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Binary Mixtures. Multiplying out eq 17 gives 
1 

6G = ;IPl,'?lZ + P1l"hl + Wll - Nl")1/2)21 (21) 

Since q1 and q2 are completely arbitrary, we see that 6G 
> 0 if and only if pl,' > 0 and plln > 0. This agrees with 
the earlier result in eq 16. 

Ternary Mixtures. Let us now suppose that we have 
found a local minimum in G such that GI is positive def- 
inite and Gn is indefinite. Consider the variation ql = q2 
= 0, q3 # 0. Such a variation isolates the Gn matrix. Thus 

where we let a = (N> - Nln), b = (PI; - N,"). By hy- 
pothesis, Gn is indefinite and a and b are either positive 
or negative constants. Under these conditions the quad- 
ratic form in eq 22 will not generally be greater than zero. 
This contradicts the original proposition that 6G > 0 for 
all possible variations. Nevertheless, it is conceivable that 
the pijn's happen to have values which make this quadratic 
form positive for the particular values of a and b prevailing 
a t  the equilibrium point under examination. Therefore, 
Dr. Michelsen is correct when he says that it is possible 
to fiid a two-phase minimum in G with one of the phases 
materially unstable. We do not think this is very likely, 
in general, and it presumably corresponds to a very special 
event on a ternary phase diagram. It certainly is not a 
commonplace event. 

Finally, we will consider the case of an azeotropic 
equilibrium. For such equilibria, the molar Gibbs free 
energy of the liquid is equal to that of the vapor 

gL = C p F x i ;  gv = Z p 7 y i ;  and x i  = yi (i = 
C C 

i=l  1=1 
1,2, ..., c); piL = pi" (i = 1, 2, ..., C) (23) 

and hence the G surface for the overall system displays 
a linear trough (as opposed to a banana shaped trough) 
with a horizontal bottom. This is precisely why det H = 
0 for azeotropic mixtures. 

For such mixtures we show that 6G takes on a special 
form, namely 

This is even true for binary mixtures as can be verified 
by multiplying out the quadratic form in eq 10 above and 
then using the Gibbs-Duhem equations to get 

Hence, for azeotropic equilibria it is possible to locate a 
minimum in G with one of the phases materially unstable. 
Moreover, this is a much more likely event that the cor- 
responding situation for nonazeotropic mixtures. The 
reason for this is evident from the way GI and Gn appear 
together in eq 24 but individually in eq 17. 

More than all this, our paper not only develops the 
appropriate mathematics to discover this phenomenon, but 
it also gives an interpretation on a binary phase diagram. 
The spurious homogeneous azeotrope pin-pointed in Fig- 
ure 18 in our paper is typical of the situation discussed 
above. At  this point, pllL < 0; pllv > 0, and as we say in 
the paper, such an equilibrium is indeed spurious. 
Literature Cited 
Cahn, J. W.; Hilllard, J. E. J .  Chem. Pnys. 1958, 28, 258-267. 
Cahn, J. W. Acta Metall. 1981, 9, 795-801. 
Cahn, J. W. J .  Ct". Pnys. 1985, 42, 93-99. 
Callen, H. B. "Thermodynamics"; Wiley: New York, 1960. 
Derham. K. W.; Goldsbrough, J.; Gordon. M. Pwe Appl. Chem. 1974, 38. 

Konlngsveld, R.; Kleintjens, L. A.; Schoffeleers, H. M. Pure Appl. Chem. 

Kwel, T. K.; Wang, T. T. "Phase Separation Behavior of Polymer-Polymer 
Mixtures", In "Polymer Blends", Voi. I, Paul, D. R.; Newman, S., Ed.; Aca- 
demlc Press: New York, 1978. 

Lacombe, R. H.; Sanchez, I. C. J .  Pnys. Chem. 1978, 80, 2568-2550. 
Prigoglne, I.; Defay, R. "Chemical Thermodynamics" (Translated by Everett, 

D. H.), Longmans: London, 1965. 
Reid, R. C. Chem. Eng. Educ. 1978a, Spring Issue, 80; i978b, Summer 

Issue, 108; 1978c, Fall Issue, 194. 
Sanchez, I .  C.; Lacombe, R. H. Mecromobcules 1978, 11 ,  1145-1156. 
Sanchez, I. C. "Statlstlcal Thermodynamlcs of Polymer Blends", Chapter 3 in 

"Polymer Blends", Vol. I ,  Paul, D. R.; Newman, S., Ed., Academic Press: 
New York, 1978. 

Sanchez, I .  C. J .  Mecromol. Scl.-Pnys. 1980, 617(3), 565-589. 
Van Dongen, D. B.; Doherty, M. F.; Halght, J. R. I d .  Eng. Chem. Fundam. 

Department of Chemical Michael F. Doherty* 
Engineering David B. Van Dongen 

University of Massachusetts James R. Haight 
Amherst, Massachusetts 01003 

97-116. 

1974, 39, 1-32. 

1983, 22, 472-485. 

Comments on "Effect of Vapor Efflux from a Spherical Particle on Heat Transfer from a Hot Gas" 

Sir: In a recent paper Kalson (1983) concluded that the 
Ackermann factor 

for correction of the heat transfer from a solid body to a 
gas stream to account for finite rates of mass transfer, 
depends on the geometry of the body. He obtained sig- 
nificantly different results for the flat plate and spherical 
geometries. This apparent dependence of ZH on the ge- 
ometry considered is more than a little disquieting and we 
show below that this is a direct consequence of his defi- 
nition of the heat transfer coefficients in the two cases 

h = k H / 6  (2) 
where 6 is the "film" thickness. It is the object of the 
present communication to show that if an alternative, more 
physically meaningful, definition of the heat transfer 
coefficient is employed, taking proper account of the 

curvature of the interface, and proper nondimensionalized 
parameters are used, identical values of the Ackermann 
correction factors are obtained for planar, cylindrical, and 
spherical geometries. The results are generalizable to the 
consideration of the effect of mass transfer on the mass 
transfer coefficients in nonideal multicomponent fluid 
mixtures, showing the general applicability of the form of 
the Ackermann correction factor, eq 1. 

In view of our objective to generalize the Ackermann 
theory, we use a consistent nomenclature, different fro that 
adopted by Kalson (1983), and employ molar units in place 
of mass units. An entirely parallel treatment holds for 
mass units. 

For steady-state transport in nonreacting mixtures, the 
equations of continuity of mass and energy reduce to 

d(YEr) - 0 (3) -- - 0 (i = 1,2, ..., n); - - d(r"Nir) 
dr dr 

where v = 0, 1, and 2 respectively stand for planar, cylin- 
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II 

dr: i d i  dr : (L) L d q  dr ’ (kf I d 7  

Figure 1. Definition of the characteristic length 1 and dimensionless 
distance 7 for planar, cylindrical, and spherical shaped bodies. 

drical, and spherical geometries. If the transfer processes 
are confined to the region bounded by r = ro and r = r6 
(see Figure l ) ,  then eq 3 gives 
r’Nir = rouNio = r6’Nia (i = 1,2, ..., n); 

rUEr = ro”Eo = r{E6 (4) 

The energy flux E, is made up of the conductive and 
convective enthalpy contributions 

where we have used the reference temperature Td for the 
determination of the constituent molar enthalpies. 

It is convenient to define for the three geometries, a 
characteristic length for transfer, 1, taking the interface 
curvature into account; see Figure 1. In terms of the di- 
mensionless distance q (see Figure 1) we have 

dr = (r/r0)”1 dq (6) 

and it is possible to rewrite eq 5 in the convenient form 

(7) 

where we have further defiied the heat transfer coefficient 
h 

h = k H / 1  (8) 

and the dimensionless rate factor describing the influence 
of the interfacial molar fluxes 

d T  
df 

Eo = -h- + h& (T - T,,,) 

FNiOCpi 
i=l 

dH = ~ (9) 

The differential eq 7 can be solved for the boundary 
conditions q = 0, T = To; q = 1, T = T6, to obtain the 
temperature profiles 

h 

whence we obtain the conductive heat flux qo 

Defining h’ qo/(To - Ts), the heat transfer coefficient 
under finite mass transfer conditions, we see that the 
Ackermann correction factor, E H  = h’/h, takes the form 

identical for the three geometries under consideration. 
The dependence of the Ackermann correction factor on 
the geometry, as concluded by Kalson (1983), is a direct 
consequence of his definition of the heat transfer coeffi- 
cient using eq 2. With proper account taken for the dif- 
fering curvatures and use of the generalized definition (8) 
we obtain the much more physically satisfying result that 
the Ackermann correction factor has the same form in the 
three geometries considered. In the limiting case that the 
radius ro is very much smaller than r6, for either cylindrical 
or spherical geometry, it can be seen that the characteristic 
length 1 reduces to ro and the Nusselt, defined as Nu = 
h.2ro/kH is equal to 2EH In the further simplified situation 
in which the interfacial fluxes Ni are vanishingly small, the 
classic result Nu = 2 is obtained. 

We can generalize the result to describe the effect of the 
interfacial molar fluxes on the mass transfer coefficients. 
Let us first consider an n-component ideal gas mixture. 
The constitutive relations are most conveniently expressed 
in terms of the Maxwell-Stefan equations 

dxi n x ~ N ;  - ~j Ni 
(i = 1, 2, ..., n) (13) _ -  - C  dr ;=I et Dij 

Only n - 1 of the above equations are independent and 
in order to determine the n interfacial fluxes we need to 
have an additional relationship. This additional rela- 
tionship usually takes the form of a linear dependence 
between the fluxes 

For example for equimolar diffusion we have X1 = X2 = ... 
= A,; for diffusion of n - 1 species through a stagnant nth 
component, Nn = 0, and so X1 = X2 = ... = = 0,  An # 
0. For distillation the hi can be identified with the molar 
latent heats of vaproization of the component species. 

To proceed further with the solution of the differential 
equations (13) as applied to planar, cylindrical, and 
spherical geometries, it is convenient as for the heat 
transfer case to define the characteristic length 1 and the 
dimensionless distance q. With these definitions the set 
of n - 1 independent differential equations (13) can be cast 
into n - 1 dimensional matrix notation 

where we define the matrix of dimensionless mass transfer 
rate fractors [a ]  by 

k # i  

@ i j  = -Nio(Z/Dij - l / D i , ) / ~ t  
( i , j  = 1, 2, ..., n - 1; i # j )  (17) 

The matrix differential equation can be solved for the 
boundary condition q = 0, ( x )  = (xo); q = 1, ( x )  = (xa)  to 
give the composition profile 

which is the analogue of eq 10. The n - 1 independent 
interfacial fluxes can be conveniently represented in matrix 
notation as 

where we have further defined two coefficient matrices [PI 
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(1983). The analysis can be extended to the effects of finite 
mass transfer rates on the mass transfer coefficients and 
the results presented in this paper demonstrate the gen- 
erality of the original Ackermann (1937) analysis. 
Nomenclature 
[B]  = matrix of inverted mass transfer coefficients, m-l s 
c, = mixture molar density, kmol m-3 
C,i = molar heat capacity of component i ,  J kmol-* 
Dij = Maxwell-Stefan diffusion coefficient for pair i-j in a 

multicomponent mixture, m2 s-l 
E = interfacial energy flux, W m-2 
h = heat transfer coefficient under conditions of vanishingly 

small mass transfer fluxes, W m-2 K-' 
f& = partial molar enthalpy of comonent i ,  J kmol-l 
[A = identity matrix 
kH = thermal conductivity, W m-l K-' 
1 = characteristic diffusion path length; see Figure 1, m 
n = number of components in the mixture 
N ,  = interfacial molar flux of component i in a laboratory fixed 

coordinate reference frame, kmol m-2 s-l 
N u  = Nusselt number 
q = conductive heat flux, W m-2 
r = coordinate direction, m 
ro = inner edge of diffusion path, m 
r6 = outer edge of diffusion path, m 
xi  = mole fraction of component i 
xio = mole fraction of component i at r = ro 
xi6 = mole fraction of component i at r = r6 

Greek Letters 
[PI = bootstrap matrix 
yi = activity coefficient of component i in solution 
[I'] = matrix of thermodynamic factors 
6 = film thickness, m 
6ik  = Kronecker delta 

9 = dimensionless distance 
[e] = defined by eq 26 
X i  = coefficients in the linear dependence relationship (14) 
pi = molar chemical potential of species i, J kmol-' 
v = parameter, = 0 for planar, = 1 for cylindrical, = 2 for 

[ E ]  = Ackermann correction factor for mass transfer coeffi- 

E ,  = Ackermann correction factor for heat transfer coeffi- 

C#IH = dimensionless heat transfer rate factor 
[a] = dimensionless matrix of mass transfer rate factors 
Matrix Notation 
( ) = n - 1 dimensional column matrix 
[ ] = n - 1 x n - 1 dimensional square matrix 
[ 1-l = inverted matrix 
Superscripts 
0 = referring to position r = ro 
6 = referring to position r = r6 
H = parameter pertaining to heat transfer 
Superscripts 

({) = [i -Ni l / ~ ,  Din 

spherical geometries, respectively 

cients 

cients 

= coefficient obtained under conditions of finite mass transfer 
rates 
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and [B]. [@I is the bootstrap matrix and is calculable from 
the X:s 

pij  = 6 ,  - x i  (e) ( i , j  = 1, 2, ..., n - 1) (20) 

l=l 

The matrix [B] of inverted mass transfer coefficients is 
given by 

X i  x k  Bii = - + E--- (i = 1, 2, ..., n - 1) (21) 
Din/l k = l D i k / l  

k f i  

Bij = - ~ i ( l / D i j  - l /Din),  (i, j = 1, 2, ..., n - 1; i z j )  
(22) 

In eq 19 [E] represents an n - 1 dimensional square 

(23) 
which is the analogue of eq 12. When each individual flux 
Ni tends to vanish, [E] tends to the identity matrix [A. 
Further discussion on the calculation of the fluxes Ni using 
eq 19 can be found in Krishna and Standart (1976). 

The above analysis for mass transfer in ideal gas mix- 
tures can be extended to nonideal fluid mixtures provided 
the Maxwell-Stefan diffusion coefficients Dij can be con- 
sidered to be constant over the diffusion path (this is 
exactly true for ideal gas mixtures for which D ;  are com- 
position independent). A further assumption which re- 
quires to be made is the constancy of thermodynamic 
correction factors rij, defined by 

matrix of mass transfer correction factors 

[El = [@I [exp[@I - [Ill-l 

which implies some averaging over the diffusion path. 
With these two key assumptions (constant Di; and Fi) ,  the 
solution for the interfacial fluxes Ni can be obtained in the 
following convenient form 

(N) = c t [ ~ ~ [ ~ ~ - l [ r i [ ~ i ( x o  - x S )  (24) 
where the Ackermann correction factor [ E ]  now takes the 
form 

(25) 

[el = [rl-l [@I (26) 

The application of eq 24 to the calculation of interfacial 
transfer fluxes in vapor-liquid and liquid-liquid systems 
is discussed by Krishna (1977, 1979); note that the defi- 
nition of 1 for the spherical geometry in Krishna (1977) is 
not as convenient as the one used in the present commu- 
nication. 

Finally, we would like to remark that though the de- 
rivation of the Ackermann correction factor, & or [ E], has 
been on the assumption of a model assuming molecular 
diffusion control, formally identical expressions result even 
when turbulent eddy transfer phenomena are additionally 
taken into account; see Krishna (1982). 

By proper definition of the characteristic length of the 
diffusion path for planar, cylindrical, and spherical geom- 
etries, we have shown that the Ackermann correction factor 
for heat transfer EH is independent of geometry, a phys- 
ically pleasing result in contrast to the findings of Kalson 

[E] = [e] [exp[e] - 
with with [e] defined by 
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