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Multicomponent Gaseous Diffusion in Porous Media in the 
Transition Region. A Matrix Method for Calculation 
of Steady-State Transport Rates 

Rajamani Krishnal 

Department of Chemical Engineering, University of Manchester Institute of Science and Technology, Manchester M60 700. England 

Isothermal steady-state diffusion of n-component gaseous mixtures through porous media in the transition re- 
gion is considered in the absence of viscous flow. The extended Maxwell-Stefan equations accounting for both 
molecular and Knudsen diffusion processes are represented in compact matrix notation and a general analytic 
solution obtained for the transfer rates Ni. Both the equimolar ( ~ ~ = ' = , N i  = 0) and the Graham diffusion (E ;= '= ,N i f i  = 0) restrictions on the transfer fluxes are considered in the analysis. The results generalize pub- 
lished analytic solutions for two components. 

Introduction 
Gaseous diffusion in porous solids occurs by two mecha- 

nisms. When the diameter of a pore is less than the mean free 
path of the gas, collision a t  the wall controls and Knudsen 
diffusion predominates. The diffusion flux is given by 

(1) 

where a ) ~ ;  is the Knudsen diffusivity of species i in the porous 
solid. 

On the other hand, when the pore diameter is much greater 
than the mean free path of the gas, the collisions are mainly 
between gas molecules, and bulk diffusion prevails. In this 
diffusion regime the fluxes are related to the composition 
gradients by the Maxwell-Stefan equations 

dYi 
dz 

Ni = -Ca)Ki- (i = 1, 2 , .  . . , n) 

j # i  

where a ) i j  represent the gas phase diffusivities of the binary 
pairs i-j in the mixture. 

Many practical systems operate in the transition region, 
which can be described by a combination of the two mecha- 
nisms. Neglecting viscous flow phenomena, we may thus write 
the diffusion relationships in the transition region as (Feng 
and Stewart, 1973; Feng et al., 1974) 

j # i  

1 Koninklijke/Shell-Laboratorium, Amsterdam, The Netherlands. 

Only n - 1 of the composition gradients in (3) are inde- 
pendent for 

(4) 

and therefore the determination of the n fluxes N ,  requires 
an additional "determinancy" condition. Two determinancy 
conditions are normally used in practice (Dullien and Scott, 
1962; Rothfield, 1963): (i) equimolar counterdiffusion, valid 
for a closed system at constant total pressure, requiring 

n 

r = l  
Z N N , = O  ( 5 )  

and (ii) the Graham diffusion relationship 

, f d \ / M , N , = O  (6) 

For steady-state conditions (dN,/dz = 0), eq 3 together with 
1=1  

eq 5 or 6 may be solved for specified boundary conditions 

( 7 )  
at z = 0, y!  = y t o  
at  z = 6 ,  y ,  = yla 

( i  = 1 , 2 , .  . . , n) 

to yield the transfer rates N,. 
Analytic solutions for the binary ( n  = 2) case are easily 

obtained and are available in the literature (see, for example, 
Geankoplis, 1972). For the ternary case, solutions are available 
in parametric form (Cunningham and Geankoplis, 1968; 
Remick and Geankoplis, 1970). No general analytic solution 
for the n -component diffusion problem has been presented 
in the literature. 

I t  is our object here to consider the general n-component 
problem and to obtain convenient analytic expressions for the 
transfer fluxes. The results of this study may be expected to 
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be useful in the analysis of experimental data and in the SO- 
lution of practical diffiusion problems. 

Analysis 

this we divide eq 6 by -m to give 
First we represent eq 5 and 6 in a common format. To do 

The nth flux N ,  may therefore be written in a general form 
as 

where for the equimolar counterdiffusion case we have (cf. eq 
5) 

(10) 

and for the Graham diffusion relationship (6) the ratios vi are 
given as (cf. eq 8). 

vi = 1 (i = 1 , 2 , .  . . , n - 1) 

Now, if we define the following parameters: (i) a dimen- 
sionless distance coordinate 7 as 

7 = 216 (12) 

(ii) transfer Coefficients of the binary pairs kij as 

ki, = cDij/G ( i , j  = 1, 2 , .  . . ., n; i # j )  (13) 

(iii) Knudsen transfer coefficients of the n species, k ~ i ,  by 

k K i  = C a ) K i / 8  (i = 1, 2 , .  . I , n )  (14) 

we may write the n - 1 independent eq 2 as 

_ -  dyi - -- Ni + y1 2 3. - Ni 5 2 
dv k ~ i  j=1ki ,  j = l k . .  I J  

J f i  j # i  
(i = 1, 2 , .  . . , n - 1) (15) 

Incorporating expression 9 for the nth flux, we may rewrite 
(15) in terms of the n - 1 independent fluxes Ni as 

+ yi (k - :;) NJ J = 1  
(i = 1 , 2 , .  . . , n - 1) (16) 

j z i  

The composition gradients may be obtained at  the position 

y = - [ B ] ( N )  (17) 

where the elements of the square n - 1 X n - 1 matrix [B] are 
given by 

11 = 0 and written in n -. 1 dimensional matrix notation as 

j # i  

The fluxes Ni can be obtained from eq 17 as 

If the composition profiles are known, the composition 
gradients at  7 = 0 can be evaluated and the fluxes obtained 
from (20). In order to obtain the composition profiles we note 
that 

t y i = l  
i=l  

and therefore eq 15 may be written in terms of the n - 1 in- 
dependent compositions as 

j # i  j # i  

Equations 22 represent a set of n - 1 linear first-order dif- 
ferential equations in the compositions yj.  To solve them it 
is convenient to represent them in matrix notation as 

where the elements of the matrix [5] are given by 

(i = 1 , 2 , .  . . , n - 1) (24) 
j # i  

(i, j = 1 ,2 , .  . . , n - 1; i # j )  

(25) 

and the column matrix (r) has the elements 

The linear matrix differential equation (23) may be solved 
for the boundary conditions 

(27) 
at  D = 0,  (Y)  = (YO)  
at v = 1, ( Y )  = (yd  

to give the composition profiles as (Amundson, 1966; Krishna 
and Standart, 1976) 

The composition gradient at  7 = 0 may be obtained from 
equation (28) as 

which may be combined with eq 20 to give the desired ex- 
pression for the fluxes Ni 

( N )  = [Bl-'[E](yo - Y 6 )  (30) 
where we have defined, for convenience, a matrix of "correc- 
tion factors", [ E ] ,  as 

[ E ]  = [@](exp[@] - r1,I-l (31) 
Equation 30 is not truly explicit in the fluxes Ni for the 

matrix [ E ]  is a function of the rates of transfer. We shall, 
however, see that the form (30) is a convenient representa- 
tion. 

In the limit of vanishing rates of transfer (Ni - 0) the ma- 
trix [+] reduces to the null matrix, i.e. 
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Limit [a] = [OI (32) 
Ni ‘0 ,  
i=1,2,.n 

and when this happens, the matrix of correction factors re- 
duces to the identity matrix ~ I J ,  i.e. 

Limit [E] = ‘IJ 
Ni-0, 
i=1,2,.n 

(33) 

The significance of the matrix [ E ]  is that it corrects the 
matrix [B]-l for finite rates of transfer. From a physical point 
of view, we may therefore define a matrix of permeability 
coefficients, [PO], by 

(34) 

where the superscript black dot on the elements of [PO] serves 
as a reminder that these permeabilities are dependent on the 
rates of transfer. For vanishing transfer rates therefore we 
have (cf. eq 30-34) 

(35) 

where the matrix of “zero flux” permeabilities, [PI, can be 
calculated straightforwardly from 

[PI = [E]-’ (36) 

where the elements of IB] are given by eq 18 and 19 and de- 
pend only on the compositions a t  9 = 0 and the transfer 
coefficients in the gas phase, ki, and kKi. 

For finite but low rates of transfer, eq 35 and 36 provide an 
approximate but good description of the transfer process. This 
approximation suggests a suitable iteration procedure for 
calculating the fluxes for finite transfer rates: (i) Calculate the 
elements of the matrix [B] from eq 18 and 19 and obtain the 
matrix [PI by suitable matrix inversion procedure. (ii) Cal- 
culate the fluxes Ni from (35). Only n - l of the fluxes are 
determined in this way, the nth flux being given by eq 9. (iii) 
With this estimate of N;, the elements of [a] may be calculated 
from eq 24 and 25. The matrix of correction factors [Z] is then 
obtained by use of Sylvester’s theorem (Amundson, 1966; 
Krishna and Standart, 1976). (iv) The finite flux permea- 
bilities Poi, are then calculated from 

(N) = [P*](Yo - ~ a )  

(N) = [Pl(Yo - Ya)  

[P*] = [P][Z] (37) 

and a better estimate of the fluxes obtained from eq 34 using 
eq 9 to calculate N,. (v) The steps (iii) and (iv) are repeated 
till convergence is obtained for each individual Ni. 

Discussion 
For two-component systems the procedure outlined above 

simplifies considerably because all matrices degenerate to 
scalars. Thus we have 

N1 = ~11Z11(Y10 - Y1a) (38) 

where 

P11= 1/B11 = (k, + - - 
k 12 kl2 

and 

(40) 

given 

a1 1 

exp 911 - 1 
E11 = 

with the dimensionless mass transfer rate factor 
by 

Equations 38-41 may be combined to give N1 explicitly in 
the form 

kl2 ln (1 + kl2/kK1 - (1 - ul)y16) (42) N 1 =  - 
1 - v i  1 + k i z / k ~ i  - (1 - Vi)Yio 

which result is also available in the published literature 
(Geankoplis, 1972; Rothfield, 1963; Scott and Dullien, 1962). 
For the special case of equimolar diffusion, u1 = 1, eq 38-41 
simplify to give 

(43) N1 = Pll(Yl0 - Y16) 

where now 

(44) 
( ~ K I  k12) 

The Knudsen diffusion coefficient 2 l ~ i  is independent of 
total system pressure whereas the gas-phase bulk diffusion 
coefficient ai, is inversely proportional to the pressure. 
Therefore for a given porous solid, bulk diffusion will pre- 
dominate at  high pressures whereas a t  low pressures the dif- 
fusion fluxes will be governed by the Knudsen diffusion 
mechanism. Between these extremes the diffusion process will 
take place in the transition region where both Knudsen and 
bulk diffusion resistances will be important. Since the molar 
density of the diffusing gas mixture c is proportional to the 
total system pressure it can be seen from eq 13,14,39, and 44 
that the effective transfer coefficient, or permeability, will 
increase with the system pressure and therefore the flux N1 
will increase till the pressure reaches a value a t  which bulk 
diffusion controls. Further increase in the pressure will have 
no effect on the transfer rate. These observations were con- 
firmed by Cunningham and Geankoplis (1968) experimen- 
tally. 

From eq 38-41 it can be seen that the molar flux N1 will 
have the same sign as the constituent driving force (yl0 - y16) 
and at  a given pressure the flux N1 increases monotonously 
with increased values of the driving force. The permeability 
P11’ (= Pllr711) can only assume positive values for a two- 
component system. 

The situation with regard to  a three component system- 
the simplest multicomponent system-is much more com- 
plicated. The rate relations (34) are coupled and may be 
written explicitly as 

N 1 =  P.llAYl+ P’12AY2 

N2 = P ‘ z ~ A Y  1 + P’22Ay 2 

1 1 -1 
P11= -+- 

(45) 

where Ay1 and Ay2 are the constituent driving forces 

Ayi = yio - yi6 (i = 1, 2, 3) (46) 
Since the cross coefficients P.12 and P.21 will be nonzero in 

general we cannot expect a simple dependence of Ni on Ayi, 
as is true for a binary system. Further, as discussed by Toor 
(1957) for the ternary bulk gas diffusion case, three interesting 
possibilities exist for ternary gas diffusion in the transition 
regime: (i) osmotic diffusion (diffusion in the absence of a 
constituent driving force) 

Ni # 0; Ayt = 0 (47) 
(ii) diffusion barrier (no diffusion even in the presence of a 
constituent driving force) 

Ni = 0; Ayi # 0 (48) 
(iii) reverse diffusion (diffusion of a component in a direction 
opposite to that dictated by its driving force) 

Ni Ayi < 0 (49) 
The above “interaction” phenomena are caused primarily 

by the cross coefficients Bij. It is clear from eq 18 and 19 that 
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Table I. Equimolal Diiffusion by Hydrogen (l)-Styrene 
(2)-Ethylbenzene (3) through Porous Solid. Effect of 
Total Pressure on Difffusion Fluxes” 

P, bars (m2) (m2) N3, (kmo1)/(s)(m2) 
N1, (kmol)/(s:l N z ,  (kmol)/(s) 

1.0 
3.0 
5.0 
6.0 

21.9818 X 10-’6 0.48976 X -22.4716 X low6 
28.2104 X 10-6 0.15486 X -28.3653 X 
29.9058 X lo-’? 0.00267 X -29.9084 8 X 
30.3620 X lo-’? -0.04379 X -30.3182 X 

a The physical data chosen in the calculation of the fluxes are 
summarized as follows: molecular weights: M I  = 2; M2 = 104; M B  
= 106; gas phase compositions: ylo = 0.88; yzo = 0.1; yla = 0.7; yza 
= 0.02; length of diffusion path: 6 = 0.01 m; radius of pore: rp = 
1.0 X m; temperature: T = 500 K; gas constant: R = 0.083144 
(bar)(m3)/(kmol)(K); parameters in eq 9 ~1 = 1; v2 = 1 (equimolal 
diffusion), Knudsen diffusion coefficients calculated from 
(Remick and Geankoplis, 1974): 3 3 ~ 1  = 97rp(T/M1)1’2, m2/s; a )K2  
= 97r,(T/M2)1/2, m2/s; 3 3 ~ 3  = 97r,(T/M3)1/2, m2/s. Bulk gas 
phase diffusion coefficients of the binary pairs estimated using 
the method of Fuller et al. (1966): D12 = 1.457 X 10-9T1.75/p, m2/s; 
a)13 = 1.435 X 10-9T1.7”/p, m2/s; a ) 2 3  = 1.329 X T1.75/p, 
m2/s. 

since the Knudsen transfer coefficients k K L  do not contribute 
to the cross coefficients Bv, the “interaction” or “coupling” 
effects are minimal in a Knudsen diffusion predominated 
regime. On the other hand, when bulk gas diffusion predom- 
inates the “interaction” effects will be at  their maximum. 
Since with increasing system pressure, bulk gas diffusion as- 
sumes increasing importance we may also expect “interaction” 
effects to become increasingly important a t  higher system 
pressures. Table I presents the results of numerical calcula- 
tions for equimolal diffusion of hydrogen (1)-styrene @)-ethyl 
benzene (3) through a porous solid; the physical data used in 
the calculation are summarized in the table. The interesting 
point to note is that the molar flux of styrene, Nz,  decreases 
in magnitude with incre,asing pressure. Further, on increasing 
the system pressure from 5 bars to 6 bars, the species styrene 
changes direction of transfer. The reason for this is that dif- 
fusional interactions become more significant with increasing 
pressure and a t  p = 6.0 bars, the permeabilities Pol ,  are cal- 
culated to be (units: kmol/(s)(m2)) 

(50) 
P’11 = 1.69561 X 

P.21 = -6.02587 X 
P.12 = -1.98774 X 10-6 

P.22 = 1.35035 X 10-4 
and therefore 

which is in a direction opposite to that of the driving force Ayz; 
the species styrene experiences reverse diffusion under these 
conditions. 

When the diffusion species in a ternary mixture are similar 
in size and nature, i.e. 

k K I  N k ~ ;  k,j N k ( 5 2 )  
the matrix [B] will be dia,gonal and so will the matrices [PI and 
[Po].  Under these conditions interaction effects will be absent 
and the dependence of the fluxes Ni on the constituent driving 
forces Ayi will be a simple linear one. This is in fact confirmed 
by Remick and Geankoplis (1974) by experimental mea- 
surements for the system helium-neon-argon. 

Conclusion 
Analytic expressions for calculation of steady-state transfer 

rates for n-component diffusion through porous media in the 
transition region have been obtained in terms of an n - 1 di- 
mensional square matrix of finite-flux permeability coeffi- 

cients [Po]. The matrix [P’] is further obtained as a product 
of a matrix of zero flux permeabilities, [PI, and a matrix of 
correction factors, [ E ] ,  which account for finite transfer rates. 
The elements Pi, of [PI can be calculated from the Knudsen 
diffusion coefficients of the individual species and the bulk 
gas diffusion coefficients of s the binary pairs. The calculation 
of the transfer rates involves a straightforward iteration 
procedure. The fundamental difference between transfer 
characteristics of binary and multicomponent systems have 
been emphasized by means of a numerical example involving 
diffusion in a three-component system. The results show that 
for an n-component system we should not expect a simple 
flux-driving force ( N ;  - Ay;) dependence unless the species 
making up the mixture are similar in size and nature. 

Nomenclature 
[B] = matrix with elements given by eq 18 and 19 
c = molar density of fluid mixture 
Z l i j  = gas phase diffusivity of the binary pair i-j 
D K ~  = Knudsen diffusivity of gaseous species i through 

porous medium 
‘ I ,  = Identity matrix with elements 6 i j  
kij = gas-phase transfer coefficients of binary i-j, defined 

by (13) 
k ~ i  = Knudsen transfer coefficient of species i ,  defined by 

(14) 
Mi = molecular weight of species i 
N ;  = molar flux of species i 
n = number of species in the mixture 
p = total system pressure 
[PI = matrix of “zero flux” permeability coefficients 
[P.] = matrix of “finite flux” permeability coefficients 
R = gasconstant 
yi = mole fraction of species i in gaseous mixture 
Ayi = composition driving forces defined by eq 49 
z = position coordinate 

Greek Letters 
6 = length of diffusion path 
6;j  = Kronecker delta 
({) = matrix with elements given by eq 26 
9 = dimensionless position coordinate defined by eq 12 
vi = ratio defined by eq 10 and 11 
[ E ]  = matrix of correction factors defined by eq 31 
[a] = matrix of dimensionless rate factors defined by eq 24 

and 25 

Matrix Notation 
( ) = column matrix of dimension n - 1 
[ 1 = square matrix of dimension n - 1 X n - 1 
[ 1-1 = inverted matrix of dimension n - 1 X n - 1 
F J = diagonal matrix with n - 1 elements 

Subscripts 
Lj,k = indices 
0 = evaluated at  position z = 0 
6 = evaluated a t  position z = 6 
n = nth  species property or parameter 

Superscript 
= coefficient corresponding to finite rates of transfer 
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Use of an Annular Teflon Spinning-Band 
Distillation Column to Determine Practical Liquid-Vapor 
Equilibrium Data for Close-Boiling Systems. 1 
The Carbon Tetrachloride-Benzene System 

Edgar D. Smith” and D. M. Mathews 

Department of Chemistry, Graduate lnstitute of Technology, University of Arkansas, Little Rock, Arkansas 72203 

An annular Teflon spinning-band distillation column was used to magnify the differences in the liquid and vapor 
compositions in the carbon tetrachloride-benzene system. The data clearly showed that there is no azeotrope 
formed in this system. It was further shown that useful liquid-vapor equilibrium data could be calculated from the 
distillation column results. 

Introduction ciency, a 10% change in the plate value causes less than a 1% 
Because of the extremely small differences between the 

liquid and vapor compositions of binary systems where the 
boiling points of the components are within a few degrees of 
each other, it is difficult to obtain an accurate liquid-vapor 
equilibrium diagram. The analytical methods on which much 
of our present data is based-refractive index and/or density 
determinations-are relatively insensitive and are also subject 
to error due to the presence of trace impurities. In contrast, 
gas chromatography offers an accurate and precise method 
for the analysis of the liquid and vapor compositions. In ad- 
dition, the analytical results are unaffected by impurities so 
long as they do not emerge with the components of interest. 
I t  was the authors’ reasoning that the small differences in 
liquid and vapor compositions could be magnified by the use 
of an efficient distillation column rather than the usual one- 
plate distilling apparatus. The magnification factor (N) would 
depend on the number of plates in the distillation apparatus 
(column plus pot), and the enrichment due to a one-plate 
distillation could be approximated on the basis of the en- 
richment obtained with N plates. I t  is, of course, essential for 
these calculations to be valid that the efficiency of the still be 
reasonably constant and that N be known. It  is also essential 
that the still have a very low hold-up so that reliable data could 
be obtained at the upper and lower concentration levels. The 
recently developed annular Teflon spinning-band stills are 
particuIarly suited to these applications because of their high 
efficiency, low hold-up, and short equilibration time. 

Plate Value Determinations 
A Nester-Faust NFT-50 annular Teflon spinning-band still 

was used in this work. The total number of plates in the dis- 
tillation apparatus was established with a series of mixtures 
of especially purified n- heptane and methyl cyclohexane. The 
results are summarized in Table I and show that the plate 
values were reproducible over the wide range of pot compo- 
sitions tested. (It should be noted that at  this level of effi- 

change in the calculated vapor composition for a one-plate 
distillation.) The a value of 1.07 reported by Beatty and 
Calingaert (1934) was used in these plate calculations. The 
constancy of the plate values obtained in this work strongly 
supports their finding that a does not change appreciably over 
the range of concentrations studied in this “ideal” system. It  
also follows that the one-plate vapor compositions calculated 
from these data via the Fenske equation (1932) must be in 
excellent agreement with the literature data. Thus, these data 
may be taken as proof that our proposed method for deter- 
mining liquid vapor equilibrium diagrams works for an ideal 
system, where a is practically constant. 

CC14-Benzene Liquid-Vapor Equilibrium Data 
The literature concerning this controversial system is re- 

viewed by Fowler and Lim (1956) and will not be repeated 
here. Suffice it to say that Young (1922) and Ocon and Es- 
pantoso (1958) reported a minimum boiling azeotrope at  91.7 
and 96.0 mol % C C 4  respectively, while Campbell and Dul- 
mage (1948), Fowler and Lim (1956), and Rodger et al. (1969) 
failed to find any evidence of an azeotrope. I t  was generally 
agreed, however, that the liquid and vapor compositions were 
nearly identical above about 90 mol % CC4. For this reason, 
the CC14-benzene system is not recommended for the deter- 
mination of theoretical plates in stills containing more than 
about 25 plates and even then pot compositions must be kept 
low to avoid the high CC14 mole percent region in the vapor. 
Despite these limitations, the CCl4-benzene mixture has been 
a popular one to test distillation columns because the com- 
ponents are cheap, they are readily obtainable in the pure 
state, and analysis by refractive index or specific gravity 
measurements is easy. I t  was therefore felt that resolution of 
the over 70 year controversy as to the existence of an azeo- 
tropic composition should be attempted. 

The vapor pressures of pure CC14 and pure benzene were 
calculated from the Antoine equation (1888) over the boiling 
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