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Bulk, Knudsen and surface diffusion of multicomponent mixtures inside porous media are 
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Introduction 

A proper description of intra-particle diffusion of 
multicomponent mixtures is essential in the simulation 
and design of PSA processes’,2. In general, we need to 
describe diffusion inside macro- and micro-pores (see 
Figure 1) and, in practice, we need to distinguish three 
fundamentally different diffusion mechanisms inside the 
pores of an adsorbent (Figure 2): 

1 Bulk, ‘free space’ or free molecular diffusion that 
becomes significant for large pore sizes and high 
system pressures; here molecule-molecule collisions 
dominate over molecule-wall collisions. 

2 Knudsen diffusion that becomes predominant when 
the mean free path of the molecular species is much 
larger than the pore diameter and hence mol- 
ecule-wall collisions become important. 

3 Surface diffusion of adsorbed molecular species 
along the pore wall surface; this mechanism of 
transport becomes dominant for micro-pores and for 
strongly adsorbed species. 

Bulk and Knudsen diffusion mechanisms occur in 
series and it is always prudent to take both mechanisms 
into account rather than assume that one or other 
mechanism is ‘controlling’. Surface diffusion occurs in 
parallel with the other two mechanisms and its contri- 
bution to the total species flux may be quite significant 
in many cases (as will be seen later). Within the micro- 
pores the dominant mechanism is surface diffusion. It is 
for this reason that surface diffusion is also referred to 
as micropore diffusion in the literature3. The pressure 

*Paper presented at the symposium ‘Gas Separation by PSA’, 
Twente, The Netherlands, 14 February 1992. 

gradient inside the particle is not always negligible and 
this pressure gradient gives rise to viscous, or Darcy 
flow. Figure 3 shows the various contributions to the flux 
of the species inside the particle. 

First consider the modelling of bulk and Knudsen 
diffusion. 

Combined bulk and Knudsen diffusion 

It is now generally agreed that the correct description of 
combined bulk and Knudsen diffusion is given by the 
dusty gas model (see references 4 and 5). The principle 
behind the dusty gas model is quite simple. The pore wall 
(‘medium’) is pictured as consisting of giant molecules 
(‘dust’), uniformly distributed in space. These dust 
molecules are considered to be a dummy, or pseudo, 
species n + 1 in the n-component gaseous mixture. To 
develop the transport relations we balance the force 
exerted on any species i in the multicomponent mixture 
and the friction experienced with the other species during 
the motion of species i: 

-Vyi=RT~x,~+RT~~+,(vi~~v’+‘) 
j=l r/ r,n + I 

i=l,2,...n (1) 

Here - Vpi is the force exerted per mole of species i. This 
force is balanced by friction between the species i and j 
and by the friction between the diffusing species i and the 
wall ( = pseudo-species n + 1). The vectors vi and vi 
are the velocities of species i and j with respect to 
the adsorbent particle. The parameters RT/B, and 

RTIBi,, + 1 can be interpreted as the drag coefficients 
representing molecule-molecule interactions and 
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Nomenclature 

Surface area of microporous crystallites per 
unit volume of particle (m2 mm3) 
Constant in Langmuir isotherm (Pa-‘) 
Permeability of porous medium (m’) 
Matrix of inverted Maxwell-Stefan diffusivi- 
ties (mm2 s) 
Matrix of inverted Maxwell-Stefan diffu- 
sivities for combined bulk and Knudsen 
diffusion (rn-' s) 
Matrix of inverted Maxwell-Stefan diffusivi- 
ties for surface diffusion (m-‘s) 
Molar concentration of the bulk fluid 
mixture (mol rn-‘) 
Molar concentration of species i in bulk fluid 
(mol mm’) 
Surface concentration of species i (mol m-‘) 
Surface concentration of species i at 
saturation (mol m-‘) 
Total saturation concentration of surface, 

sat = Z;=, cyt (mol m-‘) 
kore diameter (m) 
Particle diameter (m) 
Fick diffusivity in binary fluid mixture 
(m’s’) 
Fick surface diffusivity of species i(m2 ss’) 
Matrix of Fick diffusivities (m' ss’) 
Combined matrix of intraparticle Fick 
diffusivities (m’s’) 
Maxwell-Stefan diffusivity in bulk fluid 
phase (m’s_‘) 
Knudsen diffusivity of component i (m' ss’) 
Maxwell-Stefan surface diffusivity of species 
i (m2 ss’) 
Maxwell-Stefan counter-sorption diffusivity 
(m’s’) 
Effective surface diffusivity (m’s_‘) 
Reference value of intra-particle diffusivity 
(m’ss’) 
Fourier number 
Identity matrix 
Bessel function of zero order 
Distribution coefficient for sorption isotherm 
Index in Equation (71) 
Molar mass of species i (kg mol-‘) 
Number of diffusing species 
Matrix of Onsager coefficients (m’ ss’) 
Molar flux of species i in a stationary coordi- 
nate frame of reference (mol m-’ s-‘) 
Surface flux of adsorbed species i 
(mol rn-’ ss’) 
System pressure (Pa) 
Partial pressure of species i (Pa) 
Adsorbate loading (mol kg-‘) 
Radius of micro-porous crystals (m) 
Gas constant (8.314 J mall’ K-‘) 
Time (s) 

vi Velocity of the diffusing species i (m ss’) 

VI, v2 z-coordinate velocities of species 1 and 2 
(m s-‘) 

V Molar average mixture velocity, u = C:= , xiv, 
(m ss’) 

Xi Mole fraction of species i 

Ax, Composition difference across diffusion 
distance 

vx, Gradient of the component mole fraction 
z Direction coordinate (m) 

Greek letters 

r 

Fl 
6 

4j 

;3, 

Pi 

PL3 

VI 

tm 

PP 

cij 

Thermodynamic correction factor for binary 
mixture 
Matrix of thermodynamic factors 
Length of diffusion path (m) 
Kronecker delta (1 if i =j; 0 if i #j) 
Fluid mixture viscosity (Pa s) 
Fractional surface occupancy of component 
i, e, = c;/P 

Total surface occupancy of n species, 
et = q, e, 
Fractional surface occupancy of component 
i at saturation, ey E c~~/P’ 
Lateral displacement during surface diffusion 

(m) 
Chemical potential of i in bulk fluid (J mol-‘) 
Surface chemical potential of species i 
(J mall’) 
Jump frequency of component 1 (s-l) 
Roots of the zero order Bessel function 

JdL> = 0 
Particle density (kg mm3) 
Collision diameter for species i -j (m) 

Subscripts 

i, .i 
eff 
Kn 

viscous 
x, +o 
X’ + 1 
6 
0 
n+l 

Components in mixture 
Effective parameter 
Knudsen coefficient 
Total mixture 
Viscous flow parameter 
For vanishing small concentration of species 1 
For almost pure component 1 
Position z = 6 
Position 2 = 0 
Pseudo-species 

Superscripts 

0 Standard state 
b + K Combined bulk and Knudsen diffusion 
free Parameters in free space 

space 
S Surface 
sat Saturation 
total Combined bulk, Knudsen and surface 

diffusion parameter 

molecule-wall interactions, respectively. The Maxwell- 
StefandiffusivitiesD,andD,., + , , defined by Equations( l), 
are therefore to be interpreted as inverse drag coefficients. 

The principal idea behind the derivation of the dusty 
gas model, i.e. setting up a balance between the force 

exerted on a species and the friction experienced during 
the movement of this species in the mixture, originates 
from the independent works of James Clerk Maxwell’ 
and Josef Stefan’, which is more than a century old. The 
Maxwell-Stefan diffusivities D, can be related to the 
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inter-crystalline 
macropores diffusion_--.---..---.... diffusion within 

resistance / “microporous crystals 

/ -‘Y . . ..__ .-representation 

external fluid .*.-._________...-~ _._. (uniform spherical 

film “resistance” cfystallites) 

Figure 1 Schematic diagram of adsorbent or catalyst particle 
depicting the three main diffusion resistances (after Ruthvet?) 

vdint site on surface 

Figure 2 Three distinct mechanisms by which molecular species 
get transported within an adsorbent or catalyst particle: (a) bulk 
diffusion; (b) Knudsen diffusion; and (c) surface diffusion of 
adsorbed species along the surface of the pores 

Bulk diffusion Knudsen diffusion 

total flux. 
I 

Surface diffusion 
. 
I > 

viscous flow 

Figure 3 Electric analogue circuit picturing the flux of the 
diffusing species within a porous medium (after Mason and 
Malinauskas5) 

molecular diffusivities in ‘free’ space by 

4$= 
(constriction factor) 

(tortuosity) 
$) free space 

rl (2) 

The free space bulk diffusivity values can be estimated 
from the kinetic gas theory*, which shows that 

a free space cc 

P(l/M, + l/M,)“2 
11 

PC2 

It is usual to define the Knudsen diffusivity 

(3) 

(4) 

For a cylindrical pore of diameter d,,, the Knudsen 
diffusivity can be estimated from the kinetic gas theory. 
The result is 

(for cylindrical pores) (5) 

where M, is the molar mass of species i. In general, for 
non-cylindrical pores the Knudsen diffusivity has to be 
estimated from 

42 
(constriction factor) d, Ii2 

r.Kn = 
(tortuosity) 

(6) 

For ideal gas mixtures the chemical potential gradient 
is 

Vy, = RTV ln(p,) (7) 

We introduce the molar fluxes, defined per square metre 
of adsorbent cross sectional area, 

x,v, 

The dust molecules are held stationary in space and 
therefore 

V,,I = 0 (9) 

Equations (1) and (7)-(9) may be combined to give 

_kTVPiC i "";D"i"i+_!& i=l,2,...n 
j= I rl ,,Kll 
J#i (10) 

Let us cast Equation (10) in n-dimensional matrix 
form: 

-gT (VP) = [Bb+K](N) (11) 

The elements of the matrix [Bb+ “1 are given by 

Bb+K _ 
II -&-+ i”i i=l,2,...n 

I,Kll j= I Do 

j#i 

B;iK - X, _-- i,k =1,2,...n 
D,k (ifk) 

(12) 

The bulk and Knudsen diffusivities, B, and Bi,Kn, 
respectively, are influenced differently by the system 
parameters. Let us examine the two limiting cases of 
bulk diffusion and Knudsen diffusion. 
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Bulk diffusion control 

The bulk diffusivity B, is inversely proportional to the 
system pressure (cf. Equation (3)) and therefore with 
increasing system pressure the molecule-molecule 
interactions become of increasing importance. At 
sufficiently high pressure the Knudsen contribution may 
be neglected and the matrix [Bb+K] reduces to: 

Bk+K=,$, 2, i=l,2 ,... n 
1, 

Jfl 

(13) 

The Knudsen diffusivity is proportional to the pore 
diameter d,, and for large pore diameter the frictional 
contribution due to molecule-wall collisions may be 
neglected. In this case too the matrix [Bb+K] reduces to 
that given by Equations (13). 

For systems containing three or more species the 
diffusion behaviour can be very peculiar and not 
conform to normal Fickian expectations. This peculiar 
multicomponent behaviour will be demonstrated by 
considering a simple and illuminating set of experiments 
conducted by Duncan and Toor9. These authors exam- 
ined diffusion in an ideal ternary gas mixture hydrogen 
(I)-nitrogen (2)carbon-dioxide (3). The experimental 
set-up consisted of a two-bulb diffusion cell (Figure 4~). 
In an experiment that is highlighted here the two bulbs, 
1 and 2, had the initial compositions (expressed in mole 
fractions) given below: 

1: x, = 0.50121 x2 = 0.49879 xj = 0.00000 

2: x, = 0.00000 x2 = 0.50086 xj = 0.49914 

The two bulbs were connected by means of a long 
capillary of 2.08 mm diameter. At time t = 0, the 
stopcock separating the two composition environments 
at the centre of the capillary was opened and diffusion 
of the three species was allowed to take place. From the 
information given in the paper by Duncan and Toor, it 
is verifiable that the diffusion mechanism prevalent in the 
capillary is bulk diffusion. Further, the pressure differ- 
ences between the two bulbs were negligibly small, 
implying no occurrence of viscous flow. Since the two 
bulbs are sealed, there was no net transfer flux out of or 
into the system, i.e. conditions corresponding to 
equimolar diffusion prevail: 

a=0 N,+N,+N,=O (14) 

The composition-time trajectories for each of the 
three diffusing species in either bulb have been presented 
in Figure 4b. First examine what happens to hydrogen 
(1) and carbon dioxide (3). The composition-time trajec- 
tories are as should be expected; hydrogen diffuses from 
bulb 1 to bulb 2 and the two compositions approach 
each other, albeit slowly. Carbon dioxide diffuses from 
bulb 2 to bulb 1 in the normal expected fashion. The 
diffusion behaviour of these two species, hydrogen and 
carbon dioxide, may be termed Fickian, i.e. down their 
respective composition gradients. There is nothing 
remarkable in the diffusion behaviour of hydrogen and 
carbon dioxide. 

(4 

0 t=t1 

m 
4 0.61 i 

h 
; 

fractions 

m; 0.+)/f= 

0.4 z 

0 4 8 12 16 

time [h]’ 

Figure 4 Two-bulk diffusion cell experiment of Duncan and 
Toorg: (a) experimental set-up; (b) composition-time trajectories 
for the species hydrogen (I)-nitrogen (2)<arbon-dioxide (3) 

However, if the composition-time trajectory of nitro- 
gen (2) is examined, several curious phenomena are seen 
to occur. Initially, at time t = 0, the composition of 
nitrogen in bulb 2 is higher than in bulb 1, so we should 
expect, following Fickian ideas, that diffusion should 
take place from bulb 2 to bulb 1, decreasing the 
composition in bulb 2 and consequently increasing the 
composition of nitrogen in bulb 1. This expectation is 
indeed fulfilled during the time interval from t = 0 to 
t =tl z 1 h (Figure 4b). At the end of this interval, the 
composition of nitrogen in the two bulbs is identical, and 
therefore at this point the composition gradient driving 
force for nitrogen must be zero. At t = t 1, it was 
observed experimentally by Duncan and Toor that the 
diffusion of nitrogen did not cease but, contrary to 
Fickian expectations, continued further, implying that 

Vx,=O N,#O t=tl (15) 

The bulb 1 composition of nitrogen continued to in- 
crease at the expense of bulb 2 composition beyond the 
point t = t 1, and this diffusion of nitrogen is in an uphill 
direction, i.e. 

N, ->o t1<t<t2 
- vx, 

(16) 

Uphill diffusion of nitrogen continued to take place until 
t = t2, when the composition profiles in either bulb tend 
to reach a plateau. This plateau implies that the diffusion 
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flux of nitrogen is zero at this point, despite the fact that 
there is a large driving force in existence. At t = t2: 

Vx,#O N2=0 t=t2 (17) 

Beyond the point t = t2, the diffusion behaviour of 
nitrogen is ‘normal’, i.e. the composition of nitrogen in 
bulb 1 with a higher concentration decreases while the 
composition of nitrogen in bulb 2 with the lower concen- 
tration increases. 

Toor”, in a classic paper, anticipated the three curious 
phenomena described above and assigned the following 
names to them: 

Osmotic diffusion: this is the phenomenon observed 
at t = t 1 and described above by Equation (15). Here 
diffusion of a component takes place despite the 
absence of a constituent driving force. 
Reverse diffusion: this phenomenon is observed for 
nitrogen in the time interval t 1 < t < t2 and 
described by Equation (16). Here diffusion of a 
component takes place in a direction opposite to that 
dictated by its driving force. 
Diffusion barrier: this phenomenon is observed at 
t = t2 and is described by Equation (17). Here a 
component diffusion flux is zero despite the existence 
of a large driving force. 

It should be clear that the use of the Fick formulation, 
wherein it is assumed that the flux of any species is 
engendered by its own driving force, i.e. 

Ni=-kTDiVpi i=l,2,3 (18) 

will be totally inadequate to describe the three curious 
phenomena described above because, in order to rationalize 
the experimental observations, we must demand the fol- 
lowing behaviour of the Fick diffusivity for nitrogen (2): 

D, -+ cc at the osmotic diffusion point; cf. Equation 

(15); 
D, < 0 in the region where reverse diffusion occurs, cf. 
Equation (16); 
D, = 0 at the diffusion barrier, cf. Equation (17). 

It must not be forgotten that this strange behaviour of the 
Fick diffusivity for nitrogen has been observed exper- 
imentally for an ideal gas mixture at constant temperature 
and pressure conditions and for a situation correspond- 
ing to equimolar diffusion. In contrast with the Fick 
formulation, the dusty gas model Equations (10) and 
(11) are able to model the ‘peculiar’ behaviour of 
nitrogen in a straightforward manner, as illustrated below. 

First, recognize that for conditions of equimolar diffu- 
sion prevalent in the two-bulb diffusion cell experiment, 
only two of the three fluxes are independent. Eliminating 
the flux of carbon dioxide (3) N3, we may re-write 
Equations (1 l), neglecting the Knudsen diffusion contri- 
bution, as follows: 

--& = (B;,+K -B$:K)N, + (B&+K - B;:K)Nz (19) 

where the elements Bi+K of the matrix [Bb+K] are given 
by Equations (13). For the system hydrogen (l)- 
nitrogen (2)carbon-dioxide (3), the Maxwell-Stefan 
diffusivities of the three binary pairs can be estimated 
from the kinetic gas theory to be 

D,, = 8.33 x 10-5 

D,, = 6.8 x lops 

923 = 1.68 x 10-5 

At the equilibrium composition, the elements of the 
matrix [Bb+K] is estimated to be 

0.967 -0.301 -0.369 

[Bb+K] = -0.6 

[ 

1.786 -2.975 

-0.367 - 1.486 3.344 1 X 104 

Equations (19) can therefore be written as: 

-kT Vp, = (1.336N, + O.O68N,) x lo4 

-kT Vp, = (2.375N, + 4.762N,) x lo4 (20) 

For constant pressure conditions, -(ZU-‘VP, can be 
replaced by - cVX,, where c is the total molar 
concentration of the mixture. Employing matrix 
inversion, the flux of nitrogen can be written explicitly 
as N, = -c(-3.83Vx, + 2.15Vx2) x 105. This implies 
that the flux of nitrogen is strongly coupled to the 
driving force of the component 1. When the driving force 
of nitrogen Vx, = 0, notice that the flux of nitrogen 
remains non-zero and equals N2 = -cD,,Vx, = 
-c(3.83 x Vx,) x lo-‘. This non-zero flux causes the 
diffusion of nitrogen beyond the point t = t 1 (the 
osmotic diffusion point) in Figure 4. Between t = t 1 and 
t = t2, 13.83 x Vx, 1 > 12.15 x Vx21 and therefore the 
direction of nitrogen is against its intrinsic gradient 
(reverse or uphill diffusion). At the point t = t2, 
13.83 x VX, 1 = 12.15 x Vx, 1 and since these two terms have 
opposite signs, N2 = - c (- 3.83 x Vx, + 2.15 x Vx,) x 
lo-’ = 0 and nitrogen experiences a diffusion barrier. 

What we did above was to transform the Maxwell- 
Stefan diffusion equations into a matrix generalization 
of Fick’s law to explain the curious effects observed by 
Duncan and Toor’. The path via matrix algebra is not 
essential. It is possible to explain the behaviour of 
nitrogen in Figure 4b directly by using the force-friction 
arguments of the Maxwell-Stefan (equivalent to dusty 
gas) formulation. The driving force of nitrogen is much 
smaller compared with that of hydrogen and carbon 
dioxide. The frictional drag exerted by carbon dioxide 
(3) on nitrogen (2) transport is considerably larger than 
the frictional drag exerted by hydrogen (1) on nitrogen 
(2) transport; this can be seen from the fact that 
( l/DZJ) $ (l/D,*). During the time interval t = t 1 and 
t = t2 the direction in which the driving force of carbon 
dioxide acts is opposite to that in which the driving force 
of nitrogen acts. The much larger flux of carbon dioxide 
drags nitrogen against its intrinsic gradient, uphill. From 
this reasoning it should be clear that if the components 
hydrogen and carbon dioxide were switched in the two 
bulbs, i.e. with driving forces of carbon dioxide and 
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nitrogen in the same direction, no reverse diffusion of 
nitrogen would have been observed. 

Knudsen diffusion 

For low system pressures, intraparticle 
determined by molecule-wall collisions, 
words the transport is in the Knudsen 
matrix [gb+K] in this case is diagonal: 

1 B”+K,_ II 
Bi,Kn 

i=l,2,...n 

BpK=O i,k=l,2,...n 
i#k 

transport is 
or in other 
regime. The 

(21) 

For small pore diameters molecule-wall collisions 
again predominate and in this case too the matrix [Bb+ “1 
is given by Equations (21). Combining Equations (1) and 
(21) we see that for Knudsen-controlled intraparticle 
diffusion the flux of any species is 

fV, = - &T Di,Kn Vp, (Knudsen regime) (22) 

i.e. down its own, intrinsic, driving force. The diffusion 
behaviour may therefore be termed to be Fickian. 

The Knudsen diffusion coefficient Di,Kn is independent 
of pressure (cf. Equation (5)) while the bulk diffusivity 
is inversely proportional to the pressure (cf. Equation 
(3)). This implies that with increasing system pressure 
one moves from the Knudsen diffusion controlled regime 
to the bulk diffusion controlled regime. On the other 
hand, it follows from Equation (22) that the component 
fluxes N, in the Knudsen regime should be proportional 
to the total system pressure. From Equations (11) and 
(13) it follows that the fluxes Ni should be independent 
of the total system pressure in the limit of bulk diffusion 
control. The experimental results for diffusion of helium 
(1) and argon (2) across a porous septum, reported in 
reference 5 and reproduced in Figure 5, confirm the 
aforementioned expectations. The fluxes of helium and 
argon can be calculated by solving the dusty gas model 
Equations (11) and (12). Since the compositions vary 
along the diffusion path, numerical integration is 
required in general. However, the correct trends are also 
obtained by a linearized approach, assuming a constant 
value for the matrix [Bb+K], evaluated at the average 
composition in the septum. For negligible pressure drop 
across the septum, the linearized approach for a two- 
component system leads to the following set of 
equations: 

P Ax, -(-I RT 6= 
By,+KN, + By2+‘N, 

P Ax, 

-(-I 
---c 

RT 6 
B;,iKN, + BiziKN, (23) 

where Axi = xi6 - x,~ is the composition difference across 
the septum of thickness 6. The elements BpK are 
calculated by using Equations (12). As can be seen in 
Figure 5, the linearized approach provides a reasonable 
representation of the diffusion behaviour in both 
Knudsen and bulk diffusion regimes. Better agreement 
between theory and experiment can be obtained by 

N./ [mmol m-*s-l] 

l .e 
dlfhlnlnn limit 

0 argon (2) 
bulk diffusion limit ‘~.-‘-r+-~l-~--r__________I ________ ___t____ 

~.. 
-0.11 “,I, I I I I I I I 

0 :.* 4 6 8 

p/ [l O5 Pal 

Figure 5 Fluxes of helium (1) and argon (2) across a porous 
septum as reported in Figure 16 of Mason and Malinauskas5 as a 
function of the total system pressure. The experimental conditions 
were: Ap = 0; T = 298.15 K; Ax, = - 0.9628; average composition 
across septum X, =0.5; thickness of septum 6 =0.00447 m. The 
model parameters used in the calculations are: D, Kn= 3.93 x 
1 Om8 m2 se’; D,,,, = 1.24 x 1 0m8 m2 s-‘; pD,, = 1.05 x 1 0m3 m2 se’ Pa. 
The model calculations for the fluxes of helium and argon were 
made by using Equations (23). assuming a constant value of the 
matrix [B] evaluated at the average composition & 

numerical integration of the dusty gas model equations’. 
In PSA processes it is essential that both bulk and 

Knudsen diffusion are properly taken into account in the 
simulations, because the relative importance of these two 
contributions will change during the cycles. 

Viscous flow contribution 

Finite pressure gradients within adsorbent particles 
cause an additional viscous flow contribution to the 
fluxes. This contribution is 

where 8 is the permeability of the medium and q is the 
mixture viscosity. For a cylindrical pore the permeability 
is 

The viscous flux contribution obtained from Equation 
(24) has to be added to the fluxes calculated from 
Equations (lo)-(12). Usually, the viscous flow contri- 
bution is small and may be neglected. In order to get a 
feel for the contribution of viscous flow, consider a set 
of experiments reported in reference 5 for diffusion of the 
mixture helium (1) and argon (2) across a porous 
septum. Figure 6 shows the experimentally determined 
fluxes of the two components as a function of the 
pressure difference across the membrane. The total 
system pressure was maintained constant during the 
experiments. The linearized theory calculations follow- 
ing Equations (23) and (24) are able to provide a 
reasonable representation of the experimental results. 
Neglect of viscous flow leads to a poorer correspondence 
with experiments. 
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N / [mmol m-2s-1] 
0.3 i r 

linearised 
theory 
including 

Ap/ [I @Pa] 

Figure 6 Fluxes of helium (1) and argon (2) across a porous 
septum as reported in Figure 19 of Mason and Malinauskas’ as a 
function of the pressure differential. The experimental conditions 
were: p = 1.986 x 1 O5 Pa; T = 298.15 K; Ax, = - 0.9628; average 
composition across septum X, =0.5; thickness of septum 
S = 0.00447 m. The model parameters used in the calculations are: 
D ,,xn=3,93 x 10e8 m2 s-l; b2,xn= 1.24x 10-8m2sb1; pD,*= 1.05 x 
1 O-3 m2 so’ Pa; ,$j’= 2.13 x 1 O-‘a m2; n = 22.8 x 1 O-” Pa s. The model 
calculations for the fluxes of helium and argon were made using 
Equations (23) and (24), assuming a constant value of the matrix 
[B] evaluated at the average composition J?, 

Surface diffusion of adsorbed molecular 
species 

Consider diffusion of n adsorbed molecular species along 
a surface within the adsorbent pores. In developing a 
formulation for surface diffusion it is convenient to have 
a simple physical picture for surface diffusion in mind. 
Such a simple physical model is depicted in Figure Zc, 
which shows molecules hopping from one adsorption 
site to another. A description of the hopping model can 
be found in reference 11. The dusty gas model approach 
to the description of surface diffusion can be extended by 
considering the vacant sites to be the n + 1 th pseudo- 
species in the (surface) system: 

+RTCe,+,(“~~U”+‘) i=1,2,...n (26) 
r.n + I 

where - VP: is the force acting on species i tending to 
move it along the surface. The first term on the right of 
Equation (26) reflects the friction exerted by adsorbate 
j on the surface motion of adsorbed species i. The second 
term in Equation (26) reflects the friction experienced by 
the species i from the vacancies. The 0s in Equation (26) 
represent the fractional occupancies of the adsorbed 
species. Thus ei represents the fractional occupancy of 
the sites by the adsorbed species i, and 8,+, represent the 
fraction of unoccupied, vacant, sites 

8 ntl 
= 1 - 0, - e2 - . . . - 0, = 1 - et (27) 

In previous analyses ‘*Jo the author denoted the a&,+, 
as the Maxwell-Stefan surface diffusivities. On further 
reflection, the author feels that it may be preferable to 
parallel the dusty gas model treatment completely and, 
by analogy with the definition of the Knudsen diffusivity 

(cf. Equation 4), the Maxwell-Stefan surface diffusivity 
ought to be defined as 

(28) 

Mechanistically, the Maxwell-Stefan surface diffusivity 
0; may be related to the displacement of the adsorbed 
molecular species, 2, and the jump frequency, v,(&), 
which in general can be expected to be dependent on the 
total surface coverage’4-‘6. 

0; = j12vi(e,) (29) 

If the jump frequency v,(f&) = vi(O) remains constant, 
independent of surface coverage, the Maxwell-Stefan 
surface diffusivity 0: is also independent of surface 
coverage, i.e. 

v,(e,) = ~~(0) 0; = h,(o) (30) 

Another possibility is that due to interactions between 
adsorbed species the jump frequency decreases with 
surface coverage. If it is assumed that a molecule can 
migrate from one site to another only when the receiving 
site is vacant (see Barre?‘), the chance of this is 
proportional to (1 - e,), so that 

vice,) = vi(o)(i -et) 8; = ~2~,(o)(i - e,) (31) 

The coefficients 0; express the adsorbate i-adsorbate 
j interactions. This coefficient can be considered as 
representing the facility for counter-exchange, i.e. at an 
adsorption site the sorbed species j is replaced by the 
species i. The counter-sorption coefficient D$ may there- 
fore be expected to be related to the jump frequency of 
the species i and j. As a simple (limiting case) model it 
can be imagined that the counter-sorption diffusivity will 
be dictated by the lower of the two frequencies vi and vj, 
i.e. 

B; = qv,(e,) VI < Vi (32) 

Within a single narrow pore of zeolite crystals the 
mechanism of counter-sorption cannot prevail because 
there is room for only one type of molecular species at 
any given time; this is the single-file diffusion mechan- 
ism. If, however, the contribution of a bank of parallel 
pores is taken into account along with cages, the 
possibility of counter-sorption cannot be ruled out. 

Assuming equilibrium between the surface and the 
bulk fluid we have the following relationship for the 
surface chemical potential /J; of species i: 

,u: = p, = pp + RT ln(p,) (33) 

where pUp is the chemical potential in the chosen standard 
state and pi is the partial pressure of species i in the bulk 
fluid mixture. The surface chemical potential gradients 
may be expressed in terms of the gradients of the surface 
occupancies by introduction of the matrix of thermo- 
dynamic factors: 

$; vp, = i ye, 8 lnpi . 
rrl = eidB 2,1=1,2,...n 

j=l I 
(34) 
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For the Langmuir isotherm 

e,=& biPi 
c 

1 + i bjpj 

bipi = & 
t 

j=l 

the elements of [F] are: 

ei 
Tg=6,+(l_0,) i,j=l,2,...n 

(354 

Wb) 

The surface fluxes NY of the diffusing adsorbed species 
are defined as: 

N; = cSat(jiui (36) 

where I? is the total saturation concentration on the 
surface. The vacant sites can be considered to be 
stationary, so 

V n+1= 0 (37) 

Combining Equations (26)-(37) we obtain, analogous to 
Equation (lo), 

n O,N;-t&N; N; 

P&l> 
+- 

CsatDs 
i=l,2,...n 

jfi (38) 

which may be cast into n-dimensional matrix notation, 
analogous to Equation (1 l), as 

- cSat [r] (WI) = [B”] (N”) (39) 

where the (surface) matrix [B”] has its elements, which 
are given, analogous to Equations (12) by 

j#i 

If we define a matrix of Fickian surface diffusivities 

PI by 

(N”) = -c”‘[D”](V@ (41) 

we can obtain the following explicit expression for [D”]: 

[D”] = [B”]-‘[T] (42) 

For a single-file diffusion mechanism, with no possi- 
bility of counter-exchange between the adsorbed species 
i and j, the Equations (38)-(42) simplify to give the 
following expressions for the Fickian surface diffusivity 
matrix [D”] 

rD: 0 0 01 

0 f3; 0 0 
[D”] = o o . o [F] single-file diffusion 

1 0 0 0’ B:] (43) 

A few special cases of Equations (40)-(43) are examined 
below. 

Surface diffusion of a single component 

For single-component diffusion, Equations (41)-(42) 
reduce to the scalar form 

N; = -c”‘D;lVB, (44) 

where the Fickian surface diffusivity is 

(45) 

For the Langmuir adsorption isotherm the thermo- 
dynamic factor r is 

1 
r=- 

l-9, 

Combining Equations (45) and (46), we obtain the 
following expression for the Fickian surface diffusivity 

(47) 

If the Maxwell-Stefan surface diffusivity D; decreases 
with surface coverage following Equation (31) then the 
Fick surface diffusivity must be independent of surface 
coverage. On the other hand, if the Maxwell-Stefan 
surface diffusivity Df is independent of surface coverage 
(cf. Equation (30)) the Fickian surface diffusivity should 
exhibit a sharp increase with 8,. Such behaviour has 
been observed by several workers’*, for example for 
the diffusion of oxygen in carbon molecular sieve” 
(Figure 7). In this case it should be clear that adsorp- 
tion and desorption kinetics should be different from 
each other. This has been confirmed in practice” 
(Figure 8). 

2 4 6 

surface concentration&M%] 

Figure 7 Variation of diffusional time constant with surface 
concentration for oxygen in Bergbau carbon molecular sieve at 
193 K. The theoretical line is from Equation (40), with the thermo- 
dynamic factor r calculated from the equilibrium isotherm and 
taking (D;/ra) = 2 x 1 0-6s-’ where r, is the crystal radius (after 
Ruthvenlg) 
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fractional 

t1’2 /[s1’2] 
Figure 8 Comparison of experimental and theoretical sorption 
curves for ethane in 4A zeolite at high concentrations. Theoretical 
curves for adsorption and desorption drawn taking (D;/rZ) = 
2.45 x 1 0m4 se’. The thermodynamic factor was calculated using 
Langmuir isotherm (after Garg and Ruthvenzo) 

Single-file surface diffusion of binary and ternary 
mixtures 

For single-file diffusion involving two components, 
Equations (41)-(43) reduce to the two-dimensional 
form 

(N”) = -p “0’ D”; 1 1 [rl(w (48) 

If the Langmuir isotherm is used to calculate [r], we 
obtain 

I”: ofoe2 I:*,] 
(N”) = -c”“‘[D”](V8) [D”] = o D” 

2 l-8, -8, 
(49) 

If we assume that the Maxwell-Stefan surface 
diffusivities 0; follow relation (31), the following 
expression for the 2 x 2 Fickian surface diffusivity 
matrix is obtained: 

which coincides with the expression given by Qureshi 
and Wei”. The transient concentration profiles are 
obtained by solving the continuity relations 

a(*) 
- = v. [[D”]v(e)] at (51) 

An alternative formulation is to define effective sur- 
face diffusivities D$E: 

ae 
$ = V.(D;,effVBj) i = 1,2 

By comparing Equation (52) with Equations (49) and 
(5 l), we obtain the following expressions for the effective 

diffusivities of components 1 and 2: 

W,et~ = 
0s 

(1 - *, - *,I 
(1 - e,> + 8, $ 

I > 

D S.ei~ = 
0s 

(1 - 4 - 02) 

(l-e,)+e,Z 
2 

I (53) 

The above Expressions (53) for the effective surface 
diffusivities in a binary mixture coincide precisely with 
those given by Round et al . 22 It is clear from Equations 
(53) that the effective surface diffusivities are strong 
functions of surface concentrations and surface concen- 
tration gradients. Farooq and Ruthven’ have used these 
Equations (53) to simulate the kinetically controlled 
PSA process for separation of a mixture of oxygen and 
nitrogen. 

In order to demonstrate some of the key features of 
surface diffusion, Van den Broeke et al.23 solved 
Equations (50) and (51) for single-file transient uptake of 
components 1 and 2 inside a plane sheet. Their solution 
for the transient profiles of surface occupancies, using 
the analytic procedure developed by Krishna”, is shown 
in Figure 9a. The maximum in the surface occupancy 
of the faster moving component 2 is noteworthy. This 

1 .o 
r surface 

I occupancies _*-- _ 

.* l -*-Gponent 1 

o.oy- 
0.0 

(a) 

’ *O Lurface 
I occupancies Component 1 

Cnent 2 

Figure 9 Transient uptake of components 1 and 2 inside a 
spherical microporous particle. The y-axis shows the surface 
occupancies of components 1 (0, ) and 2 (0,). (a) Transient profiles 
obtained by solution of Equations (50) and (51) taking 
r2 (0) = 5Ov, (0). The saturation concentrations are assumed to be 
0, (t + co) =0.85; &(t -+ co) =O.lO. The Fourier number Fo is 
defined as Fo G&J; t/r:. (b) Monte Carlo simulations for a square 
lattice for the same set of conditions as in (a) above. The results are 
due to Van den Broeke et atz3. 
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maximum concentration is significantly higher than the 
ultimate equilibrium value @,(t + co) = 0.10. Van den 
Broeke et al” also performed Monte Carlo simulations 
with the single-file diffusion model to obtain the results 
shown in Figure 9b. These results are in agreement with 
the predictions of the Maxwell-Stefan surface diffusion 
equations in Figure 9a. 

The curious maximum for component 2 observed in 
Figure 9 can be explained physically as follows. The 
surface mobility, reflected in the Maxwell-Stefan surface 
diffusivity, of component 2, O;, is fifty times larger than 
the corresponding mobility of component 1, By. 
Initially, therefore, component 2 quickly penetrates the 
pores of the microporous solid. The adsorption strength 
of component 2 (O,(t -+ CCI) = 0.10) is considerably lower 
than that of component 1 (e,(t + co) = 0.85). Beyond 
the time corresponding to the maximum in component 
2 concentration, the relatively poorly adsorbed com- 
ponent 2 gets (slowly) displaced from the active sites by 
component 1 and the surface concentration of com- 
ponent 2 decreases from its maximum value to reach, 
eventually, its final low equilibrium concentration. 

The qualitative features of the transient behaviour 
sketched in Figure 9 has been experimentally confirmed 
by Kgrger and Bi.ilo~~~ for uptake of benzene and 
n-heptane in NaX zeolite. Two kinds of process can be 
devised for separating benzene (1) and n -heptane (2). An 
equilibrium separation process, requiring about 5 h of 
contact, will result in the pores of the zeolite filled 
predominantly with the strongly adsorbed benzene. 
Krishna” has pointed out the specific advantages of 
restricting the contact time to correspond to the maxi- 
mum in the component 2 profile. This results in diffusion 
selectivity towards the poorly adsorbed n-heptane. A 
diffusive selective process could result in much smaller 
equipment sizes. 

For single-file diffusion of an n-component mixture, 
the Fickian surface diffusivity matrix is given by 
Equation (43). If it is further assumed that the surface 
diffusivities 0: are given by Equations (31), the following 
expression for the Fickian surface diffusivity matrix is 
obtained: 

r V,(O) 0 0 0 1 
0 v,(O) 0 0 

Psl=~2 0 0 . 0 Fl (54) 

1 0 0 0’ v,(O) 

Van den Broeke et a1.23 solved Equations (51) and (54) 
for a ternary mixture for which the frequencies v,(O) were 
in the ratio 1: 10: 50. The transient uptake profiles are 
shown in Figure IOa for the Maxwell-Stefan model. 
Both components 2 and 3 exhibit maxima, suggesting a 
diffusion selective process for separating this ternary 
mixture. The Monte Carlo simulation results for the 
same set of conditions (Figure lob) show qualitative 
agreement with the Maxwell-Stefan model predictions. 

Surface diffusion with adsorbate-adsorbate 
interactions 

In the general case of adsorbate-adsorbate interactions 
the Fickian surface diffusivity matrix has to be evaluated 
by using Equations (40)-(42). These calculations will 
be illustrated by considering a two-component system. 

(4 

1.0 

r 

surface 
occupancies 

c Component 1 
_--- 

0.5 I. 

1.0 
surface 
occupancies 

- - - _ _ _ _ _C;o_mponent 2 
I_ 

Figure 10 Transient uptake of components 1, 2 and 3 inside a 
spherical microporous particle. The y-axis shows the surface 
occupancies of components l(0, ), 2(0,) and 3(0,). (a) Transient 
profiles obtained by solution of Equations (50) and (54) taking 
~~(0) = 5v, (0) = 5Ov, (0). The saturation concentrations are 
assumed to be 0, (t + m) = 0.65; B,(t --* a)) = 0.20; B,(t + co) = 0.10. 
The Fourier number Fo is defined as Fo =&t/r:. (b) Monte Carlo 
simulations for a square lattice for the same set of conditions as in 
(a) above. The results are due to Van den Broeke et a/.23 

Assuming the Langmuir isotherm, the Fickian surface 
diffusivity matrix reduces in this case to 

Lez -8, 1 -1 r(l-e,) el 1 
[D”l = J% leB;’ 1 “i ,L $2 (1 -e,>J 

2 I (1 - 8, - 0,) 

Calculations of the four elements of the Fickian 
surface diffusivity matrix using Equation (55) have been 
made in Figure 11 for two cases: (i) 8, = 0.3,8, = 0.1, and 
(ii) 8, = 0.2, 8, = 0.2. These calculations were made 
assuming that the counter-sorption diffusivity as2 = OS, 
the lower of the two Maxwell-Stefan surface diffusivity 
values. The Maxwell-Stefan surface diffusion model 
calculations can now be compared with the Monte Carlo 
simulation results of Palekar and Rajadhyaksha2’ for 
diffusion in a zeolitic structure made up of parallel, 
non-intersecting channels. As can be seen from the 
results in Figure 11, the predictions of the 
Maxwell-Stefan equations agree remarkably well with 
the Monte Carlo results. The benefit of using the 
Maxwell-Stefan approach should be obvious because 
the elements of the matrix [D”] can be predicted from 
information on the values of 0: and the adsorption 
isotherm. 
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To illustrate the differences between the calculations 
using Equation (55) (model including adsorbate 
adsorbate exchange) and Equation (49) (single-file 
diffusion model without adsorbate-adsorbate exchange) 
calculations using both Equations (55) and (49) were 
performed to estimate the cross-coefficient D;, of the 
matrix [D”]. These calculations are presented in Figure 
12in terms of a surface plot with the surface occupancies 
8, and 8, as parameters. The differences in the two model 
predictions do not appear to be significant. The results 
of Figure 12 show remarkable similarities to the 
Monte Carlo simulations of Dahlke and EmigZ6. Further 
attention needs to be paid to the determination of the 
proper way to model intraparticle diffusion in micro- 
porous materials such as zeolites. We need to obtain an 
unequivocal answer to the question whether to include 
adsorbateadsorbate interactions or not. 

Comparison of the Maxwell-Stefan and Onsager 
formulations 

An alternative approach to surface diffusion is to use the 
Onsager formulation of irreversible thermodynamics2’. 
In this formulation the surface fluxes are written as 
linear functions of the chemical potential gradients. For 
n-component systems we write 

(N”) = - P[LS] & (V/l) (56) 

From the Onsager reciprocal relations we conclude that 
the matrix [L”] is symmetric, i.e. 

Lsk=Lfi i,k=1,2,...n (57) 

o- o- 
0 s s10 0 

Dl % / 
s St0 

Dl D2 / 

Figure 11 The elements of the Fickian surface diffusivity matrix, 
normalized with respect to D;, calculated at 0, = 0.4; o2 = 0.0, as a 
function of the ratio Dt; /B;. The curves refer to calculations using 
Equation (55). The points refer to the Monte Carlo simulation 
results of Palekar and Rajadhyakshaz5 

Figure 12 The cross-coefficient D;,/D; as a function of the 
surface occupancies B, and Q2. The following parameter values are 
used in the calculations: DS,/D; = 5. (a) The calculations including 
the adsorbateadsorbate counter-exchange (Equation (55)) with 
the exchange coeffrcrent D;,=D;. (b) The calculations using the 
single-file diffusion model without counter-exchange between the 
two adsorbates, Equation (49) 

The chemical potential gradients may be related to the 
gradient of the surface occupancies (cf. Equation (34)): 

Combining Equations (56) and (58) gives: 

(58) 

0 

(IV’) = 

P’[LS] 

[ 

1/e, 0 

0 . - . 0 
. 

0 0 l/R 1 [~lW> (59) 

Comparison of Equations (39) and (59) gives the relation 
between [B”] and [L”]: 

1/e, 0 0 

[B”]-‘=[L”] [ 0 . . 0 

0 0’ 1/e, I 

[L”]_’ = WI (60) 
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It can easily be verified by using matrix algebra that for 
the general case using Equations (40) for calculation of 
[B”], which includes adsorbate-adsorbate interactions, 
the Onsager reciprocal relations (57) are automatically 
satisfied. The Onsager formulation, though equivalent to 
the Maxwell-Stefan formulation, does not provide any 
direct method for predicting the off-diagonal elements of 
[L”]. Yang et al. ” had to resort to quite a complicated 
analysis to predict these off-diagonal elements. The use 
of Equation (32) for prediction of the counter-sorption 
diffusivity allows straightforward estimations of the 
matrix [D”]. This procedure has been confirmed by 
comparison with Monte Carlo simulations (Figure 11). 
It can also be verified that the neglect of the off-diagonal 
elements in [L”] is tantamount to the use of the single-file 
diffusion model, Equation (43), i.e. 

&k(i + k) = 0 (61) 

Combined bulk, Knudsen and surface 
diffusion 

Setting up the Maxwell-Stefan diffusion equations for 
combined bulk, Knudsen and surface diffusion is a 
straightforward combination of the formalisms 
developed earlier in this paper. It is helpful to have a 
physical picture of the combined phenomena in mind. 
Towards this end the cratered dusty gas model is 
proposed. The large dust molecules, of infinite molar 
mass, representing the medium, have craters on their 
exterior surface representing the adsorption sites (Figure 
13). Molecule-molecule collisions and molecule-dust 
collisions occurring in series result, respectively, in bulk 
and Knudsen diffusion. In addition, each of the molecu- 
lar species may be adsorbed on the active sites of the 

Figure 13 The three mechanisms of bulk, Knudsen and surface 
diffusion can be integrated into a common physical picture in which 
the porous medium is modelled as giant dust molecules (golf balls) 
with craters representing the adsorption sites 
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medium. These vacant sites are also accorded the status 
of pseudo-species, of vanishing molar mass, and may be 
thought of as being akin to craters on a golf ball. The 
adsorbed species move (‘hop’ or ‘jump’) from one crater 
to another and may undergo desorption to the bulk fluid 
phase. 

We may combine the (parallel) contributions of bulk 
and Knudsen (superscript b + K) and surface diffusion 
(superscript s) inside a porous adsorbent particle consist- 
ing of macropores (of porosity E,,,,,) and micro-crystal- 
lites (see Figure 1) 

NY’ = t,,,,,NP+ K + (1 - E,,cro)NT amicro (62) 

where amicro is the micropore surface area of the pore per 
unit per volume of the microcrystallites. The first term 
on the right-hand side of Equation (62), expressing the 
contributions of bulk and Knudsen diffusion, can be 
calculated by use of Equation (11). The second term on 
the right-hand side of Equation (62) is the contribution 
of the surface diffusion flux and is to be calculated from 
Equation (39). 

Let us re-cast Equation (11) into the form 

(fvb+k) = -&b+k]-I(v& = --&+k](vp) 

(63) 

where the elements of the matrix [BbiK] are given by 
Equation (12). The surface flux Nf is similarly given by 
Equations (39)-(41): 

(N”) = - c”‘[D”](V8) = - c”‘[B”]-‘[T](VB) (64) 

An alternative form of Equation (64) is to use the 
gradients of loadings of the adsorbed species, expressed 
in terms of qi (mol kg-‘): 

(N”)= -5 [D”](Vq) = - +f- PSI- ‘Fl (Vq) (644 
mmxl lmcro 

We may substitute Equations (63) and (64) in Equation 
(62) to obtain 

- Csat%icro(l - %cro)[~sl-‘[~l(V~) (65) 

It remains now to relate the gradients of the partial 
pressure in the bulk fluid phase (VP) to the gradients of 
the surface occupancies (VfI). Note from Equation (34) 
that 

3 vp, = k riivei 
Pi j= I 

(66) 

If we define a diagonal matrix of distribution coefficients 
between the adsorbed species and the pore fluid: 

Ki = apore c “‘RTei _ pP R Tqi 

Pi Pi 
(67) 
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we obtain the following expression for the total flux 

c macroPb+Kl-’ + (1 -Gnacro>~~“l-’ 

K, 0 0 

x 0 -. 

i 11 0 03) (68) 

0 0’ K,, 

It is interesting to note that the thermodynamic factor 
[F] has dropped out of the final working expression for 
the calculation of the fluxes. The separation of the drag 
effects (portrayed by the matrices [gb+K] and [B”]) from 
the thermodynamic effects (portrayed by the matrix [F]) 
leads to significant simplifications in the computations, 
as is evidenced by the simple final form of the Equation 
(68). The intuitively simple expression (68) reinforces our 
faith in the Maxwell-Stefan formulation. 

We may also express the total fluxes N)ota’ in terms of 
the driving forces for surface diffusion, VBi, by introduc- 
ing Equations (66) and (67) into Equation (68) 

(Ntota’) = - UmjcroCSaf t,icro[Bb+K] + (1 - t,,,,,)[BS]~’ 

(69) 

If the diffusion inside the macropores is governed by 
Knudsen diffusion then the matrix [Bb+K] is given by 
Equation (21). Further, if adsorbate-adsorbate inter- 
actions in the matrix [B”] are neglected (cf. Equation 
(43)), the total fluxes across the adsorbent particle will 
be 

For the transient diffusion to a cylindrical adsorbent 
particle, the fractional uptake from a binary gas mixture 
at constant bulk composition is given by’2*29 

@I= 
[ 

m ew 
VI-4 c ( -trt,--- [Dtot=‘] F. 

DE, c;t ‘I V’) (71) 
m=l 

where 5, represent the roots of the zero-order Bessel 
function J0(5,) = 0, DEf is a reference value for the 

intraparticle diffusivity, and Fo E 4D,,t/dE is the 
Fourier number. The matrix [Dtota’] represents the 
combined bulk, Knudsen and surface diffusion charac- 
teristics of the particle. Equation (71) may be evaluated 
by using matrix algebra . ‘* To demonstrate the validity of 
this approach simulations are presented using Equation 
(71) for intra-particle diffusion of the binary gas 
mixtures ethanen -butane, ethane-n -pentane and n - 
butane-n-pentane inside activated carbon2s. In Figure 14 

(4 

8. 
I 

@z 
I 

(b) 

8. 
I 

@7 
I 

03 
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t 
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1 

l-l 

’ . I 

,a n-butane 
,‘c I I 
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time [s] 

> 
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> 

time [s] 
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Figure 14 Uptake of binary gas mixtures in Ajax activated carbon: 
(a) uptake of ethane (1)~n-butane (2). (b) Uptake of ethane 
(1)-n-pentane (2). (c) Uptake of n-butane (1)-n-pentane (2). 
The experimental data are from Hu and DOES. The simulations are 
using the analytical solution (70) with the model parameters as 
given in Tab/e 1 
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Table1 Transient uptakeof binarygasmixtures by activated carbon unified consistent manner by using a simple mechanistic 
picture of diffusion. To move a species with respect to 
other species (i.e. to allow a species to diffuse) we must 
exert a force on it; this force is the gradient of the 
chemical potential. During species diffusion drag is 
encountered with other molecular species and we have a 
balance between the applied force and frictional drag 
with the other molecular species. By using this simple, 
hydrodynamic, model, i.e. the Maxwell-Stefan formu- 
lation, we set out to model, in turn, bulk, Knudsen and 
surface diffusion. The considerable advantages of the 
Maxwell-Stefan approach have been demonstrated by 
means of several examples. 

Figure 14a Figure 146 Figure 14c 

Binary mixture Ethane (I)- Ethane (It 
n-butane (2) n-pentane (2) 

Bulk gas mixture 28.6% 28.5% 
Composition of 10.6% 8.6% 
components 1 and 2 

Equilibrium K, = 201 K, = 202 
K-values evaluated K2 = 858 K2 = 1066 
at bulk composition 

Saturation 07’ = 0.179 f?;,’ = 0.032 
occupancies of tI$ = 0.801 6’““’ = 0.948 z 
components 1 and 2 

Knudsen D ,,Kn = 1.852 D,,,, = 1.852 
diffusivity inside a,,,, = 1.240 D,,,, = 1.097 
macropores 
(10~“m’s~‘) 

Micro-pore (surface) 0; = 4.330 0; = 4.330 
diffusivities 0; = 0.932 0; = 0.315 
(10e9 m’s_’ ) 

n-butane (lt 
n -pentane (2) 

21.8% 
7% 

K, = 457 
K2 = 1302 

8”“’ = 0.271 
0 :a, = 0.709 2 

D ,,Kn = 1.240 
D 2.K” = 1.097 

D; = 0.932 
0; = 0.315 

Pressure, p = 101.35 kPa; temperature, T = 303.15 K; macroporosity, 
c,,,,, = 0.3 1; particle diameter, d,, = 1.588 mm 

are compared with the experimental data of Hu and 
Do2*. The model parameters used in Equations (71) and 
(72) are summarized in Table 1. These parameters were 
determined by Hu and Do2*. The essential features of the 
transient uptake profiles are reproduced by the simple 
analytical model developed here. Further, the agreement 
between simulations and experiment is almost as good as 
that presented by Hu and Doz8, who used a numerical 
solution of the partial differential equations representing 
macro- and micro-pore diffusion. The simple approach 
outlined above is recommended for designing adsorption 
columns. 

Conclusions 

In this paper an attempt has been made to model 
intraparticle diffusion inside a porous medium in a 
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