1,eq = 0.0742,  y2,eq = 0.76109, and 

y3,eq = 0.1647.  (b) Plot of the component Murphree efficiencies, Ei, as function of the Fourier number. 

(c) Comparison of the NEQ and EQ trajectory vectors. 
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Figure 4-18.  (a) Residue curve map for the acetone/chloroform/methanol system. (b) Transient 

equilibration trajectories for the system acetone(1)/chloroform(2)/methanol(3) at 101.3 kPa.  The initial 

mole fractions in the rigid spherical vapor bubble are y10 = 0.486, y20 = 0.46, and y30 = 0.054. The final 

equilibrium compositions are y1,eq = 0.49042,  y2,eq = 0.38374, and y3,eq = 0.12584.  (c) Plot of the 

component Murphree efficiencies, Ei, as function of the Fourier number.  
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Figure 4-19.  (a) Residue curve map for the water(1)/ethanol(2)/tert-butanol(3) system. (b) Transient 

equilibration trajectories for the system water(1)/ethanol(2)/tert-butanol(3) at 101.3 kPa. The initial 

mole fractions in the rigid spherical vapor bubble are y10 = 0.3089, y20 = 0.5558, and y30 = 0.436. The 

final equilibrium compositions are y1,eq = 0.27405,  y2,eq = 0.59176, and y3,eq = 0.13419.  (c) Plot of the 

component Murphree efficiencies, Ei, as function of the Fourier number. 
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5 Influence of Phase Stability on Diffusivities 

The phase equilibrium thermodynamics has a significant influence on the diffusion characteristics.  

This is illustrated below for a variety of binary and ternary mixtures. 

5.1 The Darken correction factor for non-ideal thermodynamics 

For binary fluid mixtures, the Fick, Maxwell-Stefan, and Onsager diffusivities are inter-related: 

1
12 12 12 12

1 2 1

ln1
; 1

ln
D Ð L L

x x x

 
          

 (5-1)

In the pioneering papers by Darken54, 55 the following expression is postulated for the composition 

dependence of the Fick diffusivity D12  

   * * 1 1
12 2 1 1 2 2 1, 1 2,

1 1

ln ln
1 1

ln lnself selfD x D x D x D x D
x x

     
            

 (5-2)

where *
1 1,selfD D , and *

2 2,selfD D  are the tracer diffusivities (also named self-diffusivities, D1,self and 

D2,self) in the binary mixture. Darken54, 55 was one of the first to recognize the need to use activity 

gradients as proper driving forces when setting up the phenomenological relations to describe diffusion. 

The thermodynamic factor   is also referred to as the “Darken correction factor”. Combining equations 

equations , and  we obtain the following expression for the composition dependence of the M-S 

diffusivity Ð12 for a binary mixture 

12 2 1, 1 2,self selfÐ x D x D   (5-3)

The tracer or self-diffusivities, *
1 1,selfD D , and *

2 2,selfD D  are more easily accessible, both 

experimentally56-58 and from Molecular Dynamics (MD) simulations,59 than the Ð12.   

A somewhat more accurate interpolation formula is the empirical Vignes relation59, 60 
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    2211 1
12

1
1212

xxxx ÐÐÐ   (5-4)

where the limiting values of the M-S diffusivities are 

1
12

1
,1

1
12

1
,2

2211 ;   xx
self

xx
self ÐDÐD  (5-5)

Generally speaking, the factoring out of the effects of non-ideal mixture thermodynamics (by use of 

12
12 Ð

D



) results in a milder variation of the M-S diffusivity as compared to the Fick diffusivity.  

The Vignes interpolation formula (5-4) offers the possibility of interpolation using data at either ends 

of the composition scale. To verify this, Figure 5-1(a,b,c) present comparison of the Fick, and M-S, and 

Onsager diffusivities for (a) acetone (1) – water (2), (b) ethanol (1) – water (2) and (c) methanol(1)/n-

hexane (2) mixtures along with the estimations using using the Vignes interpolation formula (5-4). We 

see that that the interpolation formula is of good accuracy. Further examination of the validity of the 

Vignes interpolation formula in available in published works.1, 61-65   

The Onsager diffusivity is related to the M-S diffusivity by  


 12

122112

D
ÐxxL  (5-6)

The L12 vanishes at either ends of the composition scale (cf. Figure 5-1) and this characteristic makes it 

less desirable for use in practical applications.1, 9, 34, 66, 67   

5.2 Thermodynamic corrections for dense gaseous mixtures 

The M-S pair diffusivities Ðij for gaseous mixtures at low pressures, below about 10 bar, can be 

estimated to a good level of accuracy using the Fuller-Schettler-Giddings (FSG)14 method.  

    
12

23/1
2

3/1
112

75.17

12 sm
1043.1 








vvMp

T
Ð

 
(5-7)

where p is the pressure (expressed in bars), 

21

12 11
2

MM

M


  is the mean molecular weight of the 

mixture (expressed in g mol-1), 1v ,  and 2v  are the diffusion volumes (expressed in cm3 mol-1) whose 
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values are obtained by summing the contributions of the volumes of the constituent atoms in the 

molecular species (the values are tabulated in Table 11.1 of Reid, Prausnitz, and Poling15). According to 

the FSG estimation procedure, the product of Ð12 and the total pressure, p, is a function only of 

temperature and is also independent of composition. In generalizing the FSG method to dense gas 

mixtures, it is important realize that equation (3-5) implies that, at constant temperature, the M-S 

diffusivity is inversely proportional to the molar density of the gas phase. For dense gases, the total 

mixture molar density of the gas phase is 
ZRT

p
ct   where Z is the compressibility factor. 

Consequently, the M-S diffusivity for dense gases can be estimated by correcting the original FSG 

equation by introducing the compressibility factor Z; see Krishna and van Baten11 for further details 

     Z
vvMp

T
Ð
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2

3/1
112
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

 
(5-8)

Due to the introduction of the compressibility factor, Z, the M-S diffusivity 12Ð  becomes dependent on 

mixture composition. The molar density of the mixture is 
ZRT

p
ct  , and therefore Equation (3-6) 

anticipates that 12Ðct  is constant at constant temperature T. 

The Fick diffusivity for dense gas mixtures can be estimated by multiplying M-S diffusivity Ð12, 

determined from Equation (3-6), with the thermodynamic correction factor 
 

1
12 12 12

1

ln
; 1

ln
FSGD Ð D Z

x

 
        

 (5-9)

The thermodynamic correction factor is determinable by analytic differentiation of an Equation of 

State (EOS) such as the Peng-Robinson (PR) EOS; for further details see Krishna and van Baten.11 For 

binary mixtures, explicit analytic expressions for 1 1
1 1

1 1

ln ln
ij

f
x x

x x

  
 

     for PR EOS are 

provided in the paper by Tuan et al.12 

Figure 5-2(a)  presents the experimental data of Nishiumi and Kubota68 for diffusivity of benzene in 

supercritical CO2 as a function of the reduced pressure, p/pc. The deep well in the experimental Fick 
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diffusivity at the reduced pressure, p/pc  1 can be rationalized by equation (5-9) taking: 

7
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ln8 10
1 m s

ln
D Z

p x
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   
 for x1 = 0.005, 0.007, 0.01, 0.013, and 0.017; Figure 5-2(b). 

5.3 Diffusivities in PbTe/PbS crystalline mixtures 

Consider the phase equilibrium thermodynamics for PbTe(1)/PbS(2) crystalline mixtures on its 

diffusion characteristics. This mixture may also be represented as Pb(Tex1Sx2), with x1 + x2 =1. 

Consequently, are the mole fractions of the cations Te, and S in the Pb(Tex1 Sx2) crystalline matrix. 

The molar Gibbs free energy  
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can be calculated using using the sub-regular solution model with parameters provided in Table 1 of 

Leute.69 The vanishing of the second derivative of the Gibbs free energy  

0
2
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



x

G

 
(5-11)

delineates the limits of phase instability; this defines the spinodal curve. The second derivative of the 

Gibbs free energy is simply related to the thermodynamic factor,  , 
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(5-12)

Figure 5-3(a) shows the calculations of the spinodal curve. The critical temperature is 1074 K, and the 

critical composition is x1 = 0.38. Figure 5-3(b) shows calculations of the thermodynamic correction 

factor,  , at various temperatures. For temperatures below 1074 K, there is a range of compositions for 

which 0 ; within this region, the mixture is unstable and will undergo spinodal decomposition.  

For binary Pb(Tex1 Sx2) mixtures, the Fick diffusivity, D, is the product of the Maxwell-Stefan 

diffusivity, Ð, and the thermodynamic factor,    

 ÐD  (5-13)
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The strong influence of the thermodynamic factor on the composition dependence of the Fick diffusivity 

is underscored by the experimental data of Leute69 on the Fick diffusivity, D, for inter-diffusion of Te 

and S cations in PbTe(1)/PbS(2) crystalline mixtures of varying compositions at different temperatures: 

973 K, 998 K, 1023 K, 1048 K, 1073 K, and 1098 K; see Figure 5-4(a,b,c), and Figure 5-5(a,b,c). Also 

plotted (continuous solid blue lines) using the right y-axis in Figure 5-4(a,b,c), and Figure 5-5(a,b,c) are 

the thermodynamic correction factor,  , at the corresponding temperatures. The Fick diffusivity is seen 

to reduce by one to two orders of magnitude as the critical composition is approached, in line with the 

calculations of  . For more detailed discussions, see Leute.69 

5.4 Diffusivities in aqueous glycine and urea solution 

Figure 5-6(a) shows the experimental data of Chang and Myerson70  for the diffusivity of glycine in 

aqueous solutions at temperatures of 298.15 K and 308.15 K. The Fick diffusivity plummets to 

vanishingly low values as the spinodal compositions are reached. Figure 5-6(b)  shows analogous Fick 

diffusivity  data for urea as a function of solute concentration in aqueous solutions at T =298.15 K.71 

The strong concentration dependence of the Fick diffusivity D12 is dictated by the thermodynamic factor 

 .   

5.5 Darken and Vignes interpolation formulae for ternary liquid mixtures 

For diffusion in n-component non-ideal liquid mixtures, the matrix of Fick diffusivities  D  has 

significant non-diagonal contributions caused by (a) differences in the binary pair M-S diffusivities, Ðij, 

and (b) strong coupling introduced by the matrix of thermodynamic factors   .  

The description of the composition dependence of the M-S diffusivities Ðij in liquid mixtures 

containing three or more species is much less developed. Krishna and van Baten59 postulate that the M-

S diffusivity of the i-j pair in the ternary i-j-k mixture depends on Di,self and Dj,self in this mixture, but 

weighted with mole fractions on a k-free basis, i.e.  
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Each of the three M-S pair diffusivities Ðij depends on six infinite dilution parameters  
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These limiting values of Ðij at the edges of the ternary composition space are 
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Noting that the following limiting values hold  
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we derive 
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Equation (5-18) is the proper estimation procedure for 
1jx

ijÐ  that is consistent with the Darken equation 

(5-3).  

For a ternary mixture, Wesselingh and Bollen72 have suggested the following extension of the Vignes 

interpolation formula (5-4) 

      kk
jjii

xx
ij

xx
ij

xx
ijij ÐÐÐÐ 111   (5-19)

For the estimation of 1kx
ijÐ , the i - j pair diffusivity when both i and j are present in infinitely dilute 

concentrations. Krishna and van Baten59 suggest the following extension of equation (5-16) 
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For the special case of an equimolar mixture we obtain 
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The simplified interpolation formula (5-21) was proposed by Wesselingh and Bollen.72 

The square root of the determinant 2/1  may be viewed as a measure of the “magnitude” of the M-S 

diffusivity that characterizes diffusion in a ternary mixture. 

123132231

2313122/1

ÐxÐxÐx

ÐÐÐ


  (5-22)

Close to the regions of phase splitting, the thermodynamic coupling effects predominate and a simple 

procedure for the estimation of the Fick diffusivity matrix has been proposed73 

   1/2
D     (5-23)

The accuracy of the estimates using equation (5-23)  has been verified by comparison with a very wide 

range of MD simulations and experimental data. 73 

5.6 Diffusivities in partially miscible glycerol/acetone/water mixtures 

We examine the influence of phase stability on diffusion in glycerol(1)/acetone(2)/water(3) mixtures 

for which the liquid-liquid phase equilibrium data has been provided by Krishna et al;10 see Table 5-1.  

The binodal and spinodal curves are shown in Figure 5-7. The composition of the plait point is xglycerol= 

0.1477, xacetone= 0.4163 and xwater= 0.4360. At the plait point, the binodal and spinodal curves converge. 

Outside the region delineated by the binodal curve, we have the requirement that needs to be fulfilled 

for phase stability in homogeneous liquid mixtures 
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stability phase;0
 (5-24)

Within the region delineated by the spinodal curve, there is the region of phase instability  

yinstabilit phase;0;0  D
 (5-25)

Equation (5-25) implies that one of eigenvalues of the Fick diffusivity matrix [D] must be negative. The 

region between the binodal and spinodal curves is meta-stable. At the plait point, and along the spinodal 

curve we must have 

0; 0; spinodal curveD       (5-26)

So, the determinant   also vanishes along the spinodal curve, and at the plait point, i.e. 0 . 

Grossmann and Winkelmann74-76 have reported data on the Fick diffusivity matrix [D] for 

glycerol(1)/acetone(2)/water(3) mixtures at 75 different compositions, in the acetone-rich and water-rich 

regions. To demonstrate the influence of phase stability on the elements of the matrix of Fick 

diffusivities, we examine a set of four experimental data sets, all measured at a constant glycerol mole 

fraction: (A)  x1= 0.1, x2 = 0.1, x3 = 0.8; (B)  x1= 0.1, x2 = 0.3, x3 = 0.6; (C)  x1= 0.1, x2 = 0.432, x3 = 

0.468; (D) x1= 0.1, x2 = 0.48, x3 = 0.42.  

The elements of the Fick diffusivity matrix are indicated in Figure 5-7.  At composition A, the 

experimental data on the elements of the Fick diffusivity are   1-29 s m10
0.4070.1477

0.01840.3868 







D . 

The importance of diffusional coupling can be quantified by the ratio 01725.0
2211

2112 
DD

DD
. The matrix of 

thermodynamic factors at the composition x1= 0.1, x2 = 0.1, x3 = 0.8 is calculated from the NRTL 

parameters to be   









0.6565440.262193

0.3617021.552124
. The importance of thermodynamic coupling is quantified 

by the factor 0.093064
2211

2112 



.  



Influence of Phase Stability on Diffusivities    

111 
 

At composition B, x1= 0.1, x2 = 0.3, x3 = 0.6, the experimental data on the elements of the Fick 

diffusivity are   1-29 s m10
0.30750.2512

0.16180.4513 







D . The importance of diffusional coupling can be 

quantified by the ratio 0.292879
2211

2112 
DD

DD
. The matrix of thermodynamic factors at the composition x1= 

0.1, x2 = 0.3, x3 = 0.6 is calculated from the NRTL parameters to be   







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0.4121040.739491

0.471041.49091
. The 

importance of thermodynamic coupling is quantified by the factor 0.566933
2211

2112 



.  

At composition C, x1= 0.1, x2 = 0.432, x3 = 0.468, the experimental data on the elements of the Fick 

diffusivity are   1-29 s m10
0.40250.4839

0.23060.495 







D . The importance of diffusional coupling can be 

quantified by the ratio 0.560072
2211

2112 
DD

DD
. The matrix of thermodynamic factors at the composition x1= 

0.1, x2 = 0.432, x3 = 0.468 is calculated from the NRTL parameters to be   







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0.4096550.95815

0.5332041.442111
. 

The importance of thermodynamic coupling is quantified by the factor 0.864789
2211

2112 



.  

At composition D, x1= 0.1, x2 = 0.48, x3 = 0.42, the experimental data on the elements of the Fick 

diffusivity are   1-29 s m10
0.31950.3476

0.304660.5684 







D . The importance of diffusional coupling can be 

quantified by the ratio 0.583022
2211

2112 
DD

DD
. The matrix of thermodynamic factors at the composition x1= 

0.1, x2 = 0.48, x3 = 0.42 is calculated from the NRTL parameters to be   









0.4202841.007783

0.5560791.422299
. 

The importance of thermodynamic coupling is quantified by the factor 0.937496
2211

2112 



.  
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As the compositions approach the region of phase instability, the extent of diffusion coupling and 

thermodynamic coupling both increase; see Figure 5-7.  Figure 5-8(a) presents a plot of the ratio 
2211

2112

DD

DD  

of the elements of the Fick diffusivity matrix [D] for glycerol(1)/acetone(2)/water(3) mixtures as a 

function of the ratio 
2211

2112


 . We see a unique dependence between the two sets of data. Along the 

spinodal curve, both of these ratios tend to unity values, in view of equation (5-26). The important 

message emerging from Figure 5-8(a) is that diffusional coupling effects become of increasing 

importance as the compositions approach values corresponding to the spinodal curve. 

Figure 5-8(b) presents a plot of 2/1
D , that is an appropriate measure of the magnitude of the Fick 

diffusvity matrix, as a function of the mole fraction of glycerol, x1.  We note that 2/1
D  tends to vanish 

as the plait point composition is approached, in conformity with the restraint imposed by equation 

(5-26). Krishna45, 73 has demonstrated that the Fick diffusivity matrix [D] for 

glycerol(1)/acetone(2)/water(3) mixtures  can be estimated with reasonably good accuracy taking 

    2/1
D  using         321

,3,2,1
2/1 x

self
x

self
x

self DDD , taking D1,self= 0.01, D2,self= 3.2, D3,self= 0.5 with 

units 10-9 m2 s-1. 

5.7 Diffusivities in partially miscible water/chloroform/acetic acid mixtures 

Figure 5-9  shows the experimental data for liquid/liquid equilibrium in 

water(1)/chloroform(2)/acetic-acid(3) mixtures. The binodal curve is indicated in green. The spinodal 

curve is indicated by the red line. The experimental data of Vitagliano et al.77 for Fick diffusivity matrix 

[D] of water(1)/chloroform(2)/acetic-acid(3) mixtures at five different compositions are shown in Figure 

5-9.We note that the influence of diffusional coupling, quantified by 
2211

2112

DD

DD  progressively increases in 

magnitude as the compositions become increasingly poorer in acetic acid and the two-phase region is 

approached. At the plait point (composition: x1 = 0.375, x2 = 0.261 and x3 = 0.364) the matrix of Fick 

diffusivities determined by Vitagliano et al.77 by extrapolation of their data is 
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  1-29 s m10
161.037.0

40.092.0 







D . It can be confirmed that the determinant vanishes, i.e. 0D  

because 12 21

11 22

1; 0; 0D
 

      
 

. 

More recent measurements reported by Buzatu et al.78 for Fick diffusivity matrix [D] of 

water(1)/chloroform(2)/acetic-acid(3) mixtures at five different compositions are shown in Figure 

Figure 5-10. A similar trend is observed and the degree of coupling, quantified by 
2211

2112

DD

DD , increases as 

the two-phase region is approached.  

Figure 5-11(a) presents a plot of 2/1
D  as a function of (1- x3) for water(1)/chloroform(2)/acetic-

acid(3) mixtures for the two data sets. The magnitude of  2/1
D  reduces progressively as the plait point 

composition is approached; this is in conformity with the restraint imposed by equation (5-26). 

In order to demonstrate that the coupling effects in the Fick diffusivity matrix have their origins in the 

coupling effects of the matrix of thermodynamic factors, Figure 5-11(b) presents a plot of the ratio 

2211

2112

DD

DD  of the elements of the Fick diffusivity matrix [D] for water(1)/chloroform(2)/acetic-acid(3) 

mixtures as a function of the ratio 
2211

2112


 . We see a unique dependence between the two sets of data. 

Along the spinodal curve, both of these ratios tend to unity values, in view of equation (5-26). The 

important message emerging from Figure 5-11 is that diffusional coupling effects become of increasing 

importance as the compositions approach values corresponding to the spinodal curve. 

Krishna45, 73 has demonstrated that the Fick diffusivity matrix [D] for water(1)/chloroform(2)/acetic-

acid(3) mixtures  can be estimated with reasonably good accuracy taking     2/1
D  using   

      321
,3,2,1

2/1 x
self

x
self

x
self DDD , taking taking D1,self= 0.4, D2,self= 0.8, D3,self= 1.1 with units 10-9 m2 s-1.   
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5.8 Diffusivities in partially miscible acetone/water/ethylacetate mixtures 

Figure 5-12 shows the phase equilibrium diagram for partially miscible acetone/water/ethylacetate 

mixtures at 293 K. Pertler79  reports the values of the elements of the Fick diffusivity matrix in both the 

ethylacetate-rich and water-rich regions. In each of these two cases, he adopts a different numbering for 

the components. For the ethylacetate-rich region, the values of the elements of Fick diffusivity matrix 

[D] are reported using the component number acetone(1)/water(2)/ethylacetate(3); the values are plotted 

in Figure 5-12. Particularly noteworthy is the extremely large negative value of D21. The large negative 

value of D21 is caused by the corresponding large negative value of 21, as is evident in the plot on the 

right upper side of Figure 5-12.   

Figure 5-13  presents the experimental data of Pertler79  for the elements of the Fick diffusivity matrix 

in the water-rich region of the phase diagram; these values correspond to the component numbering: 

acetone(1)/ethylacetate(2)/water(3). The negative value of D12 is caused by the corresponding large 

negative value of 12, as is evident in the plot on the left upper side of Figure 5-13.   

5.9 Diffusivities in glycine/L-valine/water solutions 

Lo and Myerson80 report data on the Fick diffusivity matrix  D  for glycine(1)/L-valine(2)/water(3) 

solutions. The data were measured as a function of the molar concentration of glycine, c1, at three 

different L-valine concentrations (c2 = 0.1, 0.3, 0.05 mol L-1).  Figure 5-14 presents a plot of 2/1
D  as a 

function of the molar concentration of glycine, c1. The magnitude of 2/1
D  tends to vanish as the 

spinodal compositions are approached. 
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5.10 List of Tables for Influence of Phase Stability on Diffusivities 

 

Table 5-1.  NRTL parameters for glyercol(1)/acetone(2)/water(3) at 298 K. These parameters are from 

Krishna et al.10 

 TAijij   TAjiji   jiij    

dimensionless dimensionless dimensionless 

glycerol(1)/acetone(2) 0.868 2.467 0.2 

glycerol(1)/water(3) -1.29 -1.52 0.2 

acetone(2)/water(3) -0.665 2.095 0.2 
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Table 5-2. UNIQUAC parameters for water(1)/chloroform(2)/acetic-acid(3) at 298 K. These 

parameters are from Pertler.79 These parameters needed re-adjustment in order to match the 

experimental solubility data of Othmer and Ku.81 The following are the adjusted values used in the 

calculations. 

 
ir  iq  

dimensionless dimensionless 

water(1) 0.92 1.4 

chloroform(2) 2.87 2.41 

acetic-acid(3) 2.2024 2.072 

 

 )exp( TAijij   )exp( TAjiji   

dimensionless dimensionless 

water(1)/chloroform(2) 0.4285 0.229 

water(1)/acetic-acid(3) 1.274 1.312 

chloroform(2)/acetic-acid(3) 1.388 0.885 
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Table 5-3. UNIQUAC parameters for acetone(1)/ethyl-acetate(2)/water(3) at 293 K. These parameters 

are from Pertler.79 

 

 
ir  iq  

dimensionless dimensionless 

acetone(1) 2.5735 2.336 

ethyl-acetate(2) 3.4786 3.116 

water(3) 0.92 1.4 

 

 )exp( TAijij   )exp( TAjiji   

dimensionless dimensionless 

acetone(1)/ethyl-acetate(2) 1.3068 0.827 

acetone(1)/water(3)  0.488  1.328 

ethyl-acetate(2)/water(3) 0.2538  0.7705 
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5.11 List of Figures for Influence of Phase Stability on Diffusivities 

 

Figure 5-1. Comparison of the Fick diffusivities, D12, with the Maxwell-Stefan, Ð12, and Onsager, L12,  

diffusivities for (a) acetone (1) – water (2), (b) ethanol(1)-water(2),  and (c) methanol(1)-n-hexane (2) 

mixtures. The experimental data on D12 are from Tyn and Calus,82 Grossmann and Winkelmann,74  

Königer et al,83 and Clark and Rowley84 The Ð12 are obtained by correcting for the thermodynamic 

factor 


 12
12

D
Ð . Also shown are the calculations using the Vignes interpolation formula (5-4). The 

Onsager coefficients L12 are calculated using equation (5-6). 
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Figure 5-2. (a) Experimental data of Nishiumi and Kubota68  for diffusivity of benzene (component 1) 

in supercritical CO2 (component 2) as a function of the reduced pressure, 
2c

r P

p
p   where Pc2 = 7.28 

MPa is the critical pressure of CO2. The measurements were made in a Taylor dispersion tube with 

varying amounts of benzene injection into the tube.  (b) The solid lines are the calculations of the Fick 

diffusivities as a function of p/pc and composition of benzene in the mixture using the PR EOS. The PR 

EOS calculations presented here use a binary interaction parameter k12 = 0.0774; for further details see 

Krishna and van Baten.11 
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Figure 5-3. Phase equilibrium thermodynamics for PbTe(1)/PbS(2) crystalline mixtures, calculated 

using the sub-regular solution model with parameters provided in Table 1 of Leute.69 (a) Spinodal curve 

T-x1 curve. (b) Thermodynamic correction factor,  , at various temperatures. 
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Figure 5-4. Fick diffusivity, D, for inter-diffusion of Te and S cations in PbTe(1)/PbS(2) crystalline 

mixtures of varying compositions at three different temperatures: 973 K, 998 K, and 1023 K; these data 

are re-plotted using the data scanned from Figure 1a of Leute.69 Also plotted (continuous solid blue 

lines) using the right y-axis are the thermodynamic correction factor,  , at the corresponding 

temperatures. 
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Figure 5-5. Fick diffusivity, D, for inter-diffusion of Te and S cations in PbTe(1)/PbS(2) crystalline 

mixtures of varying compositions at three different temperatures: 1048 K, 1073 K, and 1098 K; these 

data are re-plotted using the data scanned from Figure 1a of Leute.69 Also plotted (continuous solid blue 

lines) using the right y-axis are the thermodynamic correction factor,  , at the corresponding 

temperatures. 
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Figure 5-6. (a) Fick diffusivity of glycine as a function of solute concentration in aqueous solutions, at 

T =298.15 K and 308.15 K.70 (b) Fick diffusivity of urea as a function of solute concentration in 

aqueous solutions, at T =298.15 K.71  
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Figure 5-7. The phase equilibrium diagram for glycerol(1)/acetone(2)/water(3) mixtures at 298 K.10  

The composition of the plait point is: xglycerol= 0.1477, xacetone= 0.4163 and xwater= 0.4360. Also indicated 

are the four different compositions for which Grossmann and Winkelmann74-76 have measured the Fick 

diffusivity matrix [D] for glycerol(1)/acetone(2)/water(3) mixtures. The spinodal curve is calculated 

using the constraint 0 ; for this purpose the phase equilibrium is determined from the NRTL 

parameters in Table 5-1. 
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Figure 5-8. (a) The ratio 
2211

2112

DD

DD  of the elements of the Fick diffusivity matrix [D] for 

glycerol(1)/acetone(2)/water(3) mixtures plotted against the corresponding value of the ratio 
2211

2112


 .(b) 

Plot of 2/1
D  for glycerol(1)/acetone(2)/water(3) mixtures  as a function of the mole fraction of glycerol, 

x1. 
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Figure 5-9. Experimental data of Vitagliano et al.77 for Fick diffusivity matrix [D] of 

water(1)/chloroform(2)/acetic-acid(3) mixtures at six different compositions. The measured values of 

the Fick matrix [D], in units of 10-9 m2 s-1, are indicated. The composition of the plait point is x1 = 

0.375, x2= 0.262, x3= 0.363.  The binodal curve is from the experimental data of Othmer and Ku.81 The 

spinodal curve is obtained from the criterion of phase stability; the UNIQUAC parameters are provided 

in Table 5-2. 
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Figure 5-10. Experimental data of Buzatu et al.78 for Fick diffusivity matrix [D] of 

water(1)/chloroform(2)/acetic-acid(3) mixtures at six different compositions. The measured values of 

the Fick matrix [D], in units of 10-9 m2 s-1, are indicated. The composition of the plait point is x1 = 

0.375, x2= 0.262, x3= 0.363. The binodal curve is from the experimental data of Othmer and Ku.81 The 

spinodal curve is obtained from the criterion of phase stability; the UNIQUAC parameters are provided 

in Table 5-2. 
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Figure 5-11. (a) Plot of 2/1
D  as a function of (1- x3) for water(1)/chloroform(2)/acetic-acid(3) 

mixtures. (b) The ratio 
2211

2112

DD

DD  of the elements of the Fick diffusivity matrix [D] for 

water(1)/chloroform(2)/acetic-acid(3) mixtures plotted against the corresponding value of the ratio 

2211

2112


 . 
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Figure 5-12. Phase equilibrium diagram for acetone/water/ethylacetate mixtures at 293 K. The binodal 

curve data is from Haeberl and Blass.85 The spinodal curve is obtained from the criterion of phase 

stability; the UNIQUAC parameters are provided Table 5-3. Also indicated are the six experimental 

values of of Pertler79 for the elements of the Fick diffusivity matrix in the ethylacetate-rich region of the 

phase diagram; these values correspond to the component numbering: 

acetone(1)/water(2)/ethylacetate(3). Note that the phase diagram is plotted in mass fractions.  
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Figure 5-13. Experimental data of Pertler79  for the elements of the Fick diffusivity matrix in the 

water-rich region of the phase diagram; these values correspond to the component numbering: 

acetone(1)/ethylacetate(2)/water(3). Note that the phase diagram is plotted in mass fractions. 
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Figure 5-14. Plot of 2/1
D  for glycine(1)/L-valine(2)/water(3) solutions as a function of the molar 

concentration of glycine, c1.  The data on the Fick diffusivity matrix  D , measured at three different L-

valine concentrations (c2 = 0.1, 0.3, 0.05 mol L-1) are culled from Table 1, Table 2, and Table 3 of Lo 

and Myerson.80 
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6 Ternary Liquid-Liquid Extraction 

6.1 Preamble on technology of liquid-liquid extraction 

Liquid extraction86 is often used in the chemical and petroleum industries to separate mixtures that 

have boiling points close to one another, making distillation operations difficult and energy-intensive.48-

50, 87-89 With the rapid development of a vast variety of ionic liquids90, 91, and eutectic92 solvents, there is 

renewed interest in extractive separations for a variety of applications. An important application of 

liquid extraction involves the selective removal of aromatics from mixtures of hydrocarbons for the 

purposes of improving the properties of kerosene, diesel, and lube-oils, and manufacture of food-grade 

hexane.50, 91, 93, 94 Solvents such as sulfolane, NMP (N-methyl pyrrolidone), ionic liquids, and eutectics, 

allow the reduction of aromatics of hydrocarbon mixtures. As illustration, consider the separation a 

50/50 propylbenzene/dodecane feed mixture, indicated by F in Figure 6-1. Addition of the extraction 

agent, N-methyl pyrrolidone (NMP = solvent S) to the feed mixture F results in a mixture of 

composition M that falls within the unstable region of the phase diagram. The mixture M separates into 

two phases with compositions E (Extract) and R (Raffinate) at either ends of the tie-line shown. The 

composition of the extract phase is x1,eq = 0.682507484,  x2,eq = 0.195546114, and x3,eq = 0.1219464; the 

composition of the raffinate phase, at the other end of the tie-line is: x1,eq = 0.338353679,  x2,eq = 

0.238690456, and x3,eq = 0.42295586. The feed phase F will equilibrate to R, and the solvent phase S 

will equilibrate to E. In the extract phase E, the propylbenzene/dodecane ratio is 1.6, whereas this ratio 

is reduced to 0.56 in the raffinate phase R.  

Figure 6-2 shows the corresponding phase equilibrium diagram for the system 

NMP(1)/propylbenzene(2)/tetradecane(3). We consider the separation a 50/50 

propylbenzene/tetradecane feed mixture, indicated by F by addition of NMP as solvent. For this system, 

the composition of the extract phase is x1,eq = 0.689463372,  x2,eq = 0.208896097, and x3,eq = 

0.101640532; the composition of the raffinate phase, at the other end of the tie-line is: x1,eq = 

0.329380812,  x2,eq = 0.250774108, and x3,eq = 0.41984508. The feed phase F will equilibrate to R, and 
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the solvent phase S will equilibrate to E. In the extract phase E, the propylbenzene/dodecane ratio is 

2.06, whereas this ratio is reduced to 0.6 in the raffinate phase R. 

The design and development of liquid-liquid extraction processes is crucially dependent on our ability 

to describe (a) liquid-liquid phase equilibrium thermodynamics, and (b) composition trajectories and 

fluxes in both the adjoining phases as these approach equilibrium or stationary states. The design and 

sizing of appropriate liquid-liquid contacting devices such  as stirred vessels, sieve-tray columns, and 

rotating disc contactors (RDC) are crucially dependent on accurate estimation of the interphase transfer 

fluxes, and stage efficiencies, for achieving S-E, and F-R equilibration.44, 50, 87-89, 95 The equilibration 

trajectories are dependent on the diffusivities, that are strongly influenced by considerations of phase 

stability.  

6.2 Murphree point efficiencies in ternary liquid-liquid extraction processes 

Figure 6-3 is a schematic of liquid-liquid contacting in a sieve-tray column. This principle also applies 

to other stage-wise operations. On a given stage, the continuous liquid phase can be considered to be 

well-mixed; this is a reasonably good approximation. 

For a ternary mixture, the diffusion fluxes in either continuous or dispersed phase is described by the  

generalized Fick’s law   

       1
( ) t

d x d x
J c D D

dz dzV
     (6-1)

in which the two-dimensional matrix of Fick diffusivities [D] is a product of two matrices 

11 12 11 12 11 12

21 22 21 22 21 22
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can be calculated from UNIQUAC or NRTL models describing phase equilibrium thermodynamics.1, 10 

The matrix    can be expressed explicitly in terms of the M-S diffusivities of the constituent binary 

pairs in the ternary mixture:  

    
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(6-4)

For partially miscible ternary mixtures, the coupling effects in the Fick matrix are primarily due to the 

thermodynamic factors; this has been demonstrated in the foregoing sections, and in earlier works.45, 73 

For the calculations presented in this article, we use the following, simplified expression for the 

calculation of the Fick matrix 

1/211 12 11 12

21 22 21 22

D D

D D

    
        

 (6-5)

with the scalar diffusivity 
2/1 calculated from  

123132231

2313122/1
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(6-6)

Let us consider the dispersion to consist of uniform and rigid droplets of diameter, dropd . The transient 

equilibration process within a rigid spherical droplet is described by Geddes model that was originally 

developed for describing binary diffusion inside vapor bubbles on distillation trays.46 For ternary 

mixtures, the Geddes model can be written in two-dimensional matrix differential equation1 
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(6-7)

The Sylvester theorem, detailed in Appendix A of Taylor and Krishna,1 is required for explicit 

calculation of the composition trajectories described by equation (6-7). For extraction equipment such as 

a sieve tray or rotating disc contactors, the effective contact time of the dispersed phase droplets with 
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the surrounding continuous phase is dropf Vht  , where hf is the liquid/liquid dispersion height, and 

dropV  is the droplet rise velocity.96  

The fractional approaches to equilibrium for contact time t, also termed as the Murphree 

efficiencies,48-50 are calculated from 
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(6-8)

In equation (6-8), eqxxx ,1101  , and eqxxx ,2202  . 

6.3 Uphill diffusion in partially miscible glycerol/acetone/water mixtures 

The experimental data (indicated by the white circles) on transient equilibration of glycerol-rich and 

acetone-rich phases of the glycerol/acetone/water mixture were measured in a stirred Lewis cell by 

Krishna et al.;97 see Figure 6-4. For the acetone-rich phase (left hand side), the initial mole fractions are 

x10 = 0.0, x20 = 0.77, and x30 = 0.23; the final equilibrium composition is x1,eq = 0.042,  x2,eq = 0.894, and 

x3,eq = 0.064.  For the glycerol-rich phase (right hand side), the initial mole fractions are x10 = 0.85, x20 = 

0.0, and x30 = 0.15; the final equilibrium composition is  x1,eq = 0.552,  x2,eq = 0.164, and x3,eq = 0.284. In 

our previous works,45, 97 the equilibration trajectories in either the glycerol-rich or the acetone-rich phase 

were calculated using the exponential decay model 

         tDQxxQxx eqeq  exp;0  (6-9)

where  is the Lewis cell constant. The value of the constant used in our calculations is 710 .  The 

precise choice of the value of this constant has no influence on the trajectories in composition space. 

The calculated equilibration trajectories are indicated by the blue lines in Figure 6-4.  
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We now apply the Geddes equilibration model to investigate the equilibration of a single droplet of 2 

mm diameter in the dispersed phase. The initial mole fractions of the dispersed phase droplet is x10 = 

0.85, x20 = 0.0, and x30 = 0.15. The final equilibrated composition is  x1,eq = 0.552,  x2,eq = 0.164, and x3,eq 

= 0.284. The continuous phase is the acetone-rich phase with the composition at the other end of the tie-

line: x1,eq = 0.042,  x2,eq = 0.894, and x3,eq = 0.064.  In our calculations we assume that the mass transfer 

resistance resides predominantly within the dispersed phase; this is a common occurrence.45, 98 

The matrix of thermodynamic factors, calculated at the arithmetic average composition of the 

dispersed phase droplets between the initial and final equilibrated compositions (x1,av = 0.701,  x2,av = 

0.082, and x3,av = 0.217) is   









0.6874620.019193

1.1714952.1516171
.  For calculation of the transient equilibration 

trajectories in the dispersed phase, the scalar diffusivity 
2/1  is calculated from 

      321
,3,2,1

2/1 x
self

x
self

x
self DDD , taking D1,self = 0.01, D2,self = 3.2, D3,self = 0.5 with units 10-9 m2 s-1; this 

yields 12112/1
sm1075.3  ; therefore,     12112/1

sm10
2.5783830.071986

4.393798.069819 







D . The off-

diagonal element D12 are significantly large in comparison to the diagonal element D12, indicating 

strongly coupled diffusion process for transfer of glycerol (1). We can also determine a “magnitude” of 

the Fick diffusivity 112/1
1053.4 D  m2 s-1 for use in the calculation of the Fourier number. 

The component driving forces for transfer of glycerol (1) and acetone (2) are 0.298,1101  eqxxx , 

-0.164,2202  eqxxx . Particularly noteworthy is that the magnitude of the driving force for acetone 

transfer is lower than that for glycerol, and opposite in sign. 

The transient Geddes equilibration trajectory follows a highly curvilinear path to equilibrium; see Figure 

6-5(a), and is in good agreement with the experimental data. If coupling effects are completely ignored, 

the equilibration trajectory follows a linear path in composition space. Figure 6-5(b) presents a plot of 

component Murphree efficiencies as a function of the dimensionless Fourier number 2

2/1
4

dropd

tD
 where the 
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droplet diameter is taken as ddrop = 2 mm. During the later stages of the equilibration process, the 

Murphree point efficiency of water (component 3) has values exceeding unity, indicative of uphill 

diffusion.  

Let us examine the trajectory followed during equilibration of homogenous mixtures of two different 

compositions, indicated by L and R in Figure 6-6, for the system glycerol(1)/acetone(2)/water(3). The 

composition of the equilibrated mixture is x1,eq = 0.5, x2,eq = 0.17 and x3,eq = 0.33, which point lies on the 

binodal curve. At the average composition, the matrix of thermodynamic factors is calculated from 

phase equilibrium thermodynamics:   









464.0149.0

37.13.2
. The “magnitude” of the M-S diffusivity is 
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10-9 m2 s-1; the value -1292/1
s m10095.0  . We assume that the matrix of Fick diffusivities is 

    2/1
D ; the calculated value is i.e.   1-29 s m10
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D . Using this diffusivity 

estimate, we calculated the equilibration trajectory using 
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 We note that the serpentine trajectory has penetrated the binodal envelope; see Figure 6-6. This 

indicates the spontaneous emulsification is feasible. A linear equilibration trajectory (shown by pink 

line) does not foray into the meta-stable zone. 

In the foregoing example, an important consequence of uphill diffusion is emulsification. 

6.4 Uphill diffusion in water(1)/chloroform(2)/acetic acid(3) mixtures 

We now apply the Geddes equilibration model to investigate the equilibration of a single droplet of 2 

mm diameter in water(1)/chloroform(2)/acetic-acid(3) mixtures mixtures in the dispersed phase; see 

Figure 6-7. The initial mole fractions of the dispersed phase droplet (the droplet diameter is taken as 

ddrop = 2 mm) is x10 = 0.0, x20 = 0.3, and x30 = 0.7. The final equilibrated composition is x1,eq = 
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0.267383532,  x2,eq = 0.382190021, and x3,eq = 0.350426. The continuous phase has the compositions at 

the other end of the tie-line: x1,eq = 0.609997518,  x2,eq = 0.081651022, and x3,eq = 0.308351. In our 

calculations we assume that the mass transfer resistance resides predominantly within the dispersed 

phase; this is a common occurrence.45, 98 

The matrix of thermodynamic factors, calculated at the arithmetic average composition of the 

dispersed phase droplets between the initial and final equilibrated compositions (x1,av = 0.133692,  x2,av 

= 0.341095, and x3,av = 0.525213) is   









1.09142960.83488

0.4190671.0364
.  For calculation of the transient 

equilibration trajectories in the dispersed phase, the scalar diffusivity 
2/1  is calculated from 

      321
,3,2,1

2/1 x
self

x
self

x
self DDD , taking D1,self= 0.4, D2,self= 0.8, D3,self= 1.1 with units 10-9 m2 s-1; this 

yields 12102/1
sm1062.8  ; therefore,     1292/1

sm10
0.940760.719626

0.3612150.893327 







D . The off-

diagonal elements are significantly large, indicating strongly coupled diffusion process. The 

experimental data on the Fick diffusivity matrix, as reported by Vitagliano et al.77, and Buzatu et al.78 

confirm the significance of diffusional coupling effects arising primarily from thermodynamic 

coupling.99 We can also determine the “magnitude” of the Fick diffusivity 102/1
1062.7 D  m2 s-1 for 

use in the calculation of the Fourier number. 

The component driving forces for transfer of water (1) and chloroform (2) are 

-0.267384,1101  eqxxx , -0.08219,2202  eqxxx . Particularly noteworthy is that the 

magnitude of the driving force for chloroform transfer is significantly lower than that for water. 

The transient Geddes equilibration trajectory follows a highly curvilinear path to equilibrium; see 

Figure 6-7. If coupling effects are completely ignored, the equilibration trajectory follows a linear path 

in composition space. Figure 6-8(a) presents a plot of component Murphree efficiencies as a function of 

the dimensionless Fourier number 2

2/1
4

dropd

tD
 where the droplet diameter is taken as ddrop = 2 mm. During 
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the early stages of the equilibration process, the Murphree point efficiency of chloroform (component 2) 

exhibits values exceeding unity, indicative of uphill diffusion. As a consequence of uphill diffusion, the 

transient equilibration of chloroform exhibits a pronounced overshoot during its approach to 

equilibration; see Figure 6-8(b). 

Figure 6-8(c) plots the corresponding activities, iii xa  , of water, chloroform and acetic acid as a 

function of the Fourier number.  It is noteworthy that the transient equilibration process in terms of 

component activities is monotonic; this implies that the composition overshoots have their origins in the 

thermodynamic influences engendered by the off-diagonal elements of   . 

We now demonstrate that uphill diffusion may open up the possibility of emulsification for  

water(1)/chloroform(2)/acetic-acid(3) mixtures. Consider inter-diffusion between two compartments 

maintained at two different compositions, indicated by L and R in Figure 6-9. The initial composition of 

the left compartment is: x1,L = 0.3, x2,L = 0.3 and x3,L = 0.4; the initial composition of the right 

compartment is: x1,R = 0.1, x2,R = 0.7 and x3,R = 0.2. The composition at equilibrium is x1,eq = 0.2, x2,eq = 

0.5 and x3,eq = 0.3; this point lies on the binodal curve. The matrix of thermodynamic factors, calculated 

at the arithmetic average compositions is   









0.876876460.90262047

0.62323380.9907682
.  For calculation of the 

transient equilibration trajectories in the dispersed phase, the scalar diffusivity 
2/1  is calculated from 

      321
,3,2,1

2/1 x
self

x
self

x
self DDD , ttaking D1,self= 0.4, D2,self= 0.8, D3,self= 1.1 with units 10-9 m2 s-1; this 

yields 12102/1
sm1066.7  ; therefore,     1292/1

sm10
0.671913250.6916398

0.477557640.75918367 







D . The 

off-diagonal elements are significantly large in comparison to the diagonal elements, indicating strongly 

coupled diffusion process. The equilibration trajectory, calculated using equation (6-10), is plotted by 

the blue line in Figure 6-9. We note that composition trajectory in the left chamber has forayed into the 

meta-stable region. A linear equilibration trajectory, shown by the pink line in Figure 6-9, remains in the 
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homogeneous single-phase region. Uphill diffusion opens up the possibility of emulsification during 

mixing of homogeneous liquid mixtures.  

6.5 Uphill diffusion in water(1)/acetone(2)/ethylacetate(3) mixtures 

We now apply the Geddes equilibration model to investigate the equilibration of a single droplet of 2 

mm diameter in water(1)/acetone(2)/ethylacetate(3) mixtures in the dispersed phase; see Figure 6-10.  

The initial mole fractions of the dispersed phase droplet is x10 = 0.87, x20 = 0.13, and x30 = 0.0. The final 

equilibrated composition is x1,eq = 0.4049748,  x2,eq = 0.146113283, and x3,eq = 0.045392. The 

continuous phase has the compositions at the other end of the tie-line: x1,eq = 0.4049748,  x2,eq = 

0.317548401, and x3,eq = 0.277477.  In our calculations we assume that the mass transfer resistance 

resides predominantly within the dispersed phase; this is a common occurrence.45, 98 

The matrix of thermodynamic factors, calculated at the arithmetic average composition of the 

dispersed phase droplets between the initial and final equilibrated compositions (x1,av = 0.839247,  x2,av 

= 0.138057, and x3,av = 0.022696) is   









1.5182960.937821

0.584424-0.173928-
.  For calculation of the transient 

equilibration trajectories in the dispersed phase, the scalar diffusivity 
2/1  is calculated from 

123132231

2313122/1

ÐxÐxÐx

ÐÐÐ


 ; this yields; this yields 1292/1

sm1016.1  ; therefore, 

    1292/1
sm10

1.7657921.090695

0.67969-0.20228- 







D . The off-diagonal elements are significantly large 

in comparison to the diagonal elements, indicating strongly coupled diffusion process.  The 

experimental data on the Fick diffusivity matrix, as reported by Pertler79 (see Figure 5-12 and Figure 

5-13) confirm the significance of diffusional coupling effects arising primarily from thermodynamic 

coupling.99 We can also determine the “magnitude” of the Fick diffusivity 102/1
102.6 D  m2 s-1 for 

use in the calculation of the Fourier number 2

2/1
4

dropd

tD
. The component driving forces for transfer of 
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water (1) and acetone (2) are 0.061505,1101  eqxxx , -0.016113,2202  eqxxx . Particularly 

noteworthy is that the magnitude of the driving force for acetone transfer is significantly lower than that 

for water, and opposite in sign. 

The transient Geddes equilibration trajectory follows a highly curvilinear path to equilibrium; see 

Figure 6-10. The experimental data obtained by Haeberl and Blass85 confirms that the equilibration 

tends to “hug” the binodal curve rather than follow a straight-line equilibration path. If coupling effects 

are completely ignored, the equilibration trajectory follows a linear path in composition space. 

Figure 6-11(a) presents a plot of component Murphree efficiencies as a function of the dimensionless 

Fourier number 2

2/1
4

dropd

tD
 where the droplet diameter is taken as ddrop = 2 mm. During the early stages of 

the equilibration process, the Murphree point efficiency of acetone (component 2) exhibits negative 

values, indicative of uphill diffusion. As a consequence of uphill diffusion, the transient equilibration of 

acetone exhibits a pronounced undershoot during its approach to equilibration; see Figure 6-11(b). 

We now demonstrate that uphill diffusion may open up the possibility of emulsification for  

water(1)/acetone(2)/ethylacetate(3) mixtures. Consider inter-diffusion between two compartments 

maintained at two different compositions. The initial composition of the left compartment is: x1,L = 0.05, 

x2,L = 0.1 and x3,L = 0.85; the initial composition of the right compartment is: x1,R = 0.55, x2,R = 0.45 and 

x3,R = 0.0; see Figure 6-12. The composition at equilibrium is x1,eq = 0.3, x2,eq = 0.275 and x3,eq = 0.425; 

this point lies on the binodal curve. The matrix of thermodynamic factors, calculated at the arithmetic 

average compositions is   









1.2704470.085606

0.365349-0.169614
.  For calculation of the transient equilibration 

trajectories in the dispersed phase, scalar diffusivity 
2/1  is calculated from 

123132231

2313122/1

ÐxÐxÐx

ÐÐÐ


 ; this yields 1292/1

sm1006.2  . Therefore, 

    1292/1
sm10

2.597160.175003

0.746879-0.34674 







D . The off-diagonal element D12 is a significantly 



Ternary Liquid-Liquid Extraction    

142 
 

large fraction of the diagonal element D11, indicating strongly coupled diffusion flux of water with 

acetone driving force. The equilibration trajectory, calculated using equation (6-10), is plotted by the 

blue line in Figure 6-12. We note that composition trajectory in the right chamber has forayed into the 

meta-stable region. A linear equilibration trajectory, shown by the pink line in Figure 6-12 remains in 

the homogeneous single-phase region. Uphill diffusion opens up the possibility of emulsification during 

mixing of homogeneous liquid mixtures.  

6.6 Uphill diffusion in water(1)/caprolactam(2)/toluene(3) mixtures 

The extraction of caprolactam from aqueous solutions by toluene is an important processing step in 

the manufacture of Nylon-66. Let us examine the diffusion equilibration trajectories for 

water(1)/caprolactam(2)/toluene(3) mixtures  at 298K; see Figure 6-13. The UNIQUAC parameters for 

calculation of the phase equilibrium thermodynamics are provided in Table 6-3.The initial mole 

fractions in the drop are x10 = 0.0, x20 = 0.12, and x30 = 0.88. The final equilibrium composition of the 

dispersed phase droplets is x1,eq = 0.108182718, x2,eq = 0.130183682, and x3,eq = 0.7616336, 

corresponding to one end of the tie-line; the other end of the tie-line, corresponding to the compositions 

of the continuous phase (assumed to be of constant composition) has the compositions x1c,eq = 

0.725244955,  x2c,eq = 0.226323187, and x3c,eq = 0.0484319. In our calculations we assume that the mass 

transfer resistance resides predominantly within the dispersed phase; this is a common occurrence.45, 98 

The matrix of thermodynamic factors, calculated at the arithmetic average composition of the 

dispersed phase droplets between the initial and final equilibrated compositions (x1,av = 0.0540914,  x2,av 

= 0.1250918, and x3,av = 0.8208168) is   









1.23811420.979743-

0.481726-0.8548921
.  The off-diagonal elements are 

significantly large in comparison to the diagonal elements, indicating strongly coupled diffusion 

process. For calculation of the transient equilibration trajectories in the dispersed phase, the scalar 

diffusivity 
2/1  is assumed to have the value 1292/1

sm101  ; therefore, 
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    92/1
10

1.23811420.979743-

0.481726-0.8548921 







D . We can also determine a “magnitude” of the Fick 

diffusivity 102/1
1066.7 D  for use in the calculation of the Fourier number 2

2/1
4

dropd

tD
 where the 

droplet diameter is taken as ddrop = 2 mm. The component driving forces for transfer of water (1) and 

caprolactam (2) are -0.1081827,1101  eqxxx , -0.0101837,2202  eqxxx . It is particularly 

noteworthy that the driving force for caprolactam is significantly smaller, by about an order of 

magnitude than that of water.  

The transient Geddes equilibration trajectory follows a highly curvilinear path to equilibrium; see 

Figure 6-13. If coupling effects are completely ignored, the equilibration trajectory follows a linear path 

in composition space. 

Figure 6-14(a) presents a plot of component Murphree efficiencies as a function of the dimensionless 

Fourier number 2

2/1
4

dropd

tD
 where 102/1

1066.7 D  m2 s-1 and the droplet diameter is taken as ddrop = 2 

mm. During the initial stages of the equilibration process, the Murphree point efficiency of caprolactam 

(component 2) is strongly negative, indicative of uphill diffusion. As a consequence of uphill diffusion, 

the transient equilibration of caprolactam exhibits a pronounced undershoot during its approach to 

equilibration; see Figure 6-14(b). 

Figure 6-15 plots the Geddes equilibration trajectories for different values of the initial droplet 

compositions: x10 = 0.0, x20 = 0.0; x10 = 0.0, x20 = 0.1;  x10 = 0.0, x20 = 0.2;  x10 = 0.0, x20 = 0.3;   x10 = 

0.0, x20 = 0.4; x10 = 0.0, x20 = 0.5; x10 = 0.0, x20 = 0.6.  In all these six cases, the Geddes equilibration 

trajectories follow curvilinear paths.   

6.7 Uphill diffusion in water(1)/ethanol(2)/benzene(3) mixtures 

We apply the Geddes equilibration model to investigate the equilibration of a single droplet of 2 mm 

diameter in water(1)/ethanol(2)/benzene(3) mixtures in the dispersed phase. The initial mole fractions of 
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the dispersed phase droplet is x10 = 0.0, x20 = 0.2, and x30 = 0.8; see Figure 6-16. The final equilibrated 

composition is x1,eq = 0.082641058,  x2,eq = 0.231828339, and x3,eq = 0.685531. The continuous phase 

has the compositions at the other end of the tie-line: x1,eq = 0.548327987,  x2,eq = 0.370735283, and x3,eq 

= 0.080937. In our calculations we assume that the mass transfer resistance resides predominantly 

within the dispersed phase; this is a common occurrence.45, 98 

The matrix of thermodynamic factors, calculated at the arithmetic average composition of the 

dispersed phase droplets between the initial and final equilibrated compositions (x1,av = 0.041321,  x2,av 

= 0.215914, and x3,av = 0.742765) is   









0.7095721.1304071-

0.257899-0.834875
.  For calculation of the transient 

equilibration trajectories in the dispersed phase, the scalar diffusivity 
2/1  is assumed to have the value 

1292/1
sm101  ; therefore,     1292/1

sm10
0.7095721.1304071-

0.257899-0.834875 







D . The off-

diagonal elements are significantly large in comparison to the diagonal elements, indicating strongly 

coupled diffusion process. We can also determine the “magnitude” of the Fick diffusivity 

102/1
1049.5 D  m2 s-1 for use in the calculation of the Fourier number 2

2/1
4

dropd

tD
. The component 

driving forces for transfer of water (1) and ethanol (2) are -0.082641,1101  eqxxx , 

-0.031828,2202  eqxxx . Particularly noteworthy is that the driving force for ethanol transfer is 

lower than that for water. 

The transient Geddes equilibration trajectory follows a highly curvilinear path to equilibrium; see 

Figure 6-16. If coupling effects are completely ignored, the equilibration trajectory follows a linear path 

in composition space. 

Figure 6-17(a) presents a plot of component Murphree efficiencies as a function of the dimensionless 

Fourier number 2

2/1
4

dropd

tD
 where the droplet diameter is taken as ddrop = 2 mm. During the early stages of 
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the equilibration process, the Murphree point efficiency of ethanol (component 2) exhibits negative 

values, indicative of uphill diffusion. As a consequence of uphill diffusion, the transient equilibration of 

ethanol exhibits a pronounced undershoot during its approach to equilibration; see Figure 6-17(b). 

6.8 Uphill diffusion in water(1)/ethyl acetate (2)/ethanol(3) mixtures 

We apply the Geddes equilibration model to investigate the equilibration of a single droplet of 2 mm 

diameter in water(1)/ethyl acetate(2) /ethanol(3) mixtures in the dispersed phase. The initial mole 

fractions of the dispersed phase droplet is x10 = 0.0, x20 = 0.85, and x30 = 0.15; see Figure 6-18. The final 

equilibrated composition is x1,eq = 0.359190924,  x2,eq = 0.499644619, and x3,eq = 0.141164. The 

continuous phase has the compositions at the other end of the tie-line: x1,eq = 0.929439886,  x2,eq = 

0.018683455, and x3,eq = 0.051877. In our calculations we assume that the mass transfer resistance 

resides predominantly within the dispersed phase; this is a common occurrence.45, 98 

The matrix of thermodynamic factors, calculated at the arithmetic average composition of the 

dispersed phase droplets between the initial and final equilibrated compositions (x1,av = 0.179595,  x2,av 

= 0.674822, and x3,av = 0.145582) is   









1.2794490.929704

0.6509851.327858
. For calculation of the transient 

equilibration trajectories in the dispersed phase, the scalar diffusivity 
2/1  is assumed to have the value 

1292/1
sm101  ; therefore,     1292/1

sm10
1.2794490.929704

0.6509851.327858 







D . The off-diagonal 

elements are significantly large in comparison to the diagonal elements, indicating strongly coupled 

diffusion process. We can also determine the “magnitude” of the Fick diffusivity 92/1
1005.1 D  m2 

s-1 for use in the calculation of the Fourier number 2

2/1
4

dropd

tD
.The component driving forces for transfer 

of water (1) and ethyl acetate (2) are -0.359191,1101  eqxxx , 0.350355,2202  eqxxx . 

Particularly noteworthy is that the driving forces for transfer of ethanol transfer is practically nil: 

0.0088,3303  eqxxx .  
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The transient Geddes equilibration trajectory follows a curvilinear path to equilibrium; see Figure 

Figure 6-18. If coupling effects are completely ignored, the equilibration trajectory follows a linear path 

in composition space. 

Figure 6-19(a) presents a plot of component Murphree efficiencies as a function of the dimensionless 

Fourier number 2

2/1
4

dropd

tD
 where the droplet diameter is taken as ddrop = 2 mm. During the early stages of 

the equilibration process, the Murphree point efficiency of ethanol (component 3) exhibits value 

exceeding unity, indicative of uphill diffusion. As a consequence of uphill diffusion, the transient 

equilibration of ethanol exhibits a pronounced undershoot during its approach to equilibration; see 

Figure 6-19(b). 

6.9 Uphill diffusion in furfural(1)/formic acid(2)/water(3) mixtures 

We apply the Geddes equilibration model to investigate the equilibration of a single droplet of 2 mm 

diameter in furfural(1)/formic acid(2)/water (3) mixtures in the dispersed phase. The initial mole 

fractions of the dispersed phase droplet is x10 = 0.98, x20 = 0.02, and x30 = 0.0; see Figure 6-20. The final 

equilibrated composition is x1,eq = 0.519537719,  x2,eq = 0.068252025, and x3,eq = 0.41221026. The 

continuous phase is the water-rich phase with the composition at the other end of the tie-line: x1,eq = 

0.033873374,  x2,eq = 0.037692034, and x3,eq = 0.92843459.  In our calculations we assume that the mass 

transfer resistance resides predominantly within the dispersed phase; this is a common occurrence.45, 98 

The matrix of thermodynamic factors, calculated at the arithmetic average composition of the 

dispersed phase droplets between the initial and final equilibrated compositions (x1,av = 0.74976886,  

x2,av = 0.04412601, and x3,av = 0.20610513) is   









1.6539200.40555182

0.905115750.50802915
.  For calculation of the 

transient equilibration trajectories in the dispersed phase, the scalar diffusivity 
2/1  is assumed to have 

the value 1292/1
sm101  ; therefore,     1292/1

sm10
1.6539200.40555182

0.905115750.50802915 







D . The 
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off-diagonal elements are significantly large in comparison to the diagonal elements, indicating strongly 

coupled diffusion process. We can also determine the “magnitude” of the Fick diffusivity 

102/1
109.6 D  m2 s-1 for use in the calculation of the Fourier number 2

2/1
4

dropd

tD
.The component 

driving forces for transfer of furfural (1) and formic acid (2) are 0.46046228,1101  eqxxx , 

2-0.0482520,2202  eqxxx . Particularly noteworthy is that the driving force for formic acid transfer 

is significantly lower in magnitude than that of furfural, and opposite in sign. 

The transient Geddes equilibration trajectory follows a highly curvilinear path to equilibrium, hugging 

the binodal curve; see Figure 6-20. If coupling effects are completely ignored, the equilibration 

trajectory follows a linear path in composition space. 

Figure 6-21(a) presents a plot of component Murphree efficiencies as a function of the dimensionless 

Fourier number 2

2/1
4

dropd

tD
 where the droplet diameter is taken as ddrop = 2 mm. During the early stages of 

the equilibration process, the Murphree point efficiency of formic acid (component 2) exhibits negative 

values, indicative of uphill diffusion. As a consequence of uphill diffusion, the transient equilibration of 

formic acid exhibits a pronounced undershoot during its approach to equilibration; see Figure 6-21(b). 

6.10 Uphill diffusion in NMP(1)/propylbenzene(2)/dodecane(3) mixtures 

Consider the separation a 50/50 propylbenzene/dodecane feed mixture, indicated by F in Figure 

Figure 6-1. Addition of the extraction agent, N-methyl pyrrolidone (NMP = solvent S) to the feed 

mixture F results in a mixture of composition M that falls within the unstable region of the phase 

diagram. The mixture M separates into two phases with compositions E (Extract) and R (Raffinate) at 

either ends of the tie-line shown. The composition of the extract phase is x1,eq = 0.682507484,  x2,eq = 

0.195546114, and x3,eq = 0.1219464; the composition of the raffinate phase, at the other end of the tie-

line is: x1,eq = 0.338353679,  x2,eq = 0.238690456, and x3,eq = 0.42295586. The feed phase F will 
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equilibrate to R, and the solvent phase S will equilibrate to E. In the extract phase E, the 

propylbenzene/dodecane ratio is 1.6, whereas this ratio is reduced to 0.56 in the raffinate phase R.  

We first investigate the F-R equilibration trajectory, using the assumption that the 50/50 

propylbenzene/dodecane feed mixture is dispersed as droplets of 2 mm diameter in a continuous phase 

consisting of solvent rich phase; see Figure 6-22. The initial mole fractions in the drop are x10 = 0.0, x20 

= 0.5, and x30 = 0.5. The final equilibrated composition is x1,eq = 0.338353679,  x2,eq = 0.238690456, and 

x3,eq = 0.42295586.  The final equilibrated composition is x1,eq = 0.682507484,  x2,eq = 0.195546114, and 

x3,eq = 0.1219464, corresponding to one end of the tie line. The continuous phase has the composition at 

the other end of the tie-line: x1,eq = 0.338353679,  x2,eq = 0.238690456, and x3,eq = 0.42295586.  In our 

calculations we assume that the mass transfer resistance resides predominantly within the dispersed 

phase; this is a common occurrence.45, 98 

The matrix of thermodynamic factors, calculated at the arithmetic average composition of the 

dispersed phase droplets between the initial and final equilibrated compositions (x1,av = 0.16917684,  

x2,av = 0.36934523, and x3,av = 0.46147793) is   









1.203299340.17794847-

0.29198399-0.51513196
.  For calculation of 

the transient equilibration trajectories in the dispersed phase, the scalar diffusivity 
2/1  is assumed to 

have the value 1292/1
sm101  ; therefore, 

    1292/1
sm10

1.203299340.17794847-

0.29198399-0.51513196 







D . The off-diagonal element D12 has the same 

order of magnitude as the diagonal element D11, indicating that coupled diffusion phenomena cannot be 

ignored. We can also determine the “magnitude” of the Fick diffusivity 102/1
1054.7 D  m2 s-1 for 

use in the calculation of the Fourier number 2

2/1
4

dropd

tD
.The component driving forces for transfer of NMP 

(1) and propylbenzene (2) are 8-0.3383536,1101  eqxxx , 0.26130954,2202  eqxxx . 
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Particularly noteworthy is that the driving force for propylbenzene transfer is of the same order of 

magnitude as that of NMP, but opposite in sign. 

The transient Geddes equilibration trajectory follows a highly curvilinear path to equilibrium, hugging 

the binodal curve; see Figure 6-22. If coupling effects are completely ignored, the equilibration 

trajectory follows a linear path in composition space. 

Figure 6-23(a) presents a plot of component Murphree efficiencies as a function of the dimensionless 

Fourier number 2

2/1
4

dropd

tD
 where the droplet diameter is taken as ddrop = 2 mm. During the early stages of 

the equilibration process, the Murphree point efficiency of dodecane (component 2) exhibits negative 

values, indicative of uphill diffusion. As a consequence of uphill diffusion, the transient equilibration of 

dodecane exhibits a slight, yet perceptible, composition overshoot during its approach to equilibration; 

see Figure 6-23(b). 

We now apply the Geddes equilibration model to investigate the equilibration of a single droplet of 2 

mm diameter in the system N-methylpyrrolidone (NMP)(1)/propylbenzene(2)/dodecane(3) mixtures in 

which the the dispersed phase is rich in the solvent NMP. The initial mole fractions in the drop are 

assumed to be x10 = 0.82, x20 = 0.18, and x30 = 0.0; see Figure 6-24. The final equilibrated composition 

is x1,eq = 0.682507484,  x2,eq = 0.195546114, and x3,eq = 0.1219464.The continuous phase has the 

composition at the other end of the tie-line: x1,eq = 0.338353679,  x2,eq = 0.238690456, and x3,eq = 

0.42295586.  In our calculations we assume that the mass transfer resistance resides predominantly 

within the dispersed phase; this is a common occurrence.45, 98 

The matrix of thermodynamic factors, calculated at the arithmetic average composition of the 

dispersed phase droplets between the initial and final equilibrated compositions (x1,av = 0.75125374,  

x2,av = 0.18777306, and x3,av = 0.0609732) is   









1.51120410.51435241

0.73226404-0.03813646
.  For calculation of the 

transient equilibration trajectories in the dispersed phase, the scalar diffusivity 
2/1  is assumed to have 
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the value 1292/1
sm101  ; therefore,     1292/1

sm10
1.51120410.51435241

0.73226404-0.03813646 







D . 

Both off-diagonal elements are significantly large in comparison to the diagonal elements, indicating 

strongly coupled diffusion process. We can also determine the “magnitude” of the Fick diffusivity 

102/1
109.6 D  m2 s-1 for use in the calculation of the Fourier number 2

2/1
4

dropd

tD
.The component 

driving forces for transfer of NMP (1) and propylbenzene (2) are 0.13749252,1101  eqxxx , 

1-0.0155461,2202  eqxxx . Particularly noteworthy is that the driving force for propylbenzene 

transfer is significantly lower in magnitude than that of NMP, and opposite in sign. 

The transient Geddes equilibration trajectory follows a highly curvilinear path to equilibrium, hugging 

the binodal curve; see Figure 6-24. If coupling effects are completely ignored, the equilibration 

trajectory follows a linear path in composition space. 

Figure 6-25(a) presents a plot of component Murphree efficiencies as a function of the dimensionless 

Fourier number 2

2/1
4

dropd

tD
 where the droplet diameter is taken as ddrop = 2 mm. During the early stages of 

the equilibration process, the Murphree point efficiency of propylbenzene (component 2) exhibits 

negative values, indicative of uphill diffusion. As a consequence of uphill diffusion, the transient 

equilibration of propylbenzene exhibits a pronounced composition undershoot during its approach to 

equilibration; see Figure 6-25(b). 

6.11 Uphill diffusion in NMP(1)/propylbenzene(2)/tetradecane(3) mixtures 

We investigate the F-R equilibration trajectory, using the assumption that the 50/50 

propylbenzene/tetradecane feed mixture is dispersed as droplets of 2 mm diameter in a continuous phase 

consisting of solvent rich phase; see Figure 6-26. The initial mole fractions in the drop are x10 = 0.0, x20 

= 0.5, and x30 = 0.5. The final equilibrated composition is x1,eq = 0.329380812,  x2,eq = 0.250774108, and 

x3,eq = 0.41984508, corresponding to one end of the tie line. The continuous phase has the composition 
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at the other end of the tie-line: x1,eq = 0.329380812,  x2,eq = 0.250774108, and x3,eq = 0.41984508.  In our 

calculations we assume that the mass transfer resistance resides predominantly within the dispersed 

phase; this is a common occurrence.45, 98 

The matrix of thermodynamic factors, calculated at the arithmetic average composition of the 

dispersed phase droplets between the initial and final equilibrated compositions (x1,av = 0.16469041,  

x2,av = 0.37538705, and x3,av = 0.45992254) is   









2.171666850.13074844-

0.51132939-0.52331466
.  For calculation of 

the transient equilibration trajectories in the dispersed phase, the scalar diffusivity 
2/1  is assumed to 

have the value 1292/1
sm101  ; therefore, 

    1292/1
sm10

2.171666850.13074844-

0.51132939-0.52331466 







D . The off-diagonal element D12 is the same 

order of magnitude as the diagonal element D11, indicating that coupling effects are perhaps not 

negligible process. We can also determine the “magnitude” of the Fick diffusivity 92/1
1003.1 D  m2 

s-1 for use in the calculation of the Fourier number 2

2/1
4

dropd

tD
. The component driving forces for transfer 

of NMP (1) and propylbenzene (2) are 1-0.3293808,1101  eqxxx , 0.24922589,2202  eqxxx . 

Particularly noteworthy is that the driving force for propylbenzene transfer is of the same order of 

magnitude as that of NMP, but opposite in sign. 

The transient Geddes equilibration trajectory follows a highly curvilinear path to equilibrium, hugging 

the binodal curve; see Figure 6-26. If coupling effects are completely ignored, the equilibration 

trajectory follows a linear path in composition space. 

Figure 6-27(a) presents a plot of component Murphree efficiencies as a function of the dimensionless 

Fourier number 2

2/1
4

dropd

tD
 where the droplet diameter is taken as ddrop = 2 mm. During the early stages of 

the equilibration process, the Murphree point efficiency of tetradecane (component 3) exhibits negative 
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values, indicative of uphill diffusion. As a consequence of uphill diffusion, the transient equilibration of 

tetradecane exhibits a slight, yet perceptible, composition overshoot during its approach to equilibration; 

see Figure 6-27(b). 
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6.12 List of Tables for Ternary Liquid-Liquid Extraction 

Table 6-1. NRTL parameters for NMP(1)/propylbenzene(2)/dodecane(3) at 298 K.  The parameters 

are from Al-Jimaz et al.94 

 
ijA  jiA  jiij    

K K dimensionless 

NMP(1)/ 

propylbenzene(2) 

16.061 52.731 0.2 

NMP(1)/dodecane(3) 875.58  161 0.2 

propylbenzene(2)/ 

dodecane(3) 

271.23 -299.3 0.2 
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Table 6-2. NRTL parameters for NMP(1)/propylbenzene(2)/tetradecane(3) at 298.15 K.  The 

parameters are from Al-Jimaz et al.94 

 
ijA  jiA  jiij    

K K dimensionless 

NMP(1)/ 

propylbenzene(2) 

-854.09 474.73 0.2 

NMP(1)/tetradecane(3) 1035.4 122.26 0.2 

propylbenzene(2)/ 

tetradecane(3) 

84.968 -797.95 0.2 

 

 

  



Ternary Liquid-Liquid Extraction    

155 
 

Table 6-3. UNIQUAC parameters for water(1)/caprolactam(2)/toluene(3) at 298.15 K. These 

parameters are from Table 1, Chapter 7 of the PhD dissertation of  Bollen.100  

 
ir  iq  

dimensionless dimensionless 

water(1) 0.92 1.4 

caprolactam(2) 4.6106 3.724 

toluene(3) 3.9928 2.968 

 

 TAijij   TAjiji   

dimensionless dimensionless 

water(1)/caprolactam(2) 0.1027043 3.647516849 

water(1)/ toluene(3) 0.2563201 0.0964476 

caprolactam(2)/toluene(3) 0.3324973 1.4351863 
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Table 6-4. UNIQUAC parameters for water (1)/ethanol(2)/benzene(3) at 298.15 K.  These parameters 

are taken from Example 05.20 of Gmehling et al.101 

 

 
ir  iq  

dimensionless dimensionless 

water(1) 0.92 1.4 

ethanol(2) 2.105 1.972 

benzene(3) 3.1878 2.4 

 

 

 TAijij   TAjiji   

dimensionless dimensionless 

water(1)/ethanol(2) 0.1713 2.9060 

Water(1)/benzene(3) 0.354 0.0117 

ethanol(2)/benzene(3) 1.359 0.3625 
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Table 6-5. UNIQUAC parameters for water (1)/ethyl acetate(2)/ethanol(3).  These parameters are 

taken from Table 3 of Resa and Goenaga.102 

 

 
ir  iq  

dimensionless dimensionless 

water(1) 0.92 1.4 

Ethyl acetate (2) 3.4786 3.116 

ethanol(3) 2.105 1.972 

 

 

 
ijA  jiA  

K-1 K-1 

water(1)/ethyl 

acetate(2) 

176.158 320.83 

Water(1)/ethanol(3) -109.102 -137.836 

Ethyl 

acetate(2)/ethanol(3) 

390.218 -355.791 
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Table 6-6. NRTL parameters for furfural(1)/formic acid(2)/water (3) at 298 K. These parameters are 

taken from Table 2 of Reyes-Labarta et al.103 

 TAijij   TAjiji   jiij    

dimensionless dimensionless dimensionless 

Furfural(1)/ 

formic acid(2) 

3.0959 -1.662 0.2 

Furfural(1)/ 

water(3) 

0.1044 4.126 0.2 

Formic acid (2)/ 

water(3) 

1.386 -3.523 0.2 
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6.13 List of Figures for Ternary Liquid-Liquid Extraction 

 

 

Figure 6-1.The phase equilibrium diagram for the system NMP(1)/propylbenzene(2)/dodecane(3) at 

298 K.  Pure N-methyl pyrrolidone (NMP, S = solvent) is mixed with a 50/50 propylbenzene/dodecane 

feed mixture (F) to yield mixture M that lies in the two phase region. The plait point is indicated by P. 

The mixture separates into two phases with compositions E (Extract) and R (Raffinate) at either ends of 

the tie-line shown. The feed phase F will equilibrate to R, and the solvent phase S will equilibrate to E. 

The NRTL parameters for calculation of the phase equilibrium thermodynamics are  provided in Table 

6-1. 
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Figure 6-2.The phase equilibrium diagram for the system NMP(1)/propylbenzene(2)/tetradecane(3) at 

298 K. Pure N-methyl pyrrolidone (NMP, S = solvent) is mixed with a 50/50 propylbenzene/dodecane 

feed mixture (F) to yield mixture M that lies in the two phase region. The plait point is indicated by P.  

The mixture separates into two phases with compositions E (Extract) and R (Raffinate) at either ends of 

the tie-line shown. The feed phase F will equilibrate to R, and the solvent phase S will equilibrate to E. 

The NRTL parameters for calculation of the phase equilibrium thermodynamics are provided in Table 

6-2. 
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Figure 6-3. Schematic of single-stage contacting in sieve-tray column. 
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Figure 6-5.  (a) Transient equilibration trajectories for glycerol(1)/acetone(2)/water(3) mixture at 298 

K, calculated using the Geddes model. The initial mole fractions of the dispersed phase droplets of 2 

mm diameter is x10 = 0.85, x20 = 0.0, and x30 = 0.15.  The final equilibrated composition is x1,eq = 0.552,  

x2,eq = 0.164, and x3,eq = 0.284. (b) Plot of the component Murphree efficiencies, Ei, as function of the 

Fourier number. The phase equilibrium is determined from the NRTL parameters in Table 5-1. 
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Figure 6-6. Trajectory followed during equilibration of homogenous mixtures of two different 

compositions for the system glycerol(1)/acetone(2)/water(3); the equilibrium composition x1,eq = 0.5, 

x2,eq = 0.17 and x3,eq = 0.33. The NRTL parameters for calculation of the phase equilibrium 

thermodynamics are provided in Table 5-1. 
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Figure 6-7. Transient equilibration trajectories for water(1)/chloroform(2)/acetic-acid(3) mixture, 

calculated using the Geddes model, plotted in composition space. The initial mole fractions of the 

dispersed phase droplet is x10 = 0.0, x20 = 0.3, and x30 = 0.7. The final equilibrated composition is x1,eq = 

0.267383532,  x2,eq = 0.382190021, and x3,eq = 0.350426. The UNIQUAC parameters are provided in 

Table 5-2. 
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Figure 6-8. Transient equilibration trajectories for water(1)/chloroform(2)/acetic-acid(3) mixture. (a) 

Plot of the component Murphree efficiencies, Ei, as function of the Fourier number. (b) Plot of the 

transient equilibration compositions (mole fractions) of chloroform and acetic acid as a function of the 

Fourier number. (c) Plot of the transient equilibration activities of water, chloroform and acetic acid as a 

function of the Fourier number. 

 

  

(a) (b)

Fourier number, Fo =(4 |D|1/2  t ) / ddrop
2

0.0 0.1 0.2 0.3 0.4

C
om

po
ne

n
t 

M
ur

ph
re

e 
ef

fic
ie

nc
y 

, 
E

i

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

water
chloroform
acetic acid

water(1)/chloroform(2)/
acetic acid(3);
T = 298 K; |D|1/2 = 7.62x10-10 m2 s-1

Fourier number, Fo =(4 |D|1/2  t ) / ddrop
2

0.0 0.1 0.2 0.3 0.4

M
ol

e 
fr

a
ct

io
n

 o
f 

ac
et

ic
 a

ci
d

 ,
 x

3

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

M
ol

e 
fr

a
ct

io
n

 o
f 

ch
lo

ro
fo

rm
, 

x 2

0.30

0.32

0.34

0.36

0.38

0.40

0.42

0.44
acetic acid
chloroform

water(1)/chloroform(2)/
acetic acid(3);
T = 298 K;
|D|1/2 = 7.62x10-10 m2 s-1

Fourier number, Fo =(4 |D|1/2  t ) / ddrop
2

0.0 0.1 0.2 0.3 0.4

C
o

m
po

n
en

t 
a

ct
iv

ity
, 

a i

0.0

0.2

0.4

0.6

water
chloroform
acetic acid

water(1)/chloroform(2)/
acetic acid(3);
T = 298 K; |D|1/2 = 7.62x10-10 m2 s-1

Water/chloroform/acetic acid: equilibration

(c)



Ternary Liquid-Liquid Extraction    

167 
 

 

Figure 6-9. Transient inter-diffusion in a diffusion couple consisting of water(1)/chloroform(2)/acetic-

acid(3) mixtures.  
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Figure 6-10. Transient equilibration trajectories for water(1)/acetone(2)/ethylacetate(3) mixture, 

calculated using the Geddes model, plotted in composition space. The initial mole fractions of the 

dispersed phase droplet of 2 mm diameter is x10 = 0.87, x20 = 0.13, and x30 = 0.0. The final equilibrated 

composition is x1,eq = 0.4049748,  x2,eq = 0.146113283, and x3,eq = 0.045392. The UNIQUAC parameters 

for calculation of the phase equilibrium thermodynamics are provided in Table 5-3. 
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Figure 6-11. Transient equilibration trajectories for water(1)/acetone(2)/ethylacetate(3) mixture. (a) 

Plot of the component Murphree efficiencies, Ei, as function of the Fourier number. (b) Plot of the 

transient equilibration compositions of water and acetone as a function of the Fourier number.  
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Figure 6-12. Trajectory followed during equilibration of homogenous mixtures of two different 

compositions for the system water(1)/acetone(2)/ethylacetate(3); the equilibrium composition x1,eq = 

0.30, x2,eq = 0.275 and x3,eq = 0.425. The UNIQUAC parameters for calculation of the phase equilibrium 

thermodynamics are provided in Table 5-3.  
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Figure 6-13. Transient equilibration trajectories for the system water(1)/caprolactam(2)/toluene(3) at 

298 K.  The initial mole fractions in the drop are x10 = 0.0, x20 = 0.12, and x30 = 0.88. The final 

equilibrium composition is x1,eq = 0.108182718,  x2,eq = 0.130183682, and x3,eq = 0.7616336. The 

UNIQUAC parameters for calculation of the phase equilibrium thermodynamics are provided in Table 

6-3. 
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Figure 6-14. Transient equilibration trajectories for the system water(1)/caprolactam(2)/toluene(3) at 

298 K.  (a) Plot of the component Murphree efficiencies, Ei, as function of the Fourier number. (b) Plot 

of the transient equilibration compositions of water and caprolactam as a function of the Fourier 

number. 
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Figure 6-15.Transient equilibration trajectories for the system water(1)/caprolactam(2)/toluene(3) at 

298 K.  The initial mole fractions in the drop are binary caprolactam(2)/toluene(3) mixtures of varying 

compositions.  The final equilibrium composition is x1,eq = 0.76316675,  x2,eq = 0.200866022, and x3,eq = 

0.035967228. The UNIQUAC parameters for calculation of the phase equilibrium thermodynamics are 

provided in Table 6-3. 
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Figure 6-16. Transient equilibration trajectories for the system water(1)/ethanol(2)/benzene(3) at 298 

K.  The initial mole fractions in the drop are x10 = 0.0, x20 = 0.2, and x30 = 0.88. The final equilibrated 

composition is x1,eq = 0.082641058,  x2,eq = 0.231828339, and x3,eq = 0.685531. The UNIQUAC 

parameters are provided in Table 6-4.  
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Figure 6-17. Transient equilibration trajectories for the system water(1)/ethanol(2)/benzene(3) at 298 

K.  (a) Plot of the component Murphree efficiencies, Ei, as function of the Fourier number. (b) Plot of 

the transient equilibration compositions of water (1) and ethanol (2) as a function of the Fourier number. 
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Figure 6-18. Transient equilibration trajectories for the system water(1)/ethyl acetate(2)/ethanol(3) at 

298 K.  The initial mole fractions in the drop are x10 = 0.0, x20 = 0.85, and x30 = 0.15. The final 

equilibrated composition is x1,eq = 0.359190924,  x2,eq = 0.499644619, and x3,eq = 0.141164. The 

UNIQUAC parameters are provided in Table 6-5. 
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Figure 6-19. Transient equilibration trajectories for the system water(1)/ethyl acetate(2) /ethanol(3) at 

298 K.  (a) Plot of the component Murphree efficiencies, Ei, as function of the Fourier number. (b) Plot 

of the transient equilibration compositions of water (1) and ethanol (3) as a function of the Fourier 

number. 
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Figure 6-20.Transient equilibration trajectories for the system furfural(1)/formic acid(2)/water (3) at 

298 K.  The initial mole fractions in the drop are x10 = 0.98, x20 = 0.02, and x30 = 0.0. The final 

equilibrated composition is x1,eq = 0.519537719,  x2,eq = 0.068252025, and x3,eq = 0.41221026. The 

NRTL parameters for calculation of the phase equilibrium thermodynamics are provided in Table 6-6. 
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Figure 6-21.Transient equilibration trajectories for the system furfural(1)/formic acid(2)/water (3) at 

298 K.  (a) Plot of the component Murphree efficiencies, Ei, as function of the Fourier number. (b) Plot 

of the transient equilibration compositions of furfural and formic acid as a function of the Fourier 

number. 
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Figure 6-22. Transient equilibration trajectories for the system 

NMP(1)/propylbenzene(2)/dodecane(3) at 298 K. The initial mole fractions in the drop are x10 = 0.0, x20 

= 0.5, and x30 = 0.5. The final equilibrated composition is x1,eq = 0.338353679,  x2,eq = 0.238690456, and 

x3,eq = 0.42295586.  The NRTL parameters are  provided in Table 6-1. 
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Figure 6-23. Transient equilibration in the system NMP(1)/propylbenzene(2)/dodecane(3) at 298 K. 

(a) Plot of the component Murphree efficiencies, Ei, as function of the Fourier number. (b) Plot of the 

transient equilibration compositions of propylbenzene and dodecane as a function of the Fourier 

number. 
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Figure 6-24. Transient equilibration trajectories for the system 

NMP(1)/propylbenzene(2)/dodecane(3) at 298 K. The initial mole fractions in the drop are x10 = 0.82, 

x20 = 0.18, and x30 = 0.0. The final equilibrated composition is x1,eq = 0.682507484,  x2,eq = 0.195546114, 

and x3,eq = 0.1219464. The NRTL parameters are  provided in Table 6-1.  
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Figure 6-25. Transient equilibration trajectories for the system 

NMP(1)/propylbenzene(2)/dodecane(3) at 298 K. (a) Plot of the component Murphree efficiencies, Ei, 

as function of the Fourier number. (b) Plot of the transient equilibration compositions of NMP and 

propylbenzene as a function of the Fourier number. 
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Figure 6-26. Transient equilibration trajectories for the system 

NMP(1)/propylbenzene(2)/tetradedecane(3) at 298 K. The initial mole fractions in the drop are x10 = 

0.0, x20 = 0.5, and x30 = 0.5. The final equilibrated composition is x1,eq = 0.329380812,  x2,eq = 

0.250774108, and x3,eq = 0.41984508. The NRTL parameters for calculation of the phase equilibrium 

thermodynamics are provided in Table 6-2. 
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Figure 6-27. Transient equilibration in the system NMP(1)/propylbenzene(2)/tetradedecane(3) at 298 

K. (a) Plot of the component Murphree efficiencies, Ei, as function of the Fourier number. (b) Plot of the 

transient equilibration compositions of propylbenzene and tetradecane as a function of the Fourier 

number. 
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7 Diffusion in Polymeric Systems 

For modelling mixture diffusion in polymeric systems, we need to reformulate the Maxwell-Stefan 

equations using volume fractions instead of mole fractions.104-108   The use of volume fractions 

facilitates the application of the Flory-Huggins model for the calculation of the phase equilibrium 

thermodynamics and the matrix of thermodynamic correction factors   . For detailed derivations, see 

our earlier publications.107, 108 The M-S equations written in terms of volume fractions take the form (m 

= polymer) 
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(7-1)

The modified M-S diffusivities V
ijÐ  are related to the M-S diffusivities jiij ÐÐ  , defined in terms of 

mole fractions, by: V
ij

jij
jijt Ð

V

VÐ
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VÐc  . The symmetry constraint 

imposed by the Onsager Reciprocal Relations is 
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ÐV

V

Ð
Ð  ; .  It is important 

to note that the M-S diffusivities V
ijÐ  are not symmetric.  

7.1 Immersion precipitation process for membrane preparation 

Diffusion close to phase transition regions is of importance in membrane preparation by immersion 

precipitation.109, 110 In order to illustrate this, let us consider diffusion in the ternary mixture consisting 

of water (non-solvent, component 1), acetone (solvent, component 2) and cellulose acetate (polymer, 

component m); a detailed analysis of phase equilibria and diffusion in polymer solutions is available in 

our earlier publications.107, 108 The binodal and spinodal curves for this ternary mixture are shown in 
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Figure 7-1; the calculations are based on the Flory-Huggins equations that relate the component 

activities to volume fractions, i .107, 108  The spinodal curve defines the limit of phase stability, and 

along the spinodal curve, the condition   = 0 must be satisfied, i.e. we must have 21122211  , the 

product of the off-diagonal elements is equal in magnitude to the product of the diagonal elements.45, 73 

This situation implies a significant degree of thermodynamic coupling.  

Curvilinear equilibration trajectories for water/acetone/CA have been reported in the immersion 

precipitation process for membrane preparation.109, 110 Figure 7-1 shows the transient equilibration 

trajectory when a 10% solution of Cellulose Acetate (CA) in acetone is immersed in a bath of water-rich 

aqueous solution of water/acetone; we note the curvilinear trajectory has entered the meta-stable region. 

This foray into the meta-stable region impacts on the membrane structure.109, 110 Tsay and McHugh111 

present detailed modelling of the transient equilibration trajectories for water/acetone/CA systems; see 

also Krishna.107, 108  

In order to demonstrate the foray into the meta-stable region, we consider transient diffusion within a 

spherical droplet of 2 mm diameter in a continuous solvent-rich phase that is representative of the 

coagulation bath. The initial volume fractions in the drop are 10 = 0.2, 20 = 0.7, and 30 = 0.1. The 

final equilibrated composition is  1,eq = 0.18067,  2,eq = 0.10078, and 3,eq = 0.71855; this composition 

is at one end of the tie-line with the coagulation bath of constant composition  1 = 0.928,  2 = 0.072, 

and 3 = 0.0. 

The matrix of thermodynamic factors, calculated at the arithmetic average volume fractions of the 

dispersed phase droplets between the initial and final equilibrated compositions (1,av = 0.19034,  2,av = 

0.40039, and 3,av = 0.40927) is   









0.603620.78883-

0.06198-0.34018
.  

For consistency with the Flory-Huggins description of mixture thermodynamics, the Maxwell-Stefan 

equations are formulated in terms of the volume fractions; see Krishna107, 108 Following the work of 
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Mulder et al.112 we take    



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0
, where the modified Maxwell-Stefan diffusivities for 

permeation of penetrants water (component 1) and acetone (Component 2) are taken to be the same as 

for water/ethanol/CA system:
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average volume fractions of the dispersed phase, we obtain 

    1210

2

1 sm10
2.70223.53135-

0.40692-2.23353

0

0 


















V
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D . The off-diagonal element D21 is the same 

order of magnitude as the diagonal element D22, indicating that coupling effects are significant. We can 

also determine the “magnitude” of the Fick diffusivity 102/1
10144.2 D  m2 s-1 for use in the 

calculation of the Fourier number. 

The component driving forces for transfer of water (1) and acetone (2) are 0.01933,1101  eq , 

0.59922,2202  eq . Particularly noteworthy is that the driving force for acetone transfer is 

significantly larger than the driving force for transfer of water. 

The transient Geddes equilibration trajectory follows a highly curvilinear path to equilibrium, and 

exhibits a foray into the meta-stable region; see Figure 7-2(a). If coupling effects are completely 

ignored, the equilibration trajectory follows a linear path in composition space, and no foray into the 

meta-stable region is feasible.  

Figure 7-2(b) presents a plot of component Murphree efficiencies as a function of the dimensionless 

Fourier number 2

2/1
4

dropd

tD
 where the droplet diameter is taken as ddrop = 2 mm. During the early stages of 

the equilibration process, the Murphree point efficiency of water (component 1) exhibits negative 

values, indicative of uphill diffusion. As a consequence of uphill diffusion, the transient equilibration of 

water exhibits a distinct composition overshoot during its approach to equilibration; see Figure 7-2(c). 

  



Diffusion in Polymeric Systems    

189 
 

 

7.2 List of Tables for Diffusion in Polymeric Systems 

Table 7-1. The Flory-Huggins parameters for penetrants water (anti-solvent, component 1) and 

acetone (solvent, Component 2) in cellulose acetate (CA) (polymer, indicated by subscript m) at T = 

298.15 K. The Flory-Huggins parameters are taken from Altena and Smolders113 and Altinkaya and 

Ozbas.114  
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Modified Maxwell-Stefan diffusivities for permeation of penetrants water (component 1) and acetone 

(Component 2) are taken to be the same as for water/ethanol/CA system.112 
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The 1-2 friction is considered to be negligible. 
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7.3 List of Figures for Diffusion in Polymeric Systems 

 

 

Figure 7-1. Diffusion trajectories during the immersion precipitation process for membrane 

preparation; adapted from the papers of van den Berg and Smolders,109 and Reuvers and Smolders.110 A 

10% solution of Cellulose Acetate (CA) in acetone is immersed in a bath of pure water. The transient 

equilibration trajectory is indicated in a qualitative manner. 
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Figure 7-2. (a) Geddes equilibration trajectory in a ternary system consisting of water (non-solvent, 

component 1), acetone (solvent, component 2) and cellulose acetate (polymer, component m). The 

plotted data in ternary composition space are in terms of volume fractions. The equilibration trajectory 

is indicated by the blue line in ternary composition space. (b) Plot of the component Murphree 

efficiencies, Ei, as function of the Fourier number.  (c) Transient volume fraction profiles in the polymer 

solution, as function of the Fourier number. The Flory-Huggins parameters and diffusivity data are 

provided in Table 7-1. 
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8 Diffusion in crystalline solids and alloys 

The proper description of multicomponent diffusion in metals, glasses, steels, alloys, and composites 

is important in a wide variety of processes such as bonding, cladding, controlled heat treatments, and 

surface modification. 54, 115-122 The phenomenological description of diffusion in crystalline solids and 

alloys is described in a number of texts and articles;54, 115-121 in all cases, the description is based on the 

Onsager formulation of irreversible thermodynamics.4 

For the specific case of a ternary mixture consisting of components 1, 2, and 3, the Onsager 

formulation for the diffusion fluxes in a lattice-fixed reference frame may be written as 
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The Gibbs-Duhem relations constrain the chemical potential gradients: 31 2
1 2 3 0

dd d
x x x

dz dz dz

 
   . 

The chemical potential gradients are related to the mole fraction gradients 
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So, the diffusion fluxes can be related to the mole fraction gradients 

      
1 1
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 ( ) ;
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               
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 (8-3)

The Hessian of the Gibbs free-energy    
is related to the thermodynamic correction factors 

 

ln
; , 1,2i

ij ij i
j

x i j
x

 


     as follows 
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The inter-relation between the Fick, Onsager and Maxwell-Stefan formulations are  

 
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 (8-5)

The inter-relationship between the Fick, Onsager and Maxwell-Stefan formulations are summarized in 

Figure 8-1, and Figure 8-2. 

8.1 The Maxwell-Stefan formulation of tracer diffusion in crystalline solids and 

alloys 

Consider the specific example of vacancy mediated tracer diffusion in a crystalline solid; see Figure 

8-3. The three species may be identified as follows: 1 = tagged species 1*; 2 = untagged species 1; 3 = 

vacancy (V).  The elements of the Onsager matrix is given by121 
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3
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(8-6)

In equation (8-6), a is the jump distance,  is the jump frequency, and f is the correlation factor. For a 

BCC crystal, for example, f = 0.727. Combining equations (2-35), (8-5), and (8-6) we obtain  
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 (8-7)
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Performing the matrix inversion of the right member of equation (8-7), we obtain  
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(8-8)

The Maxwell-Stefan pair diffusivities can be determined as follows 

 

2 12 21 12
11 22 12 2

13 1 23 2 12 13 1

3 32 2 2
13 23 12

3 3

1 1 1 1 1 1
; ;

1
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(8-9)

The M-S pair diffusivity 12Ð  quantifies the correlations between jumps.  

The following expression for the tracer diffusivity D* has been derived by Krishna123   

 3 3
*

12 13

11 x x

D Ð Ð


   (8-10)

Therefore, we derive 

2
* 23 3

3 3*
3 3

1 1
;

x x fa
x D x fa

D x f x f

 
     (8-11)

The self-diffusivity is strongly influenced by correlations. 

8.2 Vacancy mediated diffusion in binary alloys 

Consider the specific example of vacancy mediated diffusion in binary crystalline solids. The three 

species may be identified as follows: 1 = species 1; 2 = species 2; 3 = vacancy (V). The fluxes in the 

lattice-fixed reference frame are  

11 12 1
1

1 21

2 12 22 2
2

1 2

1 1
 

L L d
xx xJ dz

J L L dRTV
x

x x dz





   
                     

 (8-12)

The vacancy flux is VJJJ  21 .  The fluxes in the laboratory-fixed reference velocity frame are 
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   1 1 1 1 2 2 2 2 1 2;N J x J J N J x J J       (8-13)

In 2-dimensional matrix notation, the fluxes in the laboratory-fixed reference frame are 
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 (8-14)

Following Belova and Murch,118, 119 we will make the usual assumption that vacancies are produced 

and annihilated during an inter-diffusion process in such a way that  
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d d d d x d
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Therefore, the fluxes of components 1, and 2 in the laboratory-fixed reference frame can be written in 

the simplified form 
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 (8-16)

The following expression can be derived for the inter-diffusion coefficient in a binary alloy 
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 (8-17)

In the Manning approach,120 the phenomenological coefficients are directly related to the tracer 

diffusion coefficients *
2

*
1 , DD  by 
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(8-18)
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where 0

2

1

f
M

f



, and f is the correlation factor. For a BCC crystal, for example, f = 0.727. 

The following expression can be derived for the inter-diffusion coefficient in a binary alloy 

   
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 (8-19)

where S is the vacancy-wind correction factor. 118-120 

8.3 The Maxwell-Stefan-Darken formulation for inter-diffusion in a binary alloy 

Darken54 derived a relation for the inter-diffusion flux of the components 1 and 2 in a binary alloy, in 

a laboratory-fixed reference frame  

* *1 1
1 int 2 1 1 2

1

ln1
; ; 1 ;

lner Inter Inter
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N D D Ð Ð x D x D

dz xV

 
            

(8-20)

The Maxwell-Stefan inter-diffusivity may be interpolated using the information on the unary tracer 

diffusivities of the two constituents of the alloy, *
2

*
1 , DD . The thermodynamic correction factor, 













1

1

ln

ln
1

x


, is also referred to as the Darken correction factor.  Essemtially, the Darken expression 

for the inter-diffusion coefficient in binary alloys is a special, limiting, case of the Manning approach118-

120 in which correlation effects are neglected and the matrix of Onsager coefficients is assumed to be 

diagonal 

 * * * *
11 1 1 22 2 2 12 2 1 1 2; ; 0; ; 1InterL x D L x D L Ð x D x D S       (8-21)

As illustration of the accuracy of the Maxwell-Stefan-Darken equation (8-21). Figure 8-4 presents a 

re-analysis of the experimental data of  Reynolds et al.124 for inter-diffusion in Au(1)-Ni(2) alloy. The 

predictions of the Fick inter-diffusivity from data on the unary tracer diffusivities of the two constituents 

of the alloy, *
2

*
1 , DD , along with the thermodynamic correction factor, 












1

1

ln

ln
1

x


, is in good 

agreement with the experimental data on the Fick inter-diffusion coefficient. 
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8.4 The Maxwell-Stefan formulation for inter-diffusion in a ternary alloy 

Consider the vacancy mediated diffusion in ternary crystalline solids. The four species may be 

identified as follows: 1 = species 1; 2 = species 2; 3 = species 3; 4 = vacancy (V). Following Belova and 

Murch,118, 119 we will make the usual assumption that vacancies are produced and annihilated during an 

inter-diffusion process in such a way that  
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3 3
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In the lattice-fixed reference frame, we write the Onsager relations for the diffusion fluxes as  
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 (8-23)

The vacancy flux is  

31 2
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 (8-24)

The fluxes in the laboratory-fixed reference velocity frame are 
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Combining equations (8-23), (8-24), and (8-25), we obtain 
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(8-26)



Diffusion in crystalline solids and alloys    

198 
 

Invoking 31 2
1 2 3

dd d
x x x

dz dz dz

 
   , we derive the following relations for the two independent fluxes 

in the laboratory-fixed reference frame 
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(8-27)

The inter-diffusion fluxes in a ternary alloy, in a laboratory-fixed reference frame are described by a 

matrix of Fickian inter-diffusivities 
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From experimental data on the matrix of Fickian inter-diffusivities, [D], the Maxwell-Stefan pair 

diffusivities Ðij can be backed-out using the following relations 
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(8-29)

As illustration of the backing-out procedure for determining the Maxwell-Stefan pair diffusivities Ðij 

we consider the published experimental inter-diffusivity data for Cu(1)/Fe(2)/Ni(3) system at 1273 K; 

119, 125, 126 see Figure 8-5. The thermodynamic correction factors are determined from the regular 

solution model -1
312312133132232112 mol kJ5;5;33;  AAAxxAxxAxxAGex . The 

backed-out data on the Maxwell-Stefan pair diffusivities Ðij for Cu(1)/Fe(2)/Ni(3) system at 1273 K 
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using equation (8-29) are shown in Figure 8-6, in which the x-axis is 2/1
D , i.e. the square-root of the 

experimental data on the Fick inter-diffusivity matrix, that is independent of the component numbering. 

The backed-out Maxwell-Stefan pair diffusivities Ðij show only a small spread in values over a wide 

range of compositions. 

 The extension of the Darken analysis to inter-diffusion in ternary alloys is provided by Belova and 

Murch;118, 119 these allow the determination of the Fick inter-diffusivity matrix on the basis of the 

information of the unary tracer diffusivities of components 1, 2 and 3.  For the special case in which the 

Onsager matrix is diagonal, and the Darken approximation * * *3311 22
1 2 3

1 2 3

 ;  ;  
LL L

D D D
x x x

    holds, 

the inter-diffusion fluxes are calculable from the tracer diffusivities of the individual species 

   
1 1

* * * * *
11 11 121 1 1 1 3 1 2 1 3

* * * * *
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dx dx
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(8-30)

Combining equations (8-29), and (8-30) we obtain 
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The Maxwell-Stefan pair diffusivities Ðij can be estimated from the tracer diffusivities * * *
1 2 3, ,D D D  from 

the following interpolation formulae  
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(8-32)

Figure 8-7 presents a comparison of the experimental data on  the square-root of the experimental data 

for Cu(1)/Fe(2)/Ni(3) system at 1273 K.119, 125, 126 on the Fick inter-diffusivity matrix, 2/1
D , with the 

estimations using the Maxwell-Stefan-Darken model, using equations (8-28), and (8-32). The agreement 

with the experimental data on 2/1
D  is reasonably good; no significant improvements result when using 

the more complete model of Belova and Murch118, 119 that includes the vacancy-wind corrections. 

8.5 Uphill diffusion in PbS(1)/PbTe(2)/PbSe(3) mixtures 

For ternary PbS(1)/PbTe(2)/PbSe(3) crystalline mixtures, also represented as Pb(Sx1Tex2Sex3) with x1 

+ x2 + x3 =1, the spinodal curve is described by the vanishing of the determinant of the matrix of 

thermodynamic factors, i.e. 0 . The matrix of thermodynamic factors    may be calculated using 

the sub-regular solution model with parameters provided in Table 1 of Kokkonis and Leute.127 For T = 

823 K, the spinodal curve is plotted in Figure 8-8.  

In homogeneous single-phase regions, sizable magnitudes of cross-coefficients of the Fick diffusivity 

matrix     2/1
D  often lead to serpentine equilibration trajectories and uphill diffusion.99 To 

demonstrate this let us consider inter-diffusion of PbS(1)/PbTe(2)/PbSe(3) mixtures that ensues when 

two different compositions (in the left and right compartments in Figure 8-8 are brought in contact. The 

initial composition of the left compartment is: x1,L = 0.3, x2,L= 0.0 and x3,L = 0.7. The initial composition 

of the right compartment is: x1,R = 0.2, x2,R = 0.5, and x3,R = 0.3. The composition at equilibrium is x1,eq 

= 0.25, x2,eq = 0.25 and x3,eq = 0.5. The transient equilibration process is described by the coupled two-

dimensional matrix equation 
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(8-33)

At the equilibrated composition, x1,eq = 0.25, x2,eq = 0.25 and x3,eq = 0.5,  the values of the elements of 

the matrix of thermodynamic factors is   









0.770.499

0.520.832
. The scalar diffusivity 

2/1  is assumed to 

have the value 12142/1
sm101  ; therefore,     12142/1

sm10
0.770.499

0.520.832 







D . Due to the 

large values of the off-diagonal elements, the transient equilibration trajectories follow curvilinear 

trajectories in either compartment.  Particularly noteworthy is the transient overshoot (left compartment) 

and undershoot (right compartment) of the PbTe composition. 

8.6 Uphill diffusion of C in austenite: Darken experiments  

One of the very first experimental evidence of uphill diffusion is available in the classic experiments 

reported by Lawrence Stamper Darken,55 who was one of the first to recognize the need to use activity 

gradients as proper driving forces when setting up the phenomenological relations to describe diffusion. 

Two austenite bars of different compositions (0.48% C, 3.8% Si), and (0.45% C, 0.05% Si) are welded 

together. The Carbon in the high-Si bar has a higher activity than the bar with the lower Si content; the 

calculated values of these activities are 0.051, and 0.024 respectively.128 Carbon was allowed to diffuse 

for 13 days at 1323 K; after this period the bars are quenched and the composition profiles determined 

as shown in Figure 8-9(a). The high C content near the surface of the austenite bar on the right, imparts 

the required “hardness” to steel. The process of hardening of steel by “carburizing” is reliant on uphill 

transport of carbon from the high-Si bar to the low-Si bar, despite the fact that the initial compositions 

of carbon are practically the same in the two adjoining bars.  

Figure 8-9(b) shows the corresponding profiles of the activity of C, calculated using the regular 

solution theory, the transport of C is down the gradient of the component activity. 

Three quotes from the Darken paper,55 summarize the foregoing arguments (see Figure 8-10):  
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 “the driving force in an isothermal diffusion process may be regarded as the gradient of the chemical 

potential,”,   

“for a system with more than two components it is no longer necessarily true that a given element 

tends to diffuse toward a region of lower concentration even within a single phase region”, and  

“departure from the behavior of an ideal solution may be so great that the concentration gradient and 

the chemical potential gradient, or activity gradient, may be of different sign, thus giving rise to uphill 

diffusion”.   

The over- and under-shoots in the %C are adequately modelled by equation (8-33) that is based on the 

work of Kirkaldy129 with the values of the Fick diffusivity matrix   1-213 s m10
3.20

34480 







D . The 

finite value of the off-diagonal element D12 reflects the dependence of the activity of C (species 1) on 

the composition of Si (component 2). 

8.7 Uphill diffusion of Ni in Co/Fe/Ni ternary alloys 

Another convincing confirmation of the conclusions reached in the Darken experiments are provided 

by the experimental data of Vignes and Sabatier130, 131 for inter-diffusion between the left and right 

compartments of Co(1)/Fe(2)/Ni(3) mixture, annealed to a temperature of 1588 K. The initial atom 

fraction of Ni in the left and right bars are identical and equal 0.5. The arithmetic averaged atom 

fractions of  Co(1)/Fe(2)/Ni(3) mixture are  x1,eq = 0.25, x2,eq = 0.25 and x3,eq = 0.5.  However, the 

absence of differences in the Ni compositions is no hindrance to transport of Ni, engendered by 

diffusional coupling effects. Their experimental data, demonstrating uphill diffusion can be simulated 

with excellent accuracy using equation (8-33); the results of these simulations, but not the experiments, 

are presented in Figure 8-11. The atom fraction of each component is measured on either side of the 

Matano plane, at t = 17 h after the start of the simulation are shown. In the simulations, the value of the 

Fick diffusivity matrix is chosen to be    1214 sm10
1.70.026

0.020.7 







D ; this choice is on the basis of 
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the experimental data presented in Table 2b of Divya et al.132 The experimental trajectory, plotted in 

ternary composition space, follows a serpentine path. 

8.8 Uphill diffusion in K2O/SrO/SiO2 mixtures  

To illustrate the diffusional characteristics of multicomponent glasses, let us consider a set of 

experiments reported by Varshneya and Cooper.133 Two glass slabs with different compositions of 

K2O/SrO/SiO2 were brought into contact at time t=0 and the transient concentration distributions 

determined. The wt% of each component is measured on either side of z = z0 =0, measured at t = 4.55 h 

after the start of the experiment are shown in Figure 8-12(a). The over- and under-shoots in the SrO 

concentrations are adequately modelled by equation (8-33), wherein the matrix of Fick diffusivities have  

the values    13 2 -11 0.267
10 m  s

1.22 0.33
D  

   
.  

The transient equilibration trajectories, plotted in 2D and 3D composition space follow serpentine 

trajectories; see Figure 8-12(b). The non-monotonous equilibration trajectory observed for SrO in 

Figure 8-12( signals uphill diffusion; such phenomena are of importance in the processing of ceramics, 

cements, alloys, steels, and composites.122, 134 We note that the transient equilibration becomes 

monotonic for the uncoupled diffusion process.  

8.9 Uphill diffusion in Fe/Mg/Ca in garnet  

Let us examine the experimental data of Vielzeuf and Saúl135 for inter-diffusion of Fe/Mg/Ca 

mixtures in garnet, a precious stone consisting of a deep red vitreous silicate mineral. Garnets are 

nesosilicates having the general formula X3Y2(SiO4)3. The X site is usually occupied by divalent cations 

(Ca, Mg, Fe, Mn)2+ and the Y site by trivalent cations (Al, Fe, Cr)3+ in an octahedral/tetrahedral 

framework with [SiO4]4− occupying the tetrahedra. A diffusion “couple” with two different 

compositions are brought into contact at time t = 0; see Figure 8-13(a). The driving forces for the three 

components are (in atom fractions): 14.0;01.0;15.0 321  xxx . The composition profiles 

on either side of the interface marker (z = 0) are monitored at various time intervals.  The composition 
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profiles at t = 100 h (cf. Figure 8-13(a)) shows spatial over- and under-shoot in the composition profile 

for Mg, whose driving force is significantly lower than that of the two partner atoms. In ternary 

composition space, the equilibration trajectory is serpentine in shape; see Figure 8-13(b). 

The modelling of the experimental data Vielzeuf and Saúl135 for inter-diffusion of Fe/Mg/Ca mixtures 

in garnet proceeds along similar lines to the foregoing examples. The overshoot in the equilibration of 

Mg is adequately modelled using the values of the Fick diffusivity matrix

  1-219 s m10
18.15.5

02.186.5 










D

 in equation (8-33); see Figure 8-13(a). Neglect of diffusion 

coupling effects results in linear, monotonic, equilibration. The non-monotonous equilibration trajectory 

observed for Mg in Figure 8-13(a) signals uphill diffusion; such phenomena are of importance in the 

processing of ceramics, cements, alloys, steels, and composites.122, 134 
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Figure 8-3. The Maxwell-Stefan formulation of vacancy-mediated tracer diffusion in BCC crystal. 
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Figure 8-6. Backed-out data on the Maxwell-Stefan pair diffusivities for Cu(1)/Fe(2)/Ni(3) system at 

1273 K.119, 125, 126 The Danielewski data are those reported by Belova et al.119 as Sample 6 – Sample 15. 

The x-axis is 
2/1

D , i.e. the square-root of the experimental data on the Fick inter-diffusivity matrix, that 

is independent of the component numbering. 
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Figure 8-7. Comparison of the experimental data for Cu(1)/Fe(2)/Ni(3) system at 1273 K.119, 125, 126 on 

the square root of the Fick inter-diffusivity matrix, 
2/1

D , with the estimations using the Maxwell-

Stefan-Darken model. 
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Figure 8-8. The equilibration trajectory for inter-diffusion in ternary PbS(1)/PbTe(2)/PbSe(3) 

crystalline mixtures at 823 K. The left and right compartments of a diffusion couple are maintained at 

two different compositions as indicated. Also plotted (continuous red line) is the spinodal curve, 

calculated at 823 K. The matrix of thermodynamic factors    is calculated using the sub-regular 

solution model with parameters provided in Table 1 of Kokkonis and Leute.127 
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Figure 8-9.  (a) Experimental data of Darken55 for inter-diffusion between the left and right austenite 

bars consisting of C/Si/Fe mixtures, annealed to a temperature of 1323 K. The wt% of each component 

is measured on either side of the Matano plane, at t = 13 days after the start of the experiment are 

shown. The calculations of the coupled diffusion model are based on the Fick diffusivity matrix 

determined by Kirkaldy for this experiment.129 (b) The corresponding profiles of the activity of C, 

calculated using the regular solution theory, 
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Figure 8-11.  (a) Simulations of transient inter-diffusion between the left and right compartments of 

Co/Fe/Ni mixture, annealed to a temperature of 1588 K. The atom fraction of each component on either 

side of the Matano plane, at t = 17 h after the start of the simulation are shown. (b) Equilibration 

trajectories in composition space. These simulations are designed to match the experimental data of 

Vignes and Sabatier130, 131 
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Figure 8-12. (a)  Experimental data of Varshneya and Cooper133 for inter-diffusion between the left 

and right slabs consisting of K2O/SrO/SiO2 mixtures. The wt% of each component is measured on either 

side of the Matano plane, measured at t = 4.55 h after the start of the experiment are shown. (b) 

Equilibration trajectories in 2D and 3D composition space. 
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Figure 8-13. (a) Experimental data of Vielzeuf and Saúl135 for inter-diffusion between the left and 

right slabs containing Fe/Mg/Ca mixtures. The atom % of each component is measured on either side of 

the Matano plane, measured at t = 100 h after the start of the experiment are shown as function of the 

distance. (b) Equilibration trajectories in 3D composition space.  
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9 M-S formulation with generalized driving force 

The analysis of the diffusion processes in the foregoing sections were restricted to isothermal, isobaric 

systems in the absence of external body forces such as centrifugal forces and electrostatic potential 

gradients. The important persuasive advantage of the Maxwell-Stefan formulation  

 ,
1 1 1

; 1,2,...

j i

n n n
i j j i i j j i i ji

T p i i j
j j jij t ij t ij

x x x x x xx
i n

RT Ð c Ð c Ð



  

 
        

N N J J
u u  (9-1)

is that equation (9-1) can be extended, elegantly, to include the contribution of pressure gradients, and 

external body forces. The treatment below follows earlier works.1, 136, 137  

9.1 Irreversible Thermodynamics and the M-S equation 

The theory or irreversible thermodynamics is described in several excellent texts.5, 137-139 Our 

treatment essentially follows that of Lightfoot,137 and Standart et al.1, 9 The starting point for our 

analysis is the rate of entropy production due to n-component diffusion; see Equation (2.3.1) of  Taylor 

and Krishna.1 The rate of entropy production is a product of the “flux” ij  and the driving force 

~ ~
iiT 

   
 

F . 

1

~ ~1
0

n

iiT i
iT

 


       
 

 F j  (9-2)

where    i i i t i ix    j u v u v  is the mass diffusion flux of species i with respect to the mass 

average reference velocity v ; 
~

i
i

iM

   is the specific chemical potential of species i with units of J kg-1; 

iM  is the molar mass of of species i with units kg mol-1; 
~

iT   is the isothermal gradient of the specific 

chemical potential; 
~

iF  represents the force acting per kg of species i.  
~

iF  represents the body force 
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acting per mole of species i, 
~ ~

; i
i i i i i

i

c
M

  
F

F F F . The requirement 0   follows from the second 

law of thermodynamics. 

Under the action of external body forces, linear momentum will be conserved  
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 (9-3)

where v is the mass average mixture velocity,  is the stress tensor and i is the mass fraction of species 

i. 

In diffusion processes of relevance to chemical engineering mechanical equilibrium is established far 

quicker than thermodynamic equilibrium and we may safely assume  

~
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1 1
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 (9-4)

Adding the vanishing quantity 
~

1

1
0

n

i i
it

p F
 

     to the driving forces in equation (9-2): 
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 (9-5)

The chemical potential gradient term may be expanded to explicitly include the contribution of the 

pressure gradient pViipTiT   ,  where iV  is the partial molar volume of species i with units m3 

mol-1, and ,T p i  is the isothermal, isobaric gradient of the molar chemical potential. The isothermal 



M-S formulation with generalized driving force    

220 
 

gradient of the specific chemical potential is ,

~ 1 i
iT T p i

i i

V
p

M M
      . Expressed in terms of the 

gradients of the molar chemical potential, equation (9-5) takes the form 
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It is convenient to define the generalized driving force id :  
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As emphasized by Lightfoot,137 the “fearsome” quantity t ic RTd
 
has a very simple physical significance: 

t ic RTd  = force per unit volume of solution tending to move species i relative to the solution. With this 

definition of the generalized driving force, the rate of entropy production is 

 
1

0
n

t i i
i

c R


    d u v  (9-8)

As noted by Lightfoot,137 the rate of entropy production remains unchanged if any arbitrary reference 

velocity is chosen in place of the mass average reference velocity v . With the molar average reference 

velocity u  we write 

 
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d u u J  (9-9)

It follows from the Gibbs-Duhem equation that  

1

0
n

i
i

d  (9-10)

Following the Onsager concepts of irreversible thermodynamics, we may set up linear relations 

between the driving forces t ic RTd  and relative velocities  i u v , taken as representative of “fluxes”: 

 
1

; 1, 2,...
n

t i ij j
j

c RT i n


  d u v  (9-11)



M-S formulation with generalized driving force    

221 
 

The Onsager Reciprocal Relations assert the symmetry constraint 

; , 1, 2,...ij ji i j n    (9-12)

It follows from the Gibb-Duhem constraint (9-10) that  
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Since the relative velocities  i u v  are mathematically independent of one another it must also 

follow that 

1
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Due to the constraint imposed by equation (9-14), we may replace the mass average reference velocity 

v  in equation (9-11), by any arbitrary velocity. We may replace the reference velocity v  by the species 

velocity of any arbritrary species k, ku  and write equation (9-11) as 
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Essentially, in the Maxwell-Stefan formulation, we take k iu u  and ; , 1,2,...i j
ij t
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x x
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this results in 
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 (9-16)

If the body forces iF   represent the force acting per mole of species i, the corresponding relations are 
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For transport in electrolyte systems, for example, the body force iF  acting per mol of species i is  

Fi iz  F  where zi is the ionic charge of species i and F is the Faraday constant. Except in regions 

close to electrode surfaces, where there will be charge separation (the double layer phenomena), the 

condition of electro-neutrality is met 0
1


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n

i
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expression for the generalized driving force simplifies to yield  
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 (9-18)

An important advantage of the use of the M-S formulation is that the addition of the driving forces 

p , and   has no influence on the M-S diffusivities of the constituent binary pairs, Ðij. 

With the choice of iu  as reference velocity, substitution of equation (9-16) into equation (9-8) gives the 

following expression for the rate of entropy production 
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i j ij

x x
c R

Ð
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
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 (9-19)

9.2 Separations in an ultracentrifuge 

Equation (9-16) is the appropriate starting point for the analysis of separations in an ultracentrifuge. 

The centrifugal force exerted per kg of component i in a multicomponent mixture is rFi
2

~

  where r 
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is the distance from the axis of rotation, and   is the angular velocity: 

)secondper    srevolutionin    expressed  speed  rotational(2 . Equation (9-16) yields  
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Mechanical equilibrium is established quickly in relation to thermodynamic equilibrium in an 

ultracentrifuge.  At mechanical equilibrium we have  
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iit
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Substituting equation (9-21) into equation (9-20) reesults in  

  21i i
i i i i t
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x d
d c V r
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We note that the contribution of the centrifugal force to the overall driving force is effective only 

when there is a difference between the volume fraction of component i , iiVc , and its mass fraction, i; 

for a mixture where these differ the centrifugal force will cause relative motion of species.  Components 

with a higher molar mass and mass density will experience a greater force and will therefore tend to 

congregate towards the periphery; this will cause a composition gradient ipT ,  
directed inwards 

tending to cause re-distribution. At thermodynamic equilibrium, the driving forces vanish and therefore 

the composition distribution is described by  

  rVc
RTcdr

d

RT

x
tiii

t

ii 21
 

 (9-23)

The ultracentrifuge induces a separation provided that the volume fraction iiVc   is different from the 

mass fraction i .  As illustration, consider the separation of the gaseous isotopes U235F6(1)/U238F6(2) at 

293.15 K as described in Example 2.3.2 of Taylor and Krishna;1; see Figure 9-1. The molar masses are 

M1=0.34915 kg mol-1; M2=0.35215 kg mol-1. The centrifuge rotates at 40000 rpm. The separation takes 

place within the annular space between  mm100  rr  and mm601  rr . The mole fraction 

distribution of component 1 within the annular space as a function of the radial distance r is  
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The composition profiles within the annular space are shown in Figure 9-1; the heavier isotope 

concentrates near the periphery. An uranium enrichment industrial facility will have a few million 

centrifuges to achieve the desired degree of separation.1 Separations in an ultracentrifuge may also be 

viewed as uphill diffusion, engendered by the centrifugal force. 

9.3 Thermal diffusion or Soret effect 

 The Soret effect, also called thermal diffusion, is the tendency of a mixture of two or more 

components to separate due to a temperature gradient. In 1879 Charles Soret discovered that a salt 

solution contained in a tube with the two ends at different temperatures did not remain uniform in 

composition; the salt was more concentrated near the cold end than near the hot end of the tube; for a 

review of the history and applications see Platten.140 When steep temperature gradients are encountered, 

such as in chemical vapor deposition processes, we need additionally to take account of the thermal 

diffusion contribution to the molar fluxes.141  

The Maxwell-Stefan formulation can be augmented in the following form; see Kuiken139 for detailed 

derivations 
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where T
iu  is the augmented species velocity incorporating the thermal diffusion contribution 
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The thermal diffusion coefficients T
iD  have been defined in the manner of Hirschfelder et al.13 and have 

the units kg m-1 s-1. In CVD processes, thermal diffusion causes large, heavy gas molecules  like WF6 , 

whose T
iD  > 0, to concentrate in cold regions whereas small, light molecules like H2, whose T

iD  < 0,  
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concentrate in hot regions.  Kleijn and Hoogendoorn141 have demonstrated the importance of the 

thermal diffusion contribution in the modelling of CVD processes. 

In hydrocarbon reservoirs, the temperature gradient 1-mK 03.0
dz

dT
;142 i.e. the temperature 

increases along the reservoir depth. Segregation is induced due to both gravity and thermal diffusion, 

described by combining equations (9-18), and (9-25) 
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Inserting equation (9-26) into equation (9-27),  we obtain after re-arranging 

   
1 1

1 1
; 1,2,

j i j i

TTn n
i j i ji j ji i i

i i i
j jt ij i j ij

x x u ux x Dx d Ddp dT
c V i n

RT dz c RT dz Ð T dz Ð

 
 

 
 

 
        

 
    (9-28)

The terms 
i

T
iD


 have the units of m2 s-1. The thermal diffusion coefficients are not all independent; we 

have the constraint   

0
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


n

j

T
iD  (9-29)

For the special case of a binary mixture, we write  
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 (9-30)

Introducing the constraint TT DD 21  , we obtain  
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 (9-31)

Introducing the diffusion fluxes    1 1 1 2 2 2t tJ c x u u J c x u u       , we derive  



M-S formulation with generalized driving force    

226 
 

 

 

1 1 1 2 1 1
1 1 1

12 1 2 12

1 1 1 2 1 1
1 1 1

1 2 12 12

1 1

1 1

T
t

t t

T

t t t

x d x x D Jdp dT
c V

RT dz c RT dz Ð T dz c Ð

x d x x D Jdp dT
c V

RT dz c RT dz Ð T dz c Ð

 
 

 
 

 
     

 

    

 (9-32)

Define the dimensionless thermal diffusion ratio  
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Other quantities encountered are the thermal diffusion factor T    
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The Soret coefficient is defined as   
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Equation (9-32) reduces to yield   
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For segregation due to both gravity and thermal diffusion, the flux expression is  
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 (9-37)

Setting the fluxes equal to zero, the steady-state the steady-state mole fraction profiles are described 

by  
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Introducing the thermodynamic correction factor 







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1
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x


 we write the steady-state mole 

fraction profile as  
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 When 0;0;0;0 1
111 

dT

dx
kSD TT

T ; this implies that the component 1 segregates towards the 

cold end; in this scenario, thermal diffusion serves to enhance the gravitational segregation effect. 

Conversely, when 0;0;0;0 1
111 

dT

dx
kSD TT

T , the component 1 segregates towards the hot 

end; in this scenario, thermal diffusion acts in a direction opposite to the gravitational segregation. + 

In the absence of pressure gradients, equation (9-32) simplifies to  
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In view of the inter-relations in Table 9-1, and introducing the Fick diffusivity  
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 (9-41)
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9.4 List of Tables for M-S formulation with generalized driving force 

Table 9-1. Inter-relationships between molar fluxes and mass fluxes 
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9.5 List of Figures for M-S formulation with generalized driving force 

 

Figure 9-1. Separation of gaseous uranium isotopes U235F6(1)/U238F6(2) by ultracentrifugation as 

described in Example 2.3.2 of Taylor and Krishna.1 
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10 Diffusion of Ionic Species 

10.1 The Maxwell-Stefan diffusion formulation for ionic diffusion  

For diffusion in n-component fluid mixtures consisting of neutral, uncharged species, the Maxwell-

Stefan (M-S) equations73, 99 are normally written as 

 
1

1
; 1, 2,

j i

n
j i ji

j ij

x u ud
i n

RT dz Ð







     (10-1)

In equation (10-1), ui is the velocity of species i in a laboratory fixed reference frame, and Ðij is the 

diffusivity of i-j pair in the n-component mixture. The M-S formulation is essentially a friction 

formulation, and Ðij is to be interpreted as the inverse drag coefficient for the i-j pair. The Onsager 

reciprocal relations demand the symmetry constraint  

niÐÐ jiij ,2,1; 
 (10-2)

We may also define the diffusion fluxes in the laboratory-fixed reference frame  

niucN iii ,2,1;   (10-3)

where ci is the molar concentration of species i. The total molar concentration of the mixture, ct, is also 

the inverse of the mean molar volume 

1

1n

t i
i

c c
V

   (10-4)

A wide variety of processes of importance in the process industries involve the transport of ionic 

species in bulk electrolyte liquid mixtures, within charged particles, and across charged membranes. 

Examples include electrolysis, electrodialysis, ion exchange, and fuel cells.50, 64, 137, 143-145 For design and 

development of such processes, it is essential to have adequate models to describe the transport fluxes. 
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For transport of ionic species in electrolyte solutions, we need to consider as an additional driving force, 

expressed in Joules per mole of mixture, caused by the electrostatic potential gradient  

z
F

d

d
zF ii




 
(10-5)

where zi is the ionic charge of species i and F is the Faraday constant. Except in regions close to 

electrode surfaces, where there will be charge separation (the double layer phenomena), the condition of 

electro-neutrality is met  
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n
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and therefore  
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(10-7)

Adding the contribution of the electrostatic potential gradients to the left member of equation (10-1) 

yields  
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It is convenient to define a generalized driving force 
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(10-9)

The second law of thermodynamics demands that the rate of entropy production be positive definite9 
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(10-10)

The division by 2 is required because of the application of the Onsager symmetry constraint in equation 

(10-2). The second law constraint does not require each of the pair M-S diffusivities to be positive 

definite. Indeed, Kraaijeveld and Wesselingh146 experimental evidence to suggest that cation-cation 

diffusivities could assume negative values without violation of the second law of thermodynamics. For 



Diffusion of Ionic Species    

232 
 

molten salt mixtures LiF-BeF2, the MD simulation data of Chakraborty147 show negative values of the 

ion pair diffusivities, without violation of the second law constraint described by equation (10-10). 

In terms of the fluxes, iii ucN  , we may re-write equation (10-8) as  
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(10-11)

The total current carried by the electrolyte is i

n

i
i Nz

1

F . In many chemical process applications such as 

ion exchange, no external electrical field is imposed on the system, and also there is no flow of current, 

i.e.  
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(10-12)

For electrolyte concentrations smaller than about 0.01 mol L-1,  the cation-anion friction is less than 

20% of the ion - water friction and the following simplified equation holds for ionic species i 
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(10-13)

where the Ði in equation (10-13) are the ionic diffusivities.  The three contributions to the molar flux of 

ionic species i are usually termed “diffusion”, “migration” and “convection”.  

If we define the diffusion fluxes Ji with respect to the solvent, species n:   
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(10-14)

The no-current constraint also applies to the diffusion fluxes Ji: 
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For aqueous electrolyte solutions, the nth component is usually taken to be water, that is often 

considered to be stagnant, i.e.  

onprescriptiter solvent wastagnant ;0;0  nn Nu  (10-16)
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10.2 Diffusivity of binary electrolytes in concentrated solutions 

Let us consider a binary electrolyte solution, containing cation (C), and anion (A) with charges, zC, 

and zA, respectively, and stoichiometric coefficients C, and A. The sum of the stoichiometric 

coefficients, AC   . The species 3 is water (solvent). Let us assume that the solvent is stagnant, i.e. 

u3=0. Let the molar concentration of the binary electrolyte (“salt”) be denoted as cs, mol L-1; this is also 

termed the molarity. The ionic concentrations of C and A are 33; xcccxccc tAsAAtCsCC   . 

Here ct is the total molar concentration of the mixture, 3cccc ACt  . Thermodynamic non-ideality 

effects are most commonly described using molalities, Cm , and Am  expressed in terms of moles per kg 

of solvent (water). The ionic strength is  AACC mzmzI 22

2

1
 . 

The chemical potential of the electrolyte is   

    A
A

C
C

A
A

C
C

m
AA

m
CCs mmRT   ln  (10-17)

The m
C , and m

A  are chemical potentials of the cation and anion in the standard state; the superscript 

m serves as a reminder that this standard state is defined in terms of the ion molalities. A mean molality 

and a mean molal activity coefficient are defined.  Both are given the subscript  to indicate that this is 

an average (geometric mean) of the value for the cation and the anion. The mean molality is defined as 

   /1A
A

C
C mmm  . The mean molal activity coefficient is defined in a similar way       

/1A
A

C
C . 

If the standard state chemical potential of the salt in solution is written as m
AA

m
CC

m
S   ,can re-

write equation (10-17) as   

            mRTmRT m
s

m
ss lnln  (10-18)

Figure 10-1(a)  shows the experimental data of Moggia and Bianco148 on the mean activity coefficient 

  of aqueous solutions of neutral electrolyte NaCl at 298.15 K. The deep valley in the molal activity 

coefficient at a mean molality m   1 mol kg-1 is particularly noteworthy. The dashed line represents 
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the calculations of the mean activity coefficient using the Pitzer-Mayorga149 activity coefficient model. 

The Pitzer model is of good accuracy for the range of molalities considered.  

Figure 10-1(b)  shows the experimental data of Ananthaswamy and Atkinson150 on the mean activity 

coefficient   of aqueous solutions of neutral electrolyte CaCl2 at 298.15 K. Also for this electrolyte, 

the deep valley in the molal activity coefficient at a mean molality  1 mol kg-1 is observed. The dashed 

line represents the calculations of the mean activity coefficient using the Pitzer-Mayorga149 activity 

coefficient model. The Pitzer model is of good accuracy for the range of molalities considered. The 

Pitzer model is of good accuracy for molalities m  < 2 mol kg-1. 

For both NaCl/H2O and CaCl2/H2O, calculations of the mean activity coefficient using the Deby-

Hückel limiting law   IAzz ACln , where A = 1.1717 kg1/2 mol-1/2 and the ionic strength 

 AACC mzmzI 22

2

1
  are only applicable for molalities m  < 0.01 mol kg-1; see comparisons with the 

Pitzer-Mayorga149 activity coefficient model in Figure 10-1(a,b).   

Let us define the Fick diffusivity of the binary electrolyte by the flux relation  
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(10-19)

The Maxwell-Stefan diffusivity of the electrolyte, Ð, is defined by  
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The thermodynamic factor, , accounts for non-ideal solution thermodynamics , The Fick diffusivity 

is related to the M-S diffusivity by 
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(10-21)

At vanishingly small molalities, the Fick diffusivity of the electrolyte can be calculated on the basis of 

the individual ionic diffusivities and the species charge numbers 
 



Diffusion of Ionic Species    

235 
 

 
2211

2121

ÐzÐz

zzÐÐ
ÐD




  (10-22)

Figure 10-2(a,b) show the calculations of Rard and Miller151 for the thermodynamic correction factor 

 for aqueous solutions of  (a) NaCl, and (b)  CaCl2 at 298.15 K. In both cases, the thermodynamic 

correction factor  displays a minimum at a mean molality in the range 0.1 < m  < 0.2 mol kg-1. For 

CaCl2 we also note a maximum in the  factor at m   5.5 mol kg-1.  

From equation (10-21), we anticipate that the Fick diffusivity will be influenced by the 

thermodynamic correction factor . Figure 10-3(a) shows the experimental data of Rard and Miller,151 

and Chang and Myerson152 for Fick diffusivity D of aqueous solutions of neutral electrolyte NaCl at 

298.15 K. Due to the influence of , the Fick diffusivity shows both a minimum and a maximum. At 

saturation conditions, corresponding to  m   6.2 mol kg-1, we have 
 
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

m
Ð


; 

consequently, the Fick diffusivity also tends to vanish at this spinodal composition; further discussions 

on this are provided in the paper by Chang and Myerson.152  

Entirely analogous characteristics of the Fick diffusivity are also observed in the experimental data of 

Rard and Miller,151 for aqueous solutions of neutral electrolyte CaCl2 at 298.15 K; see Figure 10-3(b). 

The sharp reduction in the Fick diffusivity of the salts at concentrations approaching saturation, as 

witnessed in Figure 10-3 are of crucial importance in crystal growth.  

10.3 Thermodynamic influences on the kinetics of crystal growth 

By definition, crystallization processes operate under conditions close to supersaturation. Non-ideal 

thermodynamics will have a strong influence on diffusion fluxes and the kinetics of crystal growth. It is 

common practice to use chemical potential differences between the supersaturated solution (the 

transferring state) and the crystal (the transferred state),  *ln  aaRT  , as the driving force 

to model crystal growth kinetics;153, 154 here   is the total number of mole of ions per mole of 

electrolyte. 
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As illustration, Figure 10-4(a,b,c) present calculations of thermodynamic non-idealities for Potassium 

Dihydrogen Phosphate (KDP)/Urea/H2O system at 303.15 K, using the parameters provided by Enqvist 

et al.;155 the molality of urea is maintained constant at 5 mol kg-1; the saturation molality of KDP in the 

solution, m* = 1.70 mol kg-1. Figure 10-4(a) are calculations of the mean activity coefficient   of 

KDP. Figure 10-4(b) are calculations of the thermodynamic correction factor 
 
 

















mln

ln
1


. At the 

spinodal concentration, m = 5.35 mol kg-1, we have 0 . Figure 10-4(c) presents calculations of the 

activity based supersaturation,  *ln  aaRT  .  

Figure 10-4(d) presents the experimental data of Enqvist et al.155 on growth rate of KDP crystals, at 

the [1 0 1] face and expressed in units of nm s-1, as a function of the supersaturation, 

 *ln  aaRT  . As a good approximation, the growth rate is proportional to the activity 

based degree of supersaturation. 

The process of purification by crystallization is important in the process industries. Using the data on 

activity coefficients provided in the paper by Louhi-Kultanen et al.,153 we analyze thermodynamic non-

idealities in Na2SO4(1)/K2SO4(2)/H2O(3) mixtures under conditions relevant to crystallization 

purification processes; the calculations of the activity coefficients are based on the model described in 

the papers of Pitzer and Mayorga,149 and Pitzer and Kim.156 Towards this end, we calculate the 2-

dimensional matrix of thermodynamic factors,   , defined by  

   
2,1,;

ln

ln
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ln ,, 


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
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j
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j

ii
ij



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(10-23)

The input data for the calculation of the activity coefficients 2,1, ,    of the neutral electrolytes 

Na2SO4(1), and K2SO4(2), respectively, are provided in the paper by Louhi-Kultanen et al;153 see 

equations (22) – (32), along with Table 1 of their paper.  

Figure 10-5(a) presents calculations of the elements of the the 2-dimensional matrix of 

thermodynamic factors,   , Na2SO4(1)/K2SO4(2)/H2O(3) mixtures at 298.15 K. The x-axis in the 
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graph represents the total mixture molality, mt =m1+m2; in these calculations, the ratio of the molalities, 

m1/m2, of Na2SO4(1) and K2SO4(2) is held constant at the value of 0.25. The off-diagonal elements 

cannot be ignored, as is evidenced by the ratios of the elements 
11

12




 and  
22

21




, plotted in Figure 10-5(b). 

We note that at a total mixture molality, mt = 1 mol kg-1, the ratio 5.0
22

21 



, indicating the diffusion 

fluxes will be strongly coupled.  

Let us calculate    for a set of conditions specified in Table 4 of Louhi-Kultanen et al.153  

The molalities of neutral electrolytes Na2SO4(1) and K2SO4(2) in the bulk solution are 

10 200.201; 0.632m m   mol kg-1. 

The molalities of neutral electrolytes Na2SO4(1) and K2SO4(2) at the crystal surface are 

1 20.202; 0.752m m    mol kg-1. 

At the arithmetic average molalities, the matrix of thermodynamic factors is calculated as follows 

  












706.0333.0

097.0905.0

 

The influence of thermodynamic coupling on the diffusion fluxes will be discussed in a later section. 

10.4 Diffusion in dilute electrolyte solutions 

For dilute aqueous solutions of electrolytes, m  < 0.01 mol kg-1, the thermodynamic correction 

factors are approximately unity, so 
dz

dc

dz

d

RT

c

dz

dm

dz

d

RT

m ssss   
;  for the electrolyte. For each 

individual ionic species, n-1 in number, also, we may approximate 
dz

dc

dz

d

RT

c iii 


.
 With these 

assumptions and simplifications, equation (10-13) reduces to the Nernst-Planck equation for the flux of 

individual ionic species   

1,2,1;
F




 ni
dz

d

RT
Ðzc

dz
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ÐN iii

i
ii 

 
(10-24)
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Combining equations (10-12), and (10-24) we obtain the following expression for the diffusion potential 

that is engendered due to ionic diffusion 


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(10-25)

Inserting equation (10-25) for the diffusion potential into equation (10-24) we obtain the following flux 

expressions for the n-1 ionic species (recall that species n is water) 
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The requirement of electro-neutrality places a constraint on the ionic concentration gradients  

constrainttrality electroneu;0
1

1






n

i

i
i dz

dc
z

 
(10-27)

This means that the (n-1)th concentration gradient can be eliminated  

constrainttrality electroneu;1
1

2
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(10-28)

The expression for the diffusion potential engendered due to ionic diffusion can be written in terms of 

the (n-2) independent concentration gradients 
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Inserting equation (10-29) for the diffusion potential into equation (10-24) we obtain the following 

expression for the ionic fluxes  

  2,2,1;
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1
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(10-30)

Equation (10-30) can be conveniently cast into (n-2) dimensional matrix notation  
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     
dz

cd
DN 

 
(10-31)

The elements of the (n-2)(n-2) dimensional square matrix of Fick diffusivities are  

 
2,2,1,;

1
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(10-32)

where ik  is the Kronecker delta. In the ensuing discussions equation (10-32) will also be considered to 

be a manifestation of the Nernst-Planck equations. The second member of the right of equation (10-32) 

quantifies the electrostatic “leash” that serves to enhance, or diminish, the ionic mobilities. Whether an 

ion is accelerated or decelerated depends on the species charges, zi, and whether we have co-diffusion or 

counter-diffusion. The elements of the Fick diffusivity matrix [D] are strongly concentration dependent; 

the off-diagonal elements are non-zero, i.e. ionic diffusion is always coupled even for dilute solutions. 

More generally, if the solvent (water) is not stagnant, we define the matrix of Fick diffusivities as 

follows  

     
dz

cd
DJ 

 
(10-33)

where we define the diffusion fluxes Ji of each individual ionic species with respect to the solvent, 

species n as   niiniii ucNuucJ  . If the nth component (water, say) is stagnant, then we have 

0;n i iu J N  . 

The ionic concentrations ci are relatable to the concentrations Ci of neutral electrolytes. Let ik 

represent the number of moles of ionic species i per mole of neutral electrolyte k. The gradients of the 

ionic concentrations are related to the gradients of the concentrations of the netural electrolytes by 





ne

k

k
ik

i

dz

dC

dz

dc

1

 , where ne is the number of neutral electrolytes. In matrix notation we have 

     
dz

Cd

dz

cd  , where    is not a square matrix, in general. Therefore the ionic fluxes can be related 

to the gradients of the concentrations of neutral electrolytes by 
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      
dz

Cd
DN   (10-34)

 

10.5 Re-analysis of Vinograd-McBain experiments 

Consider the experimental results of Vinograd and McBain157 in a two-compartment diffusion cell, 

shown schematically in Figure 10-6. Diffusion takes place through the pores of a sintered glass disk that 

separate the two compartments. Each of the two compartments is well-mixed, and the concentration 

gradients are restricted to disk thickness, .  The bottom compartment contains pure water while the top 

compartment contains a mixture of aqueous solutions of HCl and BaCl2. Let cHCl and cBaCl2 denote the 

molar concentrations, expressed in mol L-1 of solution. Total ionization takes place and the system is a 

quaternary mixture: 1 = H+, 2 = Cl-, 3 = Ba++, 4 = H2O. The concentrations of ions are: cH+= cHCl; cBa++ = 

cBaCl2; cCl-= (cHCl + 2 cBaCl2). In one set of experiments reported by Vinograd and McBain,157 the ratio of 

the concentrations cHCl/cBaCl2 was varied. By monitoring the concentrations of the three ionic species as 

a function of time, Vinograd and McBain157 obtained the effective ionic diffusivities Di,eff for H+, Cl- 

and Ba2+. The experimentally observed ionic diffusivities are shown in Figure 10-6 as function of the 

square root of the ratio of the initial ionic concentrations of H+ and Ba2+ in the top compartment 

 BaHBaCl2HCl cccc . With increasing values of  BaH cc , it is observed that both DH+ and 

DBa++ decrease while DCl- increases. At the start of the diffusion process, the highly mobile H+ diffuses 

ahead of its companion ions into the pure water compartment, creating an excess of positive charge. 

This induces a diffusion potential z  which acts in such a way as to comply with the no-current and 

electro-neutrality prescriptions. The consequence is that the Cl- experiences an extra electrostatic “pull”, 

enhancing its effective diffusivity value. The electrical potential gradient also serves to retard the 

motion of the positive ions H+ and Ba++ or in other words these ions experience a “push” in a direction 

opposite to that dictated by their composition gradient driving forces. For  BaH cc =2, the 
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electrostatic “push” on Ba++ is such as to result in a vanishing value for DBa2+. The continuous solid 

lines in Figure 10-6 are the calculations of the effective ionic diffusivities   

, ; 1, 2,.. 1i
i eff

i

N
D i n

dc

dz

  


 
(10-35)

wherein the fluxes are determined from Equation (10-30).The values of the effective diffusivities Di,eff 

for H+, Cl- and Ba++ can be determined by approximating the concentration gradients 

1,..2,1;0 


 ni
cc

dz

dc iii


 . The concentrations 0ic  correspond to those in the top well-stirred 

compartment: 23022010 ;2; BaClBaClHClHCl ccccccc  . In the bottom compartment, we have pure 

water; all the ionic concentrations are zero  0ic .We use the ionic diffusivities provided in Example 

2.4.2 of Taylor and Krishna:1  

9
3

9
2

9
1 1085.0;102;103.9   ÐÐÐ  m2 s-1.  

The continuous solid lines in Figure 10-6 are the calculations of the effective ionic diffusivities using 

equations (10-31), (10-32), and (10-35). The elements of the matrix [D] are determined at the average 

concentration in the top and bottom compartments; this allows explicit evaluation of the fluxes and the 

effective ionic diffusivities. The essential diffusion characteristics for the HCl/BaCl2/H2O mixture are 

properly captured by the linearized analytic solution to the Nernst-Planck equation. 

The Nernst-Planck model calculations anticipate negative values of DBa2+ for  Ba2H cc > 2 due to a 

strong electrostatic “push”; see Figure 10-6. Negative effective diffusivities signal the possibility of 

uphill diffusion for Ba2+. 

Figure 10-7 compares the  experimental data of Vinograd and McBain157 for effective ionic 

diffusivities of H+, K+, and Cl- in a two-compartment diffusion cell with the calculations using equations 

(10-31), (10-32), and (10-35). We use the ionic diffusivities1 (1 = H+, 2 = Cl-, 3 = K+)  

9
3

9
2

9
1 102;102;103.9   ÐÐÐ  m2 s-1.  
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In this case, the Cl- is accelerated, while both cations H+, and K+ are retarded due to the electrostatic 

leash. The essential diffusion characteristics for the HCl/KCl/H2O mixture are properly captured by the 

linearized analytic solution to the Nernst-Planck equation. 

10.6 Effective ionic diffusivities in HCl/CaCl2/H2O system 

In Figure 7 of their paper, Nakagaki and Kitagawa158 have reported experimental data for effective 

ionic diffusivities of  H+, Ca++, and Cl- in HCl/CaCl2/H2O aqueous solutions. The experimental data are 

presented as function of the ratio 




 CaCaHH

CaCa

czcz

cz
 under conditions that the total cation 

concentration is constant in the diffusion layer; see. Their experimental data  (indicated by symbols) has 

been replotted in Figure 10-8. Due to the electro-neutrality restraint 0
1




n

i
ii zc , 

   CaCaHHClCl czczcz . With increasing values of 




 CaCaHH

CaCa

czcz

cz
, it is observed that 

both Deff,H+ and Deff,Ca++ increase while Deff,Cl- decreases. The continuous solid lines in Figure 10-8 are 

the calculations of the effective diffusivities using  

dz

dc
N

D
i

i
effi


,  wherein the fluxes are determined 

from equations (10-31), (10-32). The values of the effective ionic diffusivities Di,eff for H+, Cl- and Ca++ 

can be determined explicitly from equations (10-31), (10-32), and (10-35) by approximating the 

concentration gradients 1,..2,1;  ni
c

dz

dc ii


. The Nernst-Planck equations are able to capture, 

almost quantitatively, the variation of the effective ionic diffusivities as a function of 





 CaCaHH

CaCa

czcz

cz
. A particularly noteworthy feature of the Nernst-Planck equations is that the 

predicted effective diffusivities of Ca++ approaches negative values for 4.0
 



CaCaHH

CaCa

czcz

cz
.  We 

now examine experimental data of Nakagaki and Kitagawa158 that demonstrates the possibility of uphill 

diffusion. 
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10.7 Uphill diffusion and transient overshoots during inter-diffusion of mixed ions 

Nakagaki and Kitagawa158 have conducted transient inter-diffusion experiments in 

HCl(1)/CaCl2(2)/H2O aqueous solutions in a diaphragm cell with two well-stirred compartments. The 

top and bottom comparments are initially filled with two distinctly different concentrations of the two 

electrolytes, HCl(1)/CaCl2(2). The results of three experimental campaigns are reported; these are 

termed Examples 1, 2 and 3; see Table 3 of Nakagaki and Kitagawa;158  the initial concentrations in the 

top and bottom compartments are specified in the schematics in Figure 10-9. 

On the basis of the transient equilibration of ionic concentrations, Nakagaki and Kitagawa158  have 

determined the effective ionic diffusivities of H+, Ca++, and Cl-. Remarkably, the effective diffusivities, 

Di,eff, as defined by equation (10-35), of H+, Ca++, and Cl- are negative for, respectively, Examples 2, 1, 

and 3; see Figure 10-9. Negative effective ionic diffusivities are indicative of uphill ionic transport, 

engendered by the electro-static “leash”. 

Our objective here is to model the transient inter-diffusion of H+, Ca++, and Cl- in the three sets of 

experiments to examine the origin and consequences of negative effective ionic diffusivities Di,eff. 

Let us consider first the transient equilibration in Example 1 in Figure 10-9. Initially, the top 

compartment contains HCl(1) and CaCl2(2) with concentrations of 0.1488 mol L-1 and 0.0263 mol L-1, 

respectively. The initial concentrations  of HCl(1) and CaCl2(2) in the bottom compartment are 0.0521 

mol L-1 and 0.0242 mol L-1, respectively.  Each of the electrolytes will undergo complete dissociation.  

The final equilibrated concentrations of the three ions H+, Ca++, and Cl- are: 0.10045 mol L-1 and 

0.02525 mol L-1, and 0.15095 mol L-1. Due to the electro-neutrality restraint 0
1




n

i
ii zc , only two of the 

ionic concentrations in each compartment are independently variable; we take 1 = H+, and 2 = Ca++ as 

the independent species.  

The transient equilibration process in the top and bottom compartments (with volumes V, and 

interfacial area A) is described in 2-dimensional matrix notation by 
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      1

2

top bottom
d c Nd c

V V N A A
Ndt dt

 
      

 
.  The molar fluxes Ni are taken to be positive if directed 

from top to bottom. At any instant of time, t, we have 
    

A
cc

D
dt

cd
V eqtoptop




  where  is the 

effective thickness of the diffusion layer, and  D  is the (n-2)(n-2) dimensional square matrix of Fick 

diffusivities, defined by equation (10-32). The driving forces for ionic transport are 

  









00105.0

04835.0
eqtop cc . We note that the driving force for transport of Ca++ is significantly lower, by a 

factor of about 50, than the driving force for  H+ transport. We define a cell constant 
V

A  , and write 

    eqtop
top ccD

dt

cd
  . The Fick diffusivity matrix  D  is calculable using equation (10-32). If the 

diffusivity matrix is evaluated at the final equilibrated composition and considered constant, this matrix 

differential equation may be integrated to obtain      eqtopeqtop cctDcc  0,exp   where the 

vector    













02525.0

10045.0

2
0,0, bottomtop

eq

cc
c  mol L-1. An analogous expression holds for the bottom 

compartment,      eqbottomeqbottom cctDcc  0,exp  . The square matrix   tDQ  exp][  

quantifies the transient departure from equilibrium. The Sylvester theorem, detailed in Appendix A of 

Taylor and Krishna,1 is required for explicit determination of   tDQ  exp][ . For the case of two 

distinct eigenvalues, 1 , and 2 , of the 2-dimensional square matrix  D , the Sylvester theorem yields   

          
        

 12

1
2

21

2
1 expexpexp















ID

t
ID

ttD  where  I  is the identity matrix with 

elements ik , the Kronecker delta.  

The concentration trajectories in the top and bottom compartments during transient equilibration are 

presented in Figure 10-10(a,b). The diffusion equilibration of H+, and Cl-  proceeds in a “normal” 
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manner, i.e. the transport is from higher to lower concentration regions with exponential decay. The 

equilibration of Ca++ ions is remarkable in that a concentration overshoot is experienced in the top 

compartment with a concomitant undershoot in the bottom compartment. Let us explain the 

concentration overshoot in physical terms. The more mobile H+ rapidly diffuses into the bottom 

compartment; this creates an excess of positive charge.  This excess of positive charge serves to prevent 

the influx of Ca++ ions into the bottom compartment even though its concentration is higher in the top 

compartment.  Indeed, the requirement of electro-neutrality causes the Ca++ ions to traverse uphill from 

bottom to top compartment in the interests of maintaining electro-neutrality. Uphill transport of Ca++ 

ions leads to transient overshoots in the early stages of equilibration. There is a corresponding 

undershoot in the concentration of Ca++ ions in the bottom compartment. Figure 10-10(b) also shows the 

equilibration trajectories for  Ca++  that are calculated without the influence of the electrostatic leash, i.e. 

ignoring the contribution of the second term to the right of equation (10-32) and taking ikiik ÐD   for 

all three ionic species. Clearly, the phenomenon of uphill diffusion for Ca++ is engendered by the 

electro-static leash. 

The equilibration process follows serpentine trajectories in composition space; see Figure 10-10(c). 

Next, we consider the transient equilibration in Example 2 portrayed in Figure 10-9 of Nakagaki and 

Kitagawa.158  Initially, the top compartment contains HCl(1) and CaCl2(2) with concentrations of 0.0972 

mol L-1 and 0.0525 mol L-1, respectively. The initial concentrations of HCl(1) and CaCl2(2) in the 

bottom compartment are 0.1033 mol L-1 and 0.0 mol L-1, respectively.  Each of the electrolytes will 

undergo complete dissociation.  The final equilibrated concentrations of the three ions H+, Ca++, and Cl- 

are: 0.10025 mol L-1 and 0.02513 mol L-1, and 0.1505 mol L-1. The driving forces for ionic transport are 

  









02513.0

00305.0
eqtop cc . We note that the driving force for transport of Ca++ is significantly higher, by 

a factor of about 8, than the driving force for H+ transport.  

The transient concentration equilibration trajectories in the top and bottom compartments transient 

equilibration are presented in Figure 10-11(a,b). The diffusion equilibration of Ca++, and Cl-   proceeds 



Diffusion of Ionic Species    

246 
 

in a “normal” manner, i.e. the transport is from higher to lower concentration regions with exponential 

decay. The equilibration of H+ ions is remarkable in that a concentration overshoot is experienced in the 

bottom compartment with a concomitant undershoot in the top compartment. Let us explain the 

concentration overshoot in physical terms. Due to its large driving force, Ca+ gets transported quickly 

into the bottom compartment where it creates an excess positive charge (recall that its charge number z2 

= + 2 is twice as high as for H+). This excess positive charge causes the efflux of H+ from the bottom 

compartment to be slowed down considerably.  Figure 10-11(b) also shows the equilibration trajectories 

for  H+ that are calculated without the influence of the electrostatic leash, i.e. ignoring the contribution 

of the second term to the right of equation (10-32)  and taking ikiik ÐD   for all three ionic species. It 

is evident that the phenomenon of uphill diffusion for H+ is engendered by the electro-static leash. The 

influence of the electrostatic leash slow down the transfer of H+ from the bottom compartment, causing 

an overshoot in the concentration. There is a concomitant undershoot in the concentration of H+ ions in 

the top compartment. 

The equilibration process follows serpentine trajectories in composition space; see in Figure 10-11(c). 

Next, we consider the transient equilibration in Example 3 in Figure 10-9 of Nakagaki and Kitagawa.158  

Initially, the top compartment contains HCl(1) and CaCl2(2) with concentrations of 0.0878 mol L-1 and 

0.0327 mol L-1, respectively. The initial concentrations of HCl(1) and CaCl2(2) in the bottom 

compartment are 0.1116 mol L-1 and 0.01765 mol L-1, respectively.  Each of the electrolytes will 

undergo complete dissociation.  The final equilibrated concentrations of the three ions H+, Ca++, and Cl- 

are: 0.0997 mol L-1 and 0.02517 mol L-1, and 0.15005 mol L-1. The driving forces for ionic transport are, 

respectively,  00315.0;
007525.0

0119.0
,3,3

,2,2

,1,1 






 












eqtop
eqtop

eqtop
cc

cc

cc
 mol L-1. We note that the driving 

force for transport of Cl- is significantly lower in magnitude than the other two driving forces. Also 

noteworthy is that the driving force of H+ is opposite in sign to the driving forces of Ca++ and Cl-. 

The transient concentration equilibration trajectories in the top and bottom compartments transient 

equilibration are presented in Figure 10-12(a,b). The diffusion equilibration of H+ and Ca++ proceeds in 
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a “normal” manner, i.e. the transport is from higher to lower concentration regions with exponential 

decay. The equilibration of Cl- ions is remarkable in that a concentration overshoot is experienced in the 

top compartment with a concomitant undershoot in the bottom compartment. Let us explain the 

concentration overshoot in physical terms. Due to its high mobility, H+ gets transported quickly into the 

top compartment where it creates an excess positive charge. This excess positive charge causes the 

transfer of Cl- from the top compartment to be retarded down considerably, causing an overshoot in the 

Cl- concentration in the top compartment.  Figure 10-12(b) also shows the equilibration trajectories for  

Cl- that are calculated without the influence of the electrostatic leash, i.e. ignoring the contribution of 

the second term to the right of equation (10-32)  and taking ikiik ÐD   for all three ionic species.  It is 

interesting to note that even ignoring the electrostatic leash leads to overshoots and undershoots; these 

over/undershoots are caused by the electro-neutrality restraint 0
1




n

i
ii zc .  

The equilibration process follows serpentine trajectories in composition space; see  Figure 10-12(c). 

10.8 Fick diffusivity matrix for NaCl/Na2SO4/H2O solutions 

Rard et al.159 report experimental data for elements of the Fick diffusivity matrix, 11 12

21 22

D D

D D

 
 
 

, for the 

mixture of aqueous electrolytes NaCl (1), and Na2SO4 (2) at 298.15 K. The reported data are not for 

ionic diffusivities but for the neutral electrolytes NaCl (1), and Na2SO4 (2) respectively. The matrix  [D] 

is defined in the solvent-fixed reference frame; see equation (10-33): 

  11 12

2 4 21 22 2 4 2 4

NaCl NaCl

NaCl

Na SO Na SO Na SO

dc dc
J D D dz dzD

J D D dc dc

dz dz



   
      

         
         
   

 (10-36)

Clearly, if the water is considered to be stagnant, then we have 0;n i iu J N  . For one set of 

conditions, the four elements of the Fick matrix 11 12

21 22

D D

D D

 
 
 

, in the solvent fixed reference frame, are 
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shown in Figure 10-13(a); the plotted data are for the total molar concentration of the mixture cNaCl + 

cNa2SO4 = 0.5 mol L-1. The x-axis represents the fraction  42SONaNaClNaCl ccc   in the mixture of mixed 

electrolytes. We use cNaCl, and cNa2SO4 to denote the concentrations of neutral electrolytes.  Let us 

examine the applicability of the Nernst-Planck equations for ionic species for estimation of the Fick 

matrix 11 12

21 22

D D

D D

 
 
 

for the two neutral electrolytes NaCl (1), and Na2SO4 (2).  

Towards this end, we number the ionic species in equation (10-32) as follows: 

1=Cl-; 2=SO4
--; 3=Na+; z1= -1, z2= -2, z3= 1. The ionic diffusivities are 

9
3

9
2

9
1 103.1;106.0;102   ÐÐÐ  m2 s-1.  

The ionic concentrations ci can be related to the concentrations of the neutral electrolytes cNaCl, and 

cNa2SO4 

1 2 2 4 3 2 4; ; 2NaCl Na SO NaCl Na SOc c c c c c c    . The two independent ionic concentrations are   

  


































42422

1

10

01

SONa

NaCl

SONa

NaCl

c

c

c

c

c

c


 

The fluxes of the neutral electrolytes are relatable to the ionic fluxes as follows  

24421; JJJJJJ SOSONaClNaCl   

The Fick diffusivity matrix 11 12

21 22

D D

D D

 
 
 

 for neutral electrolytes, defined by equation (10-36) is 

therefore     11 12

21 22

1 0

0 1

D D
D D

D D


   
    

  
 where the elements of the 22 matrix  D  is determined 

from equation (10-32). The estimated values are shown by the continuous solid lines in Figure 10-13(b). 

At  42SONaNaClNaCl ccc   = 1, D11 = the Fick diffusivity of the neutral electrolyte NaCl, 

  9

1133

1313
11 10576.1 





ÐzÐz

zzÐÐ
D  m2 s-1. Also, at this composition, the non-diagonal element, D21= 0.  
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At  42SONaNaClNaCl ccc   = 0, D22 = the Fick diffusivity of the neutral electrolyte Na2SO4, 

  9

2233

2323
11 10936.0 





ÐzÐz

zzÐÐ
D  m2 s-1. Also, at this composition, the non-diagonal element, D12= 0.  

The Nernst-Plank equations are able to capture all the essential characteristics of the composition 

dependence of the Fick diffusivity matrix 11 12

21 22

D D

D D

 
 
 

 for neutral electrolytes. For quantitative 

agreement with the experimental data, we need to take account of the influence of the thermodynamic 

non-idealities; further details are provided by Rard et al.159 

10.9 Fick diffusivity matrix for CaCl2/HCl/H2O solutions 

Figure 10-14(a)  shows the experimental data (symbols) of Leaist and Curtis160 for the elements of the 

Fick diffusivity matrix 11 12

21 22

D D

D D

 
 
 

 for the mixture of aqueous electrolytes CaCl2 (1), and HCl (2) at 

298.15 K. The total molar concentration of the mixture HClCaCl cc 2  = 0.1 mol L-1. The x-axis represents 

the fraction  HClCaClCaCl ccc 22 .  

The continuous solid lines in Figure 10-14(a) are the estimations using the Nernst-Planck equation 

(10-32). In these calculations, we number the ionic species in equation (10-32) as follows: 

1=Ca++; 2=H+; 3=Cl-; z1= 2, z2= 1, z3= -1. The ionic diffusivities are 

9 9 9
1 2 30.792 10 ; 9.315 10 ; 2.0333 10Ð Ð Ð         m2 s-1. 

The ionic concentrations ci can be related to the concentrations of the neutral electrolytes cCaCl2, and 

cHCl:  

HClCaClHClCaCl ccccccc  23221 2;;   

The fluxes of the neutral electrolytes are relatable to the ionic fluxes as follows (if water is considered 

to be stagnant, then we have 0;n i iu J N  ). 

212 ; NNNNNN HHClCaCaCl   
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At  HClCaClCaCl ccc 22  = 1, D11 = the Fick diffusivity of the neutral electrolyte CaCl2, 

  9

1133

1313
11 10335.1 





ÐzÐz

zzÐÐ
D  m2 s-1. Also, at this composition, the non-diagonal element, D21= 0.  

At  HClCaClCaCl ccc 22  = 0, D22 = the Fick diffusivity of the neutral electrolyte HCl, 

  9

2233

2323
11 10338.3 





ÐzÐz

zzÐÐ
D  m2 s-1. Also, at this composition, the non-diagonal element, D12= 0.  

The Nernst-Plank equations (10-32) are able to capture all the essential characteristics of the 

composition dependence of the Fick diffusivity matrix 11 12

21 22

D D

D D

 
 
 

 for neutral electrolytes.. For 

quantitative agreement with the experimental data, we need to take account of the influence of the 

thermodynamic non-idealities; see further discussions in Leaist and Curtis.160 

In order to appreciate the influence of the electrostatic “leash”, Figure 10-14(b) presents calculations 

of the contribution of the second term in the right member of equations (10-32) to each of the elements 

of [D]. The influence of the electrostatic leash is most severe on the “more mobile” HCl; this is 

evidenced by the large contribution of the electrostatic leash to D22. 

10.10 Fick diffusivity matrix for K2SO4/KOH/H2O solutions 

Figure 10-15(a) shows the experimental data (symbols) of Leaist and Curtis160 for the elements of the 

Fick diffusivity matrix 11 12

21 22

D D

D D

 
 
 

 for the mixture of aqueous electrolytes K2SO4 (1), and KOH (2) at 

298.15 K. The total molar concentration of the mixture KOHSOK cc 42  = 0.1 mol L-1. The x-axis 

represents the fraction  KOHSOKSOK ccc 4242 .  

The continuous solid lines in Figure 10-15(a) are the estimations using the Nernst-Planck equations 

(10-32). In these calculations, we number the ionic species in equations (10-32) as follows: 

1=SO4
--; 2=OH-; 3=K+; z1= -2, z2= -1, z3= 1. The ionic diffusivities are 

9 9 9
1 2 31.0652 10 ; 5.281 10 ; 1.9573 10Ð Ð Ð         m2 s-1. 
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The ionic concentrations ci can be related to the concentrations of the neutral electrolytes cK2SO4, and 

cKOH : 1 2 4 2 3 2 4; ; 2K SO KOH K SO KOHc c c c c c c    . 

The fluxes of the neutral electrolytes are relatable to the ionic fluxes as follows (if water is considered 

to be stagnant, then we have 0;n i iu J N  ): 2 4 4 1 2;K SO SO KOH OHN N N N N N    .  

At  KOHSOKSOK ccc 4242  = 1, D11 = the Fick diffusivity of the neutral electrolyte K2SO4, 

  9

1133

1313
11 1053.1 





ÐzÐz

zzÐÐ
D  m2 s-1. Also, at this composition, the non-diagonal element, D21= 0.  

At  KOHSOKSOK ccc 4242 = 0, D22 = the Fick diffusivity of the neutral electrolyte KOH, 

 3 2 3 2 9
22

3 3 2 2

2.856 10
Ð Ð z z

D
z Ð z Ð


  


 m2 s-1. Also, at this composition, the non-diagonal element, D12= 0.  

The Nernst-Plank equations (10-32) are able to capture all the essential characteristics of the 

composition dependence of the Fick diffusivity matrix. For quantitative agreement with the 

experimental data, we need to take account of the influence of the thermodynamic non-idealities; see 

further discussions in Leaist and Curtis.160 

In order to appreciate the influence of the electrostatic “leash”, Figure 10-15(a) presents calculations 

of the contribution of the second term in the right member of equations to each of the elements of [D]. 

The influence of the electrostatic leash is most severe on the “more mobile” KOH; this is evidenced by 

the large contribution of the electrostatic leash to D22. 

10.11 Fick diffusivity matrix for Li2SO4/LiOH/H2O solutions 

Figure 10-16(a) shows the experimental data (symbols) of Leaist and Curtis160 for the elements of the 

Fick diffusivity matrix 11 12

21 22

D D

D D

 
 
 

 for the mixture of aqueous electrolytes Li2SO4 (1), and LiOH (2) at 

298.15 K. The total molar concentration of the mixture LiOHSOLi cc 42  = 0.1 mol L-1. The x-axis 

represents the fraction  LiOHSOLiSOLi ccc 4242 . 
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The continuous solid lines in Figure 10-16(a) are the estimations using the Nernst-Planck equations 

(10-32). In these calculations, we number the ionic species in equations (10-32) as follows: 

1=SO4
--; 2=OH-; 3=Li+; z1= -2, z2= -1, z3= 1. The ionic diffusivities are 

9 9 9
1 2 31.0652 10 ; 5.281 10 ; 1.03 10Ð Ð Ð       

 
m2 s-1. The ionic concentrations ci can be related to 

the concentrations of the neutral electrolytes cLi2SO4, and cLiOH: 1 2 4 2 3 2 4; ; 2Li SO LiOH Li SO LiOHc c c c c c c    . 

The fluxes of the neutral electrolytes are relatable to the ionic fluxes as follows (if water is considered 

to be stagnant, then we have 0;n i iu J N  ): 2 4 4 1 2;Li SO SO LiOH OHN N N N N N      

At   LiOHSOLiSOLi ccc 4242  = 1, D11 = the Fick diffusivity of the neutral electrolyte Li2SO4, 

  9

1133

1313
11 1004.1 





ÐzÐz

zzÐÐ
D  m2 s-1. Also, at this composition, the non-diagonal element, D21= 0.  

At   LiOHSOLiSOLi ccc 4242 = 0, D22 = the Fick diffusivity of the neutral electrolyte LiOH, 

 3 2 3 2 9
22

3 3 2 2

1.724 10
Ð Ð z z

D
z Ð z Ð


  


 m2 s-1. Also, at this composition, the non-diagonal element, D12= 0.  

The Nernst-Plank equations (10-32) are able to capture all the essential characteristics of the 

composition dependence of the Fick diffusivity matrix 11 12

21 22

D D

D D

 
 
 

 for neutral electrolytes. For 

quantitative agreement with the experimental data, we need to take account of the influence of the 

thermodynamic non-idealities; see further discussions in Leaist and Curtis.160 

In order to appreciate the influence of the electrostatic “leash”, Figure 10-16(b) presents calculations 

of the contribution of the second term in the right member of (10-32) to each of the elements of [D]. The 

influence of the electrostatic leash is most severe on the “more mobile” LiOH; this is evidenced by the 

large contribution of the electrostatic leash to D22. 
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10.12 Fick diffusivity matrix for NaCl/MgCl2/H2O solutions 

Figure 10-17  shows the experimental data (symbols) of Leaist and Al-Dhaher161 for the elements of 

the Fick diffusivity matrix 
i

VV

VV

DD

DD









2221

1211  for the mixture of aqueous electrolytes NaCl (1), and MgCl2 

(2) at 298.15 K. The experimental data are for the volume averaged reference velocity frame 

ii
i

i
V uVcu 




2

1

 where iV  is the partial molar volume of species i in the mixture. The i i ic V   represent 

the volume fractions. The x-axis in Figure 10-17 represents the square root of the total mixture 

concentration 2MgClNaCl cc  . 

We number the ionic species in equations (10-32) as follows: 1=Na+; 2=Mg++; 3=Cl-; z1= 1, z2= 2, z3= 

-1. The ionic diffusivities are 9 9 9
1 2 31.334 10 ; 0.7063 10 ; 2.033 10Ð Ð Ð          m2 s-1. The ionic 

concentrations ci can be related to the concentrations of the neutral electrolytes cNaCl and cMgCl2: 

1 2 2 3 2; ; 2NaCl MgCl MgCl NaClc c c c c c c    . 

The fluxes of the neutral electrolytes are relatable to the ionic fluxes as follows  (if water is considered 

to be stagnant, then we have 0;n i iu J N  ): 1 2 2;NaCl Na MgCl MgN N N N N N    . 

The expression for the Fick diffusivity matrix   11 12

21 22

D D
D

D D


 
 

 
, used in conjunction with the 

Nernst-Planck equations (10-32) for  D , yield diffusivities in the solvent (water = component 3) fixed 

reference velocity frame 
i

DD

DD









2221

1211 . To convert the Fick diffusivities to the volume-averaged 

reference velocity frame 
i

VV

VV

DD

DD









2221

1211  we use the transformation (see the formulas in the Appendix to 

the paper by Rard et al.159)  
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(10-37)

where the partial molar volumes iV  are calculated using equations (16) of Leaist and Al-Dhaher.161 The 

volume fraction of the solvent water (species 3) is calculated using 221133 1 VcVcVc  . The 

continuous solid lines in Figure 10-17  are the estimations, combining equations (10-32) and equation 

(10-37). We note that Nernst-Planck equations (10-32) of reasonably good accuracy for 

  2/1
2 mol/L1.0 MgClNaCl cc . For higher electrolyte concentrations, there are significant deviations 

due to thermodynamic non-ideality effects. The paper by Leaist and Al-Dhaher161 provide further 

discussions on the thermodynamic non-ideality effects that need to be included for better agreement 

with experimental data. 

10.13 Fick diffusivity matrix for NaCl/SrCl2/H2O solutions 

Figure 10-18 shows the experimental data (symbols) of Leaist and Al-Dhaher161 for the elements of 

the Fick diffusivity matrix [Dv] for the mixture of aqueous electrolytes NaCl (1), and SrCl2 (2) at 298.15 

K. The experimental data are for the volume averaged reference velocity frame ii
i

i
V uVcu 




2

1

 where 

iV  is the partial molar volume of species i in the mixture. The  iiVc  represent the volume fractions. The 

x-axis represents the square root of the total mixture concentration 2SrClNaCl cc  .  

We number the ionic species as follows:1=Na+; 2=Sr++; 3=Cl-; z1= 1, z2= 2, z3= -1. The ionic 

diffusivities are 9
3

9
2

9
1 10033.2;107915.0;10334.1   ÐÐÐ  m2 s-1. 
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The ionic concentrations ci can be related to the concentrations of the neutral electrolytes cNaCl and 

cSrCl2: 1 2 2 3 2; ; 2NaCl SrCl SrCl NaClc c c c c c c    . The fluxes of the neutral electrolytes are relatable to the 

ionic fluxes: 1 2 2;NaCl Na SrCl SrN N N N N N    . 

The expression for the Fick diffusivity matrix   11 12

21 22

D D
D

D D


 
 

 
, used in conjunction with the 

Nernst-Planck equations (10-32) for  D , yield diffusivities in the solvent (water = component 3) fixed 

reference velocity frame 
i

DD

DD









2221

1211 . To convert the Fick diffusivities to the volume-averaged 

reference velocity frame 
i

VV

VV

DD

DD









2221

1211  we use the transformation equation (10-37). The continuous solid 

lines in Figure 10-18 are the estimations, combining equations (10-32) and (10-37). 

The Nernst-Planck equations (10-32) are of reasonably good accuracy for 

  2/1
2 mol/L1.0 SrClNaCl cc .  For higher electrolyte concentrations, there are significant deviations 

due to thermodynamic non-ideality effects. The paper by Leaist and Al-Dhaher161 provide further 

discussions on the thermodynamic non-ideality effects that need to be included for better agreement 

with experimental data. 

10.14 Inter-diffusion without a common ion in aqueous solutions  

Following Hao and Leaist,162 we now consider inter-diffusion in mixed electrolytes systems without a 

common ion.  

The following quotes from the paper by Hao and Leaist162 provides a good summary of the 

discussions and calculations to follow. 

When a solution of electrolyte MX interdiffuses with a solution of electrolyte NY, the transport of four 

different ions (M, X, N, andY) is constrained only by eIectroneutrality. Because three degrees of 

freedom remain, the interdiffusion of two electrolytes without a common ion can produce an 

independent flow of a third electrolyte.  
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At first glance the interdiffusion of electrolytes MX and NY is another two-electrolyte diffusion 

problem. But since ions M, X, N, and Y will in general have different mobilities and different diffusion 

speeds, ions M and X will not diffuse together as a single electrolyte component, nor will ions N and Y. 

Consequently, the interdiffusion of electrolytes MX and NY cannot be described in terms of fluxes of 

components MX and NY alone. Because fluxes of four different ions are constrained only by 

electroneutrality, three diffusional flows are independent. These considerations suggest that an accurate 

description of the interdiffusion of electrolytes MX and NY must include the flux of a third electrolyte 

component: MY or NX. 

For  aqueous solutions of mixed electrolytes NaCl/MgSO4, there are four different ionic species Na+, 

Cl-, Mg2+, and SO4
2-. Due to the electroneutrality 0

1




n

i
ii zc  and no-current 0

11




i

n

i
iii

n

i
i uzcNz  

constraints there are three independent fluxes, three independent concentrations, and three independent 

concentration gradients. Inter-diffusion in aqueous solutions of mixed electrolytes NaCl/MgSO4 

engenders the flow of an additional neutral electrolyte Na2SO4, as evidenced in the experiments of Hao 

and Leaist.162 The diffusion characteristics of the ternary electrolyte NaCl(1)/Na2SO4(2)/MgSO4(3) 

system is described a 33 dimensional Fick diffusivity matrix that is linearly related to the Fick 

diffusivity matrix for ionic diffusion (with elements given by equations (10-32)).  

Figure 10-19(a) presents calculations of the elements of the 33 dimensional Fick diffusivity matrix for 

the ternary electrolyte NaCl(1)/Na2SO4(2)/MgSO4(3) system in the solvent (water) fixed reference 

frame. These elements can be compared with the experimental data presented in Figure 1 of  Hao and 

Leaist.162 Note, however, the experimental data in Figure 1 of  Hao and Leaist162 are for values in the 

volume-averaged reference velocity frame; consequently, the agreement of experimental data with 

Figure 10-19(a) is not perfect. 
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Consider inter-diffusion of NaCl(1)/Na2SO4(2)/MgSO4(3) mixtures between two compartments. The 

initial concentrations of the three neutral electrolytes in the left compartment is  















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0

0

1.0

0Lc  mol L-1. 

The initial concentrations of the three neutral electrolytes in the right compartment is  

















1.0

0

0

0Rc  mol 

L-1. Note that the concentration of Na2SO4(2) is zero in both compartments. The matrix of diffusivities 

[D] at the arithmentic average concentrations 
   
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2
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  mol L-1 is calculated from the 

Nernst-Planck equations:   910

0.8030.073-0.094

0.1161.2470.237-

0.14-0.1051.897
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
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






D  m2 s-1. The transient development of 

concentrations of the ions in the Left and Right compartments (denoted by subscripts L and R) is 

described by the 3-dimensional matrix equation  
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(10-38)

The Sylvester theorem, detailed in Appendix A of Taylor and Krishna,1 is required for explicit 

determination of the 3-dimensional square matrix     







  2/1

4
D

t

z
erfQ . For the case of three distinct 

eigenvalues, 1 , 2 , and 3  of the 33 dimensional Fick diffusivity matrix  D , the Sylvester theorem 

yields  
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(10-39)
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where  I  is the identity matrix with elements ik , the Kronecker delta. The functions  if   are 

calculated from   





  2/1

4
ii

t

z
erff  . 

Figure 10-19(b) shows the transient development of concentrations in the Left and Right 

compartments. It is interesting to note the negative concentrations of the neutral electrolyte Na2SO4(2) 

are experienced in the right compartment; see further explanations in the paper by Hao and Leaist.162 

A precisely analogous situation arises for diffusion in aqueous solutions of mixed electrolytes 

LiCl/NaOH, there are four different ionic species Li+, Cl-, Na+, and OH-. Due to the electroneutrality 

0
1




n

i
ii zc  and no-current 0

11




i

n

i
iii

n

i
i uzcNz  constraints there are three independent fluxes, three 

independent concentrations, and three independent concentration gradients. Inter-diffusion in aqueous 

solutions of mixed electrolytes LiCl/NaOH engenders the flow of an additional neutral electrolyte NaCl, 

as evidenced in the experiments of Hao and Leaist.162  

Figure 10-20(a) presents calculations of the elements of the 33 dimensional Fick diffusivity matrix 

for the ternary electrolyte LiCl(1)/NaCl(2)/NaOH(3) system in the solvent (water) fixed reference 

frame, using equations (10-32) for the Fick diffusivities in the corresponding ionic system, with three 

independent ionic species. These elements can be compared with the experimental data presented in 

Figure 3 of  Hao and Leaist.162 Note, however, the experimental data in Figure 3 of  Hao and Leaist162 

are for values in the volume-averaged reference velocity frame; consequently, the agreement with  

Figure 10-20(a) is not perfect.  

Consider inter-diffusion of LiCl(1)/NaCl(2)/NaOH(3) mixtures between two compartments. The 

initial concentrations of the three neutral electrolytes in the left compartment is  



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


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The initial concentrations of the three neutral electrolytes in the right compartment is  
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L-1. Note that the concentration of NaCl(2) is zero in both compartments. The matrix of diffusivities [D] 

at the arithmentic average concentrations, 
   
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
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



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





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2
00 RL cc

  mol L-1 , is calculated from the 

Nernst-Planck equations:   910

3.1270.381-0.547-

1.249-1.8120.686

0.420.0741.137
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














D  m2 s-1. The transient development of 

concentrations of the ions in the Left and Right compartments (denoted by subscripts L and R) is 

described by the 3-dimensional matrix equation (10-38). 

Figure 10-20(b) shows the transient development of concentrations in the Left and Right 

compartments. It is interesting to note the negative concentrations of the neutral electrolyte NaCl(2) are 

experienced in the left compartment; see further explanations in the paper by Hao and Leaist.162 

10.15 Fick diffusivity matrix for LiCl/KCl/H2O solutions 

Figure 10-21(a,b,c,d) shows the experimental data, as reported in Table 3 of Leaist and Kanakos163 for 

the elements of the Fick diffusivity matrix 
i

VV

VV

DD

DD









2221

1211 , in the volume-averaged reference velocity 

frame, for mixtures of aqueous electrolytes LiCl (1), and KCl (2) at 298.15 K. The total molar 

concentration of the mixture KClLiCl cc   is (a) 0.5 mol L-1,  (b) 1 mol L-1,  (c) 2 mol L-1, and (d) 3 mol 

L-1,  The x-axis represents the fraction  KClLiClLiCl ccc  . The x-axis represents the fraction 

 KClLiClLiCl ccc  .The experimental data are for the volume averaged reference velocity frame 

ii
i

i
V uVcu 




2

1

 where iV  is the partial molar volume of species i in the mixture.  

We number the ionic species as follows: 1=Li+; 2=K+; 3=Cl-; z1= 1, z2= 1, z3= -1. The ionic diffusivities 

are 9 9 9
1 2 31.03 10 ; 1.957 10 ; 2.033 10Ð Ð Ð         m2 s-1. The ionic concentrations ci can be related 

to the concentrations of the neutral electrolytes cLiCl and cKCl:
 

1 2 3; ;LiCl KCl LiCl KClc c c c c c c    . 
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The fluxes of the neutral electrolytes are relatable to the ionic fluxes as follows 

1 2;LiCl Li KCl KN N N N N N    .   

The expression for the Fick diffusivity matrix   11 12

21 22

D D
D

D D


 
 

 
, used in conjunction with the 

Nernst-Planck equations (10-32) for  D , yield diffusivities in the solvent (water = component 3) fixed 

reference velocity frame 
i

DD

DD









2221

1211 . To convert the Fick diffusivities to the volume-averaged 

reference velocity frame 
i

VV

VV

DD

DD









2221

1211  we use the transformation equation (10-37). The continuous solid 

lines in Figure 10-21(a,b,c,d) are the estimations, combining equations (10-32) and equation (10-37). 

We note that Nernst-Planck equations (10-32) provide estimates that are reasonably good when the 

total molar concenrations are lower than about 1 mol L-1.  At higher concentrations, thermodynamic 

non-ideality effects become increasingly important. The paper by Leaist and Kanakos163 provide further 

discussions on the thermodynamic non-ideality effects that need to be included for better agreement 

with experimental data. 

10.16 Taylor dispersion in LiCl/KCl/H2O solutions 

We now demonstrate the influence of diffusional coupling effects for the mixture of aqueous 

electrolytes LiCl (1), and KCl (2) at 298.15 K. In order to illustrate the consequences of diffusional 

coupling, we consider Taylor dispersion for laminar flow in a circular tube. Taylor dispersion in a 

binary solution is initiated by injecting a small volume V of solution containing solute at concentration 

c0 + c is injected into a carrier solution of concentration, c0. For laminar flow in a circular tube of 

length L, and radius R the concentration development following the (Dirac delta) -pulse injection is 
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(10-40)

Equation (10-40) can be generalized for a binary electrolyte solution by using 2-dimensional matrix 

notation  

       ctDfctc  ,)( 0

 
(10-41)

The Sylvester theorem, detailed in Appendix A of Taylor and Krishna,1 is required for explicit 

calculation of the 2-dimensional matrix   tDf , . For the case of distinct eigenvalues, 1  and 2  of the 

2-dimensional square matrix  D , the Sylvester theorem yields  
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Following, Chen and Leaist164 the Taylor dispersion calculations are for the following set of 

conditions: 

Length of tube, L = 2 m; 

Cross-sectional averaged velocity in tube, u = 0.0025 m s-1; 

Radius of tube, R = 0.4 mm 

The injected pulse volume is 6102 v  m3. 

The initial concentrations of electrolytes LiCl, KCl are 












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


75.0

25.0

20

10

c

c
 mol L-1.  

At the concentrations c10 =0.75 mol L-1, c20 =2.25 mol L-1, Chen and Leaist164 provide the values 

  910
87.159.0

09.023.1 







D  m2 s-1.  
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The eigenvalues of the matrix   910
87.159.0

09.023.1 

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
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D   are 9

2
9

1 1094.1;1016.1     m2 s-1. 

The excess concentrations in the pulse are 
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


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





0

05.0

2

1

c

c
 mol L-1, implying that there is no 

alteration in the concentration of KCl. 

Figure 10-22 shows the transient development of the excess concentrations 

       ctDfctc  ,)( 0 . The Gaussian peak characteristics of LiCl is the “normal” behavior of 

Taylor dispersion. However, we note that KCl experiences undershoots, and overshoots despite the fact 

that there is no alteration in the KCl concentration in the injected pulse. The dispersion of KCl is 

strongly influenced by the driving force of LiCl due to the  contribution of the off-diagonal element D21. 

10.17 Fick diffusivity matrix for HCl/NaOH/H2O solutions 

Leaist and Wiens165 have presented a detailed analysis of the Fick diffusivity matrix [D] for the 

mixture of aqueous electrolytes HCl (1), and NaOH (2) at 298.15 K. Their analysis includes the 

influence of thermodynamic non-idealities. We compare their model calculations with the estimations 

using the Nernst-Plank equations (10-32), that ignores thermodynamic non-idealities. The estimations of 

the elements of   11 12

21 22

D D
D

D D


 
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 
 are shown in Figure 10-23(a). 

The total molar concentration of the mixture NaOHHCl cc   = 0.05 mol L-1. The x-axis represents the 

fraction  NaOHHClHCl ccc  . In these calculations, we number the ionic species as follows: 

1=Cl-; 2=Na+; 3=H+; 4=OH-; z1= -1, z2= 1, z3= 1, z4= -1. The ionic diffusivities are 

9 9 9 9
1 2 3 22.03 10 ; 1.33 10 ; 9.31 10 5.3 10Ð Ð Ð Ð            m2 s-1. The fluxes of the neutral electrolytes 

are relatable to the ionic fluxes: 1 2;HCl Cl NaOH NaHN N N N N N    . 

The ionic concentrations of H+ and OH- are related by OHHOHHw ccK  . The value of the 

dissociation constant 1410wK  is taken from the literature. In mixed electrolyte solutions with excess 
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HCl, we have NaOHHClH ccc  . In mixed electrolyte solutions with excess NaOH, we have  

HClNaOHOH ccc  . Consequently, there is a discontinuity in the elements of [D] when the 

concentrations of the two neutral electrolytes are equal; see Figure 10-23(a). 

Figure 10-23(b) presents the calculations of the elements of the Fick diffusivity matrix [D] including 

the influence of thermodynamic non-idealities, following the procedure as outlined in the Appendix to 

the paper by Leaist and Wiens.165 The inclusion of thermodynamic non-idealities does not have a 

significant influence on the values of the elements of   11 12

21 22

D D
D

D D


 
 

   
because the total molar 

concentration of the system is only 0.05 mol L-1. 

In order to highlight the influence of coupling effects in ionic diffusion, we consider transient inter-

diffusion of HCl (component 1) and NaOH (component 2) between between upper and lower 

compartments of a diaphragm cell as shown in the schematic in Figure 10-24(a). The experimental data 

corresponding to a set of 3 experiments has been reported in the paper by Leaist and Wiens.165 We 

simulate one of these set of experiments in which the upper compartment initially contains the aqueous 

electrolyte HCl (1) with a molar concentration of 0.025 mol L-1 and the lower compartment initiually 

contains aqueous NaOH (2) with a molar concentration of 0.075 mol L-1. The initial driving forces for 

inter-diaphragm transport of HCl (1) and NaOH (2) are respectively, 075.0;025.0 2010  cc  where 

ic  is the concentration difference between the upper and lower compartments. The transient 

equilibration process is described by the two-dimensional matrix expression      0exp ctDc   , 

where  is the cell constant. As t ,   )0(c , and the concentrations of each electrolyte in the top 

and bottom compartments will be identical. The value of the integral average Fick diffusivity matrix for 

these set of conditions is provided in Table 2 of Leaist and Wiens:165    910
19.283.0

68.059.2 










D  m2 

s-1. The Sylvester theorem, detailed in Appendix A of Taylor and Krishna,1 is required for explicit 
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calculation of   tDexp . For the case of distinct eigenvalues, 1  and 2  of the 2-dimensional square 

matrix  D , the Sylvester theorem yields 
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The eigenvalues of the matrix   910
19.283.0

68.059.2 










D  are 9

2
9

1 10613.1;10167.3     m2 

s-1. 

The transient approach to equilibrium of the concentration differences of HCl and NaOH are shown 

by the red lines in Figure 10-24(b,c). It is interesting to note a pronounced undershoot in the 

equilibration of HCl. This undershoot signifies the phenomenon of uphill diffusion, as explained by 

Leaist and Wiens.165 Uphill diffusion is a common occurrence in coupled diffusion processes; see the 

papers by Krishna for general background to uphill diffusion.99, 166, 167 The blue lines in Figure 

10-24(b,c). represent correspond calculations for the transient uncoupled equilibration process in which 

ionic effects are ignored and each of the electrolytes HCl and NaOH are assumed to transfer at the 

diffusivities of the neutral electrolytes 99 1012.2;10333.3   NaOHHCl DD  m2 s-1.  For uncoupled 

diffusion, there is no undershoot in the equilibration of HCl. 

The enhancement in the equilibration of HCl due to counter-diffusion of NaOH has important 

consequence for gas absorption processes, as discussed hereunder. 

10.18 Ion diffusion and rapid reaction of HCl and NaOH 

Many industrial processes involve the absorption, and subsequent reaction, of dissolved gases into 

aqueous solutions. For example, absorption of gases into aqueous solutions is an important industrial 

process for removal of pollutants such as SO2, NH3, CO2, and H2S from gaseous streams. The general 

mechanism of simultaneous mass transfer and chemical reaction was elucidated by S. Hatta in 1928. 

The reader is referred to Chapter 23 of Levenspiel168 for background information on mass transfer with 

chemical reaction.  Consider the absorption of solute A from a bulk gas phase, into a solvent containing 
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the reactant B with which A reacts; see schematic in Figure 10-25(a). Let the concentration of the solute 

A at the gas/liquid interface be p mol L-1. The concentration of reactant B in the bulk liquid phase is q 

mol L-1. In the special case of a rapid irreversible reaction between A and B, the reaction occurs at a 

reaction plane at a distance x1 from the gas-liquid interface; at this reaction plane the concentrations of 

both A and B are zero. The overall rate of reaction is dictated entirely by diffusional considerations. A 

diffuses from the gas/liquid interface to the reaction plane due to the concentration gradient   10 xp , 

with diffusivity DA, and flux   10 xpDN AA  .  B diffuses from the bulk liquid to the reaction place 

as a result of the concentration gradient   20 xq , with diffusivity DB, and flux   20 xqDN BB  . 

The flux across the interface is     LBALBA xxNxNxqDpDN 21  . We may also write 

  LLBA
L xkpxNxN

p

Nx
 21  where kL is the effective phase mass transfer coefficient.  The product 











p

q
DDxk BALL  is the effective diffusivity for transfer.  This effective diffusivity is higher than the 

diffusivity of the reactant A.  Put another way, there is an enhancement to the interphase mass transfer 

process due to chemical reaction within the diffusion film of thickness xL.  With increasing values of 
p

q

, the reaction plane moves closer to the gas/liquid interface. 

In their classic paper, Sherwood and Wei169 have presented an analysis of the scenario in which the 

dissolved gas A and reactant B both undergo dissociation, partial or total dissociation, in the aqueous 

solution. For absorption of gaseous HCl into aqueous NaOH, both the reactants undergo complete 

dissociation in the aqueous phase, forming the ions -- Cl,Na,H,OH  .  The neutralization reaction is 

essentially represented by the reaction of the hydrogen ion with the hydroxyl ion OHOHH 2  . 

Due to the constraints of electro-neutrality 0
1




n

i
ii zc , and the no-current restriction 
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0
11

 


i

n

i
iii

n

i
i uzcNz , the diffusion of each of the four ions is strongly influenced by the transport of 

each of the partner ions in the solution. 

Sherwood and Wei169 used the Nernst-Planck equations to demonstrate the strong influence of 

diffusonal coupling effects on the transport of individual ions and the overall rate of absorption of HCl 

into aqueous NaOH. It is both illuminating, and instructive to reproduce the calculation results presented 

in their paper.  

Figure 10-25(b) presents a schematic of the ionic concentrations in the “double film” for absorption of 

HCl into aqueous NaOH; This schematic is essentially identical to that presented in Figure 1 of 

Sherwood and Wei.169 At the reaction plane, distance x1 from the gas-liquid interface, we have the 

instantaneous neutralization reaction OHOHH 2  .  At this plane, the concentrations of both H  

and -OH  must vanish.  Consequently, the concentrations of the partner ions Na  and -Cl  must equal 

each other at the reaction plane; this concentration is denoted as m. 

To the left of the reaction plane, we have the three ions -Cl,Na,H  . To the right of the reaction 

plane, we have the three ions -- Cl,Na,OH  . Due to rapid influx of H+ into the aqueous solution, C1- 

gets drawn into the liquid film in order to maintain electroneutrality. 

The transfer fluxes of each of the ions in either of these two zones is described by equation (10-26). 

The ionic diffusivities are 9999 10271.5;10023.2;10331.1;10317.9   OHClNaH ÐÐÐÐ  

m2 s-1. The ion concentrations in each of the two zones, left and right of the reaction plane, are taken to 

be the arithmetic average of the concentrations at either ends of the respective regions. There is no net 

transport of Na  across the gas liquid interface, and therefore its ionic flux must vanish in the region to 

the left of the reaction plane, i.e. 0Na N . Imposition of this condition results in the relation 
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pmm
pp

s 61.4
42

2
2

 . The condition 0Na N  also applies to the region towards the right of 

the reaction plane; imposition of this condition results in 1605.1 
n

q
nm . 

 The flux across the interface is     LOHHLOHH xxNxNxqÐpÐN 21   or 

  LLOHH
L xkpxNxN

p

Nx
 21  where kL is the effective phase mass transfer coefficient.  

Figure 10-26 presents a comparison of Nernst-Planck calculations for the parameter kLxL with those 

using the classic Hatta model, assuming that the reaction takes place between “neutral” HCl and 

“neutral” NaOH: 









p

q
DDxk NaOHHClLL  where diffusivities of the neutral molecules are, 

respectively, 99 1012.2;1032.3   NaOHHCl DD . The calculations presented in Figure 10-26 are 

precisely identical to those presented in Figure 2 of  Sherwood and Wei,169 albeit presented in SI units. 

The following summary of the results is provided by Sherwood and Wei:169 “the rapid diffusion of H+ 

and OH- ions in the presence of Na+ and C1- ions may lead to an absorption rate more than twice that 

predicted by the use of molecular diffusion concepts and the Hatta theory”.  

10.19 Ion diffusion and rapid reaction of HOAc and NaOH 

Sherwood and Wei169 have also presented an analysis of the scenario in which the dissolved gas A 

reacts with reactant B under conditions such that only B dissociates into ions; see Figure 10-27. This 

scenario is exemplified by the absorption of gaseous acetic acid (HOAc) into aqueous NaOH. HOAc 

remains practically undissociated, whereas NaOH and NaOAc undergoes complete dissociation, 

forming the ions -- OAc,Na,OH  . Sherwood and Wei169 used the Nernst-Planck equations to 

demonstrate the significant influence of electrostatic coupling effects on the transport of individual ions 

and the overall rate of absorption of HOAc into aqueous NaOH.  We shall reproduce the calculation 

results presented in their paper.  
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Figure 10-27(b) presents a schematic of the ionic concentrations in the “double film” for absorption of 

HOAc into aqueous NaOH; This schematic is essentially identical to that presented in Figure 3 of 

Sherwood and Wei.169 At the reaction plane, distance x1 from the gas-liquid interface, we have the 

instantaneous reaction -
2 OAcOHOHHOAc   . At this plane, the concentrations of both HOAc

H  and -OH  must vanish.  Consequently, the concentrations of the partner ions Na  and -OAc  must 

equal each other at the reaction plane; this concentration is denoted as m. 

To the left of the reaction plane, we have the diffusion of neutral molecules HOAc  and NaOAc . The 

transfer flux of HOAc  is   10 xpDN HOAcHOAc  . The diffusivity of neutral, undissociated HOAc  is  

910279.1 HOAcD  m2 s-1. 

To the right of the reaction plane, we have the three ions -- OAc,Na,OH  . -OH  is the most mobile of 

the ionic species, and the hydroxyl ion diffuses rapidly from the bulk aqueous solution to the reaction 

plan.   

The transfer fluxes of each of the ions on the right side of the reaction plane is described by by 

equation (10-26). The ionic diffusivities are 999 10271.5;10331.1;10091.1   OHNaOAc ÐÐÐ  m2 

s-1. 

The concentrations of each of the species to the right of the reaction plane are taken to be the 

arithmetic average of the concentrations at either ends of the respective regions. There is no net 

transport of Na  across the reaction plance, and therefore its ionic flux must vanish to the right of the 

reaction plane, i.e. 0Na N ; imposition of this condition results in 182.3 
n

q
nm . 

The flux across the interface is     LOHHOAcLOHHOAc xxNxNxqÐpÐN 21   or 

  LLOHHOAc
L xkpxNxN

p

Nx
 21  where kL is the effective phase mass transfer coefficient.  

Figure 10-28 presents a comparison of Nernst-Planck calculations for the parameter kLxL with those 

using the classic Hatta model, assuming that the reaction takes place between “neutral” HOAc and 
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“neutral” NaOH. 









p

q
DDxk NaOHHOAcLL  where diffusivities of the neutral molecules are, 

respectively, 99 1012.2;10279.1   NaOHHOAc DD . The calculations presented in Figure 10-28 are 

precisely identical to those presented in Figure 4 of  Sherwood and Wei,169 albeit presented in SI units. 

The rates of reaction including ionic diffusion are about a factor 2 higher than the estimations of the 

classic Hatta model. 

In many cases, the dissolved gas undergoes partial hydrolysis in the aqueous phase, e.g. 

  HHSOOHSO 322 ,   HHSOOHCO 322 .  Littel et al.170 have modelled the absorption of 

CO2 and H2S in alkanolamine  solutions, taking proper account of ionic diffusion effects and the Nernst-

Planck equations. 

10.20 Diffusion of SO2 in aqueous solutions 

Leaist171 has reported experimental data for diffusivity of SO2 in water; see Figure 10-29(a). 

Noteworthy is the decrease in the diffusivity of increasing concentration of the solute. The proper 

description of the diffusion of SO2 is described in the paper of Leaist.171 We retrace the various essential 

elements of the diffusion process. 

Firstly, we need to consider hydrolysis of SO2 in aqueous solutions and is present either as molecular 

2SO  or as bisulfite ion 
3HSO :   HHSOOHSO 322 . The degree of hydrolysis, , defined as, 

 cccc
c

c

cc

c
SOHSO

HSO

SOHSO

HSO  


 1;; 23
3

23

3 , can be calculated from 








 

1

22

2

3

2

3 c

c

cc
K

SO

HHSO

SO

HHSO
H  where the mean activity coefficient  is calculated from  

 
I

IA




1
ln   with A = 1.175, and ionic strength cI  . The hydrolysis constant 013.0HK  mol 

L-1 at 298.15 K. Figure 10-29(b) presents the calculations for the degree of hydrolysis as a function of 
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the concentration c of the solute.  At vanishingly small concentrations, the dissolved SO2 is almost 

entirely hydrolyzed; the degree of hydrolysis decreases with increasing solute concentration.  

Leaist171 has derived the following expression for the Fick diffusivity of aqueous SO2: 

  























  

ccRT

cD
DD SO ln

ln
1

2

2
;

2
1 2




  where 9
2 1077.1 SOD  m2 s-1 is the 

diffusivity of molecular SO2, and 
HHSO

HHSO

ÐÐ

ÐÐ
D




3

32
, can be estimated from the ionic diffusivities of 


3HSO  and H . 

Figure 10-29(c) shows the calculations for the thermodynamic correction factor, for two different 

scenarios: including or ignoring the correction for activity coefficients. Activity coefficient corrections 

are not significant for diffusion of SO2. 

The continuous solid lines in Figure 10-29(a) are the model estimations of the Fick diffusivity. At 

vanishingly small concentrations, 
HHSO

HHSO

ÐÐ

ÐÐ
DDc


 

3

32
;0 ; in dilute solutions where most of 

the dissolved gas is hydrolyzed, a sharp increase in the diffusivity of SO2 is a consequence of the 

exceptionally high mobility of H .  

10.21 Diffusion of Acetic Acid in aqueous solutions 

Leaist and Lyons172 has reported experimental data for diffusivity of acetic acid (HOAc) in water; see 

Figure 10-30(a). The analysis of the diffusion process is analogous to that of SO2, discussed in the 

foregoing section. 

HOAc undergoes dissociation in in aqueous solutions:   HOAcHOAc . The degree of 

dissociation, , can be calculated from 




 

1

22c
KD  where the mean activity coefficient  is determined 

from  
I

IA




1
ln   with A = 1.175, and ionic strength cI  . The dissociation constant 

510753.1 DK  mol L-1 at 298.15 K. Figure 10-30(b) presents the calculations for the degree of 
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dissociation as a function of the concentration c of the solute.  The degree of dissociation is significantly 

lower than the degree of hydrolysis of SO2 (cf. Figure 10-29(b).  Consequently, ion diffusion effects 

have a significantly lower prominence for HOAc; this manifests in a weak reduction in the Fick 

diffusivity value with increased concentration of solute. 

The expression for the Fick diffusivity of HOAc, presented by Leaist and Lyons172 is formally the 

same as for SO2: 

  























  

ccRT

cD
DD HOAc ln

ln
1

2

2
;

2
1




  where 910201.1 HOAcD  m2 s-1 is 

the diffusivity of molecular (undissociated) acetic acid, and 91095.1
2 

 



HOAc

HOAc

ÐÐ

ÐÐ
D  m2 s-1, is 

estimated from the ionic diffusivities of OAc   and H . 

Figure 10-30(c) shows the calculations for the thermodynamic correction factor, for two different 

scenarios: including or ignoring the correction for activity coefficients. Activity coefficient corrections 

are insignificant for diffusion of acetic acid because of the small degree of dissociation. 

10.22 Diffusion of SO2 in aqueous NaHSO3 solutions 

The removal of SO2 from gaseous streams by gas absorption in aqueous solutions is an important 

industrial process. In a previous section we had examined the diffusion of SO2 in aqueous solutions in 

order to demonstrate the importance of hydrolysis   HHSOOHSO 322  and inclusion of the 

proper description of ionic diffusion in the analysis. In this section we examine diffusion of SO2 in 

aqueous bisfulfite (NaHSO3) solutions.  The treatment here follows the model equations of Leaist,173 

and include thermodynamic non-ideality effects. Sodium bisulphite undergoes complete dissociation .

  NaHSONaHSO 33  The system consists of five species: SO2 (molecular), 
3HSO , H , Na , and 

OH2 .  

Figure 10-31(a) presents calculations of the elements of the Fick diffusivity matrix for the mixture of 

aqueous electrolytes SO2(1), and NaHSO3 (2) at 293.15 K. The x-axis represents the total molar 
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concentration of the mixture 32 NaHSOSO cc  . In these calculations, we take the fraction 

 322 NaHSOSOSO ccc   = 0.25. We note that the main coefficient D11 increases significantly as the total 

concentration molar concentration 32 NaHSOSO cc   is lowered. This is due to the increased degree of 

hydrolysis   HHSOOHSO 322  at low concentrations; this behavior is precisely analogous to that 

observed in Figure 10-29(a).  

For the calculations in Figure 10-31(b) we take the fraction  322 NaHSOSOSO ccc   = 0.75. We note that 

the main coefficient D11 is significantly lower than the corresponding values shown in Figure 10-31(a). 

We conclude that the coefficient D11 is higher in solutions that contain a higher proportion of the 

bisulfite eolution.  Ionic effects become increasingly significant at higher bisulfite concentrations.  In 

order to further underscore this point, Figure 10-32(a) presents calculations of the elements of the Fick 

diffusivity matrix [D] for the mixture of aqueous electrolytes SO2(1), and NaHSO3 (2) at 293.15 K with 

varying fractions  322 NaHSOSOSO ccc   for a total mixture concentration 32 NaHSOSO cc   = 0.001 mol L-1. 

We note that the main coefficient D11 progressively increases as the solution becomes increasingly 

dilute in SO2. Figure 10-32(b) compares  D11 with the diffusivity of molecular SO2, 
9

2 1045.1 SOD  

m2 s-1.  Due to ionic effects, there is about a five-fold increase in D11. Ionic diffusion effects need to be 

taken into consideration in the design of gas absorption processes in which the solute undergoes 

hydrolysis or dissociation. Littel et al.170 have modelled the absorption of CO2 and H2S in alkanolamine  

solutions, taking proper account of ionic diffusion effects and using the Nernst-Planck equations. 

In order to highlight the influence of coupling effects in ionic diffusion, we consider transient inter-

diffusion of SO2(1), and NaHSO3 (2) at 293.15 K between upper and lower compartments of a 

diaphragm cell  as shown in the schematic in Figure 10-33(a). We simulate a scenario in which the 

concentrations in the upper compartment are c10,up =0.01 mol L-1, c20,up =0.1 mol L-1. The initial 

concentrations in the bottom compartment are c10,bottom =0.001 mol L-1, c20,bottom =1 mol L-1. The 

transient equilibration of concentrations is described by the two-dimensional matrix expression 
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     0exp ctDc   , where  is the cell constant. The initial driving forces for inter-diaphragm 

transport are respectively,  11.0;001.001.0 2010  cc  where ic  is the concentration difference 

between the upper and lower compartments.  As t ,   )0(c , and the concentrations of each 

electrolyte in the top and bottom compartments will be identical.  The value of the Fick diffusivity 

matrix at the equilibrated composition is   910
021.1249.0

003827.0916.1 










D  m2 s-1. The Sylvester 

theorem, detailed in Appendix A of Taylor and Krishna,1 is required for explicit calculation of 

  tDexp . For the case of distinct eigenvalues, 1  and 2  of the 2-dimensional square matrix  D , 

the Sylvester theorem yields 
 

          
        

 12

1
2

21

2
1 expexpexp















ID

t
ID

ttD  (10-44)

The eigenvalues of the matrix   910
021.1249.0

003827.0916.1 










D  are 

9
2

9
1 1002.1;10917.1     m2 s-1. 

The transient approach to equilibrium  are shown by the red lines in Figure 10-33(b,c). It is interesting 

to note a slight undershoot in the equilibration of SO2. This undershoot signifies the phenomenon of 

uphill diffusion; see the papers by Krishna for general background to uphill diffusion.99, 166, 167  

The blue lines in Figure 10-33(b,c) represent correspond calculations for the transient uncoupled 

equilibration process in which ionic effects are ignored both components are assumed to transfer at the 

diffusivities of molecular SO2 
9

2 1045.1 SOD  m2 s-1 and neutral electrolyte 9
3 1019.1 NaHSOD m2 

s-1.  For uncoupled diffusion, there is no undershoot in the equilibration of SO2. 

A further important point to note is that the counter-diffusion of NaHSO3 serves to enhance the 

equilibration of SO2. 
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10.23 Diffusion in aqueous solutions of Na2SO4/K2SO4 

The process of purification by crystallization is important in the process industries.  By definition, 

crystallization processes operate under conditions close to supersaturation. As evidenced by the 

calculations presented in Figure 10-5, thermodynamic correction factors cannot be ignored; the will 

have a strong influence on diffusion fluxes and the kinetics of crystal growth. Using the data on 

diffusivities and activity coefficients provided in the paper by Louhi-Kultanen et al.153 we analyse 

diffusion in Na2SO4(1)/K2SO4(2)/H2O(3) mixtures under conditions relevant to crystallization 

processes.  

Firstly, we estimate the matrix of Fick diffusivities [D] for the ternary Na2SO4(1)/K2SO4(2)/H2O(3) 

mixture using the Nernst-Planck equations that ignore thermodynamic non-idealities. 

Towards this end, we number the ionic species as follows: 1=Na+; 2=K+; 3=SO4
--; z1= 1, z2= 1, z3= -1. 

The ionic diffusivities are 9
3

9
2

9
1 10065.1;10957.1;10334.1   ÐÐÐ  m2 s-1. The ionic 

molalities mi can be related to the molalities of the neutral electrolytes mNaCl, and mNa2SO4 

42423422421 ;2;2 SOKSONaSOKSONa cccmmmm   (10-45)

The fluxes of the neutral electrolytes Na2SO4(1) and K2SO4(2) are relatable to the ionic fluxes as 

follows  

2
;

2
2

42
1

42

N
N

N
N SOKSONa 

 
(10-46)

The Fick diffusivity matrix for neutral electrolytes can be estimated by combining equations (10-32) 

with equation (10-37) and invoking the equalities in equations (10-45), and (10-46).  

Let us calculate the fluxes for a set of conditions specified in Table 4 of Louhi-Kultanen et al.153  

The molalities of neutral electrolytes Na2SO4(1) and K2SO4(2) in the bulk solution are 

632.0;201.0 2010  mm  mol kg-1. 

The molalities of neutral electrolytes Na2SO4(1) and K2SO4(2) at the crystal surface are 

752.0;202.0 21   mm  mol kg-1.  
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At the arithmetic average molalities, the Fick diffusivity matrix is   910
164.1103.0

068.0314.1 










D  m2 

s-1. In view of equations (10-45), and (10-46), the same values of the Fick diffusivity matrix for ionic 

species, calculated from equations (10-32), also applies for the binary Na2SO4(1)/K2SO4(2) mixture of 

neutral electrolytes. Ignoring thermodynamic correction factors, and assuming an effective film 

thickness  61010   m, the fluxes of Na2SO4(1) and K2SO4(2) are 
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account the correction for the matrix thermodynamic correction factors   




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, as 

calculated in an earlier section, we can re-calculate the fluxes 
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mol m-2 s-1. We note that the flux of Na2SO4(1) is significantly higher than for the case in which 

thermodynamic corrections are ignored. This is because of the coupling with the driving force of 

K2SO4.  

We conclude that thermodynamic corrections are of significant importance for describing the kinetics 

of crystal growth, and in particular the transport of impurities. 

10.24 Transient permeation across cation exchange membranes 

Yang and Pintauro174 report an interesting set of experimental data for transient transport of H+, Na+, 

and Cs+ ions across a Nafion cation exchange membrane separating the acid and salt compartments; see 

Figure 10-34(a). In the reported experiments, the initial concentrations are: 

Left: salt compartment:  Na2SO4 = 0.125 mol L-1 ; Cs2SO4 = 0.0054 mol L-1 

Right: acid compartment:  H2SO4 = 0.125 mol L-1  
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The H+ ions transfer from the acid to the salt compartment. Both Na+, and Cs+ ions transfer from the 

salt to the acid compartment. The SO4
2- ions cannot cross the membrane. Due to the significantly higher 

mobility of the H+ ions, there is a significant influence of the diffusion potential 
dz

d
 that tends to 

influence the mobility of the Na+, and Cs+ ions during the initial stages of the transience. Since the 

concentration driving force of Cs+ ions is very small, the initial transience is strongly dictated by the 

diffusion potential 
dz

d
; this results in the observed overshoot in the transient equilibration of Cs+. Yang 

and Pintauro174 present a detailed simulation model for the experiments. For our purposes here, we wish 

to demonstrate that the overshoot in the transient equilibration of Cs+ ions can be rationalized by a 

simplified analytic solution of the Nernst-Planck equations using matrix calculus. 

Assuming total ionization, the total ionic concentrations in the left and right compartments are (1 = 

H+, 2 = Na+; 3 = Cs+, 4 = SO4
2-) 

125.0;0.0;0.0;25.0

1304.0;0108.0;25.0;0

04030201

04030201




RRRR

LLLL

cccc

cccc

 mol L-1  

The equilibrated ionic concentrations are the arithmetic averages: 

0054.0;125.0;125.0 221  eqeqeq ccc  mol L-1. 

The cation exchange membrane prevents the transport of SO4
2- ions; and therefore the compositions in 

the left and right compartments of SO4
2- ions will remain 0.1304 and 0.125, respectively. In order to 

take account of the exclusion of SO4
2- ions from the matrix of the cation exchange membrane, we need 

to impose the additional constraint for the (n-1)th species, i.e. the 4th species.   

01 nN  (10-47)

This implies that the no-current relation must simplify to  
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The expression for the electrostatic potential gradient also reduces to   
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The (n-2) non-zero fluxes are  
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We define a (n-2)(n-2) dimensional square matrix  
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(10-51)

The explicit expression for the (n-2) non-zero fluxes can be written in (n-2) dimensional matrix notation 

     
dz

cd
DN 

 
(10-52)

The transient equilibration process in the left and right compartments is described by the (n-2) 

dimensional matrix equations      eqLeqL cctDcc  0exp   where the vector 

   




















0054.0

125.0

125.0

2
00 RL

eq

cc
c , and  is the cell constant. The 33 dimensional square matrix 

  tDexp  quantifies the transient approach to equilibrium. In our calculations, we take 4102  

m-2, that is representative of the experimental set-up. The Sylvester theorem, detailed in Appendix A of 

Taylor and Krishna,1 is required for explicit determination of   tDQ  exp][ . Equation (10-51) is 

used to determine the Fick diffusivity matrix [D].  

For simulations of the transient equilibration process, we use the ionic diffusivities provided in Table 

3 of  Yang and Pintauro174 (1 = H+, 2 = Na+; 3 = Cs+, 4 = SO4
2-)   

9
4

9
3

9
2

9
1 1033.1;1006.2;1033.1;103.9   ÐÐÐÐ  m2 s-1.  
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The elements of the matrix [D] are determined at the average concentration in the left and right 

compartments at any instant of time.  In other words, the solution to the matrix equation 

     eqLeqL cctDcc  0exp   is carried out in time-discretized form. By choosing sufficiently 

small time intervals, a good accuracy in the calculations is achieved. The simulation results for transient 

approach to equilibration are shown in Figure 10-34(b). Our simple model is able to capture the 

overshoot in the transient equilibration of Cs+ ions. The physical reasoning for the overshoot is as 

follows. The more mobile H+ ions vacate the right (acid) compartment rapidly. This creates a rapid 

reduction in the positive charge in the right compartment. The SO4
2- are non-diffusing and cannot 

participate in redressing this charge imbalance. Electroneutrality is restored by the enhanced influx of 

Na+, and Cs+ from the salt compartment.  Consequently, both Na+, and Cs+ get accelerated by 

electrostatic effects. The influence of the second member of the right of equation (10-51) is relatively 

large for Cs+ because its concentration driving force is small.  

The reasonably good match between model simulations and experiments is also indicative of the fact 

that the transmembrane permeation fluxes are dictated by diffusion in the electrolyte solutions in either 

compartment. 

In Figure 10-35 the equilibration trajectories followed by H+, Na+, and Cs+ in the salt and acid 

compartments, are plotted in composition space. In Figure 10-35(a), the left compartment contains 

Na2SO4 and Cs2SO4 and the right compartment contains H2SO4. The undershoot and overshoot in Cs+ 

correspond to the Yang-Pintauro experimental observations.  

We also carried out simulations for a set of different concentrations in the left and right 

compartments. The results are presented in Figure 10-35(b) for the scenario in which the left 

compartment contains Na2SO4 and the right compartment contains H2SO4 and Cs2SO4; in this case no 

overshoot or undershoot is experienced by Cs++ because it diffuses in the same direction as H+. 
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Transient overshoots for Cs+/Na+ permeation across a cation-exchange membrane have been reported 

by Sodaye et al.175 These overshoots are most likely caused by a combination of electrostatic and  

thermodynamic coupling effects. 

10.25 Uphill diffusion and transient overshoots in ion-exchange particles 

Ion exchange is a sorption separation process that is carried out in fixed bed units in a transient 

manner. Most commonly, the ion-exchange resins are solid gels, consisting of a polymeric matrix 

produced by co-polymerization of styrene and a cross-linking agent, divinylbenzene, to produce a three-

dimensional cross-linked structure with ionic functional groups attached to the polymeric network.50 As 

illustration, Figure 10-36 shows a schematic showing an ion exchanger (IEX) particle with fixed HSO3
- 

charges. The liquid phase surrounding the particles consists of a bulk electrolyte solution e,g, HCl and 

NaCl. The electrolytes are fully ionized and the bulk liquid phase contains H+, Na+, Cl- ions along with 

unionized water molecules. The cation exchange particle is negative charged and disallows the influx of 

Cl- ions; only the positively charged cations, called counter-ions, are allowed to enter or leave the 

particle. If the styrene-divinylbenzene copolymer is chlormethylated and aminated, a strong-base, 

anionic exchange resin is formed that contain fixed positive charges, RN+.50  

We focus our attention to forward/reverse exchanges in which the diffusion resistance is within the 

particle. The IEX particle matrix consists of fixed negative charges. Let us assume that the total 

concentration of negative charges inside the matrix is cfixed, expressed say as equivalent (mole) per 

volume of particle. Typically, the concentration of fixed negative charges is in the range of 1 to 4 equiv 

L-1;64 this value is considerably higher than the molar concentrations of ions in the bulk electrolyte 

solutions surrounding the particle. The concentration of counter ions within the particle must balance 

cfixed  and therefore we have fixed

m

i
ii ccz 

1

. The quantity 

i
fixed

ii X
c

cz


  
(10-53)
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is the ionic equivalent fraction. The ionic equivalent fractions of all the counter ions sum to unity 

1
1




m

i
iX .  

For HCl/NaCl exchange, the negative chloride ion is excluded from the particle. The fluxes of H+(1), 

and Na+(2) are   
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There is no flow of current  

02211  NzNz  (10-55)

Combining equations (10-54), and (10-55) allows the determination of the electrostatatic potential 

gradient engendered by intra-particle diffusion  
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Introducing equation (10-56) into equation (10-54) yields the flux relations 
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For electro-neutrality:  

02
2

1
1 

dz

dc
z

dz
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(10-58)

In view of equation (10-58), we can simplify equations (10-57)   

dz

dc
DN

dz

dc
DN effeff

2
,22

1
,11 ; 

 
(10-59)

where the effective ionic diffusivities are 
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Equation (10-60) is a remarkable result because the limiting values are: 
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;0

ÐDc
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eff

eff
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(10-61)

In other words, the intra-particle effective diffusivity corresponds to the diffusivity of the ion that is 

present in the smaller quantity.  Helfferich, perhaps the most influential researcher, in ion exchange has 

termed this the “minority rule”. To quote Helfferich145 binary interdiffusion is not a democratic process 

but, in the parlance of the activist 1960’s, is ruled by a participating minority! 

For the exchange of ions with equal charge numbers such as for H+(1)/Na+(2), in which 21 zz  , we 

obtain  
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(10-62)

We can also extend the foregoing analysis to diffusion of m different counter ions within the IEX 

particle. Equation (10-54) is extended as follows  
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(10-63)

For no flow of current, the electrostatic diffusion potential gradient that is engendered by ion diffusion 

is  
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Electro-neutrality demands  
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(10-65)

so we can eliminate the concentration gradient of the mth component and write  
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Combining equations (10-63), and (10-66)) we derive  
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We may cast equation (10-67) into (m-1)-dimensional matrix notation 
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(10-68)

where the elements of the (m-1)(m-1) dimensional square matrix [D] are  
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(10-69)

For the case in which we have 3 counter-ions within the IEX particle, m = 3, equation degenerates 

(10-58) to yield  
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We may cast equation (10-70) into 2-dimensional matrix notation  
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(10-71)

in which the 22 dimensional square matrix [D] has the elements  
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It is noteworthy that Yoshida and Kataoka176 and Jones and Carta177 have set up in a different manner 

using the gradients of the ionic equivalent fractions, 
dz

dX k  as driving forces, where  k k
k

fixed

z c
X

c
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are the ion equivalent fractions  
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The elements of the (m-1)(m-1) dimensional square matrix  effD is defined by   
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(10-74)

For the case in which we have 3 counter-ions within the IEX particle, m = 3, and equation (10-44) yields 
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 (10-75)

For the special case m=2, we have only one independent flux, and equations (10-73), and (10-74) 

degenerate to yield  
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(10-76)

The corrective action of the induced potential gradient 
dz

d
 is mainly directed against the species that is 

present in the higher equivalent fraction iX .  

For the limiting scenario 01 X , Equation (10-76) yields the minority rule  
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(10-77)

For transient unary uptake within a spherical IEX particle of radius rc, the radial distribution of ion 

concentrations, ci, is obtained from a solution of a set of differential equations describing the uptake 
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Combining equations (10-68), and (10-78)) we obtain the following differential equation describing the 

transient uptake   
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where the elements of the (m-1)(m-1) dimensional square matrix [D]  are given by equation (10-69). 

Written in terms of the ionic mole fractions, equations (10-79) take the form  
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where the elements of the (m-1)(m-1) dimensional square matrix  effD  are given by equation 

(10-74). 
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At any time t, during the transient approach to thermodynamic equilibrium, the spatially averaged 

concentration within the particle of radius rc is obtained by integration of the radial loading profile 

drrtrc
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(10-81)

An analytical solution to equation (10-79) is only possible for the special case in which the matrix [D], 

defined by equation (10-69) can be considered constant for the range of concentrations encountered 

within the particle. In our simulations, we calculate the matrix [D] at the spatially averaged value )(txi , 

i.e. the diffusivity matrix is constantly updated in the time-discretized calculations. 

Let us consider a particle that has the uniform concentrations (c0).  At time t = 0, the external surface 

is brought into contact with the bulk electrolyte solution with a different composition. The surface 

concentrations (cr=rc) is maintained for the entire duration of the equilibration process; this concentration 

is dictated by the ion exchange equilibrium (for further details see Wesselingh and Krishna64).  

The expression for fractional departure from equilibrium is given by the matrix equation 
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(10-82)

Using time discretization, typically over a few thousand steps, the equation (10-82)can be written as 

     rcrrcrjj cccQtc   01)(  where  1jQ  is evaluated using the concentrations at the time step tj-1, 

 )( 1jtc  that are known from the previous time step. The numerical procedure is easily implemented in 

MathCad 15. The same procedure applies to the determination of the spatial-averaged ionic equivalent 

fractions,  )( jtX : 
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The accuracy of our methodology for determination of the spatial-averaged concentrations  )( jtX  was 

established by comparison with the results of Hwang and Helfferich;178 see Supporting Information of 

our earlier paper.167 
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We shall demonstrate the possibility of uphill diffusion and transient overshoots in ionic concentration 

during transient uptake of ternary counter-ions within cation exchanger particles.  

The intra-particle diffusion is described by the 22 dimensional square matrix  effD  with elements 

given by equation (10-75) The transient uptake of the three cations is described by a two-dimensional 

matrix equation (10-83) for the fractional departure from equilibrium; the matrix [Q] quantifies the 

departure from equilibrium. The Sylvester theorem, detailed in Appendix A of Taylor and Krishna,1 is 

required for explicit calculation of the elements of [Q]. Using time discretization, typically over a few 

thousand steps, the equation equation (10-83) can be written as      rcrrcrjj XXXQtX   01)(  

where  1jQ  is evaluated using the equivalent fractions at the time step tj-1:  )( 1jtX  that are known 

from the previous time step.  

The experimental data of Yoshida and Kataoka176 for transient uptake of H+, Na+, and Zn++ within 

DOWEX 50WX10 cation exchangers provide experimental confirmation of intra-particle overshoots 

and asymmetries in the forward/reverse ion exchanges. The ion exchanger particle is DOWEX 50WX10 

with fixed HSO3
- charges. The cation exchange particle prevents the influx of anions from the bulk 

electrolyte surrounding the particle. The zero-flux constraint of Equation (10-47) applies to anions. The 

input data for the ionic diffusivities inside the pores of the ion exchanger are taken from Table III of 

Yoshida and Kataoka176 12
3

10
2

9
1 1062.9;101.1;1065.1   ÐÐÐ  m2 s-1. The ion 

diffusivity of Zn2+ is about an order of magnitude lower than that of H+, and Na+. 

We simulated two experimental data sets by using the matrix equation (10-83) to quantify the 

transient uptake of H+, Na+, and Zn++. In our simulations we used a particle radius rc = 0.4 mm, an 

average value of the sizes reported in Table II of Yoshida and Kataoka.176  

We first investigate the uptake of H+(1)/Na+(2)/Zn2+(3) in IEX particle, as reported in Figure 6 of 

Yoshida and Kataoka.176 Initially the particle is loaded with Na+ and is replaced by H+/Zn2+ 

 Na with loadedinitially  particle;0;1;0 0,330,220,11

fixedfixedfixed c

cz

c

cz

c

cz
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The surface of the particle in contact with bulk electrolytes such that the surface ion fractions are 

maintained at 

5.0;0.0.;0 ,32,22,11  

fixed

rcr

fixed

rcr

fixed

rcr

c

cz

c

cz

c

cz

 

The continuous solid lines in Figure 10-37(a) a shos the results of the simulation when the particle is 

loaded with Na+ and is replaced H+/Zn++. Also shown in Figure 10-37(a) are the experimental data 

(shown by the symbols) from Figure 6 of Yoshida and Kataoka176 for this scenario. There is good 

agreement between the experimental data and the simulated uptakes; the transient overshoot in the 

uptake of H+ that signals uphill diffusion is properly captured by the simulations. 

Next we investigate the uptake of H+(1)/Na+(2)/Zn2+(3) in IEX particle, as reported in Figure 9 of 

Yoshida and Kataoka.176 Initially the particle is loaded with H+/Zn2+ and is replaced by Na+ 

 20,330,220,11 /ZnH with loadedinitially  particle;5.0;0;5.0
fixedfixedfixed c

cz

c

cz

c

cz

  

The surface of the particle in contact with bulk electrolytes such that the surface ion fractions are 

maintained at 

0;1;0 ,32,22,11  

fixed

rcr

fixed

rcr

fixed

rcr

c

cz

c

cz

c

cz

 

The continuous solid lines in Figure 10-37(b) shows the simulations for the scenario in which the 

particle is loaded with H+/Zn++ and is replaced Na+. No overshoots or undershoots are experienced in 

this scenario. Also shown in Figure 10-37(b) are the experimental data in Figure 9 of Yoshida and 

Kataoka176 for this scenario; there is good agreement between simulations and experiment. Figure 

10-37(c)  compares the diffusion equilibration trajectories in composition space. The two scenarios 

follow completely different paths in composition space. 
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10.26 List of Figures for Diffusion of Ionic Species 

 

Figure 10-1.  (a) Experimental data of Moggia and Bianco148 on the mean activity coefficient of 

aqueous solutions of neutral electrolyte NaCl at 298.15 K. (b) Experimental data of Ananthaswamy and 

Atkinson150 on the mean activity coefficient of aqueous solutions of neutral electrolyte CaCl2 at 298.15 

K. The dashed lines represent the calculations of the Pitzer-Mayorga149 activity coefficient model.  
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Figure 10-2. (a) Calculations of Rard and Miller151 for the thermodynamic correction factor  for 

aqueous solutions of neutral electrolyte NaCl at 298.15 K. (b) Calculations of Rard and Miller151 for the 

thermodynamic correction factor  for aqueous solutions of neutral electrolyte CaCl2 at 298.15 K. 
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Figure 10-3. (a) Experimental data of Rard and Miller,151 and Chang and Myerson152 for Fick 

diffusivity D of aqueous solutions of neutral electrolyte NaCl at 298.15 K. (b) Experimental data of 

Rard and Miller,151 for Fick diffusivity D of aqueous solutions of neutral electrolyte CaCl2 at 298.15 K. 
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Figure 10-4. (a, b, c) Thermodynamics for KDP/Urea/H2O system at 303.15 K, calculated using the 

parameters provided by Enqvist et al.155 The molality of urea is maintained constant at 5 mol kg-1. (a) 

Activity coefficient, , of KDP. (b) Thermodynamic correction factor, . (c) Supersaturation, activity 

based , as a function of the molality of KDP in solution. (d) Experimental data of Enqvist et al.155 on 

growth rate of KDP crystals as a function of the supersaturation, . 
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Figure 10-5. (a) Calculations of the elements of the the 2-dimensional matrix of thermodynamic 

factors,   , Na2SO4(1)/K2SO4(2)/H2O(3) mixtures at 298.15 K. The ratio of the molalities, m1/m2, of 

Na2SO4(1) and K2SO4(2) is held constant at the value of 0.25. (b) Ratio of the elements 
11

12




 and  
22

21




. 

The input data for the calculations are provided in the by paper by Louhi-Kultanen et al.153  
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Figure 10-6. Co-diffusion of H+, Ba++, and Cl- between two well-mixed compartments.  Experimental 

data of Vinograd and McBain157 for ionic diffusivities of H+, Ba++, and Cl- in a two-compartment 

diffusion cell.  The continuous solid lines are the simulations based on the Nernst-Planck equations. 
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Figure 10-8. Experimental data (symbols) for effective ionic diffusivities of  H+, Ca++, and Cl- in 

HCl/CaCl2/H2O aqueous solutions, scanned from Figure 7 of the paper of Nakagaki and Kitagawa158. 

The x-axis is the ratio 




 CaCaHH

CaCa

czcz

cz
under conditions that the total cation concentration is 

constant in the diffusion layer. The continuous solid lines are the calculations using the Nernst-Planck 

equations. 
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Figure 10-9. Experimental data for effective ionic diffusivities of  H+, Ca++, and Cl- in HCl/CaCl2/H2O 

aqueous solutions, reported in Table 3 of the paper of Nakagaki and Kitagawa158 for three different sets 

(Examples 1, 2, and 3) of  initial molar concentrations of the two electrolytes in the top and bottom 

compartments are as specified.  
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Figure 10-10. Inter-diffusion of HCl(1)/CaCl2(2)/H2O between top and bottom, well-stirred 

compartments separated by a diaphragm. The initial molar concentrations of the two electrolytes in the 

top and bottom compartments correspond to Example 1 in Table 3 of Nakagaki and Kitagawa.158 (a, b) 

Transient approach to equilibrium of the concentrations of H+, Ca++, and Cl- in the top and bottom 

compartments. (c) The equilibration trajectory plotted in concentration space. 
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Figure 10-11. Inter-diffusion of HCl(1)/CaCl2(2)/H2O between top and bottom, well-stirred 

compartments separated by a diaphragm. The initial molar concentrations of the two electrolytes in the 

top and bottom compartments correspond to Example 2 in Table 3 of Nakagaki and Kitagawa.158 (a, b) 

Transient approach to equilibrium of the concentrations of H+, Ca++, and Cl- in the top and bottom 

compartments. (c) The equilibration trajectory plotted in concentration space. 
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Figure 10-12. Inter-diffusion of HCl(1)/CaCl2(2)/H2O between top and bottom, well-stirred 

compartments separated by a diaphragm. The initial molar concentrations of the two electrolytes in the 

top and bottom compartments correspond to Example 3 in Table 3 of Nakagaki and Kitagawa.158 (a, b) 

Transient approach to equilibrium of the concentrations of H+, Ca++, and Cl- in the top and bottom 

compartments. (c) The equilibration trajectory plotted in concentration space. 
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Figure 10-13.  (a) Experimental data of Rard et al.159 for elements of the Fick diffusivity matrix, [D],  

in the solvent fixed reference frame, for the mixture of aqueous electrolytes NaCl (1), and Na2SO4 (2) at 

298.15 K. The total molar concentration of the mixture 42SONaNaCl cc  = 0.5 mol L-1. The x-axis 

represents the fraction  42SONaNaClNaCl ccc  . (b) Calculations of the elements of the Fick diffusivity 

matrix [D] using the Nernst-Planck equations for dilute solutions. 
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Figure 10-14. (a) Experimental data (symbols), taken from Table 1 of Leaist and Curtis,160 for the 

elements of the Fick diffusivity matrix [D] for the mixture of aqueous electrolytes CaCl2 (1), and HCl 

(2) at 298.15 K. The continuous solid lines are the estimations using the Nernst-Planck equations. The 

total molar concentration of the mixture HClCaCl cc 2  = 0.1 mol L-1. The x-axis represents the fraction 

 HClCaClCaCl ccc 22 . (b) Contributions of the electrostatic leash to each of the four elements of [D]. 
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Figure 10-15. (a) Experimental data (symbols), taken from Table 1 of Leaist and Curtis,160 for the 

elements of the Fick diffusivity matrix [D] for the mixture of aqueous electrolytes K2SO4 (1), and KOH 

(2) at 298.15 K. The continuous solid lines are the simulations using the Nernst-Planck equations. The 

total molar concentration of the mixture KOHSOK cc 42  = 0.1 mol L-1. The x-axis represents the fraction 

 KOHSOKSOK ccc 4242 . (b) Contributions of the electrostatic leash to each of the four elements of [D]. 
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Figure 10-16. (a) Experimental data (symbols), taken from Table 1 of Leaist and Curtis,160 for the 

elements of the Fick diffusivity matrix [D] for the mixture of aqueous electrolytes Li2SO4 (1), and LiOH 

(2) at 298.15 K. The continuous solid lines are the estimations using the Nernst-Planck equations. The 

total molar concentration of the mixture LiOHSOLi cc 42  = 0.1 mol L-1. The x-axis represents the fraction 

 LiOHSOLiSOLi ccc 4242 . (b) Contributions of the electrostatic leash to each of the four elements of [D]. 
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Figure 10-17. Experimental data (symbols), scanned from Figure 2 of Leaist and Al-Dhaher161 for the 

elements of the Fick diffusivity matrix [DV], in the volume-averaged reference velocity frame, for 

equimolar mixture of aqueous electrolytes NaCl (1), and MgCl2 (2) at 298.15 K. The continuous solid 

lines are the estimations based on the Nernst-Planck equations. The x-axis represents the square root of 

the total mixture concentration 2MgClNaCl cc  .  
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Figure 10-18. Experimental data (symbols), scanned from Figure 7 of Leaist and Al-Dhaher161 for the 

elements of the Fick diffusivity matrix [DV], in the volume-averaged reference velocity frame, for 

equimolar mixture of aqueous electrolytes NaCl (1), and SrCl2 (2) at 298.15 K. The continuous solid 

lines are the estimations using the Nernst-Planck equations. The x-axis represents the square root of the 

total mixture concentration 2SrClNaCl cc  . It is to be noted that the labels D12 and D21 appear to have 

been interchanged in Figure 7 of Leaist and Al-Dhaher.161 
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Figure 10-19.  (a) Calculations of the elements of the 33 dimensional Fick diffusivity matrix for the 

ternary electrolyte NaCl(1)/Na2SO4(2)/MgSO4(3) system in the solvent (water) fixed reference frame. 

(b) Transient inter-diffusion in NaCl(1)/Na2SO4(2)/MgSO4(3) mixtures between two slabs (L and R). 

The reference diffusivity Dref = 10-9 m2 s-1. 
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Figure 10-20.  (a) Calculations of the elements of the 33 dimensional Fick diffusivity matrix for the 

ternary electrolyte LiCl(1)/NaCl(2)/NaOH(3) system in the solvent (water) fixed reference frame. (b) 

Transient inter-diffusion in LiCl(1)/NaCl(2)/NaOH(3) mixtures between two slabs (L and R). The 

reference diffusivity Dref = 10-9 m2 s-1. 
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Figure 10-21. (a, b, c, d) Experimental data, as reported in Table 3 of Leaist and Kanakos163 for the 

elements of the Fick diffusivity matrix [DV], in the volume-averaged reference velocity frame, for 

mixtures of aqueous electrolytes LiCl (1), and KCl (2) at 298.15 K. The continuous solid lines are the 

estimations using the Nernst-Planck equations. The total molar concentration of the mixture KClLiCl cc   

is (a) 0.5 mol L-1,  (b) 1 mol L-1,  (c) 2 mol L-1,  (d) 3 mol L-1,  The x-axis represents the fraction 

 KClLiClLiCl ccc  . 
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Figure 10-22. Taylor dispersion characteristics for the mixture of aqueous electrolytes LiCl (1), and 

KCl (2) at 298.15 K. 
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Figure 10-23. (a) Estimations using the Nernst-Planck equationsof the elements of the Fick diffusivity 

matrix [D] for the mixture of aqueous electrolytes HCl (1), and NaOH (2) at 298.15 K. T The total 

molar concentration of the mixture NaOHHCl cc   = 0.05 mol L-1. The x-axis represents the fraction 

 NaOHHClHCl ccc  . (b) Elements of the Fick diffusivity matrix [D] including the influence of 

thermodynamic non-idealities, following the procedure as outlined in the Appendix to the paper by 

Leaist and Wiens.165 
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Figure 10-24.  (a) Schematic showing the inter-diffusion of HCl (1), and NaOH (2) at 298.15 K 

between upper and lower compartments of a diaphragm cell, as discussed in the paper by Leaist and 

Wiens.165 (b, c) Transient equilibration in the molar concentrations of HCl (1), and NaOH (2) in the 

upper and lower compartments, respectively.  
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Figure 10-25.  (a) Classic Hatta model for instantaneous reaction between “neutral” compounds A and 

B.  Because the reaction is instantaneous it occurs at a reaction plane at a distance x1 from the gas/liquid 

interface. (b) Ionic concentrations in the “double film” for absorption of HCl into aqueous NaOH. This 

schematic is essentially as presented in Figure 1 of Sherwood and Wei.169  
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Figure 10-26. Comparison of Nernst-Planck calculations for the parameter kLxL with those using the 

classic Hatta model, assuming that the reaction takes place between “neutral” HCl and “neutral” NaOH. 
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Figure 10-27. (a) Classic Hatta model for instantaneous reaction between “neutral” compounds A and 

B.  Because the reaction is instantaneous it occurs at a reaction plane at a distance x1 from the gas/liquid 

interface. (b) Ionic concentrations in the “double film” for absorption of HOAc into aqueous NaOH. 

This schematic is essentially as presented in Figure 3 of Sherwood and Wei.169 
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Figure 10-28. Comparison of Nernst-Planck calculations for the parameter kLxL with those using the 

classic Hatta model, assuming that the reaction takes place between “neutral” HOAc and “neutral” 

NaOH. 
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Figure 10-29.  (a) Experimental data of Leaist171 for diffusivity of SO2 in aqueous solution at 298.15. 

(b) Calculation of the degree of hydrolysis, . (c) Calculation of the thermodynamic correction factor, 

.  
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Figure 10-30. (a) Experimental data of Leaist and Lyons172 for diffusivity of Acetic Acid in aqueous 

solution at 298.15. (b) Calculation of the degree of dissociation, . (c) Calculation of the 

thermodynamic correction factor, . 
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Figure 10-31.  (a, b) Calculations of the elements of the Fick diffusivity matrix [D] for the mixture of 

aqueous electrolytes SO2(1), and NaHSO3 (2) at 293.15 K. The x-axis represents the total molar 

concentration of the mixture 32 NaHSOSO cc  . For the calculations in (a)  322 NaHSOSOSO ccc   = 0.25. For 

the calculations in (b)  322 NaHSOSOSO ccc   = 0.75. The calculations follow the same procedure as 

described by Leaist,173 and include thermodynamic non-ideality effects. 
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Figure 10-32. (a) Calculations of the elements of the Fick diffusivity matrix [D] for the mixture of 

aqueous electrolytes SO2(1), and NaHSO3 (2) at 293.15 K for a total mixture concentration 

32 NaHSOSO cc   = 0.001 mol L-1. The x-axis represents the fraction  322 NaHSOSOSO ccc  . (b) Comparison 

of D11 with the diffusivity of molecular SO2 for the same set of conditions as in (a). The calculations 

follow the same procedure as described by Leaist,173 and include thermodynamic non-ideality effects. 
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Figure 10-33. (a) Schematic showing the inter-diffusion of SO2(1), and NaHSO3 (2) at 293.15 K 

between upper and lower compartments of a diaphragm cell. (b, c) Transient equilibratrion of molar 

concentrations of (b) SO2(1), and (c) NaHSO3 (2), respectively. 
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Figure 10-34.  (a) Experimental data of Yang and Pintauro174 for the transient equilibration of H+, 

Na+, and Cs+ in the salt and acid compartments that are separated by a Nafion cation exchange 

membrane.  (b) Simulations using the Nernst-Planck equations. 
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Figure 10-35. (a, b) Equilibration trajectories followed by H+, Na+, and Cs+ in the left and right 

compartments, plotted in composition space. In (a) the left compartment contains Na2SO4 and Cs2SO4 

and the right compartment contains H2SO4. In (b) the left compartment contains Na2SO4 and the right 

compartment contains H2SO4 and Cs2SO4. 
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Figure 10-36. Schematic showing an ion exchanger particle with fixed HSO3- charges. The 

surrounding liquid phase consists of a mixture of electrolytes.  The electrolytes are fully ionized and the 

bulk liquid phase contains anion, and two counter-ions along with unionized water molecules. The 

schematic is redrawn using the information contained in Wesselingh and Krishna64 
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Figure 10-37. Transient exchange of H+/Na+/Zn++ within DOWEX 50WX10 cation exchanger particle 

of radius 0.4 mm. Two scenarios are considered. (a) Initially the particle is loaded with Na+ and is 

replaced H+/Zn++. (b) Initially the particle is loaded with H+/Zn++ and is replaced Na+. (c) Plots of the 

ionic equivalent fractions 
fixed

ii

c

cz
 in ternary composition space for the two scenarios.  The experimental 

data in Yoshida and Kataoka176 are indicated by symbols. The Nernst-Planck-Geddes model simulations 

are indicated by the continuous solid lines.  
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11 Diffusion in Microporous Crystalline Materials 

11.1 The Maxwell-Stefan (M-S) description of diffusion 

Within micro-porous crystalline materials, such as zeolites, metal-organic frameworks (MOFs), and 

zeolitic imidazolate frameworks (ZIFs), the guest molecules exist in the adsorbed phase. The Maxwell-

Stefan (M-S) equations for n-component diffusion in porous materials is applied in the following 

manner60, 67, 179-184  
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(11-1)

The left members of equation (11-1) are the negative of the gradients of the chemical potentials, with 

the units N mol-1; it represents the driving force acting per mole of species 1, 2, 3,..n. The iu  represents  

the velocity of motion of the adsorbate, defined in a reference frame with respect to the framework 

material. The subscript m refers to the porous material, that is regarded as the (n+1) th component in the 

mixture; the crystalline framework is considered to be stationary, i.e., um = 0. The term imÐRT  is 

interpreted as the drag or friction coefficient between the guest species i and the pore wall. The term 

ijÐRT  is interpreted as the friction coefficient for the i-j pair of guest molecules. The multiplier Xj in 

each of the right members represents a measure of the composition of component j in the mixture 

because we expect the friction to be dependent on the number of molecules of j relative to that of 

component i. Since the composition fraction Xm of the material is undefined, we re-define the M-S 

diffusivity for interaction of the penetrant (i.e. guest molecule) i with the pore wall as mimi XÐÐ  .  
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Two different choices of composition measures have been used in the literature: (a) using the 

fractional occupancies, ,i i i satq q  , and (b) using the mole fractions of the adsorbed mixture, 

tii qqx / ; these are discussed below in turn. 

We start the analysis of diffusion in microporous materials by considering diffusion of adsorbed 

species on a 2D surface consisting of well defined adsorption sites, such as that on graphenes. 

11.2 “Vacancy mediated” diffusion of adsorbed species on 2D surface 

For diffusion of adsorbed species on a two-dimensional (2D) surface made up of distinct sites, the 

Maxwell-Stefan equations may be written as123, 185   

   
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1
; 1,2..

j i
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(11-2)

In equation (11-2), i  is the fractional occupancy, and V  is the fractional vacancy. The fractional 

occupancies, i, of species i are determined from the molar loadings,  qi, expressed in moles per kg of 

material, and the saturation capacities, qi,sat, for adsorption of each species  

ni
q

q

sati

i
i ,..2,1;

,


 

(11-3)

 For the specific case of a binary mixture, the hopping of molecules from one site to another is depicted 

in Figure 11-1. Using a simple lattice model, the M-S diffusivity in the limit of vanishingly small 

occupancies, 21
(0) (0)iV iÐ  


 , where  = 4 is the coordination number of the 2D array of lattice sites, 

 is the jump distance on the square lattice, and (0)i  is the jump frequency at vanishingly small 

occupancy.185 

More generally, molecule-molecule interactions serve to influence the jump frequencies by a factor 

that depends on the energy of interaction, w. For repulsive interactions, w > 0, whereas for attractive 

interactions, w < 0. Using the quasi-chemical approach of Reed and Ehrlich186 to quantify such 
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interactions, the following expression is obtained for the loading dependence of the M-S diffusivities 185, 

187, 188 

1
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 In equation (11-4) the following dimensionless parameters are defined 

    RTwiii exp;/11141    (11-5)

In the limiting case of negligible molecule-molecule interactions, w = 0, = 1, i= 1 equation (11-4) 

yields 

(0)(1 )iV iV iÐ Ð     (11-6)

Equation (11-6) implies that the M-S diffusivity is proportional to the number of unoccupied sites. 

The M-S diffusivities ijÐ  quantify the correlation effects. Generally speaking, the hopping of the 

more-mobile-less-strongly-adsorbed species will be slowed-down by the tardier-more-strongly-adsorbed 

species.  The Onsager reciprocal relations demand the symmetry   

niÐqÐq jisatiijsatj ..2,1;,,  

 (11-7)

Consider the specific case of tracer diffusion; in this case the species 1 = tagged species 1*; 2 = 

untagged species 1; 3 = vacancy (V).  Equation (11-2) simplifies to yield 

   

   

1*
1 1* 1 1*

1*1 1*

1
1* 1 1* 1

11* 1

V V
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u u u u

dz Ð Ð
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dz Ð Ð

  

  

    

    
 (11-8)

The expression for the tracer diffusivity D* has been derived by Krishna123  

*

1* 1

11* 1

1

V

V

D

Ð Ð 

 





 

(11-9)

Equation (11-9) has been validated by Kinetic Monte Carlo simulations.185 
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An important characteristic of the foregoing description is that the vacancy flux is non-zero, and this 

description is essentially a 2D analog of the “vacancy mediated” diffusion in non-porous crystalline 

metal crystals, described in an earlier section. We now apply the “vacancy” description of diffusion to 

microporous materials in a slightly modified form. 

11.3 “Vacancy” description of diffusion in micropores 

In our earlier publications179, 189-191 on n-component mixture diffusion in micropores, equation (11-1) 

was applied in the following manner  

   
1

1 1
; 1,2..

j i

n
ji

i j i
j ij i

d
u u u i n

RT dz Ð Ð






      (11-10)

In equation (11-10), i  is the fractional occupancy of species i ; these are determined from the molar 

loadings,  qi, expressed in moles per kg of material, and the saturation capacities, qi,sat, for adsorption of 

each species  

ni
q

q

sati

i
i ,..2,1;

,


 

(11-11)

 The superscript  on the exchange coefficients 
ijÐ  serves as a reminder that these coefficients are 

defined in terms of the vacancies as composition measures in the Maxwell-Stefan description. The M-S 

diffusivities ijÐ  quantify the correlation effects. Generally speaking, the hopping of the more-mobile-

less-strongly-adsorbed species within the pores will be slowed-down by the tardier-more-strongly-

adsorbed species. The Ði may be interpreted as inverse drag coefficients between the species i and the 

material surface. Indeed, an important persuasive advantage of the M-S equations is that the Ði for 

mixture diffusion often retains the same magnitude and loading dependence as for unary diffusion;67, 181, 

182 we return to this point later in this article. 

If   represents the mass density of the framework material, expressed commonly in the units kg m-3, 

and ,i i sat iq q   is the molar loading of the adsorbed species i within the micropores, expressed in the 
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units of mol kg-1, the intra-crystalline diffusion fluxes are i i iN q u . Re-writing equation (11-10) in 

terms of the intracrystalline fluxes we get 

1 , , ,

; 1, 2..

j i

n
j i i ji i i

j i sat j sat ij i sat i

q N q Nd N
i n

RT dz q q Ð q Ð

 



 
     

 
  (11-12)

The Onsager reciprocal relations demand the symmetry  

niÐqÐq jisatiijsatj ..2,1;,,    (11-13)

If the saturation capacities of all of the individual species are (nearly) equal to one another, equation 

(11-12) simplifies to 

1

; 1, 2..

j i

n
j i i ji i i

j ij i

N Nq d N
i n

RT dz Ð Ð

 



 
     

 
  (11-14)

The important advantage of the use of equations (11-14) is that these can be elegantly combined with 

the mixed-gas Langmuir model for mixture adsorption (equation (11-25)), and analytical solutions can 

be derived for the membrane permeation fluxes, and effectiveness factors.192-195 

An important disadvantage of the use of the “vacancy description” of intra-crystalline diffusion is that 

the treatment is restricted to the case where all of the molecules exist in the adsorbed phase. This 

implies that equation (11-12) cannot be applied to describe diffusion in meso-porous and macro-porous 

materials, where a substantial portion of the molecules within the pores may exist in the “bulk” fluid 

phase, not adsorbed on the pore walls.  

For a unified description of diffusion in micro-, meso-, and macro-porous materials, we abandon the 

“vacancy” concept and proceed using the mole fractions as composition measures. 

11.4 Unified M-S description of diffusion in porous materials 

For a unified description of diffusion in porous materials, it is convenient to use as composition 

measures the mole fractions of the components in the adsorbed phase, tii qqx /  where qi is the molar 

loading of adsorbate, and qt is the total mixture loading 



n

i
it qq

1

.   
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In terms of mole fractions, equations (11-1) are modified as follows   
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(11-15)

An important, persuasive, argument for the use of the M-S formulation for mixture diffusion is that 

the M-S diffusivity iÐ  in mixtures can be estimated using information on the loading dependence of the 

corresponding unary diffusivity values. Put another way, the M-S diffusivity iÐ  can be estimated from 

experimental data on unary diffusion in the porous material. 

The M-S diffusivity ijÐ  has the units m2 s-1 and the physical significance of an inverse drag 

coefficient. The magnitudes of the M-S diffusivities ijÐ  do not depend on the choice of the mixture 

reference velocity because equation (11-1) is set up in terms of velocity differences. At the molecular 

level, the Ðij reflect how the facility for transport of species i correlates with that of species j; they are 

also termed exchange coefficients.  

For mesoporous materials with pores in the 20 Å to 100 Å size range the values of the exchange 

coefficient Ð12 are the nearly the same as the binary fluid phase M-S diffusivity, Ð12,fl, over the entire 

range of pore concentrations.60, 108, 181, 182, 196 For micro-porous materials, the exchange coefficient Ð12 

cannot be directly identified with the corresponding fluid phase diffusivity Ð12,fl because the molecule-

molecule interactions are also significantly influenced by molecule-wall interactions. 

The Maxwell-Stefan diffusion formulation (11-15) is consistent with the theory of irreversible 

thermodynamics. The Onsager Reciprocal Relations imply that the M-S pair diffusivities are symmetric  

jiij ÐÐ   (11-16)

We define Ni as the number of moles of species i transported per m2 of crystalline material per second 
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iii uqN   (11-17)

where   is the framework density with units of kg m-3. Multiplying both sides of equation (11-15) by 

iq , the M-S equations for n-component diffusion in zeolites, MOFs, and ZIFs take the form 196-198 
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
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(11-18)

An entirely analogous manner of writing equation (11-18) is in terms of molar concentrations ci, in the 

adsorbed phase, with units mol m-3, based on the accessible pore volume, Vp ( = m3 pore volume per kg 

framework)  

p

t
n

i
it

p

i
i V

q
cc

V

q
c  

1

;  (11-19)

In terms of molar concentrations, the M-S description for intra-pore diffusion is  

1

; 1, 2...
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The quantity pV   is the fractional pore volume,  
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33

3pV  (11-21)

So, we re-write equation (11-20) in the form  

1

; 1, 2...

j i

n
j i i ji i i

j ij i

x N x Nc d N
i n

RT dz Ð Ð





 
     

 
  (11-22)

The formulation (11-22) has been employed to develop a unified theory of mixture diffusion in both 

micro-pores and meso-pores.60, 181, 184, 199  The fluxes Ni in equations (11-18), and (11-22)  are defined in 

terms of the moles transported per m2 of the total surface of crystalline material. Alternatively, if we 

just focus on fluxes inside a single pore, it is convenient to define the fluxes Ni in terms of the moles 

transported per m2 surface of the pore, then the factor  pV   has to be omitted in the left member of 

equation (11-22). 
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11.5 Thermodynamic correction factors 

At thermodynamic equilibrium, the chemical potential of component i in the bulk fluid mixture equals 

the chemical potential of that component in the adsorbed phase. For the bulk fluid phase mixture we 

have 

ln1 1
; 1,2,..i i i

i

d d f df
i n

RT dz dz f dz


    (11-23)

The chemical potential gradients dzd i  can be related to the gradients of the molar loadings, qi, by 

defining thermodynamic correction factors ij 

1 1

; ; ; , 1,....
n n

j ji i i i i i i i
ij ij ij

j j i j i j

dq dcq d c d q f c f
i j n
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 
  

 
          (11-24)

The thermodynamic correction factors ij can be calculated by differentiation of the model describing 

mixture adsorption equilibrium. Generally speaking, the Ideal Adsorbed Solution Theory (IAST) of 

Myers and Prausnitz200 is the preferred method for estimation of mixture adsorption equilibrium.  In 

some special case, the mixed-gas Langmuir model  

,
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(11-25)

may be of adequate accuracy. Analytic differentiation of equation (11-25) yields 
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(11-26)

where the fractional vacancy V is defined as 

1

1 1
n

V t i
i

  


     (11-27)

The elements of the matrix of thermodynamic factors ij can be calculated explicitly from information 

on the component loadings qi in the adsorbed phase; this is the persuasive advantage of the use of the 
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mixed-gas Langmuir model. By contrast, the IAST does not allow the calculation of ij explicitly from 

knowledge on the component loadings qi in the adsorbed phase; a numerical procedure is required.   

11.6 Explicit expression for the fluxes as function of loading gradients 

By defining an n-dimensional square matrix [B] with elements 
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 (11-28)

we can recast equation (11-18), or equation (11-22), into the following form 
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Equation (11-29) can be re-written in n-dimensional matrix notation as 

                 1
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We denote the inverse of [B] as   : 

 1[ ]B     (11-31)

The elements of    cannot be determined from experimental measurements. However, ij are 

directly accessible from MD simulations60, 67, 181, 199 by monitoring the individual molecular 

displacements 
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In this expression ni and nj represent the number of molecules of species i and j respectively, and rl,i(t) 

is the position of molecule l of species i at any time t.  In this context we note a typographical error in 

equation (11-32) as printed in earlier publications201-203 wherein the denominator in the right member 

had ni instead of nj. The simulation results presented in these publications are, however, correct as the 

proper formula given in equation (11-32) was used. Compliance with the Onsager Reciprocal Relations 

demands  
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; , 1, 2,....j ij i jin n i j n     (11-33)

 

11.7 M-S formulation for binary mixture diffusion 

For binary mixture diffusion inside microporous crystalline materials the Maxwell-Stefan equations 

(11-18) are written  
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 (11-34)

The first members on the right hand side of Equation (11-34) are required to quantify slowing-down 

effects that characterize binary mixture diffusion.181, 182, 204 There is no experimental technique for direct 

determination of the exchange coefficients Ð12, that quantify molecule-molecule interactions. 

In two-dimensional matrix notation, equation (11-24) take the form  
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 (11-35)

For the mixed-gas Langmuir model, equation (11-25), we can derive simple analytic expressions for 

the four elements of the matrix of thermodynamic factors:189  
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where the fractional occupancies, i, are defined by equation (11-25).  

Let us define the square matrix [B] 
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In proceeding further, it is convenient to define a 22 dimensional square matrix   :  
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Equation (11-34) can be re-cast into 2-dimensional matrix notation 
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The elements of  B   can be obtained by inverting the matrix  

 

determined using MD simulations 

using equation (11-32):
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(11-40)

For a wide variety of guest/host combinations we used MD simulations to determine the four elements 

11 12 21 22, , ,     for equimolar (q1=q2; c1=c2) binary mixtures for a range of total mixture loadings, qt= 

q1+q2, using equation (11-32).  A small but representative selection of the MD simulated data culled 

from our previous publications 60, 67, 182, 191, 196, 201, 205-210 are presented in the following Figures: 
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Figure 11-2: CO2(1)/N2(2) mixtures in MFI zeolite 

Figure 11-3: CO2(1)/N2(2) mixtures in FAU all-silica zeolite  

Figure 11-4: Ne(1)/Ar(2) mixtures in CHA all-silica zeolite 

Figure 11-5: Ne(1)/Ar(2) mixtures in DDR all-silica zeolite  

Figure 11-6: CH4(1)/C2H6(2) mixtures in IRMOF-1 

Figure 11-7: CH4(1)/H2(2) mixtures in MgMOF-74 

Figure 11-8: CO2(1)/H2(2) mixtures in CuBTC 

Also presented in Figure 11-2 to Figure 11-8, are the backed-out M-S diffusivities, 1 2,Ð Ð , using 

equation (11-40). A careful examination of presented MD data in Figure 11-2 to Figure 11-8 reveal a 

number of common characteristic features. 

In the limit of vanishingly small loadings, or occupancies:  

11 1 22 2 12 210; 0; ; ; 0; 0tq Ð Ð           (11-41)

With increasing mixture loadings, the diagonal elements 11 22,   are lowered below the 

corresponding values of the unary M-S diffusivities 1 2,Ð Ð .  

11 1 22 20; 0; ;tq Ð Ð       (11-42)

The extent of lowering, caused by correlation effects, is higher for the more mobile partner species.  

For the tardier species, the extent of lowering is significantly smaller.   

As the total pore concentration approaches saturation, all diffusivities appear to converge to the same 

diffusivity values:  

, 11 1 22 2 12 21; 1;t sat mixq q Ð Ð            (11-43)

The rationalization of Equation (11-43) is provided in a subsequent section entitled Correlations 

dominant scenario. 
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11.8 Self-diffusivity in n-component mixtures 

The expression for the self-diffusivity in n-component mixtures can be derived by considering the 

mixture to be made of tagged and un-tagged species i, in the company of other partner molecules211 

1,

1 1
; 1,2,...

j i

n
ji

ji self i ii ij

xx
i n

D Ð Ð Ð



     (11-44)

The self-diffusivity Di,self within is dictated by (a) species i - wall, (b) species i – species i, and (c) 

species i – species j interactions. Specifically, for a binary mixture of species 1, and 2, we have 

2 1 1 2

1, 1 12 11 2, 2 12 22

1 1 1 1
;

self self

x x x x

D Ð Ð Ð D Ð Ð Ð
       (11-45)

In view of equation (11-37), we may relate the self-diffusivities to the diagonal elements of the matrix 

2 1

1 12 12

2 1

12 2 12

1

[ ]
1

x x

Ð Ð Ð
B

x x

Ð Ð Ð

   
 
 

  
 

:  

1 2
11 22

1, 11 2, 22

1 1
;

self self

x x
B B

D Ð D Ð
     (11-46)

Equation (11-46) implies that the self-diffusivities experience correlation effects to a stronger extent 

than the elements of the matrices 

2 1

1 12 12

2 1

12 2 12

1

[ ]
1

x x

Ð Ð Ð
B

x x

Ð Ð Ð

   
 
 

  
 

 and 

 
1 2 1 1 2

1
12 12

1 2 2 1
2 1 2 2 1

2
12 12

12 12

1
1

1 1

x Ð x Ð Ð
Ð

Ð Ð

x Ð x Ð x Ð Ð x Ð
ÐÐ Ð Ð Ð

  
  

             

 that characterize binary mixture diffusion. 
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11.9 Degree of correlations  

In order to appreciate the relative importance of correlations on the calculations of the fluxes for 

binary mixture diffusion, we define the degrees of correlation, 121 ÐÐ , and 122 ÐÐ ; the values can be 

determined from those backed-out from mixture MD simulations for earlier publications.60, 67, 182, 191, 196, 

201, 205-210 The magnitude of Ð1, relative to that of Ð12, determines the extent to which the flux of species 

1 is influenced by the chemical potential gradient of species 2. The larger the degree of correlation, 

Ð1/Ð12, the stronger is the influence of coupling. Generally speaking, the more-strongly-adsorbed-

tardier partner species will have the effect of slowing down the less-strongly-adsorbed-more-mobile 

partner in the mixture.  

Figure 11-9 shows MD simulation data for the degree of correlations, 121 ÐÐ , for diffusion of 

equimolar (q1 = q2) binary mixtures  (a) CO2/CH4, (b) H2/CO2, (c) N2/CO2, (d) Ne/CO2, (e)  CH4/Ar  (f) 

H2/CH4, (g) Ne/Ar,  (h) CH4/C2H6, and (i) CH4/C3H8 at 300 K in a variety of host materials. For any 

guest/host combination, 121 ÐÐ  is seen to increase as the pore concentration increases; this implies that 

correlation effects are expected to be stronger for high pore occupancies.  

The degree of correlations is weakest in cage-type structures such as CHA, DDR and LTA; the reason 

is that the molecules jump one-at-a-time across the narrow windows separating adjacent cages; CO2 

molecules jump length-wise across the windows. At the other end of the spectrum, correlations are 

strongest in one-dimensional (1D) channel structures (e.g. BTP-COF, MgMOF-74, NiMOF-74), 

intersecting channels (e.g. MFI), and “open” structures (e.g. IRMOF-1, FAU, NaY, NaX) consisting of 

large cages separated by wide windows.   

11.10 Negligible correlations scenario for M-S diffusivities 

For values of 0121 ÐÐ , and 0122 ÐÐ , the contribution of the first right member of M-S 

Equation (11-34) can be ignored and correlations can be considered to be of negligible importance;  we 

derive 



Diffusion in Microporous Crystalline Materials    

339 
 

11 12 11 2

21 22 212 12

0
0; 0;

0

ÐÐ Ð

ÐÐ Ð

    
         

 (11-47)

Equation (11-47) is valid, as a first approximation, for diffusion in cage-type zeolites with 8-ring 

windows (CHA, LTA, DDR, ERI) and ZIF-8; see e.g.  Figure 11-4, and Figure 11-5 and earlier 

publications.67, 191, 196, 199, 201, 212-214 

When correlation effects are negligible, the diffusional coupling effects are solely traceable to mixture 

adsorption thermodynamics, embodied in the matrix   . 

11.11 Correlations dominant scenario for M-S diffusivities  

For the case in which correlation effects are dominant dominant nscorrelatio;1;1
12

2

12

1 
Ð

Ð

Ð

Ð
. 

This also implies that 1
12

1221 


Ð

ÐxÐx
 because the sum of the adsorbed phase mole fractions add to 

unity, i.e. x1+x2 = 1. Therefore, the term 
12

12

12

211
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Ðx

Ð

Ðx
  in equation (11-38) can be simplified as 

12
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12211
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Ð
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


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 (11-48)

The expressions for 12  and 21  can be further simplified  
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The expressions for 11  and 22  for the correlations dominant scenario must be derived with more care. 

The diagonal elements must degenerate to the corresponding pure component Ði values at either ends of 

the composition range, i.e. 

0;1; 21111  xxÐ  (11-50)

 and, 

0;1; 12222  xxÐ  (11-51)

Equations (11-50), and (11-51) must be satisfied for any degree of correlations, not just in the 

Correlations Dominant scenario. Consider 11 . For equation (11-48) to satisfy equation (11-50) for 

1;1
12

2

12

1 
Ð

Ð

Ð

Ð
 we must also satisfy the conditions 

1;1
12

12

12

21 
Ð

Ðx

Ð

Ðx
 (11-52)

because, otherwise, (11-50) will be violated.  Invoking equation (11-52) we obtain from equation 

(11-48) 

1 1 2 2
11 22

2 1 1 2 1 2 1 2

1 2 1 2 2 1 1 2

;
1 1

Ð x Ð x
x Ð x x x Ð x x
x Ð Ð Ð x Ð Ð Ð

     
   

 
(11-53)

The M-S diffusivity matrix    for the correlations dominant scenario yields the remarkably simple 

result  

  1 1 1 1

1 2 1 22 2 2 2

1 2 1 2

1 1x x q q

x x q qx x q q
Ð Ð Ð Ð

   
     

    
 

(11-54)

Remarkably, in this scenario, 1211  , and 2221  . For equimolar mixtures, 21 xx  , all the four 

elements of    are equal to one another.  
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The dominant correlations scenario is a good approximation under pore saturation conditions.199 An 

extensive and detailed validation of equation (11-54) at pore saturation conditions is provided in our 

earlier works.199, 215 

11.12 Onsager formulation for diffusion in micropores 

In the Onsager formulation, the fluxes are linearly related to the chemical potential gradients by 

defining a matrix of Onsager coefficients  L   

nformulatioOnsager ; 
2

1

2221
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2

1
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RTN

N





 (11-55)

The Onsager Reciprocal Relations67 prescribes the symmetry relation   

2112 LL   (11-56)

The units of the elements of the Onsager matrix in microporous materials are mol kg-1 m2 s-1. The 

Onsager formulation suffers from the major disadvantage that the diagonal elements L11 and L22 cannot 

be identified with the corresponding values L1, and L2 for unary transport of species 1 and 2.67  The 

inter-relationship between    and  L  is 

    1

2

0

0

q
L

q

 
   

 
 (11-57)

In the correlations dominant scenario, the elements of the Onsager matrix     1

2

0

0

q
L

q

 
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   
can be 

determined by combining equations (11-54), and (11-55): 

   
2

1 1 1 2
2

1 22 1 2 2

1 2

0 1
; correlations dominant

0

q q q q
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q qq q q q
Ð Ð
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(11-58)
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11.13 List of Figures for Diffusion in Microporous Crystalline Materials 

 

Figure 11-1. The Maxwell- Stefan description of hopping of molecules on a 2D surface. 
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Figure 11-2. MD simulated values of 221211 ,,  , along with the backed-out M-S diffusivities, 

1 2,Ð Ð for equimolar (q1=q2) binary CO2(1)/N2(2) mixtures in MFI zeolite at 300 K plotted as a function 

of  the total mixture loading qt= q1+q2. 
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Figure 11-3. MD simulated values of 221211 ,,  , along with the backed-out M-S diffusivities, 

1 2,Ð Ð for equimolar (q1=q2) binary CO2(1)/N2(2) mixtures in FAU all-silica zeolite at 300 K plotted as a 

function of the total mixture loading qt= q1+q2. 
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Figure 11-4. MD simulated values of 221211 ,,  , along with the backed-out M-S diffusivities, 

1 2,Ð Ð for equimolar (q1=q2) Ne(1)/Ar(2) mixtures in CHA all-silica zeolite at 300 K plotted as a 

function of the total mixture loading qt= q1+q2. 
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Figure 11-5. MD simulated values of 221211 ,,  , along with the backed-out M-S diffusivities, 

1 2,Ð Ð for equimolar (q1=q2) binary Ne(1)/Ar(2) mixtures in DDR all-silica zeolite at 300 K plotted as a 

function of the total mixture loading qt= q1+q2.  
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Figure 11-6. MD simulated values of 221211 ,,  , along with the backed-out M-S diffusivities, 

1 2,Ð Ð for equimolar (q1=q2) binary CH4(1)/C2H6(2) mixtures in IRMOF-1 at 300 K plotted as a function 

of the total mixture loading qt= q1+q2. 
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Figure 11-7. MD simulated values of 221211 ,,  , along with the backed-out M-S diffusivities,  

1 2,Ð Ð  for equimolar (q1=q2) binary CH4(1)/H2(2) mixtures in MgMOF-74 at 300 K plotted as a 

function of the total mixture loading qt= q1+q2. 
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Figure 11-8. MD simulated values of 221211 ,,  , along with the backed-out M-S diffusivities, 

1 2,Ð Ð  for equimolar (q1=q2) binary CO2(1)/H2(2) mixtures in CuBTC at 300 K plotted as a function of 

the total mixture loading qt= q1+q2. 
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Figure 11-9. MD simulation data for the degree of correlations, 121 ÐÐ , for diffusion of equimolar 

(q1 = q2) binary mixtures  (a) CO2/CH4, (b) H2/CO2, (c) N2/CO2, (d) Ne/CO2, (e)  CH4/Ar  (f) H2/CH4, 

(g) Ne/Ar,  (h) CH4/C2H6, and (i) CH4/C3H8 at 300 K in a variety of host materials. The x- axes 

represent the pore concentration, ci, based on accessible pore volume. 
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12 Nomenclature 

Latin alphabet 

ai   component activity, dimensionless 

bi  parameter in the pure component Langmuir adsorption isotherm, Pa-1 

[B]  matrix of inverse M-S coefficients, m-2 s 

ci  molar concentration of species i, mol m-3 

ct  total molar concentration of mixture, mol m-3 

cfixed  molar concentration of fixed charges in ion exchanger particle, equiv m-3 

d  generalized driving force, m-1 

dbubble  bubble diameter, m 

ddrop  droplet diameter, m 

Ði  ion diffusivity, m2 s-1 

Ði  diffusivity characterizing molecule-wall interactions, m2 s-1 

)0(iÐ    M-S diffusivity at zero-loading in microporous materials, m2 s-1  

Ð12  M-S exchange coefficient for binary mixture, m2 s-1 

Ðij  M-S binary pair diffusivity, m2 s-1 

V
ijÐ    modified M-S diffusivity for binary penetrant pair i-j, m2 s-1 

V
imÐ    modified M-S diffusivity for penetrant i in polymer m, m2 s-1 

*D    tracer diffusivity, m2 s-1  

Di,self  self-diffusivity of species i, m2 s-1  

D12  Fick diffusivity for binary 1-2 mixture , m2 s-1 
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 D    Fick diffusivity matrix, m2 s-1  

D    Determinant of the Fick diffusivity matrix, m4 s-2  

2/1
D    Square-root of determinant of  D , m2 s-1  

T
iD   thermal diffusion coefficient, kg m-1 s-1 

Ei  Component Murphree efficiency, dimensionless 

f correlation factor for diffusion crystalline metals, dimensionless 

fi  partial fugacity of species i, Pa 

ft  total fugacity of bulk fluid mixture, Pa 

F   Faraday constant, 9.65×104 C mol-1  

Fo    Fourier number, dimensionless 

hf  froth height on distillation tray, m 

 I   Identity matrix, dimensionless 

ji mass diffusion flux of species i with respect to v , kg m-2 s-1 

Ji molar diffusion flux of species i with respect to u , mol m-2 s-1 

 L    Onsager matrix, m2 s-1  

Mi  molar mass of species i, kg mol-1 

n number of species in the mixture, dimensionless 

Ni molar flux of species i in laboratory fixed reference frame, mol m-2 s-1 

Ni molar flux of species i with respect to material framework, mol m-2 s-1 

Nt molar flux of total mixture in laboratory fixed reference frame, mol m-2 s-1 

pi  partial pressure of species i in mixture, Pa 

pt  total system pressure, Pa 

qi  molar loading of species i, mol kg-1 

qi,sat  molar loading of species i at saturation, mol kg-1 



Nomenclature    

353 
 

qt  total molar loading of mixture, mol kg-1 

 Q   matrix quantifying fractional departure from equilibrium, dimensionless 

r  radial direction coordinate, m  

rc  radius of particle m  

R  gas constant, 8.314 J mol-1 K-1  

t  time, s  

T  absolute temperature, K  

xi  mole fraction of component i in bulk fluid phase, dimensionless 

Xi   ionic equivalent fraction of species i inside IEX particle, dimensionless 

yi  mole fraction of component i in bulk vapor phase, dimensionless 

u   molar average mixture velocity, m s-1 

ui  velocity of motion of adsorbate species i with respect to the framework material, m s-1 

T
iu   augmented species velocity to account for thermal diffusion, m s-1 

v   mass average mixture velocity, m s-1 

iV   partial molar volume of species i, m3 mol-1 

V    mean molar volume of mixture, m3 mol-1 

bubbleV   bubble rise velocity, m s-1 

dropV   droplet rise velocity, m s-1 

Vp   pore volume, m3 kg-1 

z  direction coordinate, m  

zi  charge on species i, dimensionless 

Z  compressibility factor, dimensionless  

 

 
Greek alphabet 
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  cell constant, dimension depends on the context 

i  activity coefficient of component i, dimensionless 

  length of diffusion path, m 

 ij  Kronecker delta, dimensionless 

  fractional pore volume of microporous material, dimensionless 

ij  thermodynamic correction factors, dimensionless 

    matrix of thermodynamic factors, dimensionless 

2/1    Square-root of determinant of   , dimensionless  

i  fractional occupancy of component i, dimensionless 

t  fractional occupancy of adsorbed mixture, dimensionless 

V  fractional vacancy, dimensionless 

    Hessian of the Gibbs free energy, dimensionless 

i   eigenvalue of Fick diffusivity matrix, m2 s-1 

    1 B  matrix of M-S diffusivities, m2 s-1 

2/1    Square-root of determinant of   , m2 s-1  

i  molar chemical potential, J mol-1 

i  dimensionless partial pressures, bipi, dimensionless  

  framework density of adsorbent, kg m-3 

  rate of entropy production, J m-3 s-1 K-1 

  stress tensor, Pa 

i  volume fraction of i , dimensionless 

i  fugacity coefficient of component i, dimensionless 

    matrix of dimensionless fluxes, dimensionless 
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  electrostatic potential, V 

  interaction parameter in Flory-Huggins model, dimensionless 

i  mass fraction of component i, dimensionless 

   angular velocity, s-1 

 

 
Subscript 
 
eq   equilibrium value 

E   entering stage 

i  referring to component i 

Inter  Inter-diffusion in metallic alloys 

L   leaving stage 

n   referring to component n 

t  referring to total mixture 

V  vacancy 
 
 
Superscript 
 

mass  mass average reference velocity frame 

volume volume average reference velocity frame 
 
θ   coefficient defined using the M-S formulation in terms of vacancies 

 

Matrix notation 
 

( )  column matrix 

[ ]  square matrix 
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Vector notation 
 

  gradient 

   divergence 
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