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The effect of diffusional resistances (both inter- and intramembrane) on the 
kinetic behaviour of an immobilised two-enzyme system carrying out a con- 
secutive sequence of reactions S-+PI-+PZ is analysed for the case in which the 
intrinsic kinetics can be considered to be first order. The method of solution 
consists in first representing the diffusion-reaction equations in matrix notation 
and applying the similarity transformation to reduce the equations to a set of 
uncoupled equations in pseudoconcentrations. The set of uncoupled equations 
are solved analytically for the appropriate boundary conditions. The solution 
to the original problem is then recovered by applying the reverse transformation. 
Two geometries have been treated, the spherical capsule and the Rat plate 
membrane. The diffusional resistances may be described adequately by two 
dimensionless numbers, the Thiele modulus and modified Sherwood number. 
The influence of these parameters on the concentration profiles and “effectiveness 
factors” have been presented graphically. The analysis is also extended to the 
prediction of the performance of a packed bed enzyme reactor. 

1. Introduction 

Water-insoluble enzyme derivatives (immobilised enzymes) are finding increasing 
scientific and technological applications. The study of immobilised enzymes is also 
of importance in understanding the in uiiio behaviour of enzymes because many 
enzymes act in oiao while embedded in membranes or attached to subcellular particles. 
The kinetic behaviour of immobilised enzymes is different from that of the enzyme 
in solution because of the rate limitations imposed by diffusion. In addition, the 
intrinsic kinetics of some enzymic reactions may be modified on immobilisation 
due to  steric effects, chemical modification of the active groups of the enzyme due 
to covalent bonding with the solids, etc. The mathematical analysis of the diffusion 
with chemical reaction in  enzymes and packed enzyme columns is necessary for 
understanding the quantitative behaviour of these systems. The main theoretical 
work in this area has been confined t o  reactions with single enzyme systems catalysing 
simple single step reactions.” 2 
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Reactions in biological systems often follow a consecutive reaction sequence or 
a complex network of consecutive, parallel and/or cyclic reactions. Each of these 
reactions is catalysed by different enzymes each specific to a particular reaction 
and the product of an enzymic reaction acts as a substrate for another enzyme. 
A number of approaches can be used for the simulation of the behaviour and industrial 
application of multi-enzyme systems. The enzymes can be arranged in a sequence 
in a packed column or alternatively a battery of enzyme columns may be used. For 
example, Brown et al.3 have studied four entrapped enzymes participating in the 
oxidation of glucose, namely hexokinase, phosphogluco-isomerase, phosphofructo- 
kinase and aldolase, each enzyme arranged in separate sections within a column. 
The kinetic investigation of a two-enzyme system, pyruvate kinase and lactate de- 
hydrogenase with each enzyme bound to separate filter paper disks, has also been 
made.* The kinetic behaviour of these systems can be modelled on lines similar to 
that for single enzyme systems, since only one enzyme is acting at  any position in 
the column or in any given battery. 

A more efficient method of operation is to bind two or more enzymes to the same 
matrix so that the substrate for the second enzyme is generated in situ as the first 
step in the reaction occurs. Mosbach and Mattiassons have developed techniques 
for the preparation of matrix bound multi-enzyme systems. Kinetic investigation of 
a two-enzyme system consisting of hexokinase and glucose-6-phosphate dehydro- 
genase covalently bound to acrylamide beads has been carried out by these authors. 
A three-enzyme system, /3-galactosidase, hexokinase and glucose-6-phosphate- 
dehydrogenase, all covalently bound to the same matrix has also been investigated.6 
A useful new approach in the biochemical processing industry is the utilisation of 
entrapped bacterial cells. This has the advantage that both the enzymes and the 
coenzymes required for the reaction are present at the same site and expensive 
operating procedures involving separate addition of the coenzymes to the reacting 
media is avoided. This might open up new areas in industrial production of many 
organic chemicals. For example, industrial production of steroids often involves two 
or more steps, each step involving a specific enzyme. Mosbach and Larsson7 have 
studied the behaviour of entrapped cells which catalyse a sequence of consecutive 
reactions involved in the production of steroids such as 1 1/3-hydroxylation and 
A-l,2-dehydrogenation. 

From the above discussion it is evident that the kinetics of systems where two 
or more enzymes are bound to the same matrix is of immense importance. However, 
a detailed theoretical study of these systems has not yet been made. Goldman and 
Katchalski8 have analysed a simple set of consecutive reactions, S+P1+P2, for 
a two-enzyme system attached to an impermeable membrane. The kinetic behaviour 
of this system is affected by diffusion through the unstirred layer at  the membrane- 
solution interface. If the membrane were permeable to both the substrate and the 
products, then intramembrane diffusion would be a significant factor to consider 
in addition to the resistance offered by the unstirred layer. It is the purpose of this 
paper to attempt a detailed theoretical study of two-enzyme systems and enzyme 
columns. Such an analysis will be necessary in both interpretation of laboratory 
experimental data and in the design of industrial enzyme reactors. 
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2. Outline of model 
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Consider a consecutive reaction scheme 
enzyme I enzyme 2 

S----+Pl----- + P2 

taking place inside an immobilised two-enzyme capsule or membrane. The two 
enzymes 1 and 2 are considered to be uniformly distributed inside the membrane, 
which is assumed to be permeable to all three species. S denotes the substrate for 
enzyme 1 and PI and PZ denote the products formed by enzyme 1 and enzyme 2 
respectively. In the first instance the analysis of one such membrane (capsule) is 
presented and the treatment for a packed bed enzyme reactor is given in section 7. 
Two specific geometries are considered (Figure I),  the spherical capsule and the 
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Figure 1. Geometry of immobilised two-enzyme system: (a) spherical capsule of radius R ;  (b) 
flat plate membrane of thickness L.  S is the thickness of the Nernst diffusion layer. 

flat plate membrane. These two shapes are the ones most commonly encountered 
in practice. By defining appropriate shape factors the theoretical analysis of this 
paper can be extended to systems consisting of other geometrical shapes. 

The membrane system is immersed in a solution in which the bulk concentrations 
are Sb, P l b  and P z ~ .  If there are no diffusional limitations of any kind for the transport 
of each of the three species, then the rates of formation of the individual species 
may be written down using the usual Michaelis-Menten kinetic model 

where rs, rp,, r p ,  represent the rates of formation of each species (mol ~ 1 1 1 ~ ~  s-l); 
S,  PI, PZ represent the concentration of the species at any reacting site (mol/cm3); 
10 
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E l ,  EZ are the enzyme concentrations (mol/cm3); and K m l ,  Km2 are the Michaelis- 
Menten constants associated with enzymes 1 and 2 respectively (mol/cm3). 

In practice one is usually interested in the concentration-time paths and the rates 
of formation of the products. Given the initial conditions, the above equations 
may be integrated by appropriate numerical techniques to obtain the required in- 
formation. However, the assumption of no diffusional limitations is one which 
cannot usually be substantiated. There are two types of diffusional rate limitations in 
practice : 
a. Intermembrane mass transfer resistance: i.e. resistance to transport of reactant 
species from the bulk solution to the solid-fluid interface and the resistance to the 
transport of product species from the interface to the bulk solution. If one adopts 
the usual “film” model for mass transfer, such resistances are assumed to be localised 
in a thin region near the solid surface (Nernst diffusion layer). The bulk solution 
surrounding this region is assumed to be well mixed. The interparticle resistance is 
described by a mass transfer coefficient, kb, which can usually be estimated from 
the geometry, system properties and flow conditions. The mass transfer coefficient 
corresponds to the quantity where Db is the diffusion coefficient in the bulk 
fluid phase and 6 is the thickness of the diffusion layer. It is assumed that each species 
experiences the same mass transfer limitation, which is equivalent to assuming equal 
diffusion coefficients for the three species. 
b. Intramembrane diflusional resistance: the reacting species arriving at the solid-fluid 
interface has to diffuse inside the permeable membrane (or enzyme capsule) to the 
various reactive sites within it. The products have similarly to diffuse out of the 
reacting sites to arrive at the solid-fluid interface whence they are transferred back 
to the main fluid stream. The intramembrane diffusional resistance is usually de- 
scribed by a diffusion coefficient D .  Again, it is assumed that the diffusion coefficient 
is identical for each species. This is a realistic assumption especially when the three 
species S,  PI and PZ have molecular sizes close to one another. 

The inclusion of two diffusional transport resistances makes an analytical analysis 
of the general problem difficult. It was thought instructive first to tackle the problem 
for the case where the kinetics of the reaction may be considered linear. This situation 
would correspond to the case when the following conditions are satisfied: (a) the 
enzyme concentrations El and EZ are constant; (b) Km1$S, and (c) K m ~ s P 1 .  The 
first requirement is easily met with an insoluble immobilised enzyme. The other 
two conditions are usually satisfied near the end of the reaction or for the case of low 
initial substrate concentration. 

In a pioneering paper, Goldman and Katchalskis have analysed the two-enzyme 
system based on the linear kinetic approximation mentioned above. Their analysis 
is restricted to the case where: (a) the enzymes are attached to a flat membrane, 
impermeable to both reactants and products; (b) the concentration of substrate S 
in the bulk of the solution is constant throughout the enzymic reaction, and (c) the 
initial concentrations of the products in the bulk solution (Plb and P2b) are zero. 
In practice, it is usual to  have a spherical encapsulated enzyme in addition to the 
flat plate configuration. Further, it is difficult to keep the substrate concentration 
in the bulk liquid constant as required by the Goldman-Katchalski analysis. It is 
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necessary to relax these assumptions and develop a general analysis incorporating 
both inter- and intramembrane (capsule) diffusional resistances, while retaining a 
linear kinetic scheme. The linearised analysis should provide a limiting case of the 
general non-linear kinetics and may have usefulness in determining the experimental 
kinetics when the initial substrate concentration may be chosen to be sufficiently 
small. One major advantage of the linear analysis is that an analytical solution to the 
problem can be obtained. 

3. Theoretical analysis 
The differential equations describing the intramembrane transport and reaction can 
be formulated as follows 

DCZ(S) = klS ( 5 )  

DC'(P1)= - k i S  + kzPi (6) 

DV2(P2)= -kzPl (7) 
which emphasise the fact that at any point within the membrane the rate of diffusional 
transport and chemical reaction must be balanced at steady state. The Laplacian 
(P) of the concentrations assumes different forms in different coordinate systems. 
kl and kz are the first order rate constants. 

The equations (3, (6) and (7) may be most conveniently represented in matrix 
notation as follows 

where (C) represents the column matrix of concentrations, 
DCZ(C) = [ K ]  (C)  (8) 

(C)= ti) (9) 

[ 0 -2 :I 
and [ K ]  is the matrix of reaction rate constants, 

kl 0 0 
[ K ] E  - k l  (10) 

The boundary conditions for the differential equation (8) are specified for the 

( 1  1 4  

(1 Ib) 

spherical and flat plate membranes (Figure 1) as follows: 

b.c. I :  sphere at r=O, a (C)L(O)  ~- 
ar 

a(c) 
ax flat plate at x=O, __ = ( O )  

Equation ( 1  la) expresses the fact that at the centre of the sphere there can be no 
flux of mass and similarly equation ( 1  Ib) shows that there can be no mass flux 
penetrating the solid wall (x=O) on to which the membrane is attached. 

h.c. 2: sphere at r = R ,  (C)=(C)R (1 2 4  

(1  2b) flat plate at x = L ,  (C)=(C)L 
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0 kz 0 -  - - I  
ki 

0 1  1 
kz 

1 kl -1- 
_ -  

The solid-fluid interface compositions, (C)R and (C)L, are usually unknown and 
therefore these must be expressed in terms of the bulk solution concentrations, 
(C)b. This is done by invoking the fact that there must be continuity of fluxes at 
the solid surface, that is, the diffusive flux into the membrane must equal the external 
mass transport flux, 

b.c. 2': 

The major problem associated with the solution of the differential equation (8) 
with the boundary conditions (11)-(13) is that the equations are coupled to  one 
another, for the matrix of reaction rate constants, [ K ] ,  has non-diagonal elements. 
Weig has discussed a method by which linear reaction-diffusion equations may be 
uncoupled. The technique used is a standard transformation in linear algebra, the 
similarity transformation.10 The basic procedure involved is described in the 
following. 
a. The first step involves the determination of the eigenvalues of the matrix [ K ] .  
There will be three eigenvalues, Lo,  k1 and RZ which are the three roots of the 
determinantal equation 

k l - R  0 0 
det 1 - k l  kz -k  0 1 = O  (14) 

0 -kz 0-R 

Solving equation (14) we obtain 

Ro=O;  Ri=kl ;  R2=k2 (1 5 )  

[ K I ( x ) ~  = Li(x) i  i =o, I ,  2 (16) 

b. Corresponding to each eigenvalue ki is an eigenvector, ( X ) i ,  which satisfies the 
matrix equation 

From equations (10) and (15), the eigenvectors are found to  be 

(XI0 = (8); ( X ) l =  rF1) kz ; (X)2= ( ) (17) 
-- 

ki - I  

Placing each eigenvector side by side, in order, a square matrix [XI  is formed and 
is called ;he modal matrix of [ K ] , .  

[XI = 
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The inverse of [ X I  is determined to be 

c .  Pre-multiplying both sides of equation (8) by [ X ] - 1  we obtain 

D [  X1-l V z ( C )  = [ K  J [ XI [ X ] - l (  C )  
where we have used the property that 

where '11 is the identity matrix (having unity everywhere on the main diagonal 
and zeroes elsewhere) and multiplication with r I j  leaves a matrix product unchanged. 

We now define pseudoconcentrations, (e) by 

The pseudoconcentrations, 3, and Pz, represent linear combinations of the original 
concentrations S, P1 and P2. These pseudovariables have no physical significance 
and are only mathematical conveniences. 

The product [ X ] - l [ K ] [ X ]  yields a diagonal matrix r / 3 ,  consisting of the eigenvalues 
R i ,  on the main diagonal and zeros elsewhere, 

(23) 
p o  yo 

[ X ] - ' [ K ] [ X ] = r R l =  k1 = k l  
k2J k.1 

The similarity transformation therefore reduces the original coupled problem (8) to 
an uncoupled one in terms of pseudoconcentrations, 

(0 (24) 
I3 

DVZ(C)= rRl(C) = k l  
k 4  

which represents a set of three uncoupled equations 

DV2Ci=/3iei  i = O ,  1 ,  2 ( 25) 

The pseudospecies 3, PI and PZ behave as though they were participating in 
independent irreversible reactions, each with a different first order rate constant 
ki. The first eigenvalue ko is zero and therefore the pseudospecies s does not react. 
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The original set of consecutive irreversible reactions ( I )  is therefore analysed now 
in a pseudoconcentration space in which we have three independent reactions : 

9 does not react 
PI decays with a first order constant k1 ( = k l )  
PZ decays with a first order constant &2 ( = k z )  

The boundary conditions for the transformed problem (25) is obtained by multi- 
plying equations ( 1  I)-( 13) by [Xl-l. Thus we have 

('W 

(26b) 

b.c. 2: sphere at r = R ,  € i r = C i R  i = O ,  I ,  2 (27a) 

(27b) 

aei 
ar 

aei 
ax 

b.c. I :  sphere at r=O, - = O  i = O ,  1,  2 

flatplate at x=O, --=O i = O ,  I ,  2 

flat plate at x = L, eix= e i L  i =O, I ,  2 

b.c. 2': sphere D I =kh{e ib -e iR}  
ar r=R 

The concentration profiles and rates of formation can be obtained by solving the 
set of independent equations (25) with the boundary conditions (26)-(28) for a 
specified geometry. 

4. Concentration profiles and reaction rates for spherical capsules 

Using a spherical coordinate system, the differential equations (25) reduce to 

for each pseudospecies. The above equations are solved with boundary conditions 
(26a)-(28a) to give the pseudoconcentration profiles within the spherical capsule 
as 

where f i r  is the concentration at any radius r within the membrane; 41 = 2/ (&i /D)R,  
is the Thiele modulus portraying the relative importance of reaction and intracapsule 
diffusion resistance, and Sh=(kb R/D) ,  is a modified Sherwood number giving the 
relative importance of external mass transfer resistance and intraparticle diffusion 
resistance, 
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If there were no diffusional limitations within the capsule, realisable with very 
small sized capsules, large diffusion coefficient D and slow reaction rates, the Thiele 
modulus assumes a very low value (+i < 0.1) and the concentrations will be uniform 
everywhere within the enzyme system, 
for 

O < r < R ,  e , , = e i ,  i = O ,  1,2  (31) 

On the other hand, for large values of the modified Sherwood number (Sh > 50) 
the external mass transfer resistance is negligible and we must have the bulk concen- 
trations equal to the solid-fluid interface concentrations, 

e i , = c i h  i=o,  1, 2 (32) 

In practice both diffusional resistances would be important and the profiles in terms 
of pseudoconcentrations would have to be obtained from equation (30). The original 
concentration profiles in terms of S,  PI and Pz are obtained by employing the inverse 
transformation 

(C)r= rx1c0 (33) 

where the elements of [ X I  are given by equation (18). Concentration profiles for 
two typical cases are plotted in Figure 2(a) and (b) in terms of dimensionless concen- 
trations and dimensionless distances. In Figure 2(a) the bulk concentrations are 

:) 0.: 0.4 0 . G  0.8 1.0 0.2 0.4 0.6 0.8 1.0 
y, bimensionless disiilnce 

Figure 2. Concentration profiles within a spherical capsule for bulk concentrations & / s b =  1.0; 
Plb /&=O.o;  P2t,/Stl=0.0; ratio of kinetic constants kl/k2=0.64 and Sherwood number, Sh=50. 
(a) Profiles for Thiele modulus &= 1.0; (b) profiles for Thiele modulus 41 =5.0. 

chosen as & / s h  = I .O, P l h / S h  = 0.0 and Pm/& = 0.0 with the external mass transfer 
resistance described by a Sherwood number of 50. The ratio of kinetic constants 
kl/kz=0.64 and the Thiele modulus +I is taken as unity. For these parameters, 
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Figure 2(a) shows that the drop in the concentration of S inside the capsule is negligible 
and PZ hardly makes an appearance. PI is produced to a greater extent than Ps. 
Figure 2(b) depicts the profiles obtained with a Thiele modulus 41 = 5 and keeping 
all other parameters identical as in case (a). The situation is now changed dramatically. 
S drops steeply in concentration towards the centre of the capsule to a value less 
than 0.1. PZ is now produced in appreciable quantities, especially towards the interior 
of the capsule and remains greater than the concentration of PI at any point. A 
large value of the Thiele modulus therefore favours the production of the end product 
Pz. The following conclusions may therefore be drawn : (a) if PZ is the desired product 
then it is advisable to have a large value of 41. This can be achieved by using a faster 
reacting enzyme or by using a large sized capsule (large R); (b) small values of 41 
favour the production of PI and therefore maximisation of PI can be achieved by use 
of slower reacting enzymes and smaller capsules. 
In order to calculate the actual rates of production of P1 and PZ it becomes 

convenient to define an “effectiveness factor”, Ti, for the ith reacting pseudospecies 
as 

rli= Rate of reaction if there were no resistance (external or internal) to  mass transfer 
Actual rate of reaction of pseudospecies i 

~ ~- 

An expression for 71 can be obtained by integrating the concentration profiles (30) 
over the radius of the sphere 

The effectiveness factor 71 provides a convenient method for taking account of 
mass transfer resistances. The variation of the effectiveness factor Ti with 41 and 
Sh is given in Figure 3(a). It may be observed that Ti is always less than unity and 
therefore the actual rate of reaction is always lowered due to mass transfer resistances. 
The greater the value of +i the lower is the value of vi. This essentially means that 
the faster reaction is affected (slowed down) to a greater extent. This situation is 
analogous to  progressive taxation-the more money you earn, the larger is the 
proportional amount of tax you pay. The external mass transfer resistance, charac- 
terised by Shy also lowers the effectiveness factor. For values of Shenvood number 
greater than 50, the effect on Ti is negligible and the system becomes “controlled” by 
intrucapsule diffusion resistance. 

The advantage of defining Ti is that the system of reacting-diffusing pseudospecies 
(described by equation (25)) can be considered to react (independently) in a completely 
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Figure 3. Plots of effectiveness factor versus Thiele modulus with the Sherwood number as para- 
meter. (a) Spherical capsule, equation (35); (b) flat plate membrane, equation (48). 

hontoge/ieous system with first order rate constants Ti/Ci. The rates of formation 
of the pseudospecies may therefore be written as 

which can be written in matrix notation as 

The actual rates of reaction of species S,  PI and P2 can be obtained by multiplying 
equation (17) by [ X I  and using the relation (33). Thus we have 

where [ K * ]  is the observed overall matrix of reaction rate constants incorporating 
both diffusional resistances, 
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Carrying out the matrix multiplication using the matrices [XI  and [X] -1  given by 

Comparison of equations (10) and (40) shows that the effect of diffusion is not only 
to reduce the reaction rates but also to change the observed reaction scheme. The 
matrix [K*]  corresponds to the diffusion disguised reaction scheme shown below 

k3* 

where the observed rate constants are given by 

Diffusional resistances introduce an apparent linkage between S and P2 (with a 
first order rate constant k3*) where none originally existed (cfequation (1)). Physically 
this means that just by measuring changes in the bulk concentration and treating 
the system as a homogeneous one (described by equation (38)) will not only give 
low kinetic constants but even the true mechanistic picture will not be obtained. 
Once the disguised constants are known (from equations (42)-(44)) then the rates of 
reaction can be obtained from equation (38). 

5. Concentration profiles and reaction rates for flat plate membranes 

Equation (25) reduces for rectangular coordinate system to 
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The concentration profiles within the membrane may be obtained by solving (45) 
with the boundary conditions (26b)-(28b). Thus we get 

where e,, is the pseudoconcentration at any position x within the membrane; 
+ i =  d ( k i / D ) L  is the Thiele modulus giving the relative importance of reaction and 
intramembrane diffusion; Sh = (khL/D) is the modified Sherwood number showing 
the relative importance of external mass transfer resistance and intramembrane 
transport. 

For low values of the Thiele modulus (4i < 0.1) the membrane offers no resistance 
to diffusional transport and the concentrations are everywhere uniform inside the 
membrane (cf equation (31)). For large values of Sherwood number (Sh> 50) the 
external mass transfer resistance is neligible compared to the intramembrane transport 
limitation and the solid-fluid interface concentration equals the bulk concentration 
(cf equation (32)). 

The effectiveness factor 71 for the flat plate membrane (of unit cross-sectional area) 
can be calculated from 

L 

Using the expression for Cix given by equation (46) we obtain 

tanh di 

The reaction rate is obtained exactly as before for the spherical capsule from equation 
(38) with the effectiveness factors 71 and 7 2  given by equation (48). Figure 3(b) shows 
the influence of the parameters #i and Sh on Ti for a flat membrane and tha discussions 
following equation (35) would be applicable here as well. The concentration profiles 
analogous to Figure 2(a) and (b) may be drawn but these are not included here 
because the same qualitative conclusions are reached (cf’ discussion following 
equation (33)). 

6. Prediction of the performance of a two-enzyme system 

I f  the intrinsic first order reaction rate constants kl and kz are known and estimates 
of the diffusion coefficient D and mass transfer coefficient kb are available, together 
with the information on system geometry, it is a straightforward procedure to predict 
the system performance. The steps involved here are: (a) calculation of 71 and 72 

for the appropriate geometry; (b) calculation of the disguised rate constants kl*,  kz* 
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and k3* from equations (42)-(44) giving the disguised rate constants matrix [ K * ] ;  
(c) the concentration-time paths are described by the equation (38) which can be 
integrated to give the concentration at any time t after the start of the experiment 
as 

where (C)O and (C)t are the column matrices of bulk concentrations at the start of 
the experiment and at  time t respectively. The matrix exponentiation can be performed 
either directly or by use of the following relationship 

(C)t=exp {-  [K*It)(C)o (49) 

LX1-l (50) 

From equations (9), (IS), (19), (49) and (50) the bulk concentrations of S,  Pi and P2 
may be obtained as 

P 
exp { - [K* l t )=  [XI exp (-wht) 

exp ( - wkzt) I 

St = exp (- ~ 1 k l t ) S o  (51) 

Pzt=(So+P1o+Pzo)-(St+ Plt)  (53) 

Equation (53) expresses the law of conservation of mass and shows that there are 
only two independent concentrations in the system. 

The concentration profiles given by equations (51)-(53) have been plotted in Figure 4 
I .o 

I 4 8 

I 

2 4 6 8 10 
r ,  dimensionless time 

Figure 4. Transient (non-dimensional) concentration profiles for spherical capsule. Initial con- 
centrations are &/&= 1 .O, PIO/SO =O.O and PxJSO=O.O. External mass transfer resistance is described 
by Sh=50. (a) kz /k1=4.0  and 41=2.0; (b) kz/ki=4.0 and 41=5.0; (c) kz/ki=2.25 and 41=2.0; 
(d) kz/k1=0.25 and 41=2.0. 
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as non-dimensional variables St/&, Plt/So and Pzt/So as functions of dimensionless 
time T=kl t .  The effects of two parameters are considered in Figure 4(a)-(d), namely 
the Thiele modulus 41 and the ratio of the kinetic constants kz /k l .  The initial concen- 
trations are chosen in all four cases to be SO/&= 1.0, Plo/So=O.O and Pzo/SO=O.O. 
The external mass transfer resistance is described by a Sherwood number of 50. 
All the computations were carried out for a single sphere. Figure 4(a) shows the 
concentration-time trajectories for the case where the ratio kz /k l=  4 and the modulus 
41 = 2.0. In Figure 4(b) the ratio of kinetic parameters is kept the same but the Thiele 
modulus is increased to 5.0. Comparison of the two graphs shows that for short 
reaction times ( T <  1) the larger Thiele modulus increases the selectivity of the reaction 
scheme in favour of Pz.  In both cases the concentration of PI  increases with time, 
reaches a maximum and then tends to decrease. This observation was not made by 
Goldman and Katchalskig because in their analysis the concentration of S was kept 
constant. Short reaction times and small Thiele modulus 41 therefore favours the 
production of P I .  Decreasing the ratio kz/kl to  a value 2.25 [Figure 4(c)] shows, 
predictably, that a larger amount of P I  is produced. In fact during the initial period 
the concentration of PI is greater than that of P2. The maxima in P I  concentration 
is again observed. Finally, for kz/kl=0.25, Figure 4(d) shows a lag period in the 
formation of P2 which is not observed for larger values of k2/kl.  

The transient analysis presented in this section should be useful in the simulation 
of the performance of a batch reaction system. The optimum operating conditions 
under which the reaction should be carried out to maximise either PI  or P2 can be 
gleaned from the qualitative discussion above. 

7. Performance of a packed bed two-enzyme reactor 

For a packed bed two-enzyme reactor consisting of spherical immobilised two-enzyme 
capsules the concentration variation with height of the bed is given by 

d(C)z-f [ K * ] ( C ) z  
dz u (54) 

where (C)z represents the concentration level at any height z in the bed; f is the 
fraction of the bed occupied by the enzyme particles; v is the superficial velocity 
of flow of reactants through the bed. Equation (54) assumes that there is no back- 
mixing of liquid in the column and can be integrated from the inlet concentration 
(C) in  to the outlet concentration (C),,t to give 

where Z is the height of the bed. The expression (55) is exactly analogous to equation 
(49) with the time t replaced by the residence time in the packed bed, f Z / v .  The matrix 
exponentiation can be done using (50) and the outlet compositions would be given 
by equations (51)-(53) replacing t by f Z / v .  The profiles shown in Figure 4 also repre- 
sent the concentration profiles along the height of the bed and the theoretical analysis 
is useful in the design of such packed bed enzyme reactors. 
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8. Analysis of laboratory experimental data 

In many cases of interest the biologist or biochemist needs to  obtain the kinetic rate 
constants free from diffusion disguises like the ones discussed in this paper. To 
achieve this the experiments have to  be done under conditions in which the mass 
transfer resistances are negligible. The external mass transfer resistance can be re- 
duced by agitating the bulk solution till the “stagnant” diffusion layer near the solid 
membrane surface is effectively reduced to zero. The intramembrane diffusion re- 
sistance can be diminished by having a membrane matrix with large pores or by 
using small sized membranes (or capsules). If such limiting experiments cannot 
be performed then there exists the problem of extracting the intrinsic kinetic data 
from the diffusion disguised case. This may be achieved as follows. 
a. Estimate the values of D and kb by performing experiments under non-reacting 
conditions. 
b. From the observed rate data obtain the values of the disguised constants kl*, 
k2* and k3*. 
c. The intrinsic constants kl and k i  can be obtained by use of equations (42)-(44). 
This involves a trial and error procedure because 71 and 7 2  in these equations require 
a prior knowledge of kl  and k2. 

9. Conclusions 

The matrix method described in this paper provides a convenient method for analysing 
the effect of diffusional limitations on the kinetic behaviour of consecutive reaction 
systems taking place within an immobilised membrane or capsule. The strength 
of the method lies in the simplicity with which analytical solutions can be obtained. 
The same method may be used to analyse complex reaction networks typical of 
many enzymic reactions, provided the kinetics of each step in the reaction path 
can be considered to be first order. The procedure in this case would be first to 
construct the matrix of reaction rate constants, use the similarity transformation 
to reduce the diffusion-reaction equations to a series of independent reactions in 
terms of pseudoconcentrations, solve the differential equations to obtain the con- 
centration profiles and reaction rates in terms of pseudovariables and then recover 
the solution to the original problem by using the inverse transformation. For the 
more general problem where the linear kinetic approximation does not apply one 
has to  resort to numerical techniques to solve the non-linear equations. Such analyses 
should be useful in the design of enzyme reactors. 

Appendix 
Nomenclature 

(C) 
(C) 
D 
El ,  E2 Enzyme concentrations (mol/cm3) 

Column matrix of concentrations of species S, PI and P2 (mol/cm3) 
Column matrix of pseudoconcentrations (mol/cm3) 
Diffusion coefficient of any species through the membrane (cm2/s) 
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f 
'1 

ki  
kz 

ki* 
kh 
[KI 
[K*l 
L 
P1 
Pz 
r 
R 
S 
Sh 

ki 

t 
l? 

X 

[XI 
Y 
Z 

Fraction of packed bed occupied by enzyme particles 
Identity matrix 
Intrinsic first order rate constant for the reaction S+P1 (s-1) 
Intrinsic first order rate constant for the reaction P1+P2 (s-1) 
ith eigenvalue of [ K ]  ( s - l )  
Disguised rate constants (SKI) 

Mass transfer coefficient (cm/s) 
Matrix of reaction rate constants (s-1) 
Matrix of disguised rate constants (s-1) 
Thickness of flat plate membrane (cm) 
Concentration of P I  (mol/cm3) 
Concentration of P Z  (mol/cm3) 
Radial distance (cm) 
Radius of spherical capsule (cm) 
Concentration of S (mol/cm3) 
Sherwood number 
Time (s) 
Superficial velocity of liquid through packed bed (cm/s) 
Distance along flat plate (cm) 
Modal matrix of [ K ]  
Dimensionless distance 
Height of packed bed (cm) 

Greek letters 
6 
7 Effectiveness factor 
T Dimensionless time= klt  
4 Thiele modulus 

Thickness of diffusion layer (cm) 

Subscripts 
b Bulk variable 
i Index 
in Inlet 
L Surface of flat plate 
0 Initial 
out Outlet 
r At radius r 
R At surface of capsule 
t At time t 
X Position x inside plate 

Superscrip ts 
A Transformed variable 
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