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ABSTRACT 
We develop a unified film model description of mass and heat transfer from binary 
mixtures to spherical, cylindrical and planar surfaces. The model shows that while the 
Sherwood (Nusselt) number has a lower asymptotic value of 2, there is no corresponding 
asymptote for transfer to cylindrical objects. The influence of finite mass transfer fluxes on 
the mass and heat transfer coefficients is described in a unified manner for all geometries in 
terms of a generalized Ackermann factor. This correction factor is independent of 
geometry. @ 2001 Elsevier Science Ltd 

Introduction 

In several applications of interest to the processing industries we encounter transfer of heat and 

mass to planar, cylindrical or spherical surfaces. In coal combustion and gasification, for example, we 

encounter simultaneous heat and mass transfer between spherical coal particles with a gaseous mixture. 

During condensation we encounter heat and mass transfer~drical tubes. Evaporation of water from 

spills on oceans involves mass transfer from (nearly) planar surfaces. Often in the process industries the 

fluid flows across, or along, the surface in turbulent flow. In the “film” model for heat and mass transfer, 

the transfer resistance is assumed to be located in a thin layer adjacent to the surface. Transfer within this 

film is by molecular transport. In Fig. 1, the effective “film” is located between r = r-0 and r = rs. Some 

authors [ 1,2,3] ignore the curvature of the film in the case of cylindrical and spherical surfaces and take 

(r, - rO) as the value of the film thickness to calculate the heat and mass transfer coefficients. This 

definition of the film thickness is correct only for planar surfaces and its incorrect application to spherical 

films, led Kalson [2] to erroneously conclude that the Ackermann correction factor [4] for finite mass 

transfer rates is affected by the system geometry. 

There is also another issue which needs clarification. For mass transfer to spherical surfaces, the 

Sherwood (or Nusselt) number has a lower asymptotic value of 2. For transfer to cylindrical surfaces, on 
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the other hand, measurements at low Reynolds numbers do not appear to show any lower limit [6]. The 

question arises as to the compatibility of the results for transfer to spheres and cylinders. 

r= r, r= r, r = r, r = r, r= r, r= r, 

FIG. 1 
Film thicknesses in planar, cylindrical and spherical geometries. 

The purpose of the present communication is to develop a unified film model description of mass 

transfer valid for spheres, cylinders and planar surfaces. We start by considering mass transfer in binary 

mixtures and subsequently generalise our treatment to simultaneous transfer of heat and mass. We 

develop the proper definitions of the “film” thickness and the Sherwood and Nusselt numbers. The issue 

of the lower asymptotic value of Nu and Sh numbers for spheres and cylinders is then discussed. 

Film Model for Mass Transfer in Binarv Mixtures 

Consider steady state mass transfer, to planar, cylindrical and spherical surfaces, in an isothermal 

binary fluid mixture made up of components 1 and 2. The mass transfer is assumed to be described by 

molecular diffusion within the planar, cylindrical and spherical regions defined within the limits r = t-0 

and r = r-5; see Fig. 1. 

The equation of continuity of moles of species can be rewritten for each individual species 

d(r“N ) 
d=O; i=1,2 

dr 

and for the total mixture 

d(r”N ) 
A=O; Nt=N,+N2 

dr 

The exponent (11 in Qs (1) and (2) depends on geometry: 
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a = 0 for planar film; (II = 1 for cylindrical film; cz = 2 for spherical film 

Equations (1) and (2) show that ra N, is r-invariant, i.e. 

(3) 

$N,, = r:N,& = r”N, (4) 

In the following discussions we evaluate the fluxes N, at the surface, i.e at r = ro and denote these by N,o. 

In order to calculate the fluxes N,. we need a constitutive equation and the Maxwell-Stefan 

relations are the best candidates for this purpose [7,8,9]: 

d+ _ x,N, - xzN,o 
dr - c,D,~ 

(3 

where D12 is the Fick diffusivity for the l-2 binary fluid mixture. The fluxes N,e are with respect to a 

stationary coordinate reference frame and are made up of two contributions: a diffusive flux and a “drift” 

contribution: 

N,, = J,, + x,~N,~; i = 1,2 (6) 

The diffusive flux is given by 

J,, = -c,D,,d"l 
dr r=ro 

; i=1,2 

Substituting x2 = l- x1 and rearranging we obtain 

h, _ XI (N,, + Nz& N,, 
dr - qD,, c,D,~ 

It is convenient to define the following variables: 

(a) a generalized film thickness ! : 

l! = r, - r. for planar films 

P = r, In(r,/r,)for cylindrical films; 

!‘= ro(l - r,/r,)for spherical films; 

(7) 

(8) 

(9) 

(b) a dimensionless distance coordinate q 

8’ r-r,; dr = ldq; for planar films 
‘s - ‘0 

ln(r/d 
’ = In(r,/r-)’ 

dq; for cylindrical films; 

O/r--l/G). 
2 

’ = (l/r, -l/r,)’ 
dr = L eddq; for spherical films; 

0 
r. 

(c) dimensionless mass transfer rate factors for mixture, $, , and for component 1, q$ 

(10) 

4, = 
N +N 
l!L.dL; qj,= N 10 

clwe CPnle 
(11) 
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With these definitions the Maxwell-Stefan diffusion equations simplify to the following 

dimensionless form 

$=ax, -h (12) 

which is to be solved with the boundary conditions 

r=ro; ?7=0; xI=xIo 
(13) 

r = rs; 7] = 1; x, = X,6 

The solution to the linear differential eq. (12) subject to the boundary conditions (11) is 

xl - xl0 _ exp(+,rl) -1 -- 
XI6 -x10 exp(@, ) - 1 

The diffusive flux Jr0 can be calculated from eq. (7); the result is 

(14) 

J,o = 
CA, 4, =c,kE(x,,-~,~)r k+ E= 4, 
e 4 q=o W4 I- 1 

(15) 

where we have defined the mass transfer coefficient k as the Fick diffusivity divided by the generalized 

film thickness ! . Some authors in the literature [1,2,3] have taken this film thickness to be equal to 

(r, - ro); this definition is erroneous and does not take the curvature of the film into account. 

The factor E , defined in eq. (15), corrects the transfer fluxes for finite mass transfer rates. This 

factor was derived independently by Ackermann [4] and Colbum and Drew [5]. A plot of E vs @, , given 

in Fig. 2, shows that this correction could be significant for high net mixture fluxes. Equation (15) only 

allows calculation of the diffusive contribution to the fluxes N,o and an additional equation required to 

calculate the two fluxes NtO and Nro. This additional relation has been termed the bootstrap relation [8,9] 

and, in general, takes the form of a linear constraint on the fluxes 

A,N,, + I&N,, = 0; ,. 

This additional bootstrap relations allow us to determine the total flux N,o from 

A, -A, 

@! = 
N,o •t- Nzo _ ln 

l-x,, 
x,oA, ++A 

CA/e 

i 1 
l-x,, 

A, -AZ 

GA ++a& 

(16) 

(17) 

Equations (16) and (17) covers most cases of importance to chemical and mechanical engineers, 

which are listed below. 

(a) equimolar diffusion 

N,,+N,=O; A,=A,; @,=O; E.exp(;)_l=l 
, 

@a) 



Vol. 28, No. 1 TRANSFER TO SPHERES, CYLINDERS AND PLANAR SURFACES 43 

(b) Stefan diffusion 

Nm =O; A, #O;h, =O; 4, =ln[z)=ln(%] (18b) 

(c) Graham diffusion inside porous media 

A, = m where M, is the molar mass (18~) 

(d) non-equimolar distillation with different molar enthalpies of vaporizations of individual species 

A,=HJ-H: (184 

(e) diffusion with heterogeneous chemical reactions where the flux ratios are fixed by reaction 

stoichiometry 

v, A, +v, A2 =o; N,, +$ ; [+_($; 

(f) condensation of a vapour mixture to form a liquid condensate with specified mole fraction z, 

(g) Evaporation of a liquid mixture to form a vapour with specified mole fraction z, 

(1%) 

Equation (15), in combination with the bootstrap relation (16), allows calculation of the two 

fluxes Nlo and Nzo. 

Mass transfer rate factor, $, 

FIG. 2 
Ackermann correction factor as a function of the mass transfer rate factor. 
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Simultaneous Heat and Mass Transfer 

For simultaneous heat and mass transfer in binary fluid mixtures, we have to contend additionally 

with the equations of continuity of energy: 

@LO (19) 
dr 

where E, the energy flux, is made up of the conductive and convective enthalpy contributions: 

E=q+(N,H,+N,H,); q=-1%; E=q+(N,C,,+N,C,,)(T-T,,) (20) 

where L is the thermal conductivity of the flux mixture. Defining the heat transfer coefficient and the heat 

transfer rate factor as follows 

h+ CpHZ (W,, + KC,,) 

h 

we rewrite eq. (20) in the convenient form 

(21) 

(22) 

Equation (22) can be solved for the boundary conditions 

I.=Q; n=o; T=To 

r=ra; q=l; T=T, 

to obtain the temperature profiles 

T-T, _ exp(07) - 1 -- 
Tb -T, exp(@, ) - 1 

whence we obtain the conductive heat flux 

(23) 

(24) 

%=-hg =h @, 

dlJ g=o exp($, ) - 1 
(To-T,)=hS,,(T,-T,) (25) 

Equation (25) is the heat transfer analog of eq. (15). The high-flux correction factor En, in 

common with its mass transfer analog, &, is independent of the geometry. This is in contrast with the 

conclusion reached by Kalson [2] who concluded that the Ackermann correction factor is geometry 

dependent; the error in this paper stems from an incorrect definition of the film thickness for the spherical 

geometry as being equal to (r, -rO). 

For mass and heat transfer to cylindrical and spherical objects it is conventional to define the 

@r ) Sherwood and Nusselt numbers as Sh s 2; hbr > Nu = 0 
42 a 

and therefore we obtain the following 

result 
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2 
___ 

” = N” = ln(r,/r,) 
for cylindrical films; 

5% = Nu = (1 _ iir, ) for spherical films; 

10 - 

a- 

6- 

I 

10 100 

US - 3 15 

FIG. 3 
Sherwood (Nusselt) number as a function of the dimensionless thickness (ra - rO)/rO 
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(26) 

FIG. 4 
Sherwood (Nusselt) number as a function of the normalized film thickness e/r0 
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A plot of Sh (=Nu) vs the parameter (ra -rO)/ r, is given Fig. 3 or cylinders and spheres, 

respectively. For transfer to spheres the Sh (=Nu) approaches a value the lower asymptotic limiting value 

of 2. For transfer to cylinders, there is no asymptotic limit. Experimental data on mass transfer to 

cylinders in laminar crossflow [6] confirm that the Nusselt number values as low as 0.2 can be obtained. 

When the Sh (or Nu) numbers for transfer to spheres or cylinders are compared at the same value of the 

normalized film thickness e/r, , the values are identical; see Fig. 4. The open square symbols in Fig. 4, 

representing the calculations for spheres, do not extend beyond values of e/r, exceeding unity, because 

the limiting value of e/r0 = 1 for “infinitely” thick films. There is no corresponding limiting value of 

e/r, for the cylindrical geometry. The equality of Sh (and Nu) for spheres and cylinders for equal values 

of e/r, , below unity, is a new result which is not reported so far in the literature. 

Conclusions 

We have developed a generalized film model for planar, cylindrical and spherical geometries. If 

the film thickness is defined in the proper manner, a general method can be developed for calculation of 

the heat and mass transfer coefficients and fluxes. Our analysis shows that the Sh (Nu) number for mass 

transfer to spheres has a lower asymptote of 2, but for cylinders there is no corresponding lower 

asymptote. When Sh (or Nu) numbers for spheres and cylinders are compared at the same normalized 

film thickness e/r, , the values are identical. 

The Ackermann correction factors for mass and heat transfer, Z and En, are independent of the 

geometry. A different conclusion has been reached by Kalson [2] due to an incorrect definition of the 

film thickness. 

Nomenclature 

AIPZ 

Cl 

CP 

D 

E 

h 

HI 

4 

k 

denoting the chemical species participating in surface chemical reaction, see eq. (18e) 

total molar concentration of the fluid mixture, mol me3 

molar heat capacity, J mole’ K-’ 

Fick diffusivity in binary mixture, m2 s“ 

energy flux, W me2 

heat transfer coefficient, W mm2 K-’ 

partial molar enthalpy of species i, J mol.’ 

molar diffusion flux of species i, mol me2 s-t 

matrix of multicomponent mass transfer coefficients, m s.’ 
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e 

M 

N 

N, 

Nu 

4 

r 

Sh 

T 

4 

Zi 

generalized definition of film thickness, defined in eq. (9), m 

molar mass of species i, kg mol.’ 

molar flux of species i in laboratory fixed reference frame, mol rn” s-r 

mixture molar flux, mol me2 s-r 

Nusselt number, dimensionless 

conductive heat flux, W me2 

radial distance coordinate, m 

Sherwood number, dimensionless 

absolute temperature, K 

mole fraction of species i, dimensionless 

mole fraction of condensate or vaporized liquid, dimensionless 

Greek Letters 

a =O for planar surface, = 1 for cylinders, = 2 for spheres, dimensionless 

77 dimensionless coordinate’distance coordinate defined by eq. (lo), dimensionless 

il thermal conductivity of fluid mixture, W me’ R’ 

A coefficients defined in eq. (16), dimensionless 

V stoichiometric coefficient, dimensionless 

4 mass transfer rate factor, dimensionless 

b heat transfer rate factor, dimensionless 

z Ackermann correction factor, dimensionless 

Subscripts 

1 referring to component 1 

2 referring to component 2 

0 at position r = ro 

6 at position r = ra 

H heat transfer parameter 

ref reference state 

t total mixture 

Superscripts 

X referring to liquid phase 

Y referring to vapour phase 
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