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The consecutive sequence of reactions S + P I  +Pa taking place inside a permeable 
spherical particle is analysed for the case in which the enzyme-catalysed steps in the 
reaction follow Michaelis-Menten type kinetics. The case in which each step in the 
reaction is inhibited by its product is also considered. The theoretical analysis takes 
into account both interparticle and intraparticle diffusional limitations and utilises 
an orthogonal collocation technique to obtain the effectiveness factor and selectivity 
of the reaction sequence. The orthogonal collocation method is found to be both 
convenient and simple and the analysis should prove useful in the design of immobi- 
lised multi-enzyme reactors. 

1. Introduction 

The advantages of immobilised enzymes relative to soluble enzymes in industrial biochemical 
processing applications are well known. Increasing attention has been given in recent years to 
immobilised enzymic systems in which two or more enzymes are bound to the same matrix or 
support. A number of experimental investigations of these systems have been published in the 
literature recently.1- 3 A new application in biochemical processing is the utilisation of entrapped 
bacterial cells and these often involve multi-enzyme systems. A theoretical analysis of the problem 
is of importance in a better understanding of the behaviour of these systems. 

Kuchel et al.4 and Easterbys have analysed the performance of consecutive reactions involving 
two or more enzymes in solution with special reference to coupled enzymic assay. The system 
analysed was a batch process. Immobilised enzyme systems carrying out a sequence of consecutive 
reactions have the additional complication of diffusional effects and the only published theoretical 
analysis of these systems appears to be confined to cases where the intrinsic reaction kinetics are 
first order. Thus, Goldman and KatchalskP have analysed a set of consecutive reactions, S+P1+P2, 
for a two-enzyme system attached to an impermeable membrane. Krishna and Ramachandran7 
have analysed the problem in which the membrane is permeable and intramembrane diffusion is 
important. 

The assumption of first order kinetics is generally valid when the Michaelis constants for the two 
reaction steps are greater than the bulk substrate concentrations. This requirement is usually satisfied 
for the case of low initial substrate concentration or towards the end of the reaction in a batch 
system. First order reactions have a characteristic that the “effectiveness factor” is independent 
of the substrate or product concentration in the bulk liquid and can be calculated analytically for 
simple geometries. In cases where each step in the consecutive reaction system follows Michaelis- 
Menten kinetics (with added complexities due to substrate or product inhibition), analytical expres- 
sions for the effectiveness factor cannot be obtained. The purpose of this paper is to analyse diffu- 
sional (inter- and intraparticle) effects in immobilised two-enzyme systems following complex 
kinetics and to show the relative importance of the various parameters on the rate of reaction. The 
problem is solved by orthogonal collocation methods. 
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2. Formulation of the problem 

The analysis of the following section is based on a consecutive reaction scheme: 
s E m m e  1 , p, Enzyme2 . pz 

taking place inside an immobilised spherical pellet (or capsule) of radius R. The theoretical treat- 
ment is also valid for the case of enzymes attached to a flat plate membrane. The two enzymes 1 
and 2 are considered to be distributed uniformly inside the pellet which is assumed to be permeable 
to all three species. The effects of both inter- and intrapellet diffusional resistance have been con- 
sidered. 

The differential mass balance for the transport and subsequent reaction of the substrate and 
intermediate is as follows: 

wherefs and fp are the rates of reaction of the substrate S and intermediate PI respectively (see 
Appendix for nomenclature). 

The boundary conditions are obtained from the physical requirement that there can be no mass 
flux at the centre of the pellet (r=O) and that there must be continuity of mass flux at the surface 
of the capsule (r= R). These are expressed mathematically as follows: 
At r=O, 

dS  - dPi-O 
dr dr 

At r =  R, 

and 

Introducing the following dimensionless parameters, 

equations (1) and (2) reduce to 

and 

The boundary conditions (3) and (4) now become: 

At y=O, 

(3) 

ds dp 
d U = d v = O  
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At y=  1, 
1 ds $ = I - -  - 

Shs dy 
and 
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(9) 

where 

Two quantities are of interest in the present problem: (a) the rate of reaction of substrate S, and 
(b) the ratio of the rate of formation of the intermediate Pi to the rate of formation of the product 
Pz . 

The rate of reaction of S can be characterised by an “effectiveness factor”, 7, defined as the 
ratio of the actual rate of reaction of S to the rate of reaction in the absence of diffusional (external 
or internal) effects. Thus, 

R 
J 47rrzf(S, PI) dr 

( 4 ~ / 3 )  RSfS(So, PIO) 
q , o  

The second quantity of interest is the selectivity defined by 

net rate of formation of PI 
net rate of formation of PZ 

J 47rrYf -fd dr  

J 4.rrr2fp dr 

(I= 

R 

R 

0 

- - 0- 

I 

0 
J r2(fS-fp) dY 

- -- 
1 

J YZfP dY 
0 

3. Method of solution 

The differential equations (6) and (7) are non-linear and may be solved by a number of different 
techniques. The orthogonal collocation method proposed by Villadsen and Stewart8 is particularly 
suitable for the solution of differential equations of this type and has been used for solution of single 
immobilised enzyme problems for various complex kinetics by Ramachandran.0 Application to the 
modelling of a packed bed encapsulated enzyme reactor has also been considered.10 The collocation 
method has been applied to the solution of the present problem as it has computational advantages 
and gives accurate and reliable answers. 

Using the collocation expansion of the Laplacian operator, equations (6) and (7) become: 
R2 N +  I 

j = l  DSSO Bi~~j--fs(si,pi)=O, i = l , 2 , .  . .  N+l 
and 

N f l  R2 
j= I DsSo 
C qBljsj- __ Vp(pi. pzi)-f(si, p31=0, i= 1, 2, . . . N+ 1 
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where Bij values are elements of the collocation matrix for the Laplacian defined as: 

where yi represents the collocation point i. 

conditions (9) and (10) may be expanded as: 
The pointy= 1 refers to the collocation N+ 1, the surface of the pellet. At this point the boundary 

with a similar expression forpN+1. In equation (16), the Aij values are the elements of the collocation 
matrix for the derivative and are defined by 

Nf 1 

Y = Y i  j = 1  
($) = x Aijsj 

Rearranging equation ( I  6) we obtain 
N 

j=1  
Shs- AN+l , jSJ  

AN+L N+I + Shs SN+1= 

and a similar equation for PN+L Substituting these values of the surface concentrations S N + ~ ,  pN+l 
in equations (13) and (14) and rearranging we obtain: 

and 

i= 1,2, . . . N (20) 

The simultaneous solution of the 2N algebraic non-linear equations (19) and (20) gives the 
concentration distribution of S, PI and Pz within the pellet. Once the concentration distribution 
is known, the effectiveness factor and selectivity can be calculated by the use of “weights”, wi, 
defined as follows: 

Thus, the effectiveness factor and the selectivity can be expressed in terms of the concentrations at 
the collocation points as: 

and 

The collocation matrices Bij, Aij, wi can be calculated from the procedure suggested by Villadsen 
and Stewart.8 It is worth noting here that for many problems an approximation using a value of 
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N =  1 is sufficiently. accurate.8 For such cases the problem of calculating r ]  and u reduces to the 
solution of two algebraic equations for s(y1) andp(y1). In the following section, we shall solve the 
problem for the case of Michaelis-Menten kinetics and also consider systems exhibiting product 
inhibition and discuss some of the features of the solutions. 

4. Analysis of Michaelis-Menten kinetics 

When each intrinsic step in the reaction sequence follows Michaelis-Menten kinetics the rate 
expressions are given by 

kiEiS f.= ~ 

K m l +  S 

and 

kzEzPi kiEiS 
fp= Km2+p1- Kml+s 

The dimensionless parameters characterising this system are as follows: 

SO so kiEi 
y i = - ,  yz=-  and p=-- 

Kmi Km2 k2Ez' 

Numerical computations were carried out for a wide range of values of the above dimensionless 
parameters using three collocation points (N= 3). In order to check the accuracy of the numerical 
technique the parameters y l  and yz were each assigned a value zero. For this particular case the 
problem reduces to a case of first order kinetics for which analytical solutions are available for the 

Figure 1. Concentration profiles within a spherical 
capsule for first order kinetics: comparison of numerical 
solution with analytical solution (41 = 5.0, Sh.= ShD= 

0, A, x =Numerical solutions. 
50.0, q=I.O, /3=0.64, yi=O.O,  ya=0.0, po=O.O,pzo=O.O).  

0.0 0.2 0.4 0.6 0.8 1.0 
Dimensionless distance, y 
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concentration profiles within the pellet and the effectiveness factor.’ I t  was found that numerical 
and analytical solutions were in close agreement over a wide range of values of the Thiele moduli 
41 and 42. Figure 1 shows the concentration profiles for the three species for one particular set of 
values ($1 = 5.0 and p= 0.64). It can be seen that there is good agreement in the values given by the 
two methods. The effectiveness factor, 7 ,  an important parameter in the design of enzyme reactors, 
when calculated by the numerical and analytical techniques is almost identical (Figure 2). 

o.2 t 
r L 

w 
L 

w 

0.2 - 

I I I I I I I I I I 
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 

Thiele modulus, dl 
Figure2. Variation of effectiveness factor 9 with 41 and yl (Shs=Shp=50.0, q = l . O ,  po=O.O, pzo=O.O).  O =  

Numerical solution. 

When the value of yi is increased from zero, the effectiveness factor is also increased and for 
large values of yi (say yi > 10) the reaction kinetics can be approximated by a zero order mechanism 
with 9 approaching unity (Figure 2). The influence of yl on the selectivity of the reaction scheme is 
depicted in Figure 3. For a constant value of yz it is seen that the selectivity u is significantly 
(adversely) affected by the increase in the parameter 71. The relative decrease in selectivity is con- 
siderable on increasing yi for the case of low Thiele modulus while the decrease is not so significant 
for large value of $1. 

Figure 3. Effect of yl on the selectivity (I (Shs=Shp= 
50.0, q = l . O ,  P=l.O, yz=I.O, po=O.O,pao=O.O). 

0.10 1.0 10.0 
r, 
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The influence of y2 can be similarly observed by changing yz keeping other parameters constant. 
It can be seen (Table 1) that on increasing yz, the selectivity is increased considerably because of 
the suppression of the second reaction. 

Table 1. Effect of yz on the selectivity u (41=5.0, 
Shs=Shp=50.0, P=l.O, yi=l.O, q=I .O,  po=O.O, 

pzo = 0.0) 

0.0 0.6512 1 .0984 
1 .o 0.6512 1.2337 

10.0 0.6512 41.070 
100.0 0.6512 3368.500 

'The influence of the Michaelis constants K m l  and Kmz can be observed by varying the values of 
yl and yz keeping the ratio ydyz constant. The effectiveness factor is increased but the selectivity 
is not affected greatly (Table 2). 

Table 2. Relative influence of Km1 and Kms 
on selectivity u (41 = 5.0, Shs = Shp= 50.0, 

p=1.0, q=1.0,po=0.0,pzo=0.0)  

0 . 0  0.483 1.379 
0 . 5  0.562 I .284 
1 .o 0.651 1.233 
5.0 0.931 I .206 

10.0 0.981 1.250 
100.0 0.999 I .307 

5. Analysis of systems with product inhibition 

We consider here the case in which each step in the reaction is competitively inhibited by its product. 
For simplicity we assume each species diffuses with equal facility. Analysis of the case with unequal 
diffusivities is straightforward. The reaction rate expressions are : 

and 

If we non-dimensionalise the reaction rate expressions as before we obtain two additional 
dimensionless groups. The first 

so 
Ki I 

yr1= - 
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characterises the inhibition of the first reaction by its product PI and the second 

so 
K I Z  y1z= - 

characterises the inhibition of the second reaction by the final product Pz. 
The stoichiometric relation 

Pz = s o  + PlO + Pzo - s - P1 (28) 

can be used to eliminate PZ from the rate equation (27). The differential equations (6) and (7) can 
be solved as in the previous case using orthogonal collocation. 

The relative importance of y11 and ~ I Z  was examined by varying these parameters. The influence 
of y11 is mainly on the effectiveness factor which decreases with increasing y11. The selectivity is 
almost unaltered by changing the value of y11 (Table 3). This is a peculiar effect observed in the 

Table 3. Influence of the product inhibition parameters y11 and ~ I Z  

and the external (bulk) concentration of PI on the effectiveness factor 
and selectivity (+i=5.0, Shs=Shp=50.0, f l = I . O ,  yi=l.O, yz=I.O, 

q= 1.0, pzo=0.0)  

0.0 
0. I 
0 .5  
1 .o 
4 . 0  
0 .0  
0 .0  
4 . 0  
4 . 0  
4 .0  

0.0 
0.0 
0.0 
0.0 
0.0 
0.1 
1 .o 
0.0 
0.0 
0.0 

0.0 
0.0 
0.0 
0.0  
0.0 
0.0 
0.0 
0.01 
0.1 
0.30 

0.651 
0.647 
0.633 
0.617 
0.549 
0.651 
0.651 
0.556 
0.614 
0.724 

1 .2337 
1.2335 
1 .2328 
I ,2324 
1.2345 
1.2556 
1.4391 
1 .  I572 
0.0634 
0.0375 

case of sequential reactions each inhibited by its product. This may be further elucidated by com- 
paring the concentration profiles of S and P I  for two values of y11 of 0.0 and 4.0 (Figure 4). As the 
product inhibition parameter increases, the rate of the first reaction is lowered resulting in an 
increased concentration of S in the pellet and a decreased production of P I .  This decreased produc- 
tion of P1 affects the rate of the second reaction (Pl-Pa) adversely. Thus there is a compensating 
effect due to lowering of both the first and second step of the reaction sequence resulting in only 
minor variations in the selectivity. 

The influence of ~ I Z  is on the selectivity and not on the effectiveness factor 7. As ~ I Z  increases the 
value of selectivity u increases due to the suppression of the second reaction. 

In the above discussions, the external (bulk) concentration of the intermediate PI was taken as 
zero. This is valid for a batch reactor at  the start of the reaction or in a continuous packed bed 
reactor near the entrance to the reactor. It would be interesting to examine the influence of PIO 
for the case of product inhibition. This was done by varyingpo=Pl/Plo (Table 3). 

6. Analysis of systems with substrate inhibition 

The rates of many biological systems are inhibited by the substrate. The inhibition is generally of 
a non-competitive nature. Systems with substrate inhibition have a characteristic that multiple 
steady states are possible within some range of values of $1. The analysis of this problem can be done 
by a graphical procedure suggested in the paper by Ramachandran.9 Basically, this involves using 
a single collocation approximation and solving the resulting algebraic equations graphically. 
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Figure 4. Effect of the product inhibition parameter 
y11 on the concentration distribution of S and PI inside a 
spherical capsule (41 = 5.0, She= ShD = 50.0. q= 1.0, 
p=1.0, yt=l.O, yz=l .O,  y12=0.0, po=o.o, pzo=O.O). 
-, yI1 =o . ,  0. ---___ , y11=4.0. 

Accuracy is increased by using more collocation points. One may expect multiple steady states for 
both S and PI to occur under certain conditions. 

7. Application to a backmix reactor 

In this section we shall indicate the application of the above method in predicting the performance 
of a backmix reactor carrying out consecutive enzymic reactions. The material balance equations 
for a backmix reactor are: 

For S 

For PI 

where Sio, P1io are the inlet concentrations and SO, PIO are the reactor exit concentrations. 
For a given reactor size and inlet conditions, the outlet conditions can be obtained as follows: 

a. Assume the outlet concentrations SO and PIO and calculate yl( = So/Km1) and yz( = So/Kmz).  
b. Now from a knowledge of the size of the catalyst pellets and intrinsic kinetics (i.e. $1 and $z) ,  
we can calculate 7 and u using the collocation technique. 
c. Equations (29) and (30) can now be used to obtain a new estimate of the outlet concentrations 
and the steps a, b and c repeated till convergence is obtained. 

7. Conclusions 

The effect of diffusional limitations on the rates of a consecutive reaction sequence catalysed by two 
enzymes immobilised inside a spherical pellet has been analysed. The problem is solved by use of 
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an orthogonal collocation technique which requires the solution of a set of non-linear algebraic 
equations. The analysis should prove useful in obtaining the optimum conditions for improving the 
rates and selectivity of consecutive reactions and also in the design of enzyme reactors. Systems 
exhibiting more complex kinetics can also be formulated in a similar manner and the same solution 
method would apply. 

Appendix 
Nomenclature 

Collocation matrix for the derivative 
Collocation matrix for the Laplacian 
Diffusion coefficient of the substrate S and intermediate PI inside the pellet 
Concentrations of enzymes 1 and 2 within the pellet 
Rate of first reaction, S-tP1 
Rate of second reaction, Pl-tPz 
Enzyme reaction rate constant for the first and second reaction respectively 
External mass transfer coefficients for the transport of species S and PI respectively 
Michaelis constant for first and second reaction respectively 
Product inhibition parameters for first and second reaction respectively 
Number of interior collocation points 
Concentrations of the intermediate and product respectively 
Concentration of PI in the bulk liquid 
Concentration of PI in the inlet stream of the backmix reactor 
Dimensionless concentration Pi/& 
Dimensionless concentration Plo/So 
Dimensionless concentration Pz/SO 
Ratio of diffusion coefficients Dp/Ds 
Radial position in the pellet 
Radius of pellet 
Concentration of the substrate 
Concentration of the substrate in the bulk solution 
Concentration of substrate in the inlet to backmix reactor 
Dimensionless concentration S/So 
Modified Sherwood numbers 
Volumetric flow rate of reactant stream 
Volume of reactor 
Weights defined as in equation (21) 
Dimensionless distance r / R  

Greek letters 

41 

4 2  
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'7 

EL 

Effectiveness factor defined by equation (1 1)  
Selectivity defined by equation (12) 
Volume fraction of liquid in the reactor 

I7 
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