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The primary objective of this article is to highlight a number of

situations of importance in chemical engineering in which one of

the components in a mixture is transported uphill of its own

composition gradient. The proper appreciation and modeling of

uphill diffusion requires the use of chemical potential gradients as

driving forces. Furthermore, due account needs to be taken of

coupling effects, that is, the influence of the driving force of any

component in the mixture on the transport fluxes of all partner

species in the mixture. The Maxwell–Stefan formulation, that has

its roots in theory of irreversible thermodynamics, affords the most

general, and convenient, approach for modeling diffusion in fluid

mixtures, electrolytes, alloys, glasses, and porous adsorbents.
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Introduction
Fick’s law, that relates the diffusion flux to the composi-

tion gradient,

Ji ¼ �ctDi
dxi

dz

� �
(1)

is widely used in chemical engineering practice for the

design of separation equipment [1�,2�,3]. The Fick diffu-

sivity is usually positive definite, that is, Di > 0, and the flux

of species i is directed down its composition gradient.

However, there are a number of examples for which

Eq. (1) fails, even at a qualitative level, to describe the

diffusion phenomena. Lars Onsager was amongst the first to

recognize the limitations of Fick’s law. In his classic paper

published in 1945 entitled Theories and Problems of Liquid
Diffusion, Onsager [4] wrote The theory of liquid diffusion is
relatively undeveloped. . . It is a striking symptom of the common
ignorance in this field that not one of the phenomenological schemes
which are fit to describe the general case of diffusion is widely
known. In the Onsager formalism for n-component mixture
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diffusion, the diffusion fluxes Ji are postulated to be linearly

dependent on the chemical potential gradients, dmi/dz, of

each of the species present in the mixture.

A persuasive demonstration of the need to use dmi/dz as

driving force, is available in the classic experiments

reported in 1949 by Darken [5�]. In one of Darken’s

experiments, two austenite bars of different compositions

(0.48% C, 3.8% Si, 95.72% Fe), and (0.45% C, 0.05% Si,

99.50% Fe) are welded together and maintained at 1323 K

for a period of 13 days. The bars are then quenched and the

C composition profiles determined; the results are shown in

Figure 1. We note that C has diffused from the left-hand

bar (with high Si content) to the right-hand bar (with low Si

content). The high C content near the surface of the

austenite bar on the right, imparts the required ‘hardness’

to steel. The process of hardening of steel by ‘carburizing’

is reliant on uphill transport of carbon from the high-Si bar

to the low-Si bar, despite the fact that the initial composi-

tions of carbon are practically the same in the two adjoining

bars. In Table 3 of Darken’s paper, the activity of carbon,

defined by a1 = g1x1, is calculated for the compositions A

(0.315% C), and B (0.586% C); see Figure 1. The activity at

A, a1A = 0.3, while the activity at B, a1B = 0.29. This implies

that carbon diffuses down its activity gradient. In other

words, the thermodynamic non-ideality effects are the root

cause of uphill diffusion. Three quotes from the Darken

paper [5�], summarize the foregoing arguments and serve

as tramlines for the ensuing discussions and analysis:

‘‘the driving force in an isothermal diffusion process may be
regarded as the gradient of the chemical potential,’’,

‘‘for a system with more than two components it is no longer
necessarily true that a given element tends to diffuse toward a
region of lower concentration even within a single phase region’’,

and

‘‘departure from the behavior of an ideal solution may be so
great that the concentration gradient and the chemical potential
gradient, or activity gradient, may be of different sign, thus
giving rise to uphill diffusion’’.

The primary objective of this article is to highlight the

importance of uphill transport in a wide variety of systems

and scenarios that are of practical importance in the

chemical, petrochemical and related industries. The first

task is set up a convenient framework for describing

multicomponent diffusion that can be applied for the

solution of practical problems.
www.sciencedirect.com
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Figure 1
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Experimental data of Darken [5�] for inter-diffusion between the left and right austenite bars consisting of C/Si/Fe mixtures. The wt% of each

component is measured on either side of the Matano plane, measured at t = 13 days after the start of the experiment are shown.
The Maxwell–Stefan diffusion formulation
The approach we adopt stems from the pioneering works

of James Clerk Maxwell [6] and Josef Stefan [7��], who

analyzed diffusion in ideal gas mixtures. The Maxwell–
Stefan (M–S) formulation is essentially a ‘‘friction formu-

lation’’ in which the force acting on species i is balanced

by friction with each of the partner species in the mixture

[8��,9��] (a more detailed derivation is provided in the

Supplementary material accompanying this publication):

� 1

RT

dmi

dz
¼
Xn

j¼1j 6¼ i

xjðui�ujÞ
Ðij

; i ¼ 1; 2; . . .n (2)

The pair diffusivity Ðij can be interpreted as an inverse

‘‘drag coefficient’’ between species i and species j. Eq. (2)

is consistent with the theory of irreversible thermody-

namics; the Onsager reciprocal relations demand the

symmetry constraint Ðij = Ðji. We define the fluxes

Ji � ci(ui � u) with respect to the molar average mixture

velocity, u = x1u1 + x2u2 + � � � xnun; in terms of the diffu-

sion fluxes, Ji, the M–S formulation for n-component

diffusion takes the form

� xi

RT

dmi

dz
¼
Xn

j¼1j 6¼ i

xjJi�xiJj

ctÐij
; i ¼ 1; 2; . . .n (3)

For mixtures of ideal gases, the Maxwell–Stefan formu-

lation is entirely consistent with the kinetic theory of
www.sciencedirect.com 
gases, and the pair diffusivities Ðij can be identified with

the diffusivity in the binary gas mixture of species i and

species j.

Uphill diffusion in binary mixtures caused by
phase splitting
For a binary mixture, Eq. (3) reduces to yield the follow-

ing expression for the diffusion flux of species 1 in the

mixture with species 2

J1 ¼ �ctÐ12

x1

RT

dm1

dz
¼ �ctÐ12

x1

RT

@m1

@x1

� �
dx1

dz
(4)

Comparing with Eq. (1), we note that the Fick diffusivity

is related to the M–S diffusivity

D12 ¼ Ð12G ; G � x1

RT

@m1

@x1

� �
(5)

For thermodynamically ideal mixtures, G = 1, and the

Fick diffusivity can be identified with the M–S diffusivi-

ty. For mixtures of liquids, alloys, and glasses the ten-

dency for phase separation has a strong influence on the

Fick diffusivity, causing it to attain negative values and,

as a consequence, the phenomenon of uphill transport.

To demonstrate this possibility, let us consider diffusion

in a binary alloy mixture consisting of Fe (= component 1)

and Cr (= component 2). Let us combine nFe atoms of Fe

and nCr atoms of Cr in a face centered cubic (FCC) lattice
Current Opinion in Chemical Engineering 2016, 12:106–119



108 Separation engineering
with a total of N sites. The increase in entropy associated

in this mixing process is given by the Boltzmann equation

S = kBNAln W = Rln W, where kB is the Boltzmann con-

stant, NA is the Avagadro number, R is the gas constant,

R = kBNA, and W is the total number of configurations by

which the Fe and Cr atoms can be arranged within the

FCC lattice: W = N !/nFe ! nCr !. Use of Stirling’s approxi-

mation for large number of sites, ln N ! = Nln N � N,

yields S =� R(x1ln x1 + x2ln x2), where x1 = nFe/N, and

x2 = nCr/N are the atom fractions of Fe and Cr in the

lattice. If the mixing process is thermodynamically ideal,

the associated change in the Gibbs free energy is

Gideal =� TS = RT(x1ln x1 + x2ln x2). Calculations of Gideal

are shown in Figure 2a, for T = 800 K, and T = 1200 K.
Figure 2
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The free energy is reduced on mixing Fe and Cr. For an

ideal mixture, mixing in all proportions of Fe and Cr is

favored at both 800 K and 1200 K because the free energy

is lowered in the mixture.

The formation of mixtures of Fe and Cr atoms does not,

however, occur in an ideal manner. The mixing process

requires overcoming of the lattice strain energy and the

formation of Fe-Cr bonds. The excess Gibbs free energy

can be estimated using the regular solution model, Gex ¼
RT x1lng1 þ x2lng2ð Þ ¼ ARTx1x2 where A is determined

from experimental data [10]; the calculations are shown in

Figure 2b. The total Gibbs free energy, G = Gideal + Gexcess,

calculated for 800 K and 1200 K are shown in Figure 2c.
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 Fe(1)/Cr(2) binary alloy mixtures at 800 K, and 1200 K, as a function of

s are based on the data of Soriano-Vargas et al. [10].
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At T = 1200 K, the free energy curve is ‘‘bow shaped’’,

indicating that the mixtures are miscible in all proportions.

However, we note that the free energy at800 K, exhibits two

minima corresponding to @G/@x1 = 0; these minima occur at

x1 = 0.09164 and x1 = 0.90836. Alloys of these two composi-

tions are in equilibrium with each other. At x1 = 0.5, the free

energy exhibits a maximum, and represents an unstable

state for the mixture. From the data on the vanishing of
Figure 3
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the first derivative @G/@x1 = 0, we can determine the

compositions of the two alloy phases that are in equilibrium

with each other for various temperatures. The two points

thus obtained at various values of temperature T, yields the

binodal curve (indicated in green) in Figure 2d. The vanish-

ing of the second derivative of the Gibbs free energy

@2G=@x2
1 ¼ @m1=@x1 ¼ 0 delineates the limits of phase in-

stability and defines the spinodal curve. This requirement
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 Cr (2), and Fick diffusivity for Fe(1)/Cr(2) binary alloys at 800 K, as a

ta of Soriano-Vargas et al. [10].
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110 Separation engineering
implies that Fick diffusivity vanish along the spinodal

compositions; Eq. (5) yields along the spinodal compositions

D12 ¼ Ð12G ¼ 0 (6)

In order to determine the directions of the fluxes of Fe

and Cr, we need to determine activity coefficients, and

activities. The activity coefficients, gi, of Fe(1) and Cr(2)

in the regular solution, as a function of the atom fraction of

Fe(1), can be calculated from lng1 ¼ Ax2
2; lng2 ¼ Ax2

1:; see

Figure 3a. At either end of the composition range, the

activity coefficients are 16.6, indicating a high ‘‘escaping

tendency’’. A few atoms of Fe in a Cr-rich environment

feel ‘‘out of place’’ and have a high escaping tendency.

Similarly, a few atoms of Cr in a Fe-rich environment will

have a high activity coefficient. Figure 3b, and c presents

calculations of the thermodynamic activity, defined by

ai = gixi. Consider the variation of the activity of Fe (1)

with increase in its atom fraction, x1. For the range of

compositions, 0 < x1 < 0.232, an increase in x1 results in a

corresponding increase in the activity a1. However, for the

range of compositions, 0.232 < x1 < 0.768, an increase in

x1 results in a corresponding decrease in the activity

a1. Analogous arguments hold for the activity of Cr atoms.

This implies that mixtures with 0.232 < x1 < 0.768, the Fe
Figure 4
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atoms must equilibrate to the composition x1 = 0.90836 at

which the activity of Fe is at a minimum, that is, the

diffusion is uphill in terms of atom fraction Fe. Corre-

spondingly, Cr atoms will diffuse to Cr-rich phase with

x1 = 0.232 at which the activity of Cr is at a minimum.

For all compositions within the spinodal envelope,

0.232 < x1 < 0.768, we have G < 0, and consequently the

Fick diffusivity D12 < 0. If we adopt the Fickian formula-

tion for the diffusion flux of Fe, then the Fick diffusivity

D12 < 0 within the spinodal envelope; see Figure 3d.

Crystallization processes operate near meta-stable and su-

persaturation regions; consequently, the phase equilibrium

thermodynamics has a significant influence on the diffusivi-

ty and crystal growth. This is illustrated by the variation of

the diffusivity of urea in aqueous solutions, as reported by

Myerson and Senol [11]. The Fick diffusivity tends to near-

zero values as the spinodal composition is approached; the

strong concentration dependence of the Fick diffusivity is

due to the thermodynamic factor correction, G.
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proach to equilibrium for CH4(1)/Ar(2)/H2(3) gas mixtures. Further
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(mi � mi,eq)/RT = ln(ai/ai,eq), as the driving force to model

crystal growth kinetics [12,13].

Uphill diffusion in ternary mixtures of ideal
gases
Consider the experimental data reported by Arnold and

Toor [14] on the transient equilibration of CH4(1)/Ar(2)/

H2(3) gas mixtures of two different compositions in the

top and bottom compartments of a Loschmidt tube; see

Figure 4. The Loschmidt tubes are 12.7 mm in diameter

and have a length, ‘=0.406 m. The composition differ-

ences between the top and bottom compartments can be

taken as the representative of the driving forces; the

values are: Dx1 =�0.515 ; Dx2 = 0.024 ; Dx3 = 0.491. We

note that the driving force for Ar is significantly lower

than that of its two partner species. The equilibration of

CH4, and H2 occurs ‘‘normally’’; the concentrations in the

top and bottom compartment approach equilibrium, fol-

lowing an exponential decay. The transient equilibration

of Ar, however, shows an overshoot (in bottom compart-

ment) and an undershoot (in top compartment). In tern-

ary composition space, the equilibration trajectories

follow serpentine paths that imply the manifestation of

uphill diffusion for Ar. Eq. (1) is unable to model the

transient equilibration of Ar because it would require the

diffusivity of argon to assume negative values for a time

duration 0 < t < 0.3 h.

Let us rationalize the experimental observations. For

gaseous mixtures, there are no thermodynamic non-ide-

ality influences and the chemical potential gradients are

simply related to the gradients of the partial pressures (1/

RT)(dmi/dz) = (1/pi)(dpi/dz). In the experiments, the total

system pressure, pt = p1 + p2 + p3 is constant, and there-

fore (1/RT)(dmi/dz) = (1/xi)(dxi/dz). With this simplifica-

tion, the Maxwell–Stefan (M–S) equations (3) reduces to

yield a set of two independent equations

� dx1

dz
¼ x2J1�x1J2

ctÐ12

þ x3J1�x1J3

ctÐ13

; � dx2

dz

¼ x1J2�x2J1

ctÐ12

þ x3J2�x2J3

ctÐ23

(7)

We can recast Eq. (7) into the form of a generalized Fick’s

law using two-dimensional matrix notation

ðJÞ ¼ �ct ½D�
dðxÞ
dz

(8)

The four elements of the Fick diffusivity matrix [D] can

be calculated explicitly from data on the M–S pair diffu-

sivities
D11 D12

D21 D22

� �
¼

Ð13ðx1Ð23 þ ð1�x1ÞÐ12Þ x1Ð23ðÐ13�Ð

x2Ð13ðÐ23�Ð12Þ Ð23ðx2Ð13 þ ð1�

� 

x1Ð23 þ x2Ð13 þ x3v12

www.sciencedirect.com 
For the ternary CH4(1)/Ar(2)/H2(3) gas mixture, the binary

pair diffusivities are Ð12 = 2.16 � 10�5 ; Ð13 = 7.72 � 10�5 ;

Ð23 = 8.33 � 10�5 m2 s�1. The differences in the pair dif-

fusivities cause the off-diagonal elements of Fick matrix [D]

to be non-zero. At the equilibrated compositions

x1,eq = 0.2575, x2,eq = 0.4970 and x3,eq = 0.2455, we can de-

termine the elements of the Fick matrix as

D½ � ¼ 4:44 1:83

3:64 6:3

� �
�10�5 m2 s�1. Particularly noteworthy

is the large magnitude of the off-diagonal element D21.

We can estimate the diffusion fluxes at time t = 0, using

(J) =� ct[D](Dx)/‘. The diffusion fluxes are

J1 =�2.19 � 10�3, J2 =�1.69 � 10�3, and J3 = 3.88 �
10�3 mol m�2 s�1. The fluxes of both CH4(1), and

Ar(2) are directed from the bottom compartment to the

top compartment, whereas the flux of H2(3) is directed

from the top compartment to the bottom compartment.

Uphill diffusion of Ar (= component 2) occurs because the

contribution of D21Dx1 =�1.87 � 10�5 is larger in magni-

tude and of opposite sign to the contribution of

D22Dx2 = 1.51 � 10�6. Put another way, Ar is ‘‘dragged’’

uphill due to friction with the partner CH4 molecules.

The transient overshoots and serpentine equilibration

trajectories can be modeled quantitatively by solving

the M–S equations (7), along with the equations of

continuity [9��]; the simulation results are shown by

the continuous and dashed lines in Figure 4. If the

differences in the pair diffusivities are ignored, and the

Fick matrix [D] is taken to be a scalar (averaged) diffu-

sivity times the identity matrix, then the equilibration

trajectory in composition space is a straight line; no uphill

diffusion is evidenced.

Is there a violation of the second law due to the phenom-

enon of uphill diffusion? For the ternary ideal gas mix-

ture, the rate of entropy production is

s ¼ �R
Pn

i¼1Jið1=xiÞðdxi=dzÞ. At the start of the experi-

ment, we have s = R((J1/x1)(Dx1/‘) + (J2/x2)(Dx2/‘) + (J3/

x3)(Dx3/‘)). The individual contributions to the rate of

entropy production are s1 = 0.09, s2 =�1.67 � 10�3, and

s3 = 0.159 J m�3 s�1 K�1. The rate of entropy production

of Ar(2) is negative, but the second law of thermodynam-

ics is not violated because components CH4(1), and H2(3)

produce entropy at such a rate to ensure that the total rate

of entropy production remains positive definite, that is,

s = s1 + s2 + s3 > 0. A further point to note is that for

ideal gas mixtures, the component activities are equal to

the mole fractions; therefore, the transport of Ar is against

its activity gradient during the initial stages of the diffu-

sion equilibration.
12Þ
x2ÞÐ12Þ

�
(9)

Current Opinion in Chemical Engineering 2016, 12:106–119



112 Separation engineering
The phenomenon of uphill diffusion in ternary gas mix-

tures is gainfully exploited in the application of heliox

therapy to patients with chronic breathing difficulties [9��].

Diffusional coupling effects in
multicomponent distillation
Distillation columns are normally designed using the

equilibrium stage model [2�,15�,16��]; departures from
Figure 5
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equilibrium are accounted for by use of tray efficiencies.

For a sieve tray column, for example, the contact time

between the rising vapor bubbles and the surrounding

liquid is finite and insufficient to attain the desired

thermodynamic equilibrium value. The efficiency of

contacting is described by Murphree efficiency,

Ei = (yiL � yiE)/(yi,eq � yiE) where yiE, and yiL are, respec-

tively, the vapor phase mole fractions, entering and
ge number
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istillation of the quaternary water(1)/ethanol(2)/methanol(3)/acetone(4)

nent driving forces on each stage.
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leaving a tray, and yi,eq is the vapor composition in ther-

modynamic equilibrium with the liquid leaving the tray.

For a tray in thermodynamic equilibrium, the component

efficiencies are 100% for each component. For binary

distillation, the Murphree component efficiencies are

bounded, that is, 0 � E1, = E2 � 1. For multicomponent

distillation, with the number of species n 	 3, coupled

diffusion effects in either vapor or liquid phases cause the

component efficiencies to be distinctly different from one

another, E1 6¼ E2 6¼ E3... 6¼ En. The phenomenon of up-

hill diffusion may lead to component efficiencies that

exceed unity, Ei > 1 or have negative values, Ei < 0.

Experimental data of Springer et al. [17��] for distillation

of the quaternary water(1)/ethanol(2)/methanol(3)/ace-

tone(4) mixture in a 12-stage distillation column are

presented in Figure 5a. The component Murphree effi-

ciency of methanol is negative on stage 3, and slightly

exceeds unity on stage 4. This implies that uphill diffu-

sion of methanol manifests on stages 3 and 4. The ratio-

nalization is to be found in the fact that the driving force

of methanol is practically zero on these two stages (see

Figure 5b); the direction of transport of methanol is

dictated by the transfer of the three partner species in

the mixture: water, ethanol, and acetone. Methanol can
Figure 6
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be ‘‘dragged’’ uphill due to because of the larger fluxes of

the partner species in the mixture. The classic Geddes

model [18��] for equilibration of a spherical bubble rising

through the froth dispersion on the tray can be used to

quantify the uphill transport of methanol; the simulation

details are provided in the Supplementary material.

Difference in the component Murphree efficiencies

cause the column composition profiles to deviate signifi-

cantly from that dictated by the residue curve maps

(RCMs) that are widely used for examining feasible

separation schemes for azeotropic mixtures [16��]. The

RCMs describe the change of the composition of the

liquid phase during continuous evaporation under con-

ditions in which vapor-liquid equilibrium is maintained.

As illustration, Figure 6 shows the composition profiles for

distillation of the ternary mixture water(1)/ethanol(2)/

acetone(3) in a sieve tray column operating at

101.3 kPa. Two different approaches are used in the

calculation of the column profiles: (a) the conventional

equilibrium stage model, and (b) the Maxwell–Stefan

model to describe diffusion in both vapor and liquid

phases. As expected, the equilibrium stage model pre-

dicts a column trajectory that follows the RCMs closely.

However, the M–S model calculation, taking proper
ole fract ion

0.04 0.06

curves
Stefan
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y
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 water(1)/ethanol(2)/acetone(3) at 101.3 kPa. Two different models are

d a non-equilibrium stage model using the Maxwell–Stefan diffusion
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account of diffusional coupling effects anticipates a cur-

vilinear composition trajectory, deviating strongly from

the RCM guidelines. For a specified purity of ethanol in

the bottom product, significantly more number of stages

will be required because of the ‘‘scenic route’’ followed

by the tray compositions as it traverses down the column

[15�,19�].

The phenomenon of uphill diffusion can be exploited to

separate 2-propanol/water, ethanol/water, and acetone/

methanol mixtures of azeotropic composition by distilla-

tion in the presence of an inert gas such as nitrogen, argon,

or helium [19�,20,21]; this principle is explained by means

of numerical examples in the Supplementary material.

Uphill diffusion in ternary mixtures of liquids
and glasses
Diffusional coupling effects in multicomponent mixtures

of liquids, alloys, and glasses are particularly strong. To

analyze and quantify such effects it is useful to express

the left member of Eq. (3) in terms of the mole fraction

gradients by introducing an (n � 1) � (n � 1) matrix of

thermodynamic factors [G]:

xi

RT

dmi

dz
¼ xi

d ln ai

dz
¼
Xn�1

j¼1

G ij
dxj

dz
; G ij

¼ dij þ xi
@ln g i

@xj
; i; j ¼ 1; 2. . .n�1 (10)

The elements of [G] can be calculated from UNIQUAC or

NRTL models describing phase equilibrium thermody-

namics [8��,19�]. For ternary mixtures, the Fick diffusivi-

ty matrix [D], defined by Eq. (8), can be expressed

explicitly as a product of two matrices
D11 D12

D21 D22

� �
¼

Ð13ðx1Ð23 þ ð1�x1ÞÐ12Þ x1Ð23ðÐ13�Ð12Þ
x2Ð13ðÐ23�Ð12Þ D23ðx2Ð13 þ ð1�x2ÞÐ12Þ

� �

x1Ð23 þ x2Ð13 þ x3Ð12

G 11 G 12

G 21 G 22

� �
(11)
For the glycerol(1)/acetone(2)/water(3) mixtures at the

composition x1= 0.1, x2 = 0.3, x3 = 0.6 we calculate

G½ � ¼ 1:49 0:47

0:74 0:41

� �
. The large off-diagonal elements

of [G] rationalize the large magnitudes of the off-

diagonal elements of the Fick matrix

D½ � ¼ 0:4513 0:1618

0:2512 0:3075

� �
�10�9 m2 s�1, that has been de-

termined experimentally [22–24]. In order to demonstrate

that the coupling effects in the Fick diffusivity matrix

have their origins in the thermodynamic non-ideality

effects, Figure 7 presents a plot of the ratio (D12D21)/

(D11D22) as a function of the ratio (G12G21)/(G11G22). We

see a unique dependence between the two sets of data.

Along the spinodal curve, both of these ratios tend to

unity values because the spinodal curve defines the
Current Opinion in Chemical Engineering 2016, 12:106–119 
stability limit, with G = 0, and jDj=0. The important

message emerging from Figure 7 is that diffusional cou-

pling effects become of increasing importance as the

compositions approach values corresponding to the spi-

nodal curve. Liquid extraction separations invariably

operate close to composition regions corresponding to

liquid–liquid phase splitting. Consequently, the phase

equilibrium thermodynamics have a significant influence

on the separation performance [19�].

Strong diffusional coupling effects in the vicinity of the

phase-splitting regions cause the diffusion equilibration

trajectories to be serpentine in shape, allowing the pos-

sibility of forays into the meta-stable regions. As illustra-

tion, let us examine the trajectory followed during

equilibration of homogenous mixtures of two different

compositions for the system water(1)/DMSO(2)/

THF(3). A compartment with pure water is allowed to

inter-diffuse with an adjacent compartment with the

composition x1 = 0.25, x2 = 0.42 and x3,eq = 0.33. The

composition of the equilibrated mixture is

x1,eq = 0.625, x2,eq = 0.21 and x3,eq = 0.165, which point

lies in the homogeneous region above the binodal curve.

At the equilibrium composition, the thermodynamic

factors are ½G � ¼ 1:61 �3:53

�1:36 3:77

� �
; the large off-diagonal

elements cause the uphill diffusion of DMSO. We also

note that the serpentine trajectory has penetrated the

binodal envelope; see Figure 8. This indicates the spon-

taneous emulsification is feasible. The formation of

emulsions by inter-diffusion of two homogeneous liquid

mixtures of different compositions is termed the Ouzo

effect [25]. The Ouzo effect can be exploited to form

nanospheres without energy expenditure because the

mixing is induced by inter-diffusion [26].
Serpentine diffusional equilibration trajectories, and tran-

sient overshoots are commonly encountered in mixtures

of alloys, glasses and cements [5�,27,28,29�]; this is well

illustrated by the experiments of Varshneya and Cooper

[27]. Two glass slabs with different compositions of

K2O(1)/SrO(2)/SiO2(3) are brought into contact at time

t = 0 and the transient concentration distributions deter-

mined in the each slab. The wt% of each component,

measured at t = 4.55 h after the start of the experiment are

shown in Figure 9. The over-shoot and under-shoot in the

SrO concentrations signal the phenomenon of uphill

diffusion; these are adequately modeled with the Fick

matrix ½D� ¼ 1 �0:267

�1:22 0:33

� �
�10�13 m2 s�1. If the ma-

trix of Fick diffusivities is assumed to be diagonal, the

corresponding linear equilibration trajectories are indicat-
www.sciencedirect.com
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Figure 7
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The phase equilibrium diagram for glycerol(1)/acetone(2)/water(3) mixtures at 298 K [42]. The ratio (D12D21)/(D11D22) is plotted a function of the

ratio (G12G21)/(G11G22).
ed by the dashed lines in Figure 9. Uphill diffusion can be

gainfully exploited to modify the surface properties of

alloys and glasses.

Uphill diffusion in microporous adsorbents
Microporous materials such as activated carbon, zeolites,

and metal organic frameworks (MOFs) are used as adsor-

bents in fixed beds, and as thin layers in membrane con-

structs [30�,31��,32]. The guest molecules are in the

adsorbed phase. The force acting per mole of adsorbate

species i is balanced by, firstly, friction between i and the

pore walls, and secondly, friction between species i and

species j. The extension of the M–S equation (2) is intuitive

� 1

RT

dmi

dz
¼
Xn

j¼1j 6¼ i

xj

Ðij
ðui�ujÞ þ 1

Ði;w
ðuiÞ; i ¼ 1; 2. . .n

(12)

The xi in equations (12) represent the component mole

fractions in the adsorbed phase within the pores

xi ¼
qi

qt

; qt ¼
Xn

i¼1

qi; i ¼ 1; 2; . . .n (13)
www.sciencedirect.com 
where qi is the molar loading of the adsorbate. The Ði,w

quantify molecule-wall interactions; they may be inter-

preted as inverse drag coefficients between the species i
and the material surface. For meso-porous and macro-

porous materials, the Ði,w may be identified with the

Knudsen diffusivity if the guest molecules have poor

adsorption strength [33�]. The Ðij may be interpreted

as the inverse drag coefficient between species i and

species j. At the molecular level, the Ðij reflect how

the facility for transport of species i correlates with that

of species j; they are also termed exchange coefficients. For

mesoporous and macroporous materials, the Ðij can be

identified with the corresponding diffusivity of the bulk

fluid mixture [33�,34,35]. The multiplication factor xj has

been introduced in the numerator of the first right mem-

ber of Eq. (12) because the friction experienced by

species i with the each of the other species in the

adsorbed phase should be proportional to the relative

amounts of species j in the adsorbed phase.

If we define the fluxes in a reference velocity frame with

respect to the pore walls, Ni = rqiui, we derive [34]
Current Opinion in Chemical Engineering 2016, 12:106–119
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Figure 8
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Trajectory followed during equilibration of homogenous mixtures of two different compositions for the system water(1)/DMSO(2)/THF(3); the

equilibrium composition x1,eq = 0.625, x2,eq = 0.21 and x3,eq = 0.165. DMSO = dimethyl sulfoxide; THF = tetrahydrofuran. Further calculation details

are provided by Krishna [25].
�r
qi

RT

dmi

@z
¼
Xn

j¼1j 6¼ i

xjN i�xiN j

Ðij

� �
þ N i

Ði;w
; i ¼ 1; 2. . .n

(14)

Coupling effects for mixture diffusion in micropores is

always important because the chemical potential of a

component in the bulk fluid phase is dependent on the

component loadings of all of the components in the

adsorbed phase within the micropores. Such coupling

effects often lead to uphill diffusion. The earliest experi-

mental demonstration of uphill diffusion in microporous

materials is reported in the classic paper of Habgood [36]

for transient uptake of N2(1)/CH4(2) mixtures is micropo-

rous LTA-4A zeolite. The uptake, measured at 194 K with

partial pressures p1 = 10 kPa and p2 = 90 kPa, are shown in

Figure 10. The N2(1)/CH4(2) mixture constitutes a com-

bination of more-mobile-less-strongly-adsorbed-N2 and

tardier-more-strongly-adsorbed-CH4. Nitrogen is a ‘‘pen-

cil-like’’ molecule (4.4 Å � 3.3 Å) that can hop length-wise

across the narrow windows of LTA-4A; the ‘‘spherical’’
Current Opinion in Chemical Engineering 2016, 12:106–119 
CH4 (3.7 Å) is much more severely constrained and has a

diffusivity that is about an order of magnitude lower than

that of N2. N2 has an adsorption strength that is lower than

that of CH4. During the initial stages of the transient

uptake, the pores of LTA-4A are predominantly richer

in the more mobile N2, but this is displaced by the more

strongly-adsorbed-but-tardier CH4 molecules at longer

times. This results in an overshoot in the N2 uptake. Note

that the maximum loading of N2 is about a factor five times

that of the final equilibrated uptake. Put another way,

supra-equilibrium loadings are attained for N2 during a

short time interval in the early stages of the transient

uptake. The observed overshoot of N2 can be modeled

quantitatively using the M–S equation (14), taking proper

account of (coupled) mixture adsorption equilibrium

[31��]. Uphill diffusion of N2 can be exploited to develop

a process for purification of natural gas to meet pipeline

specifications by selective uptake of N2 that reduces the

heating value.

The experimental data of Chen et al. [37] for transient

uptake of O2/N2 mixture within a carbon molecular sieve
www.sciencedirect.com
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Figure 9
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of each component is measured on either side of the Matano plane, measured at t = 4.55 h after the start of the experiment are shown. Further

calculation details are provided by Krishna [9��].
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particles shows an overshoot in the transient uptake of the

more mobile O2; such overshoots can be exploited to

adsorb O2 selectively from air using fixed bed adsorption

units.

Conclusions
The following major conclusions can be drawn from the

foregoing discussions and analysis.

(1) Coupling effects in mixture diffusion are often

significant, and may cause uphill transport of a

species against its concentration gradient. Transient

overshoots, and serpentine equilibration trajectories

in composition space are fingerprints of uphill

diffusion.

(2) Diffusion in the vicinity of phase transition region for

mixtures of liquids, metals, alloys, and glasses is

strongly influenced by the constraints imposed by

thermodynamic phase stability. Serpentine diffusion

trajectories may enter meta-stable zones causing

emulsification.

(3) Uphill diffusion strongly influences composition

profiles in distillation columns, and may be exploited

to break azeotropes by deliberate introduction of an

inert gas.

(4) For transient uptake of mixtures within a microporous

adsorbent, overshoots in loading of the more mobile

partner species may occur; these are traceable to the

influence of the influence of mixture adsorption

thermodynamics. Transient overshoot phenomena

may be exploited in diffusion-selective separations.

(5) The Maxwell–Stefan diffusion equations, with roots in

irreversible thermodynamics, are the most convenient

formulation to use for flux calculations. It is heartening

to note that the modern texts on transport phenomena

and separations include discussions on the M–S

diffusion formulation [2�,8��,38�,39�,40�,41�].

Notation
ai component activity, dimensionless

ct total molar concentration of mixture, mol m�3

D Fick diffusivity for binary mixture, m2 s�1

[D] Fick diffusivity matrix, m2 s�1

jDj Determinant of the Fick diffusivity matrix,

m4 s�2

Ði,w diffusivity characterizing molecule-wall interac-

tions, m2 s�1

Ðij M–S diffusivity, m2 s�1

G Gibbs free energy, J mol�1

Gexcess Excess Gibbs free energy, J mol�1

Ji molar diffusion flux of species i with respect to u,

mol m�2 s�1

kB Boltzmann constant, 1.38 � 10�23 J molecule�1

K�1

‘ Length of Loschmidt tube, m

n number of species in the mixture, dimensionless

NA Avagadro number, 6.02 � 1023 molecules mol�1
Current Opinion in Chemical Engineering 2016, 12:106–119 
Ni molar flux of species i with respect to zeolite

framework, mol m�2 s�1

pi partial pressure of species i in mixture, Pa

pt total system pressure, Pa

qi component molar loading of species i, mol kg�1

qt total molar loading in mixture, mol kg�1

R gas constant, 8.314 J mol�1 K�1

S entropy, J mol�1 K�1

t time, s

T absolute temperature, K

xi mole fraction of component i, dimensionless

ui velocity of diffusion of species i, m s�1

u molar average mixture velocity, m s�1

z direction coordinate, m

Greek letters
gi activity coefficient of component i, di-

mensionless

[G] matrix of thermodynamic factors, dimen-

sionless

jGj determinant of [G], dimensionless

mi molar chemical potential of component,

J mol�1

r framework density of adsorbent, kg m�3

ui fractional occupancy of component i, di-

mensionless

s rate of entropy production,

J m�3 s�1 K�1

Appendix A. Supplementary data
Supplementary data associated with this article can be

found, in the online version, at http://dx.doi.org/10.1016/j.

coche.2016.04.003.
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Stefan J: Über das gleichgewicht und die bewegung
insbesondere die diffusion von gasgemengen. Sitzber Akad
Wiss Wien 1871, 63:63-124.
www.sciencedirect.com

http://dx.doi.org/10.1016/j.coche.2016.04.003
http://dx.doi.org/10.1016/j.coche.2016.04.003
http://refhub.elsevier.com/S2211-3398(16)30025-9/sbref0005
http://refhub.elsevier.com/S2211-3398(16)30025-9/sbref0005
http://refhub.elsevier.com/S2211-3398(16)30025-9/sbref0010
http://refhub.elsevier.com/S2211-3398(16)30025-9/sbref0010
http://refhub.elsevier.com/S2211-3398(16)30025-9/sbref0015
http://refhub.elsevier.com/S2211-3398(16)30025-9/sbref0015
http://refhub.elsevier.com/S2211-3398(16)30025-9/sbref0020
http://refhub.elsevier.com/S2211-3398(16)30025-9/sbref0020
http://refhub.elsevier.com/S2211-3398(16)30025-9/sbref0025
http://refhub.elsevier.com/S2211-3398(16)30025-9/sbref0025
http://refhub.elsevier.com/S2211-3398(16)30025-9/sbref0030
http://refhub.elsevier.com/S2211-3398(16)30025-9/sbref0030
http://refhub.elsevier.com/S2211-3398(16)30025-9/sbref0035
http://refhub.elsevier.com/S2211-3398(16)30025-9/sbref0035
http://refhub.elsevier.com/S2211-3398(16)30025-9/sbref0035


Uphill diffusion Krishna 119
A remarkably prescient paper that anticipated uphill diffusion.

8.
��

Taylor R, Krishna R: Multicomponent Mass Transfer. New York:
John Wiley; 1993.

This is a comprehensive text on the theory and applications of the M–S
equations.

9.
��

Krishna R: Uphill diffusion in multicomponent mixtures. Chem
Soc Rev 2015, 44:2812-2836.

A comprehensive review on uphill diffusion.

10. Soriano-Vargas O, Avila-Davila EO, Lopez-Hirata VM, Dorantes-
Rosales HJ, Gonzalez-Velazquez JL: Spinodal decomposition in
an Fe–32 at%Cr alloy during isothermal aging. Mater Trans JIM
2009, 50:1753-1757.

11. Myerson AS, Senol D: Diffusion coefficients near the spinodal
curve. AIChE J 1984, 30:1004-1006.

12. Louhi-Kultanen M, Kallas J, Partanen J, Sha Z, Oinas P,
Palosaari S: The influence of multicomponent diffusion on
crystal growth in electrolyte solutions. Chem Eng Sci 2001,
56:3505-3515.

13. Garside J: Industrial crystallization from solution. Chem Eng Sci
1985, 40:3-26.

14. Arnold KR, Toor HL: Unsteady diffusion in ternary gas mixtures.
AIChE J 1967, 13:909-914.

15.
�

Taylor R, Krishna R, Kooijman H: Real-world modeling of
distillation. Chem Eng Prog 2003, 99:28-39.

A commentary on distillation mass transfer modelling.

16.
��

Doherty MF, Malone MF: Conceptual Design of Distillation
Systems. New York: McGraw-Hill; 2001.

Details of residue curves and much more on distillation process design.

17.
��

Springer PAM, van der Molen S, Baur R, Krishna R: Experimental
verification of the necessity to use the Maxwell–Stefan
formulation in describing trajectories during azeotropic
distillation. Chem Eng Res Des 2002, 80:654-666.

18.
��

Geddes RL: Local efficiencies of bubble-plate fractionators.
Trans Am Inst Chem Eng 1946, 42:79-105.

This is a classic contribution with application in diverse areas.

19.
�

Krishna R: Highlighting diffusional coupling effects in ternary
liquid extraction and comparisons with distillation. Ind Eng
Chem Res 2016, 55:1053-1063.

Analysis of coupling effects in liquid extraction and distillation.

20. Fullarton D, Schlünder EU: Diffusion distillation — a new
separation process for azeotropic mixtures — Part I:
Selectivity and transfer efficiency. Chem Eng Process 1986,
20:255-263.

21. Singh N, Prasad R: Experimental studies on the effect of inert
gases on diffusion distillation of ethanol–water mixtures. J
Chem Technol Biotechnol 2011, 86:1495-1500.

22. Grossmann T, Winkelmann J: Ternary diffusion coefficients of
glycerol + acetone + water by taylor dispersion measurements
at 298.15 K. J Chem Eng Data 2005, 50:1396-1403.

23. Grossmann T, Winkelmann J: Ternary diffusion coefficients of
glycerol + acetone + water by Taylor dispersion
measurements at 298.15 K. 2. Acetone-rich region. J Chem Eng
Data 2007, 52:336-340.

24. Grossmann T, Winkelmann J: Ternary diffusion coefficients of
glycerol + acetone + water by Taylor dispersion
measurements at 298.15 K. 3. Water-rich region. J Chem Eng
Data 2007, 52:341-344.

25. Krishna R: Serpentine diffusion trajectories and the Ouzo
effect in partially miscible ternary liquid mixtures. Phys Chem
Chem Phys 2015, 17:27428-27436.
www.sciencedirect.com 
26. Ganachaud F, Katz JL: Nanoparticles and nanocapsules
created using the Ouzo effect: spontaneous emulsification as
an alternative to ultrasonic and high-shear devices.
ChemPhysChem 2005, 6:209-216.

27. Varshneya AK, Cooper AR: Diffusion in the system K2O–SrO–
SiO2: III. Interdiffusion coefficients. J Am Ceram Soc 1972,
55:312-317.
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1. Preamble 

The Supplementary material (e-content) accompanying the manuscript Diffusing Uphill with James 

Clerk Maxwell and Josef Stefan provides (a) Introduction and derivation of the Maxwell-Stefan 

equations, (b) Simulations to demonstrate the principle of diffusion distillation for separation of 

azeotropes, and (c) Geddes model simulations to demonstrate uphill transport of methanol in quaternary 

distillation of water(1)/ethanol(2)/methanol(3)/acetone(4) mixtures.   

2. Introduction to the Maxwell-Stefan diffusion formulation  

The approach we adopt to describe diffusion stems from the pioneering works of James Clerk 

Maxwell 1 and Josef Stefan 2 who analyzed diffusion in ideal gas mixtures. The Maxwell-Stefan (M-S) 

formulation is best understood by considering z-directional diffusion in a binary gas mixture consisting 

of species 1 and 2, contained within the control volume shown schematically in Figure 1. The cross-

sectional area available for diffusion is 1 m2 and the length of the diffusion path is dz .  If the change in 

the partial pressure of component i across the diffusion distance dz  is idp , the force acting on species 

i per m3 is 
dz

dpi . The number of moles of species i per m3, 
RT

p
c i

i  , and therefore the force acting per 

mole of species i is 
dz

dp

p

RT i

i

  which for an ideal gas mixture at constant temperature also equals the 

chemical potential gradient 
dz

d i . This force is balanced by friction between the diffusing species 1 

and 2, each diffusing with a velocity iu  (cf. Figure 2). We may expect that the frictional drag to be 

proportional to the velocity difference  21 uu  , and we write  212
12

1 uux
Ð

RT

dz

d



 where the term 

12Ð

RT
 is to be interpreted as the drag coefficient. The multiplier x2 in the right member represents the 

mole fraction of component 2; this factor is introduced because we expect the friction to be dependent 

on the number of molecules of 2 relative to that of component 1. The Maxwell-Stefan diffusivity 12Ð  
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has the units m2 s-1 and the physical significance of an inverse drag coefficient. The extension to n-

component mixtures is intuitively obvious 3, 4: 

 
 

ni
Ð

uux

dz

d

RT

n

j ij

jiji

ij

,2,1;
1

1




 




 (1) 

The pair diffusivity ijÐ  can be interpreted as an inverse “drag coefficient” between species i and 

species j. Equation (1) is consistent with the theory of irreversible thermodynamics. The Onsager  

The Onsager reciprocal relations demand the symmetry constraint 

 njiÐÐ jiij ,2,1,;   (2) 

For n-component ideal gas mixtures, the molar diffusion fluxes iJ   are defined as 

   niuucJ iii ,.,,2,1;   (3) 

are defined with respect to the chosen molar average reference velocity frame u  

nnuyuyuyu ...2211   (4) 

Only n-1 of the fluxes iJ  are independent because the diffusion fluxes sum to zero 

 





n

i
iJ

1

0  (5) 

In terms of the diffusion fluxes, Ji, the M-S formulation for n-component diffusion takes the form 

 ni
Ðc

JxJx

dz

d

RT

x n

j ijt

jiijii

ij

,2,1;
1




 




 (6) 

For mixtures of ideal gases, 
dz

dy

dz

d

RT

y iii 


, and equation (6) simplifies to 

 ni
Ðc

JxJx

dz

dy n

j ijt

jiiji

ij

,2,1;
1




 



 (7) 
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Equation (7) is entirely consistent with the kinetic theory of gases, and the pair diffusivities ijÐ  can be 

identified with the diffusivity in the binary gas mixture of  species i and species j.   

Only n-1 of the Equations (7) are independent because the mole fractions sum to unity and the mole 

fraction gradients sum to zero 

 0...;1 21

1


 dz

dy

dz

dy

dz

dy
y n

n

i
i  (8) 

Equations (7) are applicable also to situations in which there is a temperature gradient along the 

diffusion path; in this case the molar concentration of the mixture 

 
RT

p
c t

t   (9) 

is to be evaluated at the average temperature in the diffusion layer. 

For solving equations (7), it is convenient to re-cast these equations into (n-1) dimensional matrix 

notation  

 
    )(JB
dz

yd
ct   (10) 

Where we define a (n-1) (n-1) dimensional matrix of inverse diffusivities  B  whose elements are 

given by 

 1...2,1,;
11

; )(
1











 






nji
ÐÐ

xB
Ð

x

Ð

x
B

inij
ijiij

n

k ik

k

in

i
ii

ik

 (11) 

Equations (10) may be re-written in (n-1) dimensional matrix notation  

    
dz

yd
DcJ t)(  (12) 

The (n-1) (n-1) dimensional Fick diffusivity matrix is 

     1 BD  (13) 
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For the solution of practical problems we need to calculate the molar fluxes iN  in the laboratory fixed 

reference frame; these are related to the diffusion fluxes iJ  by 

 



n

i
tii

n

i
ittiiiii ucucNNNyJucN

11

;  (14) 

The determination of n fluxes iN  requires an additional relationship, called the bootstrap relation. 

The first example of the bootstrap relation is the condition of equimolar counter-diffusion 

 0...21  ucNNNN ttn  (15) 

For equimolar counter-diffusion, that is relevant for distillation operations (without inert gas) we have  

 niJN ii ,..2,1;   (16) 

The bootstrap relation that is relevant to sweep gas distillation is the requirement that the inert gas 

(component n) does not transfer across the vapor/liquid interface into the liquid phase: 

 0nN  (17) 

In this case, the molar fluxes iN  are linearly related to the diffusion fluxes by iJ  

     JN   (18) 

The elements of the bootstrap matrix are 

 1,..,2,1,;  nji
y

y

n

i
ijij   (19) 

Krishna and Standart5 have developed exact solutions to equation (7), combined with a bootstrap 

relation, either equation (16) or (18), for explicit evaluation of the fluxes for steady-state transfer across 

a film of thickness . 

3. The Maxwell-Stefan formulation for diffusion in ternary ideal gas 
mixtures 

For 3-component ideal gas mixtures, equations (7) reduce to 
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23

2332

13

13313

23

3223

12

12212

13

3113

12

21121 ;

Ðc

JyNy

Ðc

JyJy

dz

dy

Ðc

JyJy

Ðc

JyJy

dz

dy

Ðc

JyJy

Ðc

JyJy

dz

dy

tt

tt

tt



















 (20) 

The inversion of the matrix [B] can be performed explicitly and the 2  dimensional matrix [D] are 

explicitly related to the pair M-S diffusivities Ð12, Ð13, and Ð23   

 

    
    

123132231

122132231223132

121323112123113

2221

1211 1

1

ÐyÐyÐy

ÐyÐyÐÐÐÐy

ÐÐÐyÐyÐyÐ

DD

DD






















 (21) 

For distillation of components 1 and 2 in the presence of an inert gas (component 3), 03 N . The 

elements of the 2  dimensional matrix     can be determined explicitly 

  























3

2

3

2

3

1

3

1

1

1

y

y

y

y
y

y

y

y

  (22) 

Combining equations (12), (18),  (21), and (22), we obtain 

 

    
    





























































dz

dy
dz

dy

ÐyÐyÐy

ÐyÐyÐÐÐÐy

ÐÐÐyÐyÐyÐ

y

y

y

y
y

y

y

y

c
N

N
t

2

1

123132231

122132231223132

121323112123113

3

2

3

2

3

1

3

1

2

1 1

1

1

1
 (23) 

For analysis of sweep-gas distillation we use the simplified procedure suggested by Krishna6. We 

evaluate both the matrices    and  D  at the arithmetic average vapor compositions in the 

2
0 ii

i

yy
y


 . With this simplification, the fluxes can be evaluated explicitly as follows 



 

S 8

 

    
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
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
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


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
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






















 220
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123132231

122132231223132

121323112123113

3

2

3

2

3

1

3

1

2

1 1

1

1

1

yy

yy

ÐyÐyÐy

ÐyÐyÐÐÐÐy

ÐÐÐyÐyÐyÐ

y

y

y

y
y

y

y

y
c

N

N
t  (24) 

4. Steady-state diffusional evaporation/condensation of 
ethanol/water/nitrogen 

For a binary mixture, the vapor-liquid equilibrium is described by 

 
t

iii
i p

Px
y

0
  (25) 

At the azeotropic composition, we have 

 ii xy   (26) 

Binary mixtures of azeotropic composition cannot be separated by distillation because there is no 

driving force for transfer from liquid to vapor phase. 

If an inert gas, such as nitrogen, is introduced into the vapor phase, this allows mixtures of azeotropic 

composition to be separated because the vapor compositions are altered and driving forces for transfers 

are “created’. Diffusional effects can be exploited to separate alcohol/water mixtures of azeotropic 

composition by distillation in the presence of an inert gas such as nitrogen, argon, or helium.7, 8 The 

principle of separation is illustrated by means of illustrative examples based on the solution of the 

Maxwell-Stefan equations. 

As an illustration let us consider mass transfer between the liquid and vapor phase for 

ethanol(1)/water(2)/nitrogen(3).  Figure 3 shows a schematic showing liquid/vapor transfer for ethanol 

(1) / water (2) /nitrogen (3). The mass transfer resistance is assumed to be restricted to the vapor phase, 

and the effective film thickness of the gas phase resistance is  1  mm. 

We first consider diffusional evaporation as a strategy for breaking the ethanol/water azeotrope. 

Assume that the liquid phase is the binary mixture ethanol(1)/water(2) at T = 343.15 K. The 

azeotropic composition at this temperature can be calculated as x1 = 0.869, x2 = 0.131; the calculations 
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are based on the NRTL parameters provided in Table 1. Let us bring this liquid phase in contact with an 

inert gas phase consisting of the nitrogen (= species 3). The vapor pressure of ethanol at 343.15 K is 

71.2 kPa, and the vapor pressure of water at 343.15 K is 31.2 kPa. The total gas phase pressure pt 

=101.3 kPa. The composition of the vapor phase at the gas/liquid interface in equilibrium with the liquid 

mixture can be calculated from 
t

iii
i p

Px
y

0

0


 . This yields y1 = 0.6177, y2 = 0.09264, y3 = 0.28971; see 

Figure 3. The bulk vapor composition is taken to be: y10 = 0.0, y20 = 0.0,  y30 = 1.0. 

The driving forces are 6177.01101  yyy , and 09264.0212  yyy o .  Both driving 

forces are directed from liquid to the vapor phase. The ratio of driving forces 67.6
2

1 



y

y
. 

 The values of the vapor phase M-S diffusivities of the three binary pairs at 343.15 K, calculated using 

the Fuller-Schettler-Giddings9 method, are 125
231312 sm103.3;61.1;05.2  ÐÐÐ ; these 

diffusivities are independent of composition. At the average composition 
2

0 ii
i

yy
y


 , the Fick matrix 

of diffusivities   510
2.770.038

0.185-1.626 







D m2 s-1. The bootrstrap matrix at the average composition is 

  









1.07180.0718

0.4791.479
 . The overall effective diffusivity is    510

2.960.158

1.052.426 







D  m2 s-1. At 

steady-state, the transfer fluxes can be estimated as 

 



























 
 09264.00

6177.00
10

2.960.158

1.052.426

10

15.343314.8101300 5
3

2

1

N

N
; 



















132.0

566.0

2

1

N

N
 mol m-2 s-1.  

Both fluxes are directed from liquid to the vapor phase. The ratio of fluxes is 233.0
1

2 
N

N
. This ratio is 

significantly higher than the ratio of the compositions in the liquid phase 15.0
1

2 
x

x
.  The off-diagonal 

contributions serve to enhance the flux of water because 356.0
96.2

158.0

2

1 



y

y
 is a significant fractional 

contribution to the water flux.  
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Let us now consider diffusional condensation as a strategy for breaking the ethanol/water azeotrope. 

The bulk vapor is considered to be of composition y10 = 0.6177, y20 = 0.09264, y30 = 0.28971 at 

temperature T = 343.15 K. This vapor is in contact with a bulk liquid mixture of azeotropic composition 

at T = 338.15 K. The azeotropic composition at this temperature can be calculated as x1 = 0.869, x2 = 

0.131, almost identical to the composition at T = 343.15 K. The vapor pressure of ethanol at 338.15 K is 

57.5 kPa, and the vapor pressure of water at 338.15 K is 25.03 kPa. The total gas phase pressure pt 

=101.3 kPa. The composition of the vapor phase at the gas/liquid interface in equilibrium with the liquid 

mixture can be calculated from 
t

iii
i p

Px
y

0

0


 . This yields y1 = 0.4989, y2 = 0.075, y3 = 0.4261.  

The driving forces are 1188.01101  yyy , and 01764.0212  yyy o .  Both driving forces 

are directed from vapor to the liquid phase. The ratio of driving forces 73.6
2

1 



y

y
. 

 The values of the vapor phase M-S diffusivities of the three binary pairs at an average temperature 

between bulk vapor and interface of 340.65 K, calculated using the Fuller-Schettler-Giddings9 method, 

are 125
231312 sm1025.3;59.1;025.2  ÐÐÐ ; these diffusivities are independent of 

composition. At the arithmetic average composition 
2

0 ii
i

yy
y


 , the Fick matrix of diffusivities 

  510
2.4190.06137

0.2942-1.61 







D m2 s-1. The bootstrap matrix at the average composition is 

  









1.2340.234

1.562.56
 . The overall effective diffusivity is    510

2.920.454

3.024.226 







D  m2 s-1. At 

steady-state, the transfer fluxes can be estimated as 

 
























 
 01764.0

1188.0
10

2.920.454

3.024.226

10

65.340314.8101300 5
3

2

1

N

N
; 

















0377..0

1986.0

2

1

N

N
 mol m-2 s-1. Both 

fluxes are directed from vapor to the liquid phase.  The ratio of fluxes is 1897.0
1

2 
N

N
. This ratio is 
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higher than the ratio of the compositions in the liquid phase 15.0
1

2 
x

x
. The off-diagonal contributions 

serve to enhance the flux of water because 047.1
92.2

454.0

2

1 



y

y
 is a significant fractional contribution to 

the water flux.  

5. Transient diffusional evaporation/condensation of ethanol/water/inert 
vapor 

A different method of illustrating the principle of diffusion distillation is to consider transient into a 

vapor “slab” of half-thickness (= 1mm); see schematic in Figure 4. The vapor slab is considered to be 

of “infinite” length in the vertical direction and the diffusion is limited to the transverse (z) direction. 

We first analyze transient diffusional evaporation. 

At time t = 0, the bulk vapor phase consists of pure nitrogen: y10 = 0.0, y20 = 0.0,  y30 = 1.0. 

At time t = 0, either side of the vapor slab is in contact with a binary liquid mixture of constant 

composition and maintained at 343.15 K. The liquid composition corresponds to the azeotrope: x1 = 

0.869, x2 = 0.131.  The vapor pressure of ethanol at 343.15 K is 71.2 kPa, and the vapor pressure of 

water at 343.15 K is 31.2 kPa. The total gas phase pressure pt =101.3 kPa. The composition of the vapor 

phase at the gas/liquid interface in equilibrium with the liquid mixture can be calculated from 

t

iii
i p

Px
y

0

0


 . This yields y1 = 0.6177, y2 = 0.09264, y3 = 0.28971. 

For a binary vapor mixture, the fractional departure from equilibrium is given by the matrix equation 

  
 

 



 



 




0
2

22

220 4
12exp

12

8
;)(

m
zz

Dt
m

m
QyyQyty




  (27) 

This expression can be generalized for ternary vapor mixtures by using two-dimensional matrix 

notation by replacing the binary mixture  diffusivity D by   D ; the justification for this procedure is 

provided in earlier works. 3, 6  
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The expression for fractional departure from equilibrium for ternary vapor mixtures (inert species 3) 

is 

       
 

    



 



 




0
2

22

220 4
12exp

12

8
;)(

m
zz

tD
m

m
QyyQyty




  (28) 

The Sylvester theorem, detailed in Appendix A of Taylor and Krishna,3 is required for explicit 

calculation of  Q . For the case of distinct eigenvalues, 1  and 2  of the the 2-dimensional square 

matrix   D , the Sylvester theorem yields 

          
 

       
 12

12

21

21
















IDfIDf
Q  (29) 

In equation (29),  I  is the identity matrix with elements ik . The functions  if   are obtained by 

substituting the eigenvalues 1  and 2  in place of the binary diffusivity in equation (27): 

  
 

 







 




0
2

22

22 4
12exp

12

8

m

i
i

t
m

m
f







  (30) 

The calculations can be easily implemented in MathCad 15.10 A printout of the MathCad file is 

appended along with this Supplementary material. 

In Figure 5a, the spatial-averaged mole fractions  )(ty of ethanol (1) and water (2) are plotted as a 

function of time, t. The ratio of the mole fraction of water (2) to that of ethanol (1) in the vapor phase as 

a function of time, t is plotted in Figure 5b; this ratio equilibrates to the value of 0.15
1

2

1

2 
x

x

y

y
, as is 

expected.  During the initial transience, however, 0.15
1

2

1

2 
x

x

y

y
, i.e. the vapor phase is richer in water 

than the azeotropic composition. Short contact times result in more effective separations. Figure 5b 

compares the transient values of 
1

2

y

y
 for nitrogen, argon, and helium.  We note that best separations are 

obtained by choosing argon as the inert gas. 
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Figure 5c plots the equilibration trajectories in ternary composition space.  Using the Maxwell-Stefan 

diffusion equations, the trajectories follow curvilinear paths. The azeotrope is broken precisely because 

the equilibration trajectory is not linear in composition space. 

We first analyze transient diffusional condensation. 

At time t = 0, the composition of the vapor slab is y10 = 0.6177, y20 = 0.09264, y30 = 0.28971 at 343.15 

K. The two sides of the vapor slab are in contact with a binary liquid mixture of constant composition 

and maintained at 338.15 K. The liquid composition corresponds to the azeotrope: x1 = 0.869, x2 = 

0.131, almost identical to the composition at T = 343.15 K. The vapor pressure of ethanol at 338.15 K is 

57.5 kPa, and the vapor pressure of water at 338.15 K is 25.03 kPa. The total gas phase pressure pt 

=101.3 kPa. The composition of the vapor phase at the gas/liquid interface in equilibrium with the liquid 

mixture can be calculated from 
t

iii
i p

Px
y

0

0


 . This yields y1 = 0.4989, y2 = 0.075, y3 = 0.4261. 

The calculations can be easily implemented in MathCad 15.10  

In Figure 6a, the  spatial-averaged mole fractions  )(ty of ethanol (1) and water (2) are plotted as a 

function of time, t. The ratio of the mole fraction of water (2) to that of ethanol (1) in the vapor phase as 

a function of time,  t is plotted in Figure 6b; this ratio equilibrates to the value of 0.15
1

2

1

2 
x

x

y

y
, as is 

expected.  During the initial transience, however, 0.15
1

2

1

2 
x

x

y

y
, i.e. the vapor phase is poorer in water 

than the azeotropic composition. Shorter contact times result in more effective separations. Figure 5b 

compares the transient values of 
1

2

y

y
 for nitrogen, argon, and helium.  We note that best separations are 

obtained by choosing argon as the inert gas. 

Figure 6c plots the equilibration trajectories in ternary composition space.  Using the Maxwell-Stefan 

diffusion equations, the trajectories follow curvilinear paths. The azeotrope is broken precisely because 

the equilibration trajectory is not linear in composition space. 
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The important message that emerges from the transient equilibration simulations is that the contact 

time between the vapor and liquid phases is crucial to the separation of azeotropic mixtures.  

6. Distillation of water/ethanol/methanol/acetone mixtures 

Experimental data for Murhpree efficiencies for quaternary 

water(1)/ethanol(2)/methanol(3)/acetone(4) mixtures were determined by Springer et al.11 The 

experiments were carried out in a 12-stage bubble capd distillation column wherein all the experiments 

were conducted under total-reflux conditions at 101.3 kPa.  Table 2 provides the data on the liquid 

compositions leaving  each stage for Run Q6. The experimental composition trajectories in the column 

are indicated by the blue circles in Figure 7. The data are plotted in ternary composition space by 

combining the mole fractions of methanol and acetone in the left bottom vertex.  

Two distillation boundaries are shown in Figure 7: the “acetone” boundary is the same as for the 

water/ethanol/acetone mixture; the “methanol” boundary is the same as for the water/ethanol/methanol 

mixture.  The experimental data shows that both the “acetone” and “methanol” boundaries are crossed 

in Run Q6.  Also shown as insets are the Murphree component efficiencies and component driving 

forces. The component Murphree efficiency of methanol is negative on stage 3, and slightly exceeds 

unity on stage 4. This implies that uphill diffusion of methanol manifests on stage 4.  The reason is to 

found in the fact that the driving force of methanol is practically zero on these two stages; the direction 

of transport of methanol is dictated by the transfer of the three partner species in the mixture: water, 

ethanol, and acetone. The boundary crossing is primarily due to the factor that the Murphree efficiency 

of water is higher than that of ethanol, i.e.  21 EE  . 

7. Transient equilibration inside vapor bubble rising through a liquid on 
a distillation tray 

Let us try to verify the phenomenon of uphill diffusion of methanol by a simple model. Let us 

consider the dispersion to consist of uniform and rigid vapor bubbles of diameter, bubbled . The transient 

equilibration process within a rigid spherical bubble is described by Geddes model that was originally 
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developed for describing binary diffusion inside vapor bubbles on distillation trays.12 For ternary 

mixtures, the Geddes model can be written in 3-dimensional matrix equation3, 13 

         













1
2

22
22

4
exp

16
;

m bubble
eqEeqL d

tD
m

m
QyyQyy 


 (31) 

In Equation (31),  Ey  denotes the vapor composition entering the tray,   eqy  denotes the vapor 

composition in equilibrium with the liquid leaving the tray,  Lx , and  Ly  denotes the vapor 

composition in leaving the tray; see schematic in Figure 8. For a tray operating at total reflux, the 

compositions of the vapor entering any stage, equals the compositions of the liquid leaving the stage, 

i.e.     LE xy  . Table 3 provides the NRTL parameters used in the calculation of the vapor/liquid 

phase equilibrium.  

 The elements of the Fick diffusivity matrix [D] can be explicitly calculated from equation (13). The 

M-S vapor phase diffusivity of the binary pairs, estimated from Fuller-Schettler-Giddings9 method are 

provided in Table 4. 

The Sylvester theorem, detailed in Appendix A of Taylor and Krishna,3 is required for explicit 

calculation of  Q . For the case of three distinct eigenvalues, 1 , 2 , and 3  of the 3-dimensional 

square matrix  D , the Sylvester theorem yields 

 

             
  

           
  

           
  2313

213

3212

312

3121

321
























IDIDfIDIDf

IDIDf
Q

 (32) 

In equation (32),  I  is the identity matrix with elements ik . The functions  if   are calculated from 

   













1
2

22
22

4
exp

16

m bubble

i
i d

t
m

m
f





  (33) 
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 For vapor bubbles rising on a sieve or bubble-cap tray, the effective contact time of the dispersed 

phase bubbles with the surrounding continuous phase is bubblef Vht  , where hf is the froth dispersion 

height, and bubbleV  is the bubble rise velocity.  

The fractional approaches to equilibrium for contact time t, also termed as the Murphree 

efficiencies,14-16 are calculated from 

 ni
yy

yy
E

eqiiE

iLiE
i ,..2,1;

,





  (34) 

Figure 9 presents the Geddes model calculations for the Murhpree point efficiencies on Stages 2, 3, 4, 

5, 6 and 7. The inlet compositions on the stages are as specified in Table 2. The x-axis is the contact 

time. The bubble diameter used in the simulations correspond to the value determined experimentally to 

be 5 mm. In the experimental set-up the vapor/liquid contact time on the tray is 0.046 s.  

The simulations show the hierarchy of component efficiencies 421 EEE  ; this is in good agreement 

with the experimental data in Figure 7. 

For stage 4, we note that the efficiency of methanol exceeds unity, indicating uphill diffusion. This is 

in accord with the data of Springer et al.11 in Figure 7. 

Figure 10 shows the  equilibration trajectory for water(1)/ethanol(2)/methanol(3)/acetone(4) mixtures 

for entering vapor compositions 02.0;08.0;79.0;11.0 1111  EEEE yyyy .  We note that the 

equilibration trajectory has crossed the water/ethanol/acetone “distillation boundary”.  These 

calculations provide a rationalization of the experimental observation of boundary crossing in Figure 7.  
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8. Notation 

 

ct  total molar concentration of mixture, mol m-3 

dbubble  bubble diameter, m 

 B    inverse diffusivity matrix, m-2 s1  

Ðij  M-S binary pair diffusivity, m2 s-1 

 D    Fick diffusivity matrix, m2 s-1  

Ei  Component Murphree efficiency, dimensionless 

hf  froth height on distillation tray, m 

 I   Identity matrix, dimensionless 

Ji molar diffusion flux of species i with respect to u , mol m-2 s-1 

Vi molar diffusion flux of species i in laboratory fixed reference frame, mol m-2 s-1 

ip   partial pressure, Pa 

tp   total pressure, Pa 

0
iP    vapor pressure, Pa 

 Q   matrix quantifying fractional departure from equilibrium, dimensionless 

R  gas constant, 8.314 J mol-1 K-1  

t  time, s  

T  absolute temperature, K  

xi  mole fraction of component i in liquid phase, dimensionless 

yi  mole fraction of component i in vapor phase, dimensionless 

u   molar average mixture velocity, m s-1 

bubbleV   bubble rise velocity, m s-1 

z  direction coordinate, m  
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Greek letters 



   film thickness, m 

 ij  Kronecker delta, dimensionless 

i  activity coefficient of component i, dimensionless 

 

Subscript 
 

0  Referring to starting compositions, t = 0 

bubble  Referring to bubble 

eq  Referring to final equilibrated compositions, t  

E   Referring to vapor compositions entering tray 

i  Component number         

j  Component number 

L  referring to compositions leaving tray 

O  referring to overall parameter 
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Table 1. NRTL parameters for ethanol(1)/water (2) mixture. These parameters are from the DECHEMA 

Dortmund data bank, and are used along with  ijijijG  exp . 

Component 1 Component 2 
12  21  12  

ethanol(1) water (2) 

T

29.169
12   T

624.9174
21   0.2937 

 

 



 

S 20

Table 2. Compositions of the liquid leaving each stage for Run Q6 of Springer. At total reflux, the 

compositions leaving each stage equals the vapor entering each stage. These compositions were 

determined by a non-equilibrium stage model that matched the column composition profiles that were 

determined in the experiments. 

 

 

Stage number x1E x2E x3E x4E 

1 0.0109 0.152 0.1839  0.6532

2 0.0205 0.2865 0.1956  0.4974

3 0.0307 0.3658 0.1986  0.4049

4 0.0446 0.4576 0.197  0.3008

5 0.0614 0.5527 0.1868  0.199

6 0.0787 0.6374 0.167  0.1169

7 0.094 0.7026 0.1412  0.0622

8 0.1064 0.748 0.1147  0.031

9 0.1163 0.778 0.0908  0.0149

10 0.1245 0.7977 0.0709  0.006964

11 0.1316 0.8103 0.0549  0.003223

12 0.1381 0.818 0.0424  0.00148
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Table 3. The NRTL parameters for the quaternary mixture water (1) – ethanol (2) – methanol (3) – 
acetone (4) at 101.3 kPa (Gmehling & Onken, 1977).  

These parameters are used along with Gij = exp(-ijij) and ij = Bij/T 

Quaternary system (homogeneous)    

Component i Component j Bij / [K] Bji / [K] ij / [-] 

Water Ethanol 624.9174 -29.169 0.2937 

Water Methanol 594.6299 -182.6052 0.297 

Water Acetone 602.6252 330.4768 0.5103 

Ethanol Methanol 73.413 -79.1718 0.3029 

Ethanol Acetone 188.8983 22.83319 0.3006 

Methanol Acetone 97.78178 107.83 0.3008 

 

Table 4. M-S vapor phase diffusivities for the binary pairs in the quaternary Water (1) – Ethanol (2) – 
Methanol (3) – Acetone (4) system. The values are calculated using the FSG correlation at the 
temperature 340 K, the average temperature in Run Q6 in the Springer experiments. 

Parameter units i-j pair 

1-2 pair 1-3 pair 1-4 pair 2-3 pair 2-4 pair 3-4 pair 

Ðij 10-5 m2 s-1 2.1 2.72 1.82 1.36 0.908 1.18 
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10.   Caption for Figures 

 

Figure 1. A force balance on a control volume containing an ideal gas mixture. 

 

Figure 2.  The force acting on each of the species in the diffusing mixture is balanced by friction 

between the species 1 and 2. 

 

Figure 3. Schematic for liquid/vapor transfer for ethanol (1)/ water (2)/nitrogen (3) at steady state across 

a film of thickness . 

 

 

Figure 4. Schematic for transient diffusion of ethanol/water into slab of half-thickness .   

 

Figure 5. Transient equilibration  in the vapor phase for ethanol (1)/ water (2)/inert (3) caused by 

diffusional evaporation. (a) The mole  fractions of ethanol (1) and water (2) plotted as a function of 

time, t.The total pressure is 101.3 kPa, and the temperature is 340.65 K. (b) Comparisons of the ratios of 

the mole fraction of water (2) to that of ethanol (1) in the vapor phase as a function of time, t using 

nitrogen, argon, and helium as inert gas. (c) Comparison of diffusion equilibration trajectories in 

composition space. 

 

Figure 6. Transient equilibration in the vapor phase for ethanol (1)/ water (2)/inert (3) caused by 

diffusional evaporation. (a) The mole  fractions of ethanol (1) and water (2) plotted as a function of 

time, t.The total pressure is 101.3 kPa, and the temperature is 340.65 K. (b) Comparisons of the ratios of 
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the mole fraction of water (2) to that of ethanol (1) in the vapor phase as a function of time, t using 

nitrogen, argon, and helium as inert gas. (c) Comparison of diffusion equilibration trajectories in 

composition space. 

 

 

Figure 7. Experimental data (blue circles) of Springer et al.11 for Run Q6 with quaternary 

water(1)/ethanol(2)/methanol(3)/acetone(4) mixtures. Also shown as insets are the Murphree 

component efficiencies and component driving forces. 

 

Figure 8. Vapor-liquid contacting on distillation tray. 

 

 

Figure 9.  Geddes model calculations for the Murhpree point efficiencies on Stages 2, 3, 4, 5, 6, and 7. 

The liquid compositions leaving each stage (= vapor composition entering that stage) are as specified in 

Table 2. 

 

 

Figure 10. Equilibration trajectory for water(1)/ethanol(2)/methanol(3)/acetone(4) mixtures calculated 

with the Geddes model.12 
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Steady-state diffusion into vapor slab
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Fig.  S4

Transient diffusion into vapor slab
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Boundary crossing with Geddes model

Water mole fraction

0.09 0.10 0.11 0.12

Et
ha

no
l m

ol
e 

fra
ct

io
n

0.70

0.75

0.80

0.85

water/ethanol/acetone "boundary"
Equilibration trajectory

water(1)/ethanol(2)/
methanol(3)/acetone(4); 
101.3 kPa

(yE)

(yeq)


	krishna CurrentOpinionChemEng 2016
	krishna CurrentOpinionChemEng 2016 SI
	Supporting_Information_DD text
	Supporting_Information_DD Figures


