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A B S T R A C T

The Maxwell-Stefan (M-S) “frictional” formulation has been used to develop a unified description of mixture
permeation across membranes consisting of thin layers of zeolites, metal-organic frameworks or polymers.
Explicit analytic expressions are derived for determining the fluxes for steady-state permeation of binary mix-
tures of species 1 and 2 across a membrane (m), clearly delineating the relative influences of the 1-m, 2-m and
interspecies (1−2) frictional contributions. Simplified expressions are derived for two limiting scenarios: neg-
ligible 1–2 friction and dominant 1–2 friction; these scenarios help to determine the upper and lower bounds of
permeation fluxes and selectivities. The developed model is used to analyze a wide variety of published ex-
perimental data on mixture permeation across zeolite and polymer membranes. In each case, the influence of
1–2 friction is analyzed. In cases such as pervaporation across polymer membranes, the 1–2 frictional con-
tribution is found to be extremely significant.

1. Introduction

Membrane technologies find applications in a variety of separation
applications such as gas separations, water/alcohol pervaporation,
dialysis, electrodialysis, and desalination [1,2]. The membrane layer
could consist of porous materials, polymeric chains, or hybrid “mixed
matrix” materials. The design and development of membrane separa-
tion technologies requires accurate and robust models for description of
mixture permeation.

In the majority of cases of industrial interest, the mixture permea-
tion characteristics cannot be predicted solely on the basis of data on
unary permeation of individual species in the mixture. As illustration,
Fig. 1a compares the experimental data on permeances of CO2 and H2

determined for unary and binary mixture permeation across an MFI
membrane [3]. The CO2 and H2 mixture permeances are both lower
than the corresponding values for unary systems. For H2, the lowering is
by about one order of magnitude, while the CO2 permeance is lowered
by a factor of about two. This implies that mixture permeation is CO2-
selective, whereas the data based on unary permeation demonstrates
H2-selective performance. What causes the lowering of the component
permeances in the mixture, and why is the extent of lowering sig-
nificantly higher for H2?

For CO2/H2 mixture permeation across SAPO-34 membrane, a dif-
ferent result is reported [4,5]; see Fig. 1b. In this case there is no

lowering of CO2 permeance in the mixture from the corresponding
unary values. What is the explanation for the contrasting observations
in Figs. 1a, and 1b?

Fig. 2a shows experimental data [6] on the pervaporation fluxes of
water(1)/ethanol(2) mixtures across an hydrophilic polyimide mem-
brane (m) as a function of the mass fraction of water in the upstream
liquid feed mixture, ω L

1 . Increasing ω L
1 results in a monotonous increase

in the water permeation flux, as is to be expected. However, the cor-
responding ethanol flux does not decrease monotonously, but displays a
maximum at ≈ω 0.2L

1 . As reassurance that these data are not an
aberration, it is noteworthy that a similar maximum has been reported
for water/ethanol pervaporation across an hydrophilic poly (vinyl al-
cohol) /poly (acrylonitrile) (PVA/PAN) composite membrane [7], but
at the feed composition ≈ω 0.7L

1 ; see Fig. 2b. The observed maximum
in the ethanol flux cannot be easily rationalized by a simple permeation
model that assumes each penetrant to transfer independently of the
partner penetrants within the polymer membrane. Is the maximum in
the ethanol flux caused by non-idealities in phase equilibrium ther-
modynamics? Are diffusional “coupling” effects also in play here?

Clearly, a quantitative description of the variety of observations in
Figs. 1 and 2 requires the use of modelling framework that (a) takes
proper account of non-ideal phase equilibrium thermodynamics, and
(b) mutual diffusional “interactions” between penetrants, and not just
the interaction between each penetrant and the membrane.
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The Maxwell-Stefan (M-S) formulation, that is firmly rooted in the
theory of irreversible thermodynamics, affords a rigorous platform to
develop the necessary expressions for the permeation fluxes [5,8–17].
In essence, the M-S equations represent a balance between the force
exerted per mole of species i with the drag, or friction, experienced with
each of the partner species j in the mixture. We may expect that the
frictional drag to be proportional to differences in the velocities of the
diffusing species −u u( )i j , where ui is the velocity of motion of the
“guest” species i. For permeation of a mixture containing a total of n
penetrants through a membrane matrix, denoted by the suffix m, we
write

∑− = − + − =
= ≠

dμ
dz

RT X u u RT X u u i n
Ð

( )
Ð

( ); 1.2..i

j j i

n

ij
j i j

im
m i m

1, (1)

The left member of Eq. (1) is the negative of the gradient of the
chemical potential, with the units N mol−1; it represents the driving
force acting per mole of species i. For transport of ionic species, the left
members are replaced by the electrochemical potential gradients
[2,18,19]. Eq. (1) defines two types of M-S diffusivities: Ðim, quanti-
fying i-m interactions, and Ðij for describing i-j interactions. The term
RT/Ðim is interpreted as the drag or friction coefficient between the

penetrant i and the membrane. The membrane phase is usually sta-
tionary, i.e. um = 0. The term RT/Ðij is to be interpreted as the friction
coefficient for the i-j pair of penetrants. At the molecular level, the Ðij

reflect how the facility for transport of species i correlates with that of
species j; they are also termed exchange coefficients [11,20].

The multiplier Xj in each of the right members represents any
measure of the composition of component j in the mixture because we
expect the friction to be dependent on the number of molecules of j
relative to that of component i. A wide variety of composition measures
Xi may be employed, including mole fractions, xi; molar concentrations,
ci; mass fractions, ωi; mass densities, ρi; volume fractions, ϕi

[12,13,15,16,21,22]. For example, the formally equivalent Bearman
friction formulation [23]

∑− = − + −
=
≠

dμ
dz

c ς u u c ς u u( ) ( )i

j

n

j ij i j m im i m
1

j i (2)

where ς ς,ij im are the Bearman friction coefficients, is often used to de-
scribe diffusion in polymers [21,22].

The M-S diffusivities Ðim are determinable from unary permeation
experiments; the values thus obtained provide a convenient platform

Nomenclature

ai activity of species i, dimensionless
bi parameter in the pure component Langmuir adsorption

isotherm, Pa−1

ci molar concentration of species i, mol m−3

ct total molar concentration in mixture, mol m−3

Ði M-S diffusivity of component i for molecule-pore interac-
tions, m2 s−1

Ð (0)i M-S diffusivity at zero-loading, m2 s−1

Ðij
V modified M-S diffusivity for binary penetrant pair i-j, m2

s−1

Ðim
V modified M-S diffusivity for penetrant i in polymer m, m2

s−1

Ðij M-S exchange coefficient, m2 s−1

Ð12 M-S exchange coefficient for binary mixture, m2 s−1

fi partial fugacity of species i, Pa
I[ ] Identity matrix with elements δ ij, dimensionless
n number of penetrants, dimensionless
ni number of molecules of species i in simulation box, di-

mensionless
Ni molar flux of species i defined in terms of the membrane

area, mol m−2 s−1

Ni
V volumetric flux of species i, m3 m−2 s−1

pi partial pressure of species i, Pa
pt total system pressure, Pa
qi molar loading of species i, mol kg−1

qi,sat molar loading of species i at saturation, mol kg−1

qt total molar loading of mixture, mol kg−1

rl,i(t) position vector for molecule l of species i at any time t, m
R gas constant, 8.314 J mol−1 K−1

T absolute temperature, K
ui velocity of motion of i, m s−1

Vi partial molar volume of species i, m3 mol−1

V molar volume of mixture, m3 mol−1

Vp pore volume, m3 kg−1

xi mole fraction of species i in adsorbed phase, dimensionless
z distance coordinate, m

Greek letters

Γij thermodynamic factors, dimensionless

Γ[ ] matrix of thermodynamic factors, dimensionless
δ thickness of membrane, m
δ ij Kronecker delta, dimensionless
ζ Bearman friction coefficient
η dimensionless distance, dimensionless
θi fractional occupancy of component i, dimensionless
θt fractional occupancy of adsorbed mixture, dimensionless
θV fractional vacancy, dimensionless
Λ[ ] matrix of Maxwell-Stefan diffusivities, m2 s−1

μi molar chemical potential, J mol−1

Πi permeability of species i for polymer membrane, mol m
m−2 s−1 Pa−1

Πi permeance of species i for zeolite membrane, mol m−2 s−1

Pa−1

ρ framework density, kg m−3

ρi mass density of component i, kg m−3

ωi mass fraction of component i, dimensionless
ωi

L mass fraction of component i in liquid phase feed mixture,
dimensionless

Subscripts

0 upstream face of membrane
1 referring to species 1
2 referring to species 2
i,j components in mixture
m refers to membrane, dimensionless
t referring to total mixture
s referring to surface at position ξ = 1.
sat referring to saturation conditions
V vacancy
δ downstream face of membrane
η position along membrane

Vector and matrix notation

( ) component vector
[ ] square matrix
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for characterizing the permeation of the same species i in the presence
of other penetrants in the membrane. The exchange coefficients Ðij, on
the other hand, cannot be determined explicitly from experiments. In
some simple cases, use of Molecular Dynamics (MD) simulations
[11,20,24–29] allow some insights to be gained on the characteristics of
Ðij; invariably the MD simulated values are not accurate enough for
direct use in membrane process design and development. For meso-
porous materials with pores in the 20–500 Å size range the values of the
binary exchange coefficient Ð12 are the nearly the same as the binary
fluid phase M-S diffusivity, Ð12,fl, over the entire range of pore con-
centrations [20,24,30,31]. For micro-porous materials and polymers,
the exchange coefficient Ð12 cannot be directly identified with the
corresponding fluid phase diffusivity Ð12,fl because the molecule-mo-
lecule interactions are also significantly influenced by molecule-

membrane interactions. For binary mixtures of simple non-polar mo-
lecules, the values of the exchange coefficient Ð12 often lie between the
M-S diffusivities Ð1, and Ð2, and the logarithmic Vignes interpolation
formula provides reasonable estimates [32,33]. However, for water/
alcohol mixtures, hydrogen bonding between the water and alcohol
molecules causes mutual-slowing down of both species in the mixtures,
and the logarithmic interpolation formula to estimate Ð12 fails to a
significant extent [34–36].

The primary objective of this article is to gain deeper insights into
the characteristics and influence of the i-j frictional terms on permea-
tion fluxes. Using the M-S formulation, we derive simple explicit ana-
lytic expressions that describe the upper and lower bounds for the in-
fluence of 1–2 friction. The limiting scenarios are invaluable in
determining the maximum extent to which the first right member of Eq.

Fig. 1. (a) Experimental data [3] for the permeances of CO2(1) and H2(2) determined for
unary and binary equimolar mixture permeation across MFI membrane at 296 K. The data
are plotted as a function of the partial pressure of CO2 (= H2) in the upstream feed
mixture. (b) Comparison of CO2 permeance data [4,5] for CO2/H2 mixtures across SAPO-
34 membrane, with data on unary permeation.

Fig. 2. (a) Experimental data [6] for volumetric pervaporation fluxes of water(1)/ethanol
(2) mixtures across polyimide (m) membrane at 293.15 K. (b) Experimental data [7] for
the molar permeation fluxes for pervaporation of water(1)/ethanol(2) mixtures across a
poly (vinyl alcohol) /poly (acrylonitrile) (PVA/PAN) composite membrane (m) at 333 K.
The x-axis is the mass fraction of water in the liquid mixture in the upstream compart-
ment.
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(1) may influence the mixture permeation characteristics. We aim to
demonstrate that these limiting scenarios could contribute to the choice
of the “ideal” membrane framework structure to maximize the per-
meation selectivity.

To fulfil the stated objectives, we undertook detailed analyses of a
diverse variety of published experimental data on unary and binary
mixture permeation experiments, such as those shown in Figs. 1 and 2,
with two different classes of membrane materials: zeolites and poly-
mers.

The Supplementary material accompanying this publication pro-
vides: (1) structural details of the zeolite and polymeric membranes
investigated, (2) unary isotherm data for adsorption of guest species in
the zeolites, along with estimation methods for mixture adsorption
equilibrium, (4) Flory-Huggins parameters for fluid-polymer equilibria,
(5) detailed derivations of analytic expressions for calculation of steady-
state fluxes and permeances, (6) input data on M-S diffusivities for si-
mulations of membrane permeation, and (7) detailed results of simu-
lations and comparisons with published experimental data. The in-
formation provided in the Supplementary material is sufficiently
detailed to enable interested researchers and practitioners to reproduce
all of the calculations presented in this article.

We begin our discussions by considering binary mixture permeation
across zeolite membranes.

2. Maxwell-Stefan analysis of zeolite membrane permeation

Within microporous crystalline materials, such as zeolites, metal-
organic frameworks (MOFs), zeolitic imidazolate frameworks (ZIFs),
and carbon molecular sieves, the guest molecules exist in the adsorbed
phase; the phenomenological descriptions of transport in all micro-
porous crystalline materials are formally identical [24]. It is convenient
to use as composition measures the mole fractions of the components in
the adsorbed phase, =x q q/i i t where qi is the molar loading of ad-
sorbate, and qt is the total mixture loading = ∑ =q qt i i1

2 . The composi-
tion “fraction” of the membrane, Xm, is undefined; the membrane does
not form part of the mixture, and we redefine the M-S diffusivity for
interaction of the penetrant i with the membrane as ≡ XÐ Ð /i im m.

In terms of mole fractions, Eq. (1) are re-written for binary mixtures,
consisting of species 1 and 2, as

∑− = − + =
= ≠

dμ
dz

RT x u u RT u i
Ð

( )
Ð

( ); 1.2i

j j i ij
j i j

i
i

1,

2

(3)

The Onsager Reciprocal Relations imply that the M-S exchange
diffusivities are symmetric

=Ð Ð12 21 (4)

We define Ni as the number of moles of species i transported per m2

of crystalline material per second

≡N ρq ui i i (5)

where ρ is the zeolite framework density with units of kg m−3.
Multiplying both sides of Eq. (3) by ρqi, the M-S equations take the form
[10,11,31]

− = − +

−
∂

= − +

ρ
q

RT
dμ
dz

x N x N N

ρ
q
RT

dμ
z

x N x N N
Ð Ð

Ð Ð

1 1 2 1 1 2

12

1

1

2 2 1 2 2 1

12

2

2 (6)

At thermodynamic equilibrium, the chemical potential of compo-
nent i in the bulk gas mixture equals the chemical potential of that
component in the adsorbed phase within the membrane at both up-
stream and downstream faces. For the bulk gas phase mixture we have

= = =
RT

dμ
dz

d p
dz p

dp
dz

i1 ln 1 ; 1.2i i

i

i

(7)

The chemical potential gradients dμ dz/i can be related to the gra-
dients of the molar loadings, qi, by defining thermodynamic correction
factors Γij

∑= =
∂
∂

=
=

q
RT

dμ
dz

Γ
dq

dz
Γ

q
p

p
q

i j; ; , 1.2i i

j
ij

j
ij

i

i

i

j1

2

(8)

The thermodynamic correction factors Γij can be calculated by dif-
ferentiation of the model describing mixture adsorption equilibrium.
Generally speaking, the Ideal Adsorbed Solution Theory (IAST) of
Myers and Prausnitz [37] is the preferred method for estimation of
mixture adsorption equilibrium. In some special cases, the mixed-gas
Langmuir model

= =
+ +

=θ
q

q
b p

b p b p
i

1
; 1.2i

i

i sat

i i

, 1 1 2 2 (9)

may be of adequate accuracy. Analytic differentiation of Eq. (9) yields
[38]

⎡
⎣⎢

⎤
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Γ Γ
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1V

q
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q
q

11 12
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2 1
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1,

2,

2,

1, (10)

where the fractional vacancy θV is defined as

= − −θ θ θ1V 1 2 (11)

In proceeding further, it is convenient to define a 2 × 2 dimensional
square matrix Λ[ ]:

=
⎡
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2 1
12 (12)

The elements of Λ[ ] cannot be determined from experimental mea-
surements. However, Λij are directly accessible from MD simulations
[24,30,39,40] by monitoring the individual molecular displacements

⎛
⎝

∑ ⎞
⎠

⎛
⎝

∑

⎞
⎠

= + − +

−

→∞ = =
Λ

n Δt
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r

1
2

lim 1 1 ( ( ) ( )) • ( ( )
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ij
Δt j l

n

l i l i
k

n
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1
, ,

1
,

,

i j

(13)

Combining Eqs. (6), (8), and (12) we write using 2-dimensional
matrix notation

= −N ρ Λ Γ
d q
dz

( ) [ ][ ]
( )

(14)

For steady-state transfer across a membrane, the permeation fluxes
Ni are obtained by solving the set of two coupled ordinary differential
equations (ODEs) (14) for the following set of boundary conditions (see
schematic in Fig. 3)

= = = = =z p p q q θ θ θ θupstream face: 0; ; ; ;i i i i i i V V0 0 0 0

(15)

= = = = =z δ p p q q θ θ θ θdownstream face: ; ; ; ;i iδ i iδ i iδ V Vδ

(16)

Exact analytic solutions to Eqs. (14), (15) and (16), allowing explicit
calculations of the permeation fluxes, can be derived for the mixed-gas
Langmuir description of adsorption equilibrium [38]; details are pro-
vided in the Supplementary material. There are many instances in
which mixture adsorption equilibrium cannot be adequately described
by the mixed-gas Langmuir model given by Eq. (9); this situation arises
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for permeation of linear and branched alkanes across MFI membranes
for which the dual-site Langmuir model need to be used to take account
of isotherm inflections [10,11]. Exact analytic solutions for steady-state
fluxes cannot be derived in such cases; numerical solutions of the set of
coupled ODEs are required [38]. An alternative, practical, approach is
to determine the two matrices Λ[ ], and Γ[ ] at the averaged adsorbed
phase loadings, mole fractions, and occupancies within the membrane:

= = =+ + +q x θ; ;i av
q q

i av
x x

i av
θ θ

, 2 , 2 , 2
i iδ i iδ i iδ0 0 0 .

In this linearized model, the fluxes are calculated explicitly as fol-
lows

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

= ⎛
⎝

−
−

⎞
⎠

N
N

ρ
δ

Λ Γ
q q
q q[ ] [ ] δ

δ

1

2

10 1

20 2 (17)

The component permeances can be determined using the definitions

≡
−

Π N
p pi

i

i iδ0 (18)

The linearized model essentially assumes that the component
loading profiles within the membrane layer are linear. The accuracy of
the linearized model for flux calculations has been established by
comparisons with exact solutions; see Fig. S33 of Supplementary ma-
terial.

3. M-S diffusivities, and limiting scenarios for correlation effects

To get a feel for the relative magnitudes of the M-S diffusivities,
consider the diffusion of a mixture of CO2(1) and H2(2) in MFI zeolite,
that consists of a set of intersecting channels of 5.5 Å dimension (see
computational snapshot in Fig. 4a). MD data on the three M-S diffu-
sivities, Ð1, Ð2, and Ð12 are plotted in Fig. 4b as a function of the total

Fig. 3. Schematic showing mixture permeation across zeolite or polymeric membrane.

(caption on next page)
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loading of the adsorbed phase, qt. The M-S diffusivities Ð1, Ð2 for unary
diffusion are practically the same as those in the mixture; this suggests
that unary permeation measurements allow estimations of the diffu-
sivity data inputs for mixture permeation. Furthermore, we note that
both diffusivities decrease with increased loading; accurate modelling
of mixture permeation requires appropriate description of the loading
dependence. A simple model to describe the loading dependence is

= θÐ Ð (0)i i V (19)

where θV is the fractional vacancy. Eq. (19) is essentially based on a
simple hopping model in which a molecule can jump from one ad-
sorption site to an adjacent one, provided it is not already occupied; the
jump frequency is proportional to the fractional vacancy [20,27].

Fig. 4b shows that for mixture loadings, qt, exceeding 1 mol kg−1,
the exchange coefficient Ð12 is significantly smaller than Ð2; this implies
that the 1–2 frictional term has a significant impact on the H2 flux. This
rationalizes, albeit qualitatively at this stage, the lowering of H2 per-
meance in the mixture that was observed in Fig. 1a.

It is convenient to define the ratios Ð
Ð

1
12
, and Ð

Ð
2

12
to quantify the degree

of correlations, using the terminology that is commonly used for zeolites;
these ratios may also be viewed as quantifying the significance of 1–2
friction in relation to the 1-m and 2-m frictional contributions. These
ratios may also be interpreted as signifying the importance of 1–2
friction in relation to 1-m, and 2-m frictional contributions. For CO2(1)/
H2(2) mixtures, Fig. 4c presents MD data on Ð /Ð2 12 in five different
micro-porous host materials, as a function of the total pore concentra-
tion, = +c q q V( )/t p1 2 , where Vp is the accessible pore volume of the
host. Generally speaking, correlation effects get stronger with increased
loading; consequently, such effects are stronger for operations at ele-
vated pressures. The observed hierarchy of correlation effects is:
MgMOF-74 (hexagonal channels of 11 Å)>MFI (intersecting channels
of 5.5 Å)> IRMOF-1 (two alternating, inter-connected, cavities of
10.9 Å and 14.3 Å with window size of 8 Å)> FAU (11.4 Å size cages
separated by 7.4 Å size windows)> LTA (11.2 Å size cages separated
by 4.1 Å size windows). Broadly speaking, correlation effects are
stronger in larger “open” frameworks and for structures consisting of
intersecting channels. Strong correlation effects cause slowing-down of
more-mobile-less-strongly-adsorbed H2 molecules by tardier-more-
strongly-adsorbed-partner CO2. Correlation effects are less significant,
practically negligible, in hosts such as LTA, ZIF-8, CHA, DDR, ERI that
consist of cages separated by narrow windows in the 3.2–4.2 Å size
range [20,24,26,41]. Molecules jump one-at-a-time across the narrow
windows, leading to un-correlated inter-cage hopping of guest species.

CO2/H2 separations will be H2-selective in ZIF-7 and ZIF-8 mem-
branes in which correlation effects are negligible [42,43], while MFI-
membrane will result in CO2-selective separations, as witnessed in the
experiments of Sandström et al.[3] (cf. Fig. 1a).

For the scenario in which correlations effects are of negligible im-
portance, we derive

→ → ⎡
⎣⎢

⎤
⎦⎥

→ ⎡
⎣⎢

⎤
⎦⎥

Λ Λ
Λ Λ

Ð
Ð

0; Ð
Ð

0;
Ð 0
0 Ð

1

12

2

12

11 12

21 22

1

2 (20)

As validation of Eq. (20), Fig. 5a presents MD simulations of the
elements of the matrix Λ Λ Λ, ,11 12 22 for equimolar Ne(1)/Ar(2) mixtures
in CHA. We note that the values of the off-diagonal elements =Λ Λ12 21

are about 1 – 3 orders of magnitude lower than the corresponding va-
lues of the diagonal elements Λ Λ,11 22. The diagonal elements are
practically the same as the unary M-S diffusivities Ð1, and Ð2; this is

consistent with Eq. (20). Analogous results are obtained for Ne(1)/Ar
(2) and CO2(1)/H2(2) mixture diffusion in LTA zeolite; see Figs. 5b, and
5c.

When correlation effects are negligible, the diffusional coupling
effects are solely traceable to mixture adsorption thermodynamics,
embodied in the matrix Γ[ ].

The other limiting scenario is the one in which the correlation ef-
fects are dominant (detailed derivations are provided in the
Supplementary material):

Fig. 4. (a) Snapshot showing the location of CO2(1) and H2(2) adsorbates within the
intersecting channel structures of MFI. (b) MD simulation data [26] on the M-S diffu-
sivities, Ɖ1, and Ɖ2, of CO2, and H2 as a function of the adsorbate loading; both for unary
and for equimolar binary CO2(1)/H2(2) mixtures. (c) MD simulation data [26] for the
degree of correlations, MD simulation data for the degree of correlations, Ð /Ð1 12, for
diffusion of equimolar CO2/H2 mixtures at 300 K in a variety of host materials, as a
function of the total pore concentration, = +c q q V( )/t p1 2 .

Fig. 5. MD simulation data [30,39,40] on the elements of the matrix Λ Λ Λ, ,11 12 22 for
equimolar (a) Ne(1)/Ar(2) mixtures in CHA, (b) Ne(1)/Ar(2) mixtures in LTA, and (b)
CO2(1)/H2(2) mixtures in LTA at 300 K. The data are plotted as a function of the total
mixture loading, qt. Also shown the MD simulations of unary M-S diffusivities Ð1, and Ð2.
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⎤
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Λ
x x
x x

Ð
Ð

1; Ð
Ð

1; [ ] 1
x x

1

12

2

12 Ð Ð

1 1
2 21

1
2
2 (21)

Remarkably, in this scenario, =Λ Λ11 12, and =Λ Λ21 22. For equi-
molar mixtures, =x x1 2, all the four elements of Λ[ ] are equal to one
another.

The dominant correlations scenario is a good approximation under
pore saturation conditions [40]. As illustration, Fig. 6a,b,c present MD
simulation data of the elements of the matrix Λ Λ Λ, ,11 12 22 for equimolar
(a) CH4(1)/C3H8(2) mixtures in BEA, (b) C2H6(1)/C3H8(2) mixtures in
MFI, and (b) CH4(1)/ C2H6(2) mixtures in ISV. All three zeolites have
intersecting channel topologies, and in all three cases we note that the
elements Λ Λ Λ, ,11 12 22 converge to the same diffusivity value at in-
creasing mixture loadings; the continuous solid lines are the calcula-
tions of Λ Λ Λ, ,11 12 22 using Eq. (21). In this scenario, there is only one
characteristic diffusivity in the mixture when the zeolite pores are sa-
turated.

Eqs. (20) and (21) provide lower and upper bounds for the influence
of 1–2 friction on binary mixture diffusion in micro-porous materials.
With this theoretical background, we investigate some published ex-
perimental data on mixture permeation across zeolite membranes.

4. Kr/Xe mixture permeation across SAPO-34 membrane

Experimental data for Kr/Xe permeation across SAPO-34 mem-
branes are reported by Kwon et al. [44] at various temperatures, T.
SAPO-34 has the same structural topology of CHA zeolite, consisting of
8.4 Å size cages separated by 3.8 Å × 4.2 Å size windows; see pore
landscapes in Fig. 7a. In view of the data presented in Fig. 5a, for Ne/
Ar/CHA, we anticipate the inter-cage hopping of Kr and Xe across the
narrow windows to be un-correlated [41]. Eq. (20), used in conjunction
with Eqs. (17) and (18), allows backing-out of the M-S diffusivities Ð1

and Ð2 directly from the data on unary and 10/90 Kr/Xe mixture per-
meances at various T. The two different sets of backed-out diffusivity
values correspond closely to each other (see Fig. 7b), confirming the
applicability of the negligible correlations scenario. Furthermore, the T-
dependence of Ði has an Arrhenius character; this suggests the existence
of a free-energy barrier for inter-cage hopping [41].

The backed-out diffusivity values from 90/10, and 9/91 Kr/Xe
mixture permeance data of Feng et al.[45] demonstrate that Ð1 and Ð2

do not depend on mixture composition (see Fig. 7c); this conclusion is
also a direct consequence of the negligible correlations scenario de-
scribed by Eq. (20).

The detailed Maxwell-Stefan analysis presented by Li et al. [4,5] on
permeation of CO2/CH4, CO2/N2, N2/CH4 H2/CH4, H2/N2, H2/CO, and
CO2/CH4/N2 mixtures across SAPO-34 membrane also validates the
negligible correlations scenario, and rationalizes the data plotted in
Fig. 1b showing that the CO2 permeance in CO2/H2 mixtures is the
same as the unary values.

The negligible correlations scenario does not, however, lead to the
conclusion that the flux Eq. (17) are uncoupled. Fig. 8a plots the ratios
of the elements of thermodynamic correction factors, ,Γ

Γ
Γ
Γ

12
11

21
22
as function

of the mole fraction of Kr(1) in the bulk gas phase for Kr(1)/Xe(2)
mixture adsorption in SAPO-34 at 298 K for total pressure

+ = =p p p 0.2t1 2 MPa. The off-diagonal elements are significant
fractions of the corresponding diagonal elements, signaling strong
thermodynamic coupling.

An important consequence of the coupling induced by the thermo-
dynamic correction factors, is that during transient approach to steady-
state the more mobile species often exhibits transient flux overshoots.
As illustration, Fig. 8b shows the transient fluxes for permeation fluxes
of 10/90 Kr/Xe across SAPO-34 membrane. During the initial tran-
sience, the Kr/Xe selectivity exceeds the steady-state value by about
three orders of magnitude. The Kr flux overshoot, that is indicative of
uphill diffusion [9,10], disappears if the matrix of thermodynamic

Fig. 6. MD simulation data [40] of the elements of the matrix Λ Λ Λ, ,11 12 22 for equimolar
(a) CH4(1)/C3H8(2) mixtures in BEA, (b) C2H6(1)/C3H8(2) mixtures in MFI, and (b)
CH4(1)/C2H6(2) mixtures in ISV at 300 K. The data are plotted as a function of the total
mixture loading, qt. The continuous solid lines are the calculations of Λ Λ Λ, ,11 12 22 using
Eq. (21).
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correction factors Γ[ ] is assumed to equal the identity matrix I[ ], with
elements =Γ δij ij, the Kronecker delta [9,10]. The exploitation of tran-
sient overshoot phenomena to attain enhanced selectivities, albeit for
short time durations, is a fertile area for further investigations.

Geus et al.[46] report experimental data on transient 50/50 CH4/
nC4H10 mixture permeation across an MFI membrane; the flux of the
more mobile CH4 exhibits a pronounced overshoot during the approach
to steady state; the origin of this overshoot has also been traced to the
influence of thermodynamic coupling [9,10].

5. CO2/H2 mixture permeation across MFI membrane

We now analyze the experimental data of Sandström [3] presented
in Fig. 1a. Using Eq. (19) to describe the loading dependences of the M-
S diffusivities, the experimental data on unary pearmances are used to

Fig. 7. (a) Pore landscape of CHA zeolite. (b) M-S diffusivities, Ði, of Kr (1) and Xe (2) for
SAPO-34 tubular membrane of thickness δ = 4.9 µm thickness, backed out from ex-
perimental data [44] on unary and binary 10/90 Kr/Xe mixture permeances at various T.
(c) M-S diffusivities, Ði, of Kr (1) and Xe (2) for SAPO-34 membranes of varying thick-
nesses, δ, backed out from experimental data [45] on 90/10, and 9/91 Kr/Xe mixture
permeances. Further calculation details are provided in the Supplementary material.

Fig. 8. (a) Ratios of the elements of thermodynamic correction factors, ,Γ
Γ

Γ
Γ

12
11

21
22

as

function of the mole fraction of Kr(1) in the bulk gas phase for Kr(1)/Xe(2) mixture
adsorption in SAPO-34 at 298 K for total pressure + = =p p p 0.2t1 2 MPa. (b) Transient

permeation of 10/90 Kr (1)/Xe (2) across SAPO-34 membrane of thickness δ = 4.9 µm at
upstream total pressure of 400 kPa, and T = 298 K. Further calculation details are pro-
vided in the Supplementary material.
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determine the transport coefficients at zero-loading, =ρ δÐ (0)/ 3.21 ,
and =ρ δÐ (0)/ 1002 kg m−2 s−1. For the prediction of the component
permeances in binary mixtures, we need additional data inputs on the
degrees of correlation; for this purpose we use the MD data in Fig. 4c as
guidelines. In the Sandström [3] experiments, the values of the total
mixture loadings, qt, are in the range 1–3 mol kg−1, and MD simulated
Ð /Ð2 12 values for MFI lie in the range of 2–10 for this range of mixture
loadings. An excellent match with the experimental permeances can be
achieved using the linearized model solution (Eqs. (17) and (18)), with
the choice Ð /Ð2 12= 8; see the continuous solid lines in Fig. 9a. Gen-
erally speaking, correlation effects have a strong retarding influence of
the permeation of more-mobile-less-strongly-adsorbed molecules.
Conversely, correlation effects are of lesser importance for tardier-
more-strongly-adsorbed species. The choice of the precise value of the
degree of correlations does not have a significant influence on the CO2

permeance, but the value of H2 permeance is severely affected. In order
to demonstrate this, Fig. 9b compares the experimental data on per-
meances of H2 with the estimations based on increasing degrees of
correlations, Ð /Ð2 12 = 2, 8, 20, and 40. Also shown in Fig. 9b are the
estimates of the permeances, using the limiting scenarios of negligible
correlations (Eq. (20)), and dominant correlations (Eq. (21)). The ex-
perimental data on H2 permeance lies about midway between the va-
lues of the two limiting scenarios for degrees of correlations. The results
in Fig. 9 highlight the importance of using proper estimates of corre-
lation effects to predict the permeances of H2.

Fig. 10a shows the experimental data of Sjöberg et al.[47] on the
permeation fluxes of CO2 and H2 as a function of the upstream total
pressure, pt0; these data were measured at a slightly lower temperature
of 273 K. The continuous solid lines in Fig. 10a are the flux estimations
using Eq. (17), along with the same input data: =ρ δÐ (0)/ 3.21 , and

=ρ δÐ (0)/ 1002 kg m−2 s−1 and =Ð /Ð 82 12 , as used to model the
Sandström experiments. The estimations are in excellent agreement
with the experimental data. The strong influence of the choice of the
degree of correlations Ð /Ð2 12 is highlighted in the calculations in
Fig. 10b. For H2, invoking the negligible correlations scenario, leads to
larger fluxes than observed experimentally. For CO2/H2 separations,
this implies that neglecting correlations leads to the most pessimistic
estimates of permeation selectivities. The dominant correlations sce-
nario indicates the maximum attainable CO2/H2 selectivities.

An important message to emerge from the foregoing analysis is that
accurate estimates of the exchange coefficient Ð12 are of vital im-
portance in predicting mixture permeation characteristics. A further
conclusion to be drawn in that CO2/H2 permeation selectivities can be
improved by appropriate choice of membrane materials that lead to
increased degree if correlations. The MD data in Fig. 4c indicates that
MgMOF-74 has significantly higher degree of correlations than MFI; the
potential of this MOF for selective CO2 permeation from a variety of
gaseous mixtures has been underscored in earlier work [48].

6. Maxwell-Stefan analysis of mixture permeation across polymer
membranes

The sorption thermodynamics of penetrants and polymer is most
commonly described by the Flory-Huggins (F-H) relations [2,49,50];
the F-H model is based on the idea that the chain elements of the
polymer arrange themselves randomly (but with the molecules re-
maining connected) on a three-dimensional lattice (see schematic in
Fig. 3). The F-H model expresses the component activities, ai, in the
polymer phase as function of the component volume fractions,

= = =ϕ c V x c V xi i i i t i i
V
V

i where Vi is the partial molar volume, and

= = ∑ =V x Vc k
m

k k
1

1t
is the mean molar volume of the mixture. The

polymer chains are considered to form part of the mixture and are
treated as the (n+1)th component. For compatibility with the F-H re-
lations, it is most convenient to re-write the M-S Eq. (1) using volume
fractions as composition measures
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The modified M-S diffusivities obey the symmetry constraint

=V V
Ð ÐV V

12
2

21
1
that is imposed by the Onsager Reciprocal Relations. Eq. (22)

apply generally to polymeric solutions; for permeation across polymeric
membranes, we impose the additional constraint =u 0m , implying the
stagnancy of the membrane material.

Let us define the volumetric flux of component i, expressed as
m3 m−2 s−1 as =N ϕ ui

V
i i. The molar flux of component i, expressed as

mol m−2 s−1 is = = =N c u ui i i
ϕ
V i

N
V

i
i

i
V

i
. For the specific case of binary

mixtures there is a total of three species in the mixture: 1, 2 and m. In
terms of the volumetric fluxes of components, Eq. (22) can be trans-
formed to
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(23)

The chemical potential gradients are relatable to the gradients in
volume fraction by defining thermodynamic correction factors Γ[ ]

Fig. 9. (a) Experimental data [3] on permeances of CO2(1) and H2(2) across MFI mem-
brane at 296 K compared with the estimations using Eqs. (17) and (18), along with the
values of =ρ δÐ (0)/ 3.21 , and =ρ δÐ (0)/ 1002 kg m−2 s−1, and =Ð /Ð 82 12 . (b) Experi-
mental data on permeances of H2 and compared with the estimations based on varying
degrees of correlations, Ð /Ð2 12. Further calculation details are provided in the
Supplementary material.
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The elements Γij can be obtained by analytic differentiation of the F-
H equations.

For steady-state permeation of binary mixtures across a polymer
membrane of thickness, δ, we can derive explicit expressions for the
volumetric fluxes Ni

V by assuming linear variations of volume fractions
within the polymer film:

= −N
Λ
δ

Γ ϕ ϕ( )
[ ]

[ ]( )V
δ0 (25)

The elements of the matrix Λ[ ] are determined explicitly
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It is noteworthy that an important difference between the expres-
sion for Λ[ ] in zeolites (Eq. (12)), and polymers (Eq. (26)) is the

appearance of ϕm in the denominator of the right member of Eq. (26);
this is because the polymer membrane is considered to be part of the
ternary (1, 2, m) mixture.

The permeabilities of components in the polymer membrane can be
calculated using

=
−

Π
N V

f f δ
/

( )/i
i
V

i

i iδ0 (27)

Readers will note that the same symbol Πi has been used earlier for
zeolite membrane permeances. The SI units for the permeability is
mo m m−2 s−1 Pa−1. The more commonly used engineering unit for
permeability is the Barrer expressed in cm3 (STP) cm cm−2 s−1 (cm
Hg)−1. To convert to the commonly used engineering units of Barrers
we divide the value in mol m m−2 s−1 Pa−1 by 3.348 × 10–16.

In the limiting scenario in which 1–2 friction is considered to be of

negligible importance: → →0; 0ϕ ϕÐ
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. For this scenario, the

matrix Λ[ ] simplifies to yield

⎡
⎣⎢

⎤
⎦⎥

= ⎡

⎣
⎢

⎤

⎦
⎥

Λ Λ
Λ Λ ϕ

1 Ð 0
0 Ðm

m
V

m
V

11 12

21 22

1

2 (28)

Broadly speaking, we should expect the negligible 1–2 friction
scenario to hold when the volume fractions of both penetrants in the
membrane are negligibly small.

We consider 1–2 friction to dominate if > > > >1; 1ϕ
ϕ
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In this scenario, we get the simple expression, analogous to Eq. (21) for
zeolites:
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7. Water/ethanol pervaporation across polymer membranes

In applying the linearized Eq. (25), the elements of Γ[ ] and Λ[ ] are
evaluated at the arithmetic averaged volume fractions = +ϕi av

ϕ ϕ
,

( )
2

i iδ0 .
For validating the accuracy of the linearized solution, comparisons are
made with numerical solutions of the set of coupled ODEs for water/
ethanol pervaporation across cellulose acetate [51,52], and polyimide
[6] membranes. Fig. 11a shows the volume fractions within cellulose
acetate (CA) membrane layer for a liquid phase water(1)/ethanol(2)
feed mixture with mass fraction =ω 0.40563L

1 . From the F-H phase
equilibrium relations, the volume fractions at the upstream face are

= =ϕ ϕ0.16187 0.263271 2 . The continuous solid lines are the profiles
obtained from an exact numerical solution to the set of two coupled
ODEs, resulting in the fluxes = × −N 2.4 10V

1
7, and

= × −N 2.2 10V
2

7 m3 m−2 s−1. The dashed lines are the linear profiles
resulting from the linearized model, using Eq. (25), that results in the
permeation flux values of = × −N 2.33 10V

1
7, and = × −N 1.98 10V

2
7 m3

m−2 s−1.
Fig. 11b shows calculations of the volume fractions within the

polyimide membrane layer for a liquid phase water(1)/ethanol(2) feed
mixture with mass fraction =ω 0.7473L

1 . From the F-H phase equili-
brium relations, the volume fractions at the upstream face are

= =ϕ ϕ0.1424; 0.02261 2 . The volumetric fluxes calculated using Eq.
(25), are = × −N 15.78 10V

1
9, and = × −N 0.448 10V

2
9 m3 m−2 s−1. The

corresponding volume fraction profiles within the membrane layer are
linear. An exact numerical solution to the set of two coupled ODEs,
results in the flux values = × −N 15.5 10V

1
9, and

= × −N 0.487 10V
2

9 m3 m−2 s−1.
In both examples, the linearized model estimates the pervaporation

fluxes to within about 5% of the exact numerical solutions.
Having established the accuracy of the linearized model, we now

attempt to rationalize the maximum in the ethanol flux observed in the
water/ethanol/polyimide pervaporation experiments [6] shown in

Fig. 10. (a) Experimental data [47] on permeation fluxes of CO2(1) and H2(2) across MFI
membrane at 273 K compared with the estimations using Eq. (17), along with the values
of =ρ δÐ (0)/ 3.21 , and =ρ δÐ (0)/ 1002 kg m−2 s−1, and =Ð /Ð 82 12 . (b) Experimental
data on permeances of H2 and compared with the estimations based on varying degrees of
correlations, Ð /Ð2 12. Further calculation details are provided in the Supplementary ma-
terial.
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Fig. 2a. The most likely explanation for the observed maximum in the
ethanol flux is the coupling with the flux of water. There are two pos-
sible origins of coupling between the fluxes of water and ethanol; these
are traceable to the off-diagonal elements of the two matrices Γ[ ], and

Λ[ ]. Thermodynamic coupling effects are of significant importance as
demonstrated by the ratios of the elements of thermodynamic correc-
tion factors,− −,Γ

Γ
Γ
Γ

12
11

21
22
, plotted as function of the mass fraction of water

in the liquid feed mixture in the upstream compartment, ω L
1 in Fig. 12a.

The off-diagonal elements are significant in magnitude in comparison
with the diagonal elements. Particularly noteworthy is the maximum in
the value of − Γ

Γ
21
22
. Comparisons of the experimental data with flux es-

timations using Eq. (25) are shown in Fig. 12b,c for three different
scenarios for 1–2 friction. The experimentally observed maximum in
the ethanol flux, observed at a feed mixture mass fraction ≈ω 0.2L

1 , can

only be captured if the chosen value of Ð
Ð

m
V

V
2

21
exceeds 2. An increase of

1–2 friction has the effect of slowing down the more mobile water
molecules, while speeding up the tardier ethanol; i.e. the permeation

Fig. 11. Volume fractions of penetrants water (1) and ethanol (2) within (a) cellulose
acetate (CA), and (b) polyimide membranes. The continuous solid lines are the profiles
obtained from an exact numerical solution to the set of two coupled ODEs for steady-state
permeation. The dashed lines are the linear profiles resulting from the linearized model.
Further calculation details are provided in the Supplementary material.

Fig. 12. (a) Ratios of the elements of thermodynamic correction factors, − −,Γ
Γ

Γ
Γ

12
11

21
22

for

water(1)/ethanol/(2)/polyimide as function of the mass fraction of water(1) in the liquid
feed mixture in the upstream compartment ω L

1 . (b, c) Comparison of experimental data
[6] on volumetric fluxes of water, and ethanol with model estimations for three different
1–2 friction scenarios. Further calculation details are provided in the Supplementary
material.
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selectivity diminishes with increased Ð
Ð

m
V

V
2

21
.

The rationalization of the water(1)/ethanol(2)/PVA/PAN experi-
ments [7] proceeds along precisely analogous lines. The off-diagonal
elements are significant in magnitude in comparison with the corre-
sponding diagonal elements (cf. Fig. 13a); clearly, thermodynamic
coupling has a significant influence on the permeation fluxes. The ex-
perimental fluxes of both water and ethanol can be matched reasonably

well if the 1–2 friction is quantified using = 4Ð
Ð

m
V

V
2

21
. Values of Ð

Ð
m

V

V
2

21
lower

than 4 results in underestimation of the ethanol flux, whilst over-
estimating the water flux. Conversely, choosing Ð

Ð
m

V

V
2

21
larger than 4 tends

to reduce the flux of the more mobile water, thereby reducing the
permeation selectivity. If the 1–2 frictional contribution is considered to
be negligible, there is no maximum in the ethanol flux but causes a
maximum in the water flux, that is not experimentally detected.

8. Analysis of CO2/C2H6 permeation across XLPEO membrane

The permeabilities for unary permeation of CO2 and C2H6 across a
cross-linked polyethylene oxide (XLPEO) membrane at 263.15 K, and
298.15 are reported Ribeiro et al. [53]. Fig. 14a,b show the backed-out,
averaged, M-S diffusivities Ðim

V for CO2 and C2H6 at the two tempera-
tures. The backed-out diffusivities demonstrate the validity of the ex-
ponential model = A ϕÐ Ð exp[ ]im

V
im
V

i i,0 , commonly used to describe the
composition dependence of M-S diffusivities in polymers.

Ribeiro et al.[53] have published extensive data on CO2/C2H6

mixture permeation across XLPEO membrane, measured at tempera-
tures of 263.15 K, and 298.15 K at varying upstream compositions and
partial fugacities. In the absence of guidelines from MD simulation data
on significance of 1–2 friction contributions, we first attempt an ana-
lysis neglecting 1–2 friction and using the simplified model described
by Eq. (28), allowing the backing-out of the M-S diffusivities Ðim

V di-
rectly from mixture permeabilities. In Figs. 14c, and d, the data on Ðim

V

are plotted as function of the averaged volume fraction of penetrants,
+ϕ ϕav av1, 2 . At both temperatures, there is qualitative agreement be-

tween the M-S diffusivity in the mixture with the corresponding com-
position dependence of unary diffusivities. For the more mobile CO2,
the diffusivity in the mixture is somewhat lower than the corresponding
unary diffusivity values, when compared at the same total, average,
volume fraction in the membrane +ϕ ϕav av1, 2 . Conversely, for the tar-
dier C2H6, the diffusivity in the mixture is slightly higher than the
corresponding unary diffusivity values. For both penetrants, the de-
viations are higher at the lower temperature; this is to be expected
because of the higher volume fractions occupied by the penetrants
within the membrane. The lack of perfect match between the data on
M-S diffusivities backed out from unary and mixture permeation ex-
periments indicates that the assumption of negligible 1–2 friction does
not hold perfectly.

For a quantitative analysis of the Ribeiro experiments, we need to
include the 1–2 friction contributions. Good match between the ex-

perimental data is obtained with the choice = 4Ð
Ð

m
V

V
2

21
, at either tem-

perature; see comparisons in Fig. 15. The x-axis represents the partial
fugacity of the permeants in the bulk gas phase in the upstream com-
partment; five different mixture compositions are considered. We note
that the permeability of C2H6 is strongly influenced (increased) by in-
creasing proportion of CO2 in the bulk gas phase mixture in the up-
stream compartment. On the other hand, the permeability of the more
strongly sorbed CO2 is influenced to a much reduced extent by the feed
mixture composition. The permeability estimations using Eqs. (25),
(26), and (27), shown by the continuous solid lines, quantitatively
capture all the essential features of the composition dependence of the
permeabilities of CO2 and C2H6, for all feed mixture compositions and
partial fugacities.

In order to gain further insights into the influence of 1–2 friction on
the component permeabilities, the parity plots in Fig. 16 compare the

Fig. 13. (a) Ratios of the elements of thermodynamic correction factors, − −,Γ
Γ

Γ
Γ

12
11

21
22

for

water(1)/ethanol(2)/PVA/PAN as function of the mass fraction of water(1) in the liquid
feed mixture in the upstream compartment ω L

1 . (b, c) Comparison of experimental data
[7] on molar fluxes of water, and ethanol with model estimations for three different 1–2
friction scenarios. Further calculation details are provided in the Supplementary material.
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model predictions with experiments for the limiting scenarios of neg-

ligible and dominant friction, along with the “fitted’ value = 4Ð
Ð

m
V

V
2

21
.

Neglecting 1–2 friction leads to over-prediction of the CO2 perme-
ability, while under-predicting that of the tardier C2H6. In the other
extreme, adoption of the dominant friction scenario has the effect of
slowing-down the more mobile CO2 while speeding-up the transport of
C2H6; this influence is precisely the same as seen earlier for perva-
poration processes. The Maxwell-Stefan formulation serves to provide
insights into how 1–2 friction affects the separation selectivity, and
whether improvements can be obtained by perhaps altering the degree
of polymer cross-linking to adjust the 1–2 friction to the optimum level.

The approach that is adopted here is distinctly different from that
used by Ribeiro et al. [15] to model their own experiments; their ap-
proach involves numerical solution of the set of coupled ODEs, using

values of Ð m
V
1 , Ð m

V
2 , and = VÐV

V21
Ð

1
V
12
2

that are fitted to experimental CO2/
C2H6/XLPEO mixture permeation data at the two temperatures. In our
approach, the input values of the M-S diffusivities Ðim

V are determined
from unary permeation experiments; the only other “fitting” parameter

employed is the value of = 4Ð
Ð

m
V

V
2

21
for both temperatures.

It is noteworthy that the foregoing analyses of experimental data on

CO2/C2H6/XLPEO, water/ethanol/polyimide, and water/ethanol/PVA/
PAN all show that the 1–2 frictional contribution is best described by
values of Ð

Ð
m

V

V
2

21
in the range of 2 – 4, and the hierarchy of magnitudes

> > = VÐ Ð Ðm
V

m
V V

V1 2 21
Ð

1
V
12
2

; this hierarchy implies that = VÐV
V21
Ð

1
V
12
2

cannot be estimated using the Vignes interpolation formula commonly
used for zeolites [32,33].

9. Conclusions

The Maxwell-Stefan “frictional” formulation has been used to de-
velop a unified description of mixture permeation across zeolite and
polymer membranes. The following major conclusions emerge from the
analysis of published experimental data, along with MD simulations.

(1) For membrane permeation of binary mixtures of species 1 and 2
across membrane (m), the M-S formulation for permeation fluxes
clearly delineates the 1-m, 2-m, and interspecies (1−2) frictional
contributions. Generally speaking, the influence of 1–2 friction is to
slow down the more mobile species in the mixture.

(2) Two limiting scenarios for the 1–2 friction are identified and

Fig. 14. Averaged values of the Maxwell-Stefan diffusivities for CO2(1) and C2H6(2) in cross-linked polyethylene oxide (XLPEO) membrane at (a, c) 263.15 K, and (b, d) 298.15 K. The x-
axis represents the average volume fraction in the membrane, calculated from = +ϕi av

ϕi ϕiδ
,

( 0 )
2

, assuming ≈ϕ 0iδ . The diffusivities are backed out from experimental data [53] on the (a,

b) unary permeabilities, and (c, d) mixture permeabilities. The continuous solid lines are the exponential fits of the unary diffusivities alone. Further calculation details are provided in the
Supplementary material.
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characterized: negligible 1–2 friction and dominant 1–2 friction.
The two limiting scenarios determine the upper and lower bounds
of permeation selectivities, suggesting which type of material to
choose for the purposes of improving separation performance.

(3) For zeolites, the scenario of negligible 1–2 friction, also termed as
the scenario for negligible correlation effects, is realized in struc-
tures such as LTA, CHA, DDR, ZIF-8, and ERI that consists of cages,
separated by narrow windows in the 3 Å − 4.2 Å range. For
polymer membranes, the assumption of negligible 1–2 friction only
holds when the volume fractions of the penetrants in the membrane
phase are vanishingly small.

(4) Even if 1–2 friction is of negligible importance, the fluxes are
coupled because of phase equilibrium thermodynamics. For tran-
sient permeation, thermodynamic coupling often results in tran-
sient overshoots and the occurrence of uphill diffusion, as

illustrated for SAPO-34 membrane in Fig. 8b.
(5) The contribution of 1–2 friction is particularly significant, often

dominant, for water/alcohols pervaporation processes across poly-
meric membranes. There is need for further research on developing
reliable procedures for estimating 1–2 frictional contributions for
both zeolites and polymer membranes.

(6) The linearized solutions to M-S equations for steady-state permea-
tion, Eqs. (17) and (25), afford simple, and robust, procedure for
explicit determination of fluxes.

The linearized solution to the M-S equations can also be gainfully
employed for modelling of the immersion precipitation process for
membrane preparation; see Figs. S53 and S54. Uphill diffusion is rou-
tinely encountered is routinely encountered in such processes, im-
pacting on the membrane structure created [54,55].

Fig. 15. Membrane permeabilities, expressed in Barrers, of (a, c) CO2(1), and (b, d) C2H6(2) for binary CO2/C2H6 mixture permeation across a cross-linked polyethylene oxide (XLPEO)
membrane at (a, b) 263.15 K, (c, d) 298.15 K. The x-axis represents the partial fugacity of (a, c) CO2, and (b,d) C2H6 in the bulk gas phase in the upstream compartment. The experimental
data [53] are shown by the symbols. The continuous solid lines are the calculations using the linearized Eqs. (25), (26), and (27). Further calculation details are provided in the
Supplementary material.
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Appendix A. Supporting information

Supplementary data associated with this article can be found in the
online version at http://dx.doi.org/10.1016/j.memsci.2017.06.062.
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1. Preamble 

This Supplementary material accompanying the article Using the Maxwell-Stefan formulation 

for Highlighting the Influence of Interspecies (1-2) Friction on Binary Mixture Permeation 

across Microporous and Polymeric Membranes provides: (1) structural details of the zeolite and 

polymeric membranes investigated, (2) unary isotherm data for adsorption of guest species in the 

zeolites, along with estimation methods for mixture adsorption equilibrium, (4) Flory-Huggins 

parameters for fluid-polymer equilibria, (5) detailed derivations of analytic expressions for 

calculation of steady-state fluxes and permeances, (6) input data on M-S diffusivities for 

simulations of membrane permeation, and (7) detailed results of simulations and comparisons 

with published experimental data.  

The information provided in this supplementary document is sufficiently detailed to enable 

interested researchers and practitioners to reproduce all of the calculations presented in this 

article. 

For ease of reading, this Supplementary material is written as a stand-alone document; as a 

consequence, there is some overlap of material with the main manuscript.  

2. Structural topology and connectivity of some common zeolites  

A number of different channel topologies and connectivities are encountered in zeolite 

structures; these can be divided into five broad classes: 

A number of different channel topologies and connectivities are encountered in zeolite 

structures; these can be divided into five broad classes:  

1. One-dimensional (1D) channels (e.g. LTL, TON, LTL). 
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2. 1D channels with side pockets (e.g. MOR, FER). 

3. Intersecting channels (e.g. MFI, BEA, ISV)  

4. Cages separated by narrow windows (e.g. LTA, CHA) 

5. Cavities with large windows (e.g. FAU). 

The crystallographic data are available on the zeolite atlas website of the International Zeolite 

Association (IZA).1, 2 The pore topology and structural details of some common zeolites are 

provided are provided in the accompanying Figures as indicated below:  

BEA (Figures 1, 2); CHA (see Figures 3, 4); ERI (Figures.7, 8); DDR (see Figures 5, 6); ISV 

(Figures 11, 12); FAU (see Figures 9, 10); LTA (see Figures 13, 14); MFI (see Figures 15, 16) 

SAPO-34 has the same structural topology of CHA zeolite, as shown in Figures 3, and 4. This 

consists of 8.4 Å size cages separate by 3.8 Å  4.2 Å size windows. The crystal framework 

density of CHA is 1444.1 kg m-3. Readers should note that the SAPO-34 permeation model 

calculations presented by Kwon et al.3 use the wrong value of the framework density of 1800 kg 

m-3, as indicated in Page S6 of the Supporting Information accompanying their publication. 

Consequently, the numerical values of the Maxwell-Stefan diffusivities they have reported are in 

error; we return to this point later in this document.   

Besides zeolites, the following MOFs and ZIFs are also discussed in the article: IRMOF-1 

(Figures 17, 18);,MgMOF-74 (Figures 19, 20),ZIF-8 (Figures 21, 22). 

Further details on the structure, landscape, pore dimensions of a very wide variety of micro-

porous materials are available in our earlier publications.4-11 
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3. The Maxwell-Stefan description of n-component mixture 
permeation across microporous membranes 

Within microporous crystalline materials, such as zeolites, metal-organic frameworks (MOFs), 

and zeolitic imidazolate frameworks (ZIFs), the guest molecules, or, “penetrants”, exist in the 

adsorbed phase. The phenomenological description of transport of penetrants inside all 

microporous crystalline materials are formally identically, and for convenience, we use the term 

“zeolites” as a common terminology. The Maxwell-Stefan (M-S) equations represent a balance 

between the force exerted per mole of species i with the drag, or friction, experienced with each 

of the partner species in the mixture. We may expect that the frictional drag to be proportional to 

differences in the velocities of the diffusing species  ji uu  , where iu  is the velocity of motion 

of the adsorbate. For a mixture containing a total of n penetrants, 1, 2, 3,..n we write 

 

     

     
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2

1
1

313
13

212
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1









 (1) 

The left members of equation (1) are the negative of the gradients of the chemical potentials, 

with the units N mol-1; it represents the driving force acting per mole of species 1, 2, 3,..n. The 

subscript m refers to the membrane, that is regarded as the (n+1) th component in the mixture; 

the membrane is considered to be stationary, i.e., um = 0. The term imÐRT  is interpreted as the 

drag or friction coefficient between the penetrant i and the membrane wall. The term ijÐRT  is 

interpreted as the friction coefficient for the i-j pair of penetrants. The multiplier Xj in each of the 

right members represents a measure of the composition of component j in the mixture because 
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we expect the friction to be dependent on the number of molecules of j relative to that of 

component i. Since the composition fraction Xm of the zeolite membrane is undefined, we 

redefine the M-S diffusivity for interaction of the penetrant i with the membrane as 

mimi XÐÐ  . An important, persuasive, argument for the use of the M-S formulation for 

mixture diffusion is that the M-S diffusivity iÐ  in mixtures can be estimated using information 

on the loading dependence of the corresponding unary diffusivity values. Put another way, the 

M-S diffusivity iÐ  can be estimated from experimental data on unary permeation across zeolite 

membranes; we return to this point later. 

The M-S diffusivity ijÐ  has the units m2 s-1 and the physical significance of an inverse drag 

coefficient. The magnitudes of the M-S diffusivities ijÐ  do not depend on the choice of the 

mixture reference velocity because equation (1) is set up in terms of velocity differences. At the 

molecular level, the Ðij reflect how the facility for transport of species i correlates with that of 

species j; they are also termed exchange coefficients. For mesoporous materials with pores in the 

20 Å to 100 Å size range the values of the exchange coefficient Ð12 are the nearly the same as 

the binary fluid phase M-S diffusivity, Ð12,fl, over the entire range of pore concentrations.4, 6, 12, 13 

For micro-porous materials, the exchange coefficient Ð12 cannot be directly identified with the 

corresponding fluid phase diffusivity Ð12,fl because the molecule-molecule interactions are also 

significantly influenced by molecule-wall interactions. 

For zeolite, MOF and ZIF membranes, it is convenient to use as composition measures the 

mole fractions of the components in the adsorbed phase, xi, tii qqx /  where qi is the molar 

loading of adsorbate, and qt is the total mixture loading 



2

1i
it qq .  In terms of mole fractions, 

equations (1) are modified as follows 
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 (2) 

The Maxwell-Stefan diffusion formulation (2) is consistent with the theory of irreversible 

thermodynamics. The Onsager Reciprocal Relations imply that the M-S pair diffusivities are 

symmetric  

 jiij ÐÐ   (3) 

We define Ni as the number of moles of species i transported per m2 of crystalline material per 

second 

 iii uqN   (4) 

where   is the framework density with units of kg m-3. Multiplying both sides of equation (2) by 

iq , the M-S equations for n-component diffusion in zeolites, MOFs, and ZIFs take the form5, 13, 

14 

ni
Ð

N

Ð

NxNx

dz

d

RT

q n

j i

i

ij

jiijii

ij

,..2,1;
1




 



  (5) 

Earlier publications10, 15-17 on n-component mixture diffusion in microporous crystalline 

materials have been developed the M-S formulation in a different manner, using the fractional 

occupancies, i, of species i in relation to the saturation capacities, qi,sat, for adsorption of each 

species 
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 ni
q

q

sati

i
i ,..2,1;

,

  (6) 

as multiplication factor on the right member of equation (1). In this case we write 
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 (7) 

The superscript  on the exchange coefficients 
ijÐ  serves as a reminder that these coefficients 

are distinct from those defined in equation (2). 

Expressing the velocities uj in terms of the intra-crystalline diffusion fluxes iii qNu   we 

get 
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Multiplying both sides of equation (8) by i and re-arranging we get 

 ni
q

N
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RT i
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i
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j j
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ij

jiii
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In view of equation (6), equation (9) can be re-arranged to 

 ni
Ðq

N

Ðqq

NqNq

dz

d

RT isati

i
n

j ijsatjsati

jiijii

ij

..2,1;
,1 ,,










 
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



  (10) 

The Onsager reciprocal relations demand the symmetry  

 niÐqÐq jisatiijsatj ..2,1;,,    (11) 

The two sets of exchange coefficients defined in equations (2) and (7) are inter-related 
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 tjisatijiijtijsatj qÐqÐÐqÐq 
,,   (12) 

The exchange coefficients 
ijÐ  cannot be simply related to the fluid phase M-S diffusivity, 

Ð12,fl. It is for this reason that we prefer the formulation in equations (2). 

If the saturation capacities of all of the individual species are (nearly) equal to one another, 

equation (10) can be simplified to yield 

 ni
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RT i
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j ij
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  (13) 

At thermodynamic equilibrium, the chemical potential of component i in the bulk gas mixture 

equals the chemical potential of that component in the adsorbed phase within the membrane at 

both upstream and downstream faces. For the bulk gas phase mixture we have 

2,1;
1ln1

 i
dz

dp

pdz

pd

dz

d

RT
i

i

ii  (14) 

The chemical potential gradients dzd i  can be related to the gradients of the molar loadings, 

qi, by defining thermodynamic correction factors ij 

 nji
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dz

dq
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d

RT
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i
ij

n

j

j
ij

ii ,....1,;;
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
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
 (15) 

The thermodynamic correction factors ij can be calculated by differentiation of the model 

describing mixture adsorption equilibrium. Generally speaking, the Ideal Adsorbed Solution 

Theory (IAST) of Myers and Prausnitz18 is the preferred method for estimation of mixture 

adsorption equilibrium.  In some special case, the mixed-gas Langmuir model  
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may be of adequate accuracy. Analytic differentiation of equation (16) yields 
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where the fractional vacancy V is defined as 
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 (18) 

The dimensionless partial pressures are defined as 

iii pb  (19) 

The elements of the matrix of thermodynamic factors ij can be calculated explicitly from 

information on the component loadings qi in the adsorbed phase; this is the persuasive advantage 

of the use of the mixed-gas Langmuir model. By contrast, the IAST does not allow the 

calculation of ij explicitly from knowledge on the component loadings qi in the adsorbed phase; 

an numerical procedure is required.   

Specifically for binary mixtures, the mixed-gas Langmuir model is 

2,1;
11 212211,


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 i
pbpb

pb

q

q iii

sati

i
i 

  (20) 

and the four elements of the matrix of thermodynamic factors are:15 
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4. Loading dependence of unary M-S diffusivities Ði in zeolites 

Figure 23a presents Molecular Dynamics (MD) data on unary M-S diffusivities Ði of H2,  Ne, 

Ar, N2, CH4 and Kr in all-silica MFI zeolite at 300 K; the MD data are culled from our earlier 

publications.4-11 For molar loadings < 4 mol kg-1, the M-S diffusivity is practically independent 

of loading.  Figures 23b, and 23c, and 23d present the data for “small” guest molecules such as 

H2 and Ne in FAU, LTA, and CHA. The M-S diffusivities, Ði, are practically loading 

independent. This scenario has been termed the “weak confinement” scenario by Krishna and 

Baur:15  

 )0(ii ÐÐ   (22) 

where )0(iÐ  is the M-S diffusivity at “zero-loading”.  It must be emphasized that the use of the 

weak confinement scenario is a simplified, idealized, picture of reality. 

Generally speaking, unary M-S diffusivities Ði show strong dependence on the molar loadings. 

See the publications of Krishna and van Baten7, 9 for the theoretical background to the variety of 

loading dependencies that are encountered. For certain guest/host combinations, the M-S 

diffusivities Ði decrease with loadings, approaching near-zero values at pore saturation. This 

characteristic is demonstrated in Figure 24 for a variety of guests in MFI, and FAU. The simplest 

model to describe this loading dependence is 

  Vitii ÐÐÐ  )0(1)0(    (23) 



 

Supplementary Material 13 

where  tV   1  is the fractional vacancy. Equation (23) is essentially based on a simple 

hopping model in which a molecule can jump from one adsorption site to an adjacent one, 

provided it is not already occupied. The loading dependence portrayed in equation (23) has been 

termed the “strong confinement” scenario by Krishna and Baur.15   

Zeolite structures such as LTA, CHA, DDR, and ERI consist of cages separated by 8-ring 

windows in the 3.2 -4.2 Å size range. In such structures, guest molecules jump one-at-a-time 

across the windows. As a first approximation, the inter-cage hopping of molecules can be 

considered to be uncorrelated. The constraining window regions offer significant free energy 

barriers for inter-cage hopping of molecules. An important consequence is that the free energy of 

the molecules within the cage increases with increasing cage occupancy. The net result is that 

there is a reduction in the free energy barrier for inter-cage hopping; this results in an increase in 

the M-S diffusivity; as illustration, Figure 25 presents MD data4-11 on the loading dependence of 

the M-S diffusivities of various guest molecules in LTA and CHA. The increase of Ði with qi is 

not monotonic because the cage capacity is limited and there are fewer intra-cage vacant sites to 

occupy. As the saturation loading is approached, progressively fewer vacant sites become 

available, 0V ; the net result is that Ði displays a maximum. 

5. The Maxwell-Stefan description of binary mixture permeation 
across zeolite membranes 

For binary mixture diffusion inside porous crystalline materials, the Maxwell-Stefan equations 

(5) are written as 

2
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The first members on the right hand side of Equation (24) are required to quantify slowing-

down effects that characterize binary mixture diffusion.4, 6, 8 There is no experimental technique 

for direct determination of the exchange coefficients Ð12, that quantify molecule-molecule 

interactions.  

Let us define the square matrix [B] 
























12

1

212

2

12

1

12

2

1

1

1

][

Ð

x

ÐÐ

x
Ð

x

Ð

x

Ð
B  (25) 

Equation (24) can be re-cast into 2-dimensional matrix notation 

    


















































 

dz

d

RT

q
dz

d

RT

q

B
N

N

N

N
B

dz

d

RT

q
dz

d

RT

q

22

11

1

2

1

2

1

22

11

; 







  (26) 

We define the square matrix   1][  B ; The inverse of the square matrix [B] can be obtained 

explicitly 

  







































 

12

12
2

12

212

12

211

12

21
1

12

12

12

21

1

1

1

1

1
][

Ð

Ðx
Ð

Ð

ÐÐx

Ð

ÐÐx

Ð

Ðx
Ð

Ð

Ðx

Ð

Ðx
B  (27) 

 Combining equations (24), (26), and (27) we obtain  
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  






































































































dz

dq
dz

dq

Ð

Ðx
Ð

Ð

ÐÐx

Ð

ÐÐx

Ð

Ðx
Ð

Ð

Ðx

Ð

ÐxN

N

dz

dq
dz

dq

N

N

2

1

2221

1211

12

12
2

12

212

12

211

12

21
1

12

12

12

212

1

2

1

2

1

1

1

1

;





 (28) 

6. Negligible correlations scenario for diffusion in zeolites 

Extensive Molecular Dynamics (MD) simulations have shown that correlation effects are of 

negligible importance for mixture diffusion across materials such as LTA, ZIF-8, CHA, DDR, 

ERI that consist of cages separated by windows in the 3.4 Å – 4.2 Å size range.4, 6, 8, 19 Molecules 

jump one-at-a-time across the narrow windows, and the assumption of negligible correlations is 

justified.  

In the limiting scenario in which correlations effects are of negligible importance: 

negligible nscorrelatio;0
ij

i

Ð

Ð
 

In cases in which correlations are negligible, Equation (28) simplifies to yield 

 
























































dz

dq
dz

dq

Ð

Ð

N

N

Ð

Ð

i
dz

d

RT

q
ÐN ii

ii

2

1

2221

1211

2

1

2

1

2

1

0

0
;

0

0

2,1;





 (29) 

7. Correlations dominant scenario for binary mixture diffusion in 
zeolites 

For the case in which correlation effects are dominant 
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dominant nscorrelatio;1;1
12

2

12

1 
Ð

Ð

Ð

Ð
. This also implies 

1
12

1221 


Ð

ÐxÐx
 (30) 

because the sum of the adsorbed phase mole fractions add to unity, i.e. x1+x2 = 1. Equation (30) 

implies that the term 
12

12

12

211
Ð

Ðx

Ð

Ðx
  in equation (28) can be simplified as follows 

12

1221

12

12211
Ð

ÐxÐx

Ð

ÐxÐx 



  (31) 

 With the simplification given by eq.(31), the matrix    reduces to  

 









































12

12
2

12

12
2

12

21
1

12

21
1

12

1221 1

1
1

Ð

Ðx
Ð

Ð

Ðx
Ð

Ð

Ðx
Ð

Ð

Ðx
Ð

Ð

ÐxÐx
 (32) 

The expressions for 12  and 21  can be further simplified   

2

2

1

1

2

1

2

2

1

2

12

12

12

21

12

12
2

21

2

2

1

1

1

2

1

1

2

1

12

12

12

21

12

21
1

12

1

;
1

Ð

x

Ð

x
x

Ð

Ð

x

x
Ð

Ð

Ðx

Ð

Ðx
Ð

Ðx
Ð

Ð

x

Ð

x
x

Ð

Ð

x

x
Ð

Ð

Ðx

Ð

Ðx
Ð

Ðx
Ð







































 

The expressions for 11  and 22  for the correlations dominant scenario must be derived with 

more care. The diagonal elements must degenerate to the corresponding pure component Ði 

values at either ends of the composition range, i.e. 
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0;1; 21111  xxÐ  (33) 

0;1; 12222  xxÐ  (34) 

Equations (33) and (34) must be satisfied for any degree of correlations, not just in the 

Correlations Dominant scenario. 

Consider 11 . For equation (32) to satisfy eq. (33) for 1;1
12

2

12

1 
Ð

Ð

Ð

Ð
 we must also 

satisfy the conditions 

1;1
12

12

12

21 
Ð

Ðx

Ð

Ðx
 (35) 

because, otherwise, eq. (33) will be violated.  Imposing eq. (35) we obtain from equation (32) 

2

2

1

1

21

1

2

2

1

2
22

2

2

1

1

1

2

1

1

2

1
11

1
;

1
Ð

x

Ð

x
x

Ð

Ð

x

x
Ð

Ð

x

Ð

x
x

Ð

Ð

x

x
Ð











  (36) 

The M-S diffusivity matrix    for the correlations dominant scenario yields the remarkably 

simple result 

   











22

11

2

2

1

1

1
xx

xx

Ð

x

Ð

x
 (37) 

8. Models for calculation of steady-state permeation fluxes across 
zeolite membranes 

Figure 26 provides a schematic of binary mixture permeation of components 1, and 2 across a 

zeolite membrane of thickness, . We define a dimensionless distance coordinate along the 
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membrane 


 z
 . The first objective is to develop appropriate models to determine the steady-

state permeation fluxes for the following set of boundary conditions 

00000 ;;;;;0  :face upstream VViiiiiiii qqppz    (38) 

  VViiiiiiii qqppz  ;;;;;  :face downstream  (39) 

For the case in which the mixture adsorption thermodynamics is adequately described by the 

mixed-gas Langmuir model, given by equation (20), Krishna and Baur15 have developed explicit 

analytic expressions for calculation of the steady-state permeation fluxes for binary mixture 

permeation. Four different scenarios for the loading dependence and correlations are 

distinguished in their analytic expressions: 

Weak confinement: equation (22), and assuming negligible correlations: equation (29) 

Weak confinement: equation (22), and finite correlations: equation (28) 

Strong confinement: equation (23), and assuming negligible correlations: equation (29) 

Strong confinement: equation (23), and finite correlations: equation (28) 

For the scenario in which the correlation effects are dominant, equation (37) is used in place 

equation (28). 

For the convenience of the readers, the analytic expressions for the four different scenarios are 

summarized in the following sections. 

9. Analytic solutions for steady-state permeation fluxes: Weak 
confinement, and negligible correlations 

Combining equations (14), (18), (19), (20), and (29) we obtain 

2,1;,  i
d

dqÐ
N i

V
satii

i 





 (40) 
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It is convenient to define dimensionless component fluxes 

2,1;
,

 i
d

d

qÐ

N i
V

satii

i
i 




  (41) 

Equation (41) cannot be directly integrated because the vacancy profile (i.e. V  as function of 

) in the membrane layer is, as yet, undetermined. The steady-state permeation fluxes Ni are -

invariant, and the dimensionless component fluxes are also -invariant, i.e. 

2,1;
10

0
,




i
d

d

d

d

qÐ

N i
V

i
V

satii

i
i




 






  (42) 

The dimensionless total flux t  is defined as 

satsat
t qÐ

N

qÐ

N

,22

2

,11

1





   (43) 

The dimensionless flux t  is obtained by summing equations (41) over the two species 

 



d

d
Vt

21
21


  (44) 

The total dimensionless flux is also -invariant. 

From equation (18) we have 
   







d

d

d

d V121 


, and so we can re-write equation (44) as 

    tV
V

d

d 



1
1

  (45) 

The linear differential equation (45) can be solved for the boundary conditions (38) and (39) 

by separation of variables to give the vacancy profile (i.e. V  as function of ) within the 

membrane: 
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 
  1exp

1exp
11

11

0

0




























t

t

VV

VV










 (46) 

where the term t  can be evaluated explicitly from 











02,2

2

1,1

1 ln
V

V

satsat
t Ðq

N

Ðq

N








   (47) 

It remains to solve eq. (41) to obtain the -profiles within the membrane. Since the vacancy 

profile,  V  as function of , is now available from equation (46), this profile can be substituted 

back into equation (41). The resulting ordinary differential equation can be solved easily to 

obtain the component -profiles 

     2,1;
1)exp(

1)exp(
00 




 iii
t

t
ii 


   (48) 

The corresponding loading profiles are obtained from 

 2,1;; ,,  iqq satiiiiVi    (49) 

Differentiating eq. (48) and evaluating at the upstream face, we obtain after substituting into eq. 

(42) 

  2,1;
1)exp( 0,0 




 iÐqN iiisati
t

t
Vi 







 (50) 

where the subscript 0 and  emphasize the fact that the relevant parameters are evaluated at the 

upstream and downstream conditions, respectively. Substituting the expression (47) for t  we 

get after re-arrangement 
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   2,1;
11

ln

0,

0

0 











 iÐqN iiisati

VV

V

V

i 















 (51) 

which allows explicit evaluation of the fluxes.  

The component permeances are defined by  

ii

i
i pp

N




0

  (52) 

Therefore, the permeances can be calculated from 

 
 

















ii

ii
isati

VV

V

V

i pp
Ðq
















0

0
,

0

0

11

ln

 (53) 

The M-S diffusivities can be calculated from the experimental data on permeances using 

 
 















ii

ii

V

V

VV

sati

i
i

pp

q
Ð

















0

0

0

0

, ln

11

 (54) 

For unary permeation, the corresponding equations for fluxes, permeances, and M-S 

diffusivities are 

 
 

































































i

i

ii

sati

i
i

ii

i

i

isatii
i

i
isatii

pp

q
Ð

pp
ÐqÐqN

1

1
ln

;
1

1
ln

;
1

1
ln

0

0

,0

0

,
0

,  (55) 
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10. Analytic solutions for steady-state permeation fluxes: Weak 
confinement and finite correlations 

For the scenario in which the correlation effects are finite, the expression for the permeation 

fluxes is 

    



























 0

0

0

11

ln

)( sat

VV

V

V

qN  (56) 

In equation (56), the matrix of M-S diffusivities    is evaluated using equation (27) and the 

adsorbed phase mole fractions, xi0, at the upstream face of the membrane. It is also to be noted 

that in the weak confinement scenario    has the same values at both faces of the membrane. 

The component loading profiles within the membrane are given by equations (48), and (49) 

using the same definition 









02,2

2

1,1

1 ln
V

V

satsat
t Ðq

N

Ðq

N








   as in the foregoing section. 

11. Analytic solutions for steady-state permeation fluxes for the 
strong confinement scenario 

Exact analytic expressions can also be derived for the strong confinement scenario in which 

the M-S diffusivities follow the loading dependence described by equation (23): Vii ÐÐ )0( .  

For the strong confinement scenario in which the correlation effects are finite, the expression 

for the permeation fluxes is 

     











 00

,2

,1

0

0
)( VV

sat

sat

q

q
N  (57) 
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In equation (57), the matrix of M-S diffusivities    is evaluated using equation (27) and the 

adsorbed phase mole fractions, xi0, at the upstream face of the membrane. The component 

loading profiles within the membrane are given by 

     niqq satiiiiiiiiiii ,...2,1;;; ,,0000     (58) 

The component permeances can be calculated  

  ii

i
i pp

N




0

 (59) 

For unary permeation, equation (57) reduces to a scalar equation 

   



iiVVisatii ÐqN  00, )0(  (60) 

The component unary permeances can be determined from 

  
 

 








ii

iiVV
satii

ii

i
i pp

qÐ
pp

N








0

00
,

0

)0(  (61) 

The zero-loading M-S diffusivities can be calculated from the experimental data on 

permeances using 

 
 
 



 


ii

ii

VVsati

i
i

pp

q
Ð





0

0

0,

1
)0(  (62) 

If correlation effects are assumed to be negligible, equation (57) further simplifies to yield 

   2,1;)0( 00,  iÐqN iiVVisatii  



 (63) 

If the component loadings at the downstream membrane face as vanishingly small, 1V , 

and equation (63) further simplifies to yield 
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     2,1;)0()0( 000,  iqqÐÐqN iiiiiVisatii  





 (64) 

12. Analysis of the experimental data for steady-state permeation 
of Kr/Xe mixtures across SAPO-34 membrane 

The application of the analytic solutions developed in the foregoing sections will be 

demonstrated by re-analysis of the experimental data for Kr/Xe permeation across SAPO-34 

membranes as reported by two different research groups in the publications of Feng et al.20 and 

Kwon et al.3 Both groups report experimental data on adsorption isotherms and mixture 

permeation.   

We first develop isotherm fits for the two sets of isotherm data. 

The pure component isotherm data for Kr and Xe in SAPO-34 were measured by Feng et al.20 

at two different temperatures 278 K, and 298 K. The total pressures used in the experiments 

ranged to 140 kPa. The data were fitted with either the single-site Langmuir model 
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The Langmuir parameters is temperature-dependent 
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The Langmuir fit parameters are provided in Table 1. Particularly noteworthy is the fact that 

the saturation capacities, qsat, of Kr and Xe are equal to 2.5 mol kg-1. The equality of saturation 

capacities implies that the mixed-gas Langmuir model for mixture adsorption is precisely valid. 
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Figures 27 presents comparisons of experimental data of Feng et al.20 on component loadings 

for Kr and Xe at 278 K, and 298 K in SAPO-34 with the isotherm fits. The agreement between 

the Langmuir fits and the experimental data is good at both temperatures. 

Kwon et al.3 have reported unary isotherms for Kr and Xe temperatures of 308 K, 323 K and 

343 K. The total pressures used in the experiments ranged to 380 kPa. Their data, scanned from 

their paper, were fitted with the equations (65) and (66). The Langmuir fit parameters are 

specified in Table 2.  For the Kwon data, the saturation capacities, qsat, of Kr and Xe are both 

equal to 3.1 mol kg-1. The equality of saturation capacities implies that the mixed-gas Langmuir 

model for mixture adsorption is precisely valid. It is also appropriate to mention here that the 

Langmuir fits in Table 2 do not correspond to those reported in their Table 1 of Kwon et al;3 

there appears to be typographical errors in the parameter values cited by these authors.  

Furthermore, we find that their isotherm data can be fitted with good accuracy assuming equal 

saturation capacities of 3.1 mol kg-1; this is important because it allows the mixed gas Langmuir 

model to be used for accurate calculations of the mixture adsorption equilibrium. 

Figure 29a presents calculations of elements of the matrix of thermodynamic correction factors 

ij as a function of total pressure, tppp  21 , using the mixed-gas Langmuir model for binary 

Kr(1)/Xe(2) mixture adsorption in SAPO-34 at 298  K. The ratio of partial pressures in the gas 

phase is 10:90. In these calculations the total gas pressure, pt, was varied from  0 to 1 MPa. The 

off-diagonal elements 12, and 21 become increasingly important with increased pressure. In 

particular, it is noteworthy that the off-diagonal element 21 get progressively closer to diagonal 

element 22 with increased pressure. This implies that the flux of Xe is strongly influenced by 

the driving force of Kr. 
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Figure 29b presents calculations of the elements of the matrix of thermodynamic correction 

factors ij as function of the mole fraction of Kr(1) in the bulk gas phase for total pressure  

2.021  tppp  MPa. We note that the off-diagonal element 21  is of the same order of 

magnitude as the diagonal element 22 . In Figure 29c, the ratios of the elements of 

thermodynamic correction factors, 
22

21

11

12 ,






 as function of the mole fraction of Kr(1) in the bulk 

gas phase for total pressure 2.021  tppp  MPa. The off-diagonal elements are significant 

fractions of the corresponding diagonal elements, signaling strong thermodynamic coupling. 

Feng et al.20 have reported data on the component permeances for Kr(1)/Xe(2) mixture 

permeation across SAPO-34 membranes of varying thicknesses. The upstream total pressure was 

kept constant at 140 kPa. The downstream total pressure is 2 kPa, and the total pressure drop 

across the membrane was 138 kPa.  Two different upstream compositions of Kr(1)/Xe(2) were 

used in the experiments: 90/10, and 9/91. The experimental data on component permeances are 

plotted in Figure 30a. We note that the component permeances are not constant, but show a 

decreasing trend with increasing membrane thickness. 

The Maxwell-Stefan diffusivities of Kr and Xe, calculated using Equation (54), are shown in 

Figure 30b. We note that the M-S diffusivity of Xe is practically independent of the mixture 

composition and the membrane thickness. The M-S diffusivity of Kr is independent of 

composition and is only weakly dependent on the membrane thickness. From the experiments, 

the backed-out diffusivity values are Ð1= 610-11 m2 s-1, Ð2= 410-13 m2 s-1. 

Figure 31 presents data on Maxwell-Stefan diffusivities, Ði, of Kr (1) and Xe (2) across a 

SAPO-34 tubular membrane of thickness = 4.9 m thickness, backed out from data on unary 

and binary mixture permeances as reported by Kwon et al.3 For unary permeance data, the Ði are 
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backed out using Equation (55). For 10/90 mixture permeance data, the Ði are backed out using 

Equation (54). The M-S diffusivities, backed out from unary and mixture permeances are 

practically the same; this underscores the advantage of the M-S formulation. The straight lines 

are Arrhenius fits of the Ði; the fit constants are provided in Table 3. It is also appropriate to 

mention here that the Arrhenius fits of the Ði in Table 3 do not correspond to those reported in 

their Table 1 by Kwon et al.3 because of two reasons (a) Kwon et al.3 have used the wrong value 

of the framework density (= 1800 kg m-3) for SAPO-34 zeolite for backing-out the M-S 

diffusivities, and (2) there are typographical errors in their Table 1 on Kwon et al.3 on the 

Langmuir isotherm parameters.3  

13. Analysis of the experimental data of Li et al. for mixture 
permeation across SAPO-34 membrane 

Li et al.21, 22 provide comparisons of transport coefficients,Ði/, backed out from unary 

permeation and binary mixtures permeation across SAPO-34 membrane for several mixtures. 

Figure 32 presents their data for four different mixtures: CO2/CH4, N2 /CH4, CH4/H2, and CO/H2. 

Broadly speaking, the Ði/ values backed out either from unary or mixture permeation 

experiments exhibit similar loading dependences and correspond reasonably closely to each 

other.  This validates the advantage of the M-S formulation. 

14. Linearized solution for steady-state permeation across zeolite 
membranes 

There are many instances in which mixture adsorption equilibrium cannot be adequately 

described by the mixed-gas Langmuir model given by equation (20); this situation arises for 

permeation of linear and branched alkanes across MFI membranes for which the dual-site 

Langmuir model need to be used to take account of isotherm inflections.  Exact analytic 
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solutions for steady-state fluxes cannot be derived in this case. Numerical solutions of the set of 

coupled ordinary differential equations (ODEs) is required; shooting methods are required for the 

determination of the steady-state fluxes.  An alternative, practical, approach is to determine the 

two matrices   , and    at the averaged adsorbed phase loadings, mole fractions, and 

occupancies within the membrane. In other words,    and    are evaluated at 

2
;

2
;

2
0

,
0

,
0

,
  ii

avi
ii

avi
ii

avi

xx
x

qq
q








 . It is definitely not correct to determine 

  , and    by determining the corresponding averages of their respective values at the two 

membrane faces.  

In the linearized model, the fluxes are given by 
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The component permeances can be calculated using equation (59).  

The linearized model essentially assumes that the component loading profiles within the 

membrane layer are linear. This assumption is always a good one for the strong confinement 

scenario for which the loading profiles are linear according to equation (58). For the weak 

confinement model, the loading profiles are non-linear (see equation (48)) and we should expect 

some deviations between the exact analytic solution and the estimations using the linearized 

model. 

In order to test the accuracy of the linearized solution for steady state fluxes, described by 

equation (67), Figure 33a shows calculations of the component fluxes for 40/60 Kr (1)/Xe (2) 

mixture across SAPO-34 membrane of thickness = 4.9 m at T = 298 K, with varying 

upstream total pressures. The continuous solid lines are the flux calculations using the exact 
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analytic solution given by Equation (51); the dashed lines are the linearized model described by 

equation (67). There is good agreement between the two sets of calculations. The exact analytic 

solution predicts slightly higher fluxes because the component loading profiles within the 

membrane layer are not linear; see Figure 33b. The linearized model, that essentially assumes 

linear loading profiles, underestimates the fluxes to a small extent.   

15. Transient Kr/Xe permeation across SAPO-34 membrane 

Diffusional coupling effects often lead to unusual phenomena such as overshoots in the flux of 

the more mobile partners during transient mixture permeation across nanoporous membranes. 

Geus et al.23 report experimental data on transient permeation CH4/nC4H10 mixture across MFI; 

the flux of the more mobile CH4 exhibits a pronounced maximum. The origin of this overshoot 

can be traced to thermodynamic coupling effects, embodied in the thermodynamic correction 

factors.14 We now demonstrate the possibility of transient overshoots for Kr(1)/Xe(2) mixture 

permeation across SAPO-34 membrane. 

For modeling purposes, the transient permeation fluxes are obtained by solving the set of 

partial differential equations 
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 (68) 

where z is the distance coordinate along the direction of membrane thickness. The boundary 

conditions are the partial pressures and component molar loadings at the upstream (z = 0) and 

downstream (z = ) faces of the membrane; see schematic in Figure 26.  
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Figure 34 shows the fluxes for transient permeation of 10/90 Kr (1)/Xe (2) across SAPO-34 

membrane of thickness = 8.7 m at upstream total pressure of 140 kPa, and temperature T = 

298 K; The input data of isotherms and diffusivities are based on Feng et al.20 The transient 

overshoot of the more mobile component Kr is evident. Analogous overshoots are realized using 

the inputs from Kwon et al;3 see the transient permeation fluxes at T = 254 K, and (b) T = 298 K 

in Figures 35a,b.  The important advantage of transient operation is that the Kr/Xe selectivity 

exceeds the steady-state value by about three orders of magnitude; see Figure 35c.   

16. Analysis of experimental data for CO2/ H2 mixture permeation 
across MFI membrane 

Two sets of experimental data, emanating from the same group in Sweden, for steady-state 

CO2(1)/H2(2) mixture permeation across MFI (silicalite-1) zeolite membrane are reported by 

Sandström et al.24 and  Sjöberg et al.25 In both sets of data measured in the same laboratory set-

up, equal partial pressures p10=p20 are maintained in the upstream compartment; the total 

upstream pressure was varied. The downstream partial pressures are kept constant at p1= 95 

kPa, p2 = 5 kPa. The temperatures in the Sandström et al.24 and  Sjöberg et al.25 experiments are 

maintained, respectively, at 296 K, and 273 K. The Langmuir isotherm data fits for 273 K and 

296 K used in the calculations below are provided in Table 4. 

The influence of correlations on mixture permeation is best illustrated by considering the 

experimental data of Sandström et al.24 for permeances of CO2(1) and H2(2) in MFI membrane, 

determined both from unary and binary mixture permeation data; see Figure 36a. We note that 

the permeance of the tardier CO2 in the mixture is only slightly lower than the values for unary 

permeation for the entire range of upstream (feed) partial pressures. For H2, the permeance in the 

mixture is about an order of magnitude lower than from unary experiments. This implies that 
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mixture permeation is CO2-selective, whereas the data based on unary permeation demonstrates 

H2-selective performance. For a proper modeling of the permeation experiments we need to have 

an appropriate quantitative description of (a) the loading dependence of the M-S diffusivities, 

1Ð , and 2Ð , and (b) estimates of the degrees of correlations, 121 ÐÐ , and 122 ÐÐ . This 

information is provided by the MD simulation data of Krishna and van Baten.4, 6, 8, 13, 26 

Figure 37a shows snapshot showing the location of H2 and CO2 adsorbates within the 

intersecting channels. The presence of strongly adsorbed CO2 serves to hinder the motion of H2. 

Indeed, Sandström et al.24 consider the reduction in the H2 permeance to be a result of  

“blocking” by the partner CO2 molecules. Figure 37b shows the MD simulation data on the 

unary M-S diffusivities of CO2, and H2 as a function of the component loadings. At first sight, 

the M-S diffusivity of CO2 appears to follow the strong confinement scenario described by 

equation (23). The M-S diffusivity of H2 also decreases with increased loading, but to a lower 

extent. Figure 37c shows the MD simulation data on the M-S diffusivities of CO2, and H2 

determined for equimolar binary CO2(1)/H2(2) mixtures a function of the total mixture loading, 

qt. The loading dependences of both components in the binary mixture decrease with total 

mixture loading, and the trends are similar to that of the unary diffusivities in Figure 37b. Based 

on the MD simulation data, we shall adopt the strong confinement scenario described by 

equation (23), to model the Sandström experiments for unary permeation.  Using equation (61), 

along with the values of the transport coefficients 2.3)0(1 Ð , and 100)0(2 Ð  kg m-2 

s-1, the experimental data on unary permeances can be reproduced with good accuracy; see the 

continuous solid lines in Figure 36b.  

Figure 37d shows the MD simulation data for the degree of correlations, 122 ÐÐ , for diffusion 

of equimolar binary CO2(1)/H2(2) mixtures in MFI zeolite at 300 K, as a function of the total 
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mixture loading, qt. There is a sharp increase in the degree of correlations with increased 

loadings. In the Sandström et al.24 experiments, the values of the total mixture loadings, qt, are in 

the range 1 – 3 mol kg-1, and 122 ÐÐ   values are in the range of 2 – 10 for this range of mixture 

loadings. From the data in Figure 37 we must conclude that correlation effects will have an 

important bearing on the mixture permeation characteristics, as is evidenced by the experimental 

data on mixture permeances shown in Figure 36. 

With the estimates 2.3)0(1 Ð , and 100)0(2 Ð  kg m-2 s-1, Equations (59) and (67) 

can be used to estimate the component permeances for CO2(1)/H2(2) mixtures. An excellent 

match with the experimental permeances can be achieved with the choice 122 ÐÐ = 8; see the 

continuous solid lines in Figure 38a. The choice of the precise value of the degree of correlations 

does not have a significant influence on the CO2 permeance, but the value of H2 permeance is 

severely affected. Generally speaking, correlation effects have a strong retarding influence of the 

permeation of more-mobile-less-strongly-adsorbed molecules. Conversely, correlation effects are 

of lesser importance for tardier-more-strongly-adsorbed species. In order to demonstrate this, 

Figure 38b compares the  experimental data on permeances of H2 with the estimations based on 

different values for the degree of correlations, 122 ÐÐ  = 2, 8, 20, and 40. Also shown are the 

estimates of the permeances using the limiting scenarios of negligible correlations (equation 

(29)), and dominant correlations (37). The experimental data on H2 permeance lies about 

midway between the values of the limiting scenarios for degrees of corelations. The results in 

Figure 38 highlight the importance of using proper estimates of correlation effects to predict the 

permeances of H2.  

Figure 39a shows the experimental data of Sjöberg et al.25 on the permeation fluxes of CO2 and 

H2 as a function of the upstream total pressure, pt0; these data were measured at a slightly lower 
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temperature of 273 K. The continuous solid lines in Figure 39a are the flux estimations using 

equation (67), along with the same values of 2.3)0(1 Ð , and 100)0(2 Ð  kg m-2 s-1 

and 8122 ÐÐ , as used to model the Sandström experiments. The only differences in the flux 

estimations are that the Langmuir isotherm data fits are for the lower temperature of 273 K; see 

Table 4. The estimations are in excellent agreement with the  experimental data Sjöberg et al.25  

The strong influence of the choice of the degree of correlations 122 ÐÐ  is highlighted in the 

calculations in Figure 39b. For H2, invoking the negligible correlations scenario, leads to larger 

fluxes than observed experimentally. For CO2/H2 separations, this implies that neglecting 

correlations leads to most pessimistic estimates of permeation selectivities. Conversely, the 

adoption of the correlations dominant scenario, leads to overly optimistic estimates of the 

permeation selectivities.  

17. The Flory-Huggins description of phase equilibrium 
thermodynamics for polymeric systems 

Polymer membranes are widely used for mixture separations; for an introduction to this topic 

see Wesselingh and Krishna.27 The upstream compartment contains fluid mixtures that are in the 

gaseous state at elevated pressures, or in the liquid state; see schematic in Figure 40. The 

pressure in the downstream compartment corresponds to ambient pressures or vacuum. 

Thermodynamic equilibrium is assumed to prevail between the bulk fluid mixture in the 

upstream compartment and the sorbed mixture in the upstream face of the membrane. An 

analogous situation prevails in the downstream compartment; there is sorption equilibrium 

between the bulk fluid mixture in the downstream compartment and the downstream face of the 

membrane.  
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The thermodynamics of sorption equilibrium of penetrants and polymer is most commonly 

described by the Flory-Huggins relations.27-29 The Flory-Huggins equation in its simplest form 

deals with molecules that are similar chemically, but differ greatly in length. An example might 

be cross-linked polyethylene with the penetrant propane (C3H8). The Flory-Huggins model is 

based on the idea that the chain elements of the polymer arrange themselves randomly (but with 

the molecules remaining connected) on a three-dimensional lattice; see Figure 40. 

The Flory-Huggins model does not take effects of crystallization or other inhomogeneities into 

account. The resulting equation for the activity of the penetrant is a simple function of the 

volume fraction of the penetrant in the membrane. We use i  to denote the volume fraction of 

the penetrant species i; the volume fraction of species i is iii Vc . The volume fractions are 

related to the mass fractions, i  
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In equation (70), the 0i  are the pure component mass densities. The use of mole fractions is 

not convenient for description of the mixture equilibrium in polymers, because the molar mass of 

the polymer chains are ill defined.27 

The Flory-Huggins model for binary mixture of penetrant (1) and polymer (indicated by 

subscript m) is 
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Equation (71) contains a non-ideality, or interaction parameter χ1m that is assumed to be 

independent of the volume fraction.  

If the interaction parameter χ1m in equation (71) is composition dependent, the F-H model for 

the activity needs to be extended as follows 
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The Flory-Huggins model for binary mixture of penetrants (Components 1, and 2) in a 

polymer (indicated by subscript m) is30, 31 
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In the Flory-Huggins formulations presented in Equation (71) and Equation (73), the 

interaction parameters mm 2112 ,,   are assumed to be constant, i.e. independent of the volume 

fractions.  

In the scenario in which the interaction parameter 12  exhibits a composition dependence 

following equation (80) in the membrane phase, the Flory-Huggins equation (73) needs to be 

extended as follows (these equations correspond to equations (6) and (7) of Mulder et al.32) 
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In equation (74), we have defined 
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When all three interaction parameters mm 2112 ,,   are dependent on the volume fractions of 

the penetrants, equation (74) needs to be further extended; these equations are provided in 

equations (6) and (7) of Mulder et al.32 The same set of extended equations are given by Yang 

and Lue;33 see also Varady et al.34 For readers’ convenience, the extended F-H model equations 

are given below: 
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18. F-H description of CO2/C2H6/XLPEO phase equilibrium 
relevant to membrane gas separation 

Let us first consider the scenario in which the upstream compartment contains a binary gas 

mixture. The equilibrium relation, for either upstream or downstream sides of the membrane, 

may be written as 
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where fi is the partial fugacity of gaseous component i in the bulk fluid mixture, and fi,sat is the 

fugacity of pure component i at saturation, and ai is the activity of component i in the sorbed 
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phase in the polymeric membrane; the activities within the membrane are described by Equation 

(73). For further discussions on fluid-polymer equilibrium and the interpretation of equation 

(76), see Ribeiro and Freeman.28, 29   

For specified set of partial fugacities in the upstream compartment, the volume fractions of the 

penetrants in the polymer membrane may be calculated by solving equations (73) and (76) 

simultaneously, using an equation solver. All the calculations presented in this article were 

implemented in MathCad 15.35 As illustration, Figures 41a,b presents calculations of the volume 

fractions of penetrants CO2 (1) and C2H6 (2) in a cross-linked polyethylene oxide (XLPEO) 

membrane (indicated by subscript m) at 298.15 K; at this temperature all interaction parameters 

mm 2112 ,,   are independent of the volume fractions in the membrane; the values are specified 

in Table 6. The upstream face of the membrane is in equilibrium with CO2/C2H6 mixtures of five 

different compositions. The experimental data (indicated by symbols) on mixed-gas sorption are 

those presented in Figures 5 and 6 of Ribeiro and Freeman.36 The simultaneous solution to 

equations (73) and (76), indicated by the continuous solid lines, are in excellent agreement with 

the experimental data of Ribeiro and Freeman.36 This is to be expected because the three 

interaction parameters mm 2112 ,,   were determined by fitting the experimental data to Equation 

(73).  

Figures 41c,d presents the experimental data (indicated by symbols) for the volume fractions 

of penetrants CO2 (1) and C2H6 (Compon2) in a cross-linked polyethylene oxide (XLPEO) 

membrane (indicated by subscript m) at 263.15 K with the F-H model calculations. At this lower 

temperature, all three interaction parameters mm 2112 ,,   were determined to be dependent on 

the volume fractions of the penetrants and empirical fits are provided by Ribeiro et al.31 For 

convenience to readers, the data fits at 263.15 K are provided in Table 5.  It is to be noted that 
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the fitted expressions obtained by Ribeiro et al.31  are based on the use of Equations (73), and not 

on the extended equations provided by Yang and Lue,33 Mulder et al.32 and Varady et al.34  

The simultaneous solution to equations (73) and (76), indicated by the continuous solid lines, 

are in excellent agreement with the experimental data of Ribeiro and Freeman.36  

In a subsequent section, we will compare model calculations of mixture permeation fluxes with 

experimental data at 298.15 K and at 263.15 K. 

19. F-H description of alcohol/water/polymer phase equilibria 
relevant to membrane pervaporation processes  

Let us now turn our attention to a scenario in which the upstream compartment contains a 

binary liquid mixture; this scenario is relevant to membrane pervaporation processes. A detailed 

analysis of the equilibrium between the binary liquid mixture (Components 1, and 2) and the 

polymer membrane (Penetrants 1, 2, and polymer membrane (m)) is available in the works of 

Yang and Lue,33 and Mulder et al.32 

Let LL
21 ,  represent the volume fractions of components 1 and 2 in the bulk liquid mixture.  

These volume fractions are related to the mass fractions in the bulk liquid mixture 
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We also have the constraint 121  LL  . The component activities in the liquid mixture are 

described by the F-H model 
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Equation (77) corresponds precisely with equations (9), and (10) of Mulder et al.32 The 12  is 

related to the excess Gibbs free energy 
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In equation (78), 21, xx  are liquid phase mole fractions M
M

M

M

c

c
x

i

i
n

i i

L
i

i

L
i

t

i
i









1

. The 

interaction parameter 12  for mixtures such as water/ethanol are strongly dependent on the liquid 

mixture composition. The excess Gibbs free energy )ln()ln( 2211  xx
RT

Gexcess

  can be 

calculated from activity coefficient models such as that of Wilson, NRTL, and UNIQUAC.32, 33 

Mulder et al.32 have also shown that the dependence of 12  on the volume fractions of 

components in the bulk liquid mixture can be expressed as a fourth-order polynomial in 
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 (79) 

In all the Flory-Huggins calculations presented in this article, the 4th order polynomial 

expressions are used to describe the volume fraction dependence of 12 .  

A significant contribution of Mulder et al.32 is to demonstrate that the interaction parameter 

12  for the same two penetrants in the polymer membrane phase shows the same composition 
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dependence on the normalized volume fraction of component 2 within the membrane 

21

2
2 




u , i.e.  
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It is important to note that in the above equation (80), for convenience, we use the same 

nomenclature as Mulder et al.32 However, in the Maxwell-Stefan formulation for diffusion, the 

quantities u1 and u2 refer to the diffusion velocities of the penetrants as they diffuse across the 

membrane. 

In the scenario in which the interaction parameter 12  exhibits a composition dependence 

following equation (80) in the membrane phase, the Flory-Huggins equation (73) needs to be 

extended as follows (these equations correspond to equations (6) and (7) of Mulder et al.32) 
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 (81) 

By equating the activities of the components in the bulk liquid mixture ( L
ia  from equation 

(77)) to the corresponding component activities in the membrane mixture ( ia  from equation 

(81)), we can calculate the volume fractions in the polymer phase, i , that is in equilibrium with 

any specified liquid mixture composition in the upstream face, with volume fractions L
i . The 
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determination of the volume fractions in the polymer requires the use of an equation solver, such 

as MathCad 1535  that was employed in this work. 

As illustration, Figure 42a presents calculations of the volume fractions of penetrants water 

(1), ethanol (2) in a cellulose acetate (polymer, component m) at 293.15 K. The upstream face of 

the membrane is in equilibrium with water/ethanol liquid mixture of varying mass fractions. 

Water is adsorbed preferentially in hydrophilic cellulose acetate. Another point to note is that the 

volume fractions of the penetrants in the membrane phase are significantly higher than those for 

CO2/C2H6/XLPEO system. Figure 42b presents calculations of the elements of the matrix of 

thermodynamic factors, defined by equation (99), discussed in a later section. Figure 42c 

presents calculations of the ratios 
22

21

11

12 ,







 . 

Figure 43 presents calculations of the compositions of penetrants water (component 1), ethanol 

(component 2) in polyimide membrane (polymer, component m) at 293.15 K. The upstream face 

of the membrane is in equilibrium with water/ethanol liquid mixture of varying mass fractions. 

In the calculations, mm 21 ,   are composition independent, and 12  follows the composition 

dependence described by equations (79) and (80). The Flory-Huggins model calculations are in 

good agreement with the experimental sorption data of Ni et al.37, as presented in Figures 1, and 

2 of their paper.   

Figure 44 shows the experimental data (symbols) of Heintz and Stephan38  for binary sorption 

of water/ethanol mixtures across a poly (vinyl alcohol) /poly (acrylonitrile) (PVA/PAN) 

composite membrane. The continuous solid lines are the F-H model calculations using the input 

data in Table 9. There is reasonable agreement of F-H model with experimental data. The 

modelling of pervaporation will be presented in a subsequent section. 
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20. The M-S formulation for diffusion in multicomponent polymer 
solutions 

We develop the Maxwell-Stefan (M-S) equations to describe the diffusion of n penetrants, 1, 2, 

3,..n in a polymer matrix (m). The M-S equations represent a balance between the force exerted 

per mole of species i with the drag, or friction, experienced with each of the partner species in 

the mixture. We may expect that the frictional drag to be proportional to differences in the 

velocities of the diffusing species  ji uu  , where iu  is the velocity of motion of the penetrant i. 

For diffusion in multicomponent polymer solutions such as acetone/cellulose acetate, um  0, i.e. 

the polymer chains have a finite velocity of diffusion. For a mixture containing a total of n 

penetrants, 1, 2, 3,..n we write 
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The left members of equation (82) are the negative of the gradients of the chemical potentials, 

with the units N mol-1; it represents the driving force acting per mole of species 1, 2, 3,..n. The 

subscript m refers to the polymer chain, that is regarded as the (n+1)th component in the mixture. 

The term imÐRT  is interpreted as the drag or friction coefficient between the penetrant i and the 

polymer. The term ijÐRT  is interpreted as the friction coefficient for the i-j pair of penetrants. 

The multiplier Xj in each of the right members represents a measure of the composition of 
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component j in the mixture because we expect the friction to be dependent on the number of 

molecules of j relative to that of component i.  

There are many possible choices for composition measures Xi: 

Mole fractions, xi 

Molar concentrations, ci 

Mass fractions, i 

Partial mass densities, i 

Volume fractions, i 

Let us denote the molar masses of the species are Mi, and the mean molar mass of the mixture 

is 
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.  Note that the summation includes the penetrants 1,2,3..n, and the 

polymer m. 

Let us denote the partial molar volumes as iV . The mean molar volume is 
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We use i  to denote the volume fraction of the penetrant species i: iii Vc .  

The volume fractions are related to the mass fractions, 
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may be taken to equal to densities of the pure components. 

The mole fraction is related to the volume fraction by 
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The inter-relations between the mole fractions and mass fractions are: 
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Written in terms of mole fractions, xi, equations (1) are 

 

     

     

     

     nmn
mn

m
m

m
m

m

mnm
nm

n
n

n
n

n

mm
m

mm
m

uux
Ð

RT
uux

Ð

RT
uux

Ð

RT

dz

d

uux
Ð

RT
uux

Ð

RT
uux

Ð

RT

dz

d

uux
Ð

RT
uux

Ð

RT
uux

Ð

RT

dz

d

uux
Ð

RT
uux

Ð

RT
uux

Ð

RT

dz

d









...

...

...

...

32
2

11
1

32
2

11
1

2
2

323
23

121
21

2

1
1

313
13

212
12

1









  (83) 

Only n of the chemical potential gradients 
dz

d i  are independent, because of the Gibbs-Duhem 

relationship 
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The Maxwell-Stefan diffusion formulation (83) is consistent with the theory of irreversible 

thermodynamics. The Onsager Reciprocal Relations imply that the M-S pair diffusivities are 

symmetric  

 jiij ÐÐ   (85) 

Written in terms of volume fractions, the n independent chemical potential gradients are 

related to the velocity differences as follows 



 

Supplementary Material 45 

 

   

   
ni

Ð

uu

Ð

uu

dz

d

RT

ni
Ð

uu

Ð

uu

dz

d

RT

V
im

mimi
n

j
V
ij

jijii
i

V
im

mim
n

j
V
ij

jiji

ij

ij

,...2,1;
1

,...2,1;
1

1

1

































 (86) 

The modified M-S diffusivities V
ijÐ  are related to the M-S diffusivities jiij ÐÐ  , defined in 

terms of mole fractions, by: V
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ijÐ  are 

not symmetric.  

We define the volumetric flux of component i in a laboratory-fixed reference frame, expressed 

as m3 m-2 s-1  
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The corresponding molar flux of component i, in a laboratory-fixed reference frame, expressed 

as mol m-2 s-1 is 
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Let us define the volumetric diffusion fluxes relative to the volume average velocity of the 

mixture,   
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Equation (86) can be re-written in terms of the diffusion fluxes 
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It is helpful to express the chemical potential gradients in terms of the volume fraction 

gradients by introducing an nn dimensional matrix of thermodynamic factors   : 
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For diffusion in a ternary mixture consisting of two solvent species (1, 2) and polymer (m), a 

combination of equations (88) and (89) yields 
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In proceeding further, it is convenient to define two 22 dimensional square matrices [B], and 

  : 
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In 2-dimensional matrix notation, equation (90) takes the form 
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21. The M-S formulation vs Bearman friction formulation for 
diffusion in  multicomponent polymer solutions 

In the vast literature on diffusion in polymer solutions,39, 40 it is customary to use the friction 

formulation for multicomponent diffusion, normally credited to Bearman,41 written in a manner 

such as in equation (1) of Price and Romdhane:40 
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In equation (93), the imij  ,  are friction coefficients that are related to the modified M-S 

diffusivities V
ijÐ : 
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22. Maxwell-Stefan formulation for permeation across polymer 
membranes 

For diffusion across polymeric membranes, the velocity of the polymer, um = 0.  For modelling 

mixture permeation across polymeric membranes, we need to reformulate the Maxwell-Stefan 

equations using volume fractions instead of mole fractions.31, 34, 42  The use of volume fractions 

facilitates the application of the F-H thermodynamics to describe equilibrium between the 

membrane phase and the bulk fluid mixtures on either side of the membrane layer.  

The mole fraction is related to the volume fraction by 
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. We re-write equation (83) in terms of volume fractions 
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by replacing the mole fractions by the volume fractions: 
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define modified M-S diffusivities: V
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Ð  ;  demanded by the Onsager Reciprocal Relations. 

The M-S equations written in terms of volume fractions take the form 
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 (95) 

In contrast to diffusion across zeolite membrane, an important distinguishing feature of 

diffusion across polymer membranes, is that the polymer (m) is considered as part of the 

mixture.  The zeolite framework, on the other hand, is not part of the mixture. 

We re-write equation (95) as  
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Let us define the volumetric flux of component i, expressed as m3 m-2 s-1 as ii
V
i uN  .  The 

molar flux of component i, expressed as mol m-2 s-1 is 
i

V
i

i

i

i
iii

V

N
u

V
ucN 


.  In terms of the 

volumetric fluxes of components, equation (96) is  
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Let us define an nn dimensional matrix of inverse diffusivities  B  whose elements are given 

by 

 nji
Ð

B
ÐÐ

B
V
ij

i
jiijV

m

m
nj

ijj
V
ij

j
ii ,...2,1,;; ;

1;1

 




 

 (98) 

The reader should note that the elements of  B  are relevant for permeation across polymer 

membranes that is considered to be stagnant, i.e. 0mu . For diffusion in polymer solutions, 

with 0mu , the elements are given by equation (91). 

It is helpful to express the left member of equation (96) in terms of the volume fraction 

gradients by introducing an nn dimensional matrix of thermodynamic factors   : 
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Combining Equations (97), (98) and (99) and casting these in n-dimensional matrix notation 

we write 

     
dz

d
BN V 

 1)(  (100) 

The corresponding expression for the molar fluxes is obtained from use of the 
i

V
i

i
V

N
N  ; this 

results in the final expression given below 
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We now consider the special cases of unary permeation and binary mixture permeation. 

23. The Maxwell-Stefan description of unary permeation 

For the special case of unary permeation through polymer membrane (indicated with subscript 

m), 0 V
mm NN , we write 
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The thermodynamic correction factor, 
1

1

ln

ln





a

 can be evaluated by analytic differentiation 

of the Flory-Huggins Equation (71). 

The unary molar flux of penetrant 1 can be determined by integrating equation (102) over the 

membrane thickness,  .  

  













1

10

1
1

1
1

11

1 ln

ln

1

11
d

a
Ð

V
N V

m  (103) 

In equation (103), 10  and 1  are the volume fractions of the penetrant 1 at the upstream and 

downstream faces, respectively. Fornasiero et al.43 use Equation (103) to describe the steady-

state diffusion of water through soft-contact-lens materials. The integral in Equation (103) can be 

determined analytically. 

In the membrane literature, the experimental data are commonly presented in terms of the  

permeability of component i that is defined as  
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 i
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i
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
  (104) 

In equation (104), iii fff  0  is the difference in the fugacities in the upstream and 

downstream compartments. The SI units for the permeability is mol m m-2 s-1 Pa-1. The more 

commonly used engineering unit for permeability is the Barrer expressed in cm3 (STP) cm cm-2 

s-1 (cm Hg)-1. To convert to the commonly used engineering units of Barrers we divide the value 

in mol m m-2 s-1 Pa-1 by 3.348×10-16.  

Combining equation (103) and (104), we obtain 
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The membrane thickness does not appear in the permeability calculations presented in 

Equation (105). This equation can be used to back-out the M-S diffusivity V
imÐ  from 

experimental data on permeabilities.   

24. The Maxwell-Stefan description of binary mixture permeation 

For binary mixture permeation across a polymeric membrane (indicated with subscript m), 

0 V
mm NN , we write 
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Let us define a 22 dimensional matrix of inverse diffusivities  B  whose elements are given 

by 
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It is helpful to express the left member of equation (96) in terms of the volume fraction 

gradients by introducing an 22 dimensional matrix of thermodynamic factors   : 
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The four elements 22211211 ,,,   can be determined by analytic differentiation of Equation 

(73). Explicit analytic expressions are provided by Ribeiro et al.31 for the special scenario in 

which the interaction parameters mm 2112 ,,   are constant.  

Combining Equations (106), (107) and (108) and casting these in 2-dimensional matrix 

notation we obtain 
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The matrix inversion 
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The reader should note that the elements of 
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permeation across polymer membranes that is considered to be stagnant, i.e. 0mu . For 

diffusion in polymer solutions, with 0mu , the elements of  
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The corresponding expression for the molar fluxes are 
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25. Limiting scenarios for 1-2 friction 

The M-S diffusivities V
imÐ  can be backed-out from experimental data on unary permeation, but 

there is no experimental techniques for direct determination of the M-S diffusivities describing 
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1-2 friction: 
1

2
2112

V

V
ÐÐ VV  . Ribeiro et al.31 adopt the strategy of fitting the three parameters 

VVV ÐÐÐ 1221 ,,  to match their experimental data on permeabilities of binary of CO2/C2H6 mixtures, 

of varying compositions, across XLPEO membrane. 

From a practical point of view it is useful to derive limiting scenarios for 1-2 friction that 

should serve as guidelines for estimations of mixture permeation fluxes and selectivities. Using 

the analysis of mixture permeation across zeolite membranes as guideline, we consider the two 

limiting scenarios of (a) negligible 1-2 friction, and (b) dominant 1-2 friction. 

26. Scenario in which 1-2 friction is considered to be negligible 

In the limiting scenario in which 1-2 friction is considered to be of negligible importance: 
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For this scenario, the matrix 
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 (113) 

Broadly speaking, we should expect the negligible 1-2 friction scenario to hold when the 

volume fractions of both penetrants in the membrane are negligibly small. 

Equation (113), in essence, is used by Mulder et al.30, 44 for modelling pervaporation of water 

(component 1), and ethanol (component 2) using cellulose acetate (polymer, component m) 
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membrane. Mulder et al30, 44 do not, however, provide any justification for making this 

assumption; we return to this point later in this article. 

27. Dominant 1-2 friction scenario for binary mixture permeation 

The other extreme scenario that should be considered is one in which the friction between 

penetrants 1-2 is dominant. To develop this scenario we re-arrange the elements of the matrix  
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The friction between penetrants 1-2 is dominant will be dominant if the following conditions 

are satisified 
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Invoking equation (115), along with 
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The expressions for 12 and 21 are simplified to yield 
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The expressions for 11 and 22 for the dominant 1-2 friction scenario must be derived with 

more care. The diagonal elements must degenerate to the corresponding pure component V
imÐ  

values at either ends of the composition range, i.e. 0;1; 21
111 

mm

V
mÐ







, 

1;0; 21
222 
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V
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



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Imposing these conditions we obtain 
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and 
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Combining equation (116), (117), (118), and (119) we obtain the remarkably simple result 
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28. Determination of steady-state fluxes for binary mixture 
permeation across polymer membranes 

Combining Equations (106), (107) and (108) and casting these in 2-dimensional matrix 

notation we obtain 
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At steady-state, the volumetric fluxes V
iN  are z-invariant. Equations (121) represent a set of 

two coupled ordinary differential equations (ODEs) that are subject to the following set of 

boundary conditions (see schematic in Figure 40) 

00 ;;0  :face upstream iiii ffz     

  iiii ffz  ;;  :face downstream   

The elements of the 2-dimensional square matrix 
















 

2221

1211

1

2221

1211

BB

BB
 are strongly 

composition dependent and, therefore, the set of coupled ODEs need to be solved numerically, as 

was done in the work reported by Ribeiro et al.31 Since the fluxes are not known in advance, 

shooting methods are required for their determination. Consequently, the interpretation of 

experimental data is not an easy task. For this reason, it is helpful to derive a simplified, 

linearized, approach for calculation of the permeation fluxes. 
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29. Linearized model for binary mixture permeation across 
polymer membrane 

In the linearized approach, we essentially assume that the composition profiles for both 

penetrants across the membrane layer is linear. The elements of each of the two matrices 






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

2221

1211 , and 
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2221

1211  is evaluated by calculating the elements  avav
V
imÐ ,2,1 , , 

 avav
V
ijÐ ,2,1 , and  avavij ,2,1 ,  at the arithmetic averaged volume fractions 

 
2

0
,

 ii
avi


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With this assumption the volumetric fluxes are calculated explicitly using 
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The permeabilities can then be calculated using  
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For the scenario in which the 1-2 friction is considered to be negligible, equations (122) and 

(123) simplify to yield 
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 (124) 

Experimental data on the penetrant permeabilities 
i

i
V
i

i f

VN


  can be used to back-out the 

averaged Maxwell-Stefan diffusivities  avav
V
imÐ ,2,1 , , determined at the compositions, 

 
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0
,

 ii
avi


 .  
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The accuracy of the linearized model, described by equations (122), is demonstrated by 

analysis of pervaporation  of water(1)/ethanol(2) liquid phase feed mixtures across two different 

polymeric membranes. 

Figure 45 shows the volume fractions within cellulose acetate (CA) membrane layer for a 

liquid phase water(1)/ethanol(2) feed mixture with mass fraction 40563.01 L . From the F-H 

phase equilibrium relations, the volume fractions at the upstream face are 

26327.016187.0 21   . The continuous solid lines are the profiles obtained from an exact 

numerical solution to the set of two coupled ODEs, resulting in the flux values 7
1 104.2 VN , 

and  7
2 102.2 VN  m3 m-2 s-1. The dashed lines are the linear profiles resulting from the 

linearized model, using equations (122), that result in the permeation flux values of 

7
1 1033.2 VN , and  7

2 1098.1 VN  m3 m-2 s-1. The input data on F-H thermodynamics and 

diffusivities are provided in Table 7. The linearized model yields fluxes that are within 5% of 

those obtained from exact numerical solutions of the set of two coupled ODEs. 

Figure 46 shows calculations of the volume fractions within the polyimide membrane layer for 

a liquid phase water(1)/ethanol(2) feed mixture with mass fraction 7473.01 L . From the F-H 

phase equilibrium relations, the volume fractions at the upstream face are 

0226.0;1424.0 21   . The volumetric fluxes calculated using equations (122) are 

9
1 1078.15 VN , and  9

2 10448.0 VN  m3 m-2 s-1. The corresponding volume fraction 

profiles within the membrane layer are linear; see dashed lines in Figure 46. An exact numerical 

solution to the set of two coupled ODEs, results in the flux values 9
1 105.15 VN , and  

9
2 10487.0 VN  m3 m-2 s-1, that about 5% different from the calculations using the linearized 
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model. The corresponding volume fraction profiles within show slight deviations from linearity; 

see the continuous solid lines in Figure 46.  

30. Water/ethanol pervaporation across polyimide membrane 

Thermodynamic coupling effects are significant for water/ethanol pervaporation across 

polyimide membrane. Figure 47a shows calculations of the elements of    as function of the 

mass fraction of water in the liquid feed mixture in the upstream compartment. L
1 . The negative 

values of the off-diagonal elements are noteworthy. Figure 47b plots the ratios of the elements of 

thermodynamic correction factors, 
22

21

11

12 ,







  as function of the mass fraction of water(1) in the 

liquid feed mixture in the upstream compartment L
1 . The off-diagonal elements are significant 

fractions of the corresponding diagonal elements. Clearly, thermodynamic coupling has a 

significant influence on the permeation fluxes. The experimental data of Ni et al.37 on the 

volumetric fluxes of water, and ethanol are plotted in Figures 47c, and 47d, along with the 

estimates of the permeation fluxes  using the linearized equations (122). The M-S diffusivities at   

zero vacancies for penetrant-membrane interactions used in the calculations are the same as 

reported in Table 1 of Ni et al.37 1213
2

1213
1 s m101.2;s m105.25   V

m
V
m ÐÐ . Three 

different scenarios for 1-2 friction are assumed: (a) negligible 1-2 friction, (b) dominant 1-2 

friction, along with an intermediate value  2
21

2 
V

V
m

Ð

Ð
; the fluxes of both penetrants, mobile water 

and tardy ethanol, are strongly influenced by the chosen scenario for 1-2 friction.  Increasing 1-2 

friction, reduces the flux of the more mobile water, but decreases the flux of the tardier ethanol; 

this influence is precisely the same as witnessed earlier for CO2/C2H6/XLPEO permeation. The 

experimentally observed maximum in the ethanol flux, observed at a feed mixture mass fraction 
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2.01 L , can only be captured if 1-2 friction is taken to be sufficiently large in magnitude. If 1-

2 friction is ignored, there is no discernible maximum in the ethanol flux.  Ni et al.37 have also 

concluded that 1-2 friction cannot be ignored.   

31. Water/ethanol pervaporation across PVA/PAN membrane 

Heintz and Stephan45 have also underscored the importance of diffusional coupling effects for 

pervaporation of water/ethanol mixtures across a poly (vinyl alcohol) /poly (acrylonitrile) 

(PVA/PAN) composite membrane (m). Interestingly, their experimental data (see Figure 48) also 

show a maximum in the ethanol fluxes. For tracing the origins of the observed maximum in the 

ethanol flux, simulations of the molar permeation fluxes with the linearized equations (122) are 

attempted.  

Figure 49a shows calculations of the elements of    as function of the mass fraction of water 

in the liquid feed mixture in the upstream compartment. L
1 . The negative values of the off-

diagonal elements are noteworthy. Figure 49b plots the ratios of the elements of thermodynamic 

correction factors, 
22

21

11

12 ,







  as function of the mass fraction of water(1) in the liquid feed 

mixture in the upstream compartment L
1 . The off-diagonal elements are significant in 

magnitude in comparison with the corresponding diagonal elements. Clearly, thermodynamic 

coupling has a significant influence on the permeation fluxes. The experimental data of Heintz 

and Stephan45 on the permeation fluxes of water and ethanol are compared in Figures 49c,d  with 

the estimates  using the linearized equations (122). Three different scenarios are chosen to 

describe the magnitude of 1-2 friction: 2.0
21

2 
V

V
m

Ð

Ð
, 4

21

2 
V

V
m

Ð

Ð
; 20

21

2 
V

V
m

Ð

Ð
. It is noteworthy that the 

maximum in the ethanol flux, observed in the experiments at a feed mixture mass fraction 
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7.01 L , is adequately captured by the model taking 4
21

2 
V

V
m

Ð

Ð
. If the relative magnitude of 1-2 

friction is reduced and 2.0
21

2 
V

V
m

Ð

Ð
, the ethanol flux maximum practically vanishes;  however, for 

this choice there is a maximum in the water flux that is not observed experimentally.   

32. Analysis of Ribeiro experiments for CO2/C2H6 permeation 
across XLPEO membrane 

In Figure 2 of Ribeiro et al.,46 the permeabilities for unary permeation of CO2 and C2H6 across 

a cross-linked polyethylene oxide (XLPEO) membrane at 298.15 K, and 263.15 are reported. 

Figures 50a,b show the backed-out, averaged, M-S diffusivities V
imÐ  for CO2 and C2H6 at the two 

temperatures 

 















1

10

1
1

1

111

1

ln

ln

1

111
d

a

Vf

Ð iV
m . The backed-out diffusivities demonstrate the 

validity of the exponential model  ii
V
im

V
im AÐÐ exp0,  commonly used to describe the 

composition dependence of M-S diffusivities. 

In Figures 50c, and 50d, the published experimental data of  Ribeiro et al.46  for CO2/C2H6 

mixture permeation across XLPEO membrane, measured at temperatures of 263.15 K, and 

298.15 K, and varying upstream compositions and partial pressures, are used to back-out the V
imÐ  

using equations (124). At both temperatures, there is qualitative agreement between the M-S 

diffusivity in the mixture with the corresponding composition dependence of unary diffusivities. 

For the more mobile CO2, the diffusivity in the mixture is somewhat lower than the 

corresponding unary diffusivity values, when compared at the same total volume fraction of 

penetrants, 21   . Conversely, for the tardier C2H6, the diffusivity in the mixture is slightly 
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higher than the corresponding unary diffusivity values.  For both penetrants, the deviations are 

higher at the lower temperature; this is to be expected because of the larger compositions of 

penetrants within the membrane. The lack of perfect match between the data on M-S diffusivities 

backed out from unary and mixture permeation experiments indicates that the assumption of 

negligible 1-2 friction, implicit in the use of equations (124), does not hold.  

For a quantitative analysis of the Ribeiro experiments, we need to include the 1-2 friction 

contributions and use equations (122) and (123).  Good match between the experimental data of 

Ribeiro et al.46 with obtained with the choice 4
21

2 
V

V
m

Ð

Ð
, at either temperature; see comparisons in 

Figure 51. The x-axis represents the partial fugacity of the permeants in the bulk gas phase in the 

upstream compartment. Five different mixture compositions are considered. We note that the 

permeability of C2H6 is strongly influenced (increased) by increasing proportion of CO2 in the 

bulk gas phase mixture in the upstream compartment. On the other hand, the permeability of CO2 

is influenced to a much reduced extent by the feed mixture composition. The linearized solution 

to the M-S equations, shown by the continuous solid lines captures, quantitatively, all the 

essential features of the composition dependence of the permeabilities of CO2 and C2H6, for all 

feed mixtures.  

In order to gain further insights into the influence of 1-2 friction on the component 

permeabilities, Figure 52 compares the model predictions with experiments for the limiting 

scenarios of negligible and dominant friction, along with the “fitted’ value of 4
21

2 
V

V
m

Ð

Ð
.  

Neglecting 1-2 friction leads to over-prediction of the CO2 permeability, while under-predicting 

that of the tardier C2H6. In the other extreme, adoption of the dominant friction scenario has the 

effect of slowing-down the more mobile CO2 while speeding-up the transport of C2H6. The 
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Maxwell-Stefan formulation serves to provide insights into how 1-2 friction affects the 

separation selectivity, and how improvements can be attempted by perhaps altering the degree of 

polymer cross-linking to adjust the 1-2 friction to the desired level. 

33. Immersion precipitation process for preparation of cellulose 
acetate membrane 

The influence of the thermodynamic correction factors is particularly strong in composition 

regions close to demixing regions. Diffusion close to demixing regions is of importance in 

membrane preparation by immersion precipitation.47, 48 In order to illustrate this, let us consider 

diffusion in the ternary mixture consisting of water (non-solvent, component 1), acetone 

(solvent, component 2) and cellulose acetate (polymer, component m). The binodal and spinodal 

curves for this ternary mixture are shown in Figure 53a. The binodal and spinodal curves for this 

system were determined using the numerical procedures outlined in Altena and Smolders.49 The 

spinodal curve defines the limit of phase stability, and along the spinodal curve, the condition   

= 0 must be satisfied, i.e. we must have 21122211  , the product of the off-diagonal elements 

is equal in magnitude to the product of the diagonal elements.50, 51 This situation implies a 

significant degree of thermodynamic coupling.  

Figure 53b shows calculations of the thermodynamic correction factors 
22

21

11

12 ,







  as a 

function of the volume fraction of acetone, 2 , keeping the ratio 
75

25

3

1 



.  We note the sharp 

increase in the value of 
22

21




  as the binodal curve is approached. This implies that the flux of 

acetone is strongly coupled with the flux of water. Strong thermodynamic coupling will induce 

strong diffusional coupling.  
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In order to demonstrate the influence of thermodynamic coupling, let us consider transient 

inter-diffusion between two compartments for the mixture water/acetone/CA.  

The right compartment (R) contains the polymer solution with initial volume fractions 

15.0;6.0;25.0 21  mRRR  ; the matrix of thermodynamic correction factors at this 

composition is   









1.035390.09748-

0.10945-0.44884
.  

The left compartment (L) is has the initial volume fractions 

81035.0;02356.0;16609.0 21  mLLL  , that lie on the binodal curve; the matrix of 

thermodynamic correction factors at this composition is   









0.397390.5692-

0.06745-0.1621
.  Note the 

large negative value of 21  in relation to 22 ; this implies that the flux of acetone is strongly 

influenced by the driving force for water. 

The transient equilibration process is described by the coupled two-dimensional matrix 

equation 
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 (125) 

The Sylvester theorem, detailed in Appendix A of Taylor and Krishna,52 is required for explicit 

determination of the 2-dimensional square matrix     




  21

4
D

t

z
erfQ . The matrix of Fick 

diffusivities          1BD  are calculated from equation (91) at the average compositions  












RL

RL

22

11

2

1



.  The magnitude of 1-2 friction is assumed to bedescribed by 1
21

2 
V

V
m

Ð

Ð
. At the 

average volume fractions, the values of the elements of the Fick diffusivity matrix are 
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  1010
1.969221.71947-

0.72445-1.81121 







D  m2 s-1. The large off-diagonal elements are particularly 

noteworthy. 

For the case of two distinct eigenvalues, 1 , and 2  of the 2-dimensional Fick matrix  D , the 

Sylvester theorem yields 

         
 
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







IDfIDf

Q  (126) 

In equation (126),  I  is the identity matrix with elements ik . The functions  if   are 

calculated from 

   







  2/1

4
ii

t

z
erff   (127) 

The calculations of the transient equilibration trajectories can be easily implemented in 

MathCad 15.35  

Figure 54a shows the transient equilibration trajectories followed in the two compartments, 

plotted as a function of the dimensionless distance coordinate 
tD

z

ref4
 with the choice of the 

reference diffusivity value of 10101 refD  m2 s-1. The equilibration of water is seen to exhibit 

an undershoot (left compartment) and overshoot (right compartment). This is indicative of uphill 

diffusion.14, 53 

Figure 54b shows the equilibration trajectory plotted in volume fraction space. We note that 

equilibration trajectory follows a strongly curvilinear path.  Also significant is the incursion into 

the meta-stable region that lies between the binodal and spinodal curves.  Curvilinear 
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equilibration trajectories for water/acetone/CA, and forays into metstable regions, have been 

reported in the immersion precipitation process for membrane preparation.47, 48  
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34. Notation 

ai  activity of species i, dimensionless 

bi  parameter in the pure component Langmuir adsorption isotherm, Pa-1 

[B]  M-S matrix, m-2 s 

ci  molar concentration of species i, mol m-3 

ct  total molar concentration in mixture, mol m-3 

Ði  M-S diffusivity of component i for molecule-pore interactions, m2 s-1 

)0(iÐ    M-S diffusivity at zero-loading, m2 s-1  

V
ijÐ    modified M-S diffusivity for binary penetrant pair i-j, m2 s-1 

V
imÐ    modified M-S diffusivity for penetrant i in polymer m, m2 s-1 

Ðij  M-S exchange coefficient, m2 s-1 

Ð12  M-S exchange coefficient for binary mixture, m2 s-1 

E  energy parameter, J mol-1 

fi partial fugacity of species i, Pa 

fi,sat saturation fugacity of species i, Pa 

 I   Identity matrix with elements  ij, dimensionless 

m refers to polymer membrane (= species n+1), dimensionless 

Mi   molar mass of species i, kg mol-1 

M   mean molar mass of mixture, kg mol-1 

Ni molar flux of species i defined in terms of the membrane area, mol m-2 s-1 

V
iN  volumetric flux of species i, m3 m-2 s-1 

n number of penetrants, dimensionless 

pi  partial pressure of species i, Pa 

pt  total system pressure, Pa 
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qi  molar loading of species i, mol kg-1 

qi,sat  molar loading of species i at saturation, mol kg-1 

qt  total molar loading of mixture, mol kg-1 

R  gas constant, 8.314 J mol-1 K-1  

T  absolute temperature, K  

LL

L
Lu

21

2
2 




  relative volume fractions in bulk liquid mixture, dimensionless 

21

2
2 




u  relative volume fractions in polymer phase, dimensionless 

ui  velocity of motion of i,  m s-1 

iV   partial molar volume of species i, m3 mol-1 

V    molar volume of mixture, m3 mol-1 

Vp   pore volume, m3 kg-1 

xi   mole fraction of species i in adsorbed phase, dimensionless 

Vp   pore volume, m3 kg-1 

z  distance coordinate, m  

  

Greek letters 

ij  thermodynamic factors, dimensionless 

    matrix of thermodynamic factors, dimensionless 

  thickness of membrane, m 

 ij  Kronecker delta, dimensionless 

ζ  Bearman friction coefficient 

  dimensionless distance, dimensionless 

i  fractional occupancy of component i, dimensionless 

t  fractional occupancy of adsorbed mixture, dimensionless 

V  fractional vacancy, dimensionless 
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    matrix of Maxwell-Stefan diffusivities, m2 s-1  

i  molar chemical potential, J mol-1 

i  dimensionless partial pressures, bipi, dimensionless  

i   permeability of species i for polymer membrane, mol m m-2 s-1 Pa-1 

i   permeance of species i for zeolite membrane, mol m-2 s-1 Pa-1 

  framework density, kg m-3 

i  mass density of component i, kg m-3 

i0  mass density of pure component i, kg m-3 

t  mass density of mixture, kg m-3 

i   non-dimensional flux of component i, dimensionless 

t   non-dimensional mixture flux, dimensionless 

  interaction parameter in Flory-Huggins model, dimensionless 

i  mass fraction of component i, dimensionless 

L
i   mass fraction of component i in liquid phase feed mixture, dimensionless 

 

Subscripts 

 

0  upstream face of membrane 

1  referring to species 1  

2  referring to species 2  

i,j  components in mixture 

  position along membrane 

  downstream face of membrane 

i  referring to component i 

t  referring to total mixture 

s  referring to surface at position  = 1.  
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sat  referring to saturation conditions 

V  vacancy 

 

 

Vector and Matrix Notation 

 

( )  component vector 

[ ]  square matrix 
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Table 1. T-dependent Langmuir parameters for Kr and Xe in SAPO-34. The fit parameters were 

determined from the unary isotherm data of Feng et al.20 measured at temperatures of 278 K and 

298 K. 

 qsat 

mol kg-1 

b0 

1Pa   

E 

kJ mol-1 

Kr 2.5 5.7510-10 20.7 

Xe 2.5 1.3210-9 23.6 

 

 

 

Table 2. T-dependent Langmuir parameters for Kr and Xe in SAPO-34. The fit parameters were 

determined from the unary isotherm data of Kwon et al.3 measured at temperatures of 308 K, 323 

K and 343 K.  

 

 qsat 

mol kg-1 

b0 

1Pa   

E 

kJ mol-1 

Kr 3.1 3.1310-9 16.3 

Xe 3.1 5.5210-9 19 
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Table 3. Arrhenius temperature dependence of the M-S diffusivities for Kr and Xe in SAPO-34. 

The fit parameters were determined the backed-out data for unary and binary permeances as 

shown in Figure 31. 







 

RT

E
ÐÐ ii exp0,  

 Ði,0 

m2 s-1 

E 

kJ mol-1 

Kr 2.1210-10 11.14 

Xe 4.110-11 17.88 
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Table 4. Langmuir parameter fits for CO2 and H2 in MFI (silicalite-1) zeolite.  The CO2 isotherm 

fits are based on CBMC simulation data at three different temperatures, 200 K, 253 K, and 300 

K.  The H2 fits are based on CBMC simulation data at 300 K, combined with experimental data 

of Golden and Sircar 54 at 305.15 K, and 353.25 K. The T-dependent isotherm fits from the sets 

of data were interpolated, or extrapolated, to 273 K and 296 K.  The single-site Langmuir 

parameters at these two temperatures are provided below. 

T = 273 K:   

bp

bpq
q sat




1
 

qsat 

mol kg-1 

b 

1Pa   

CO2 3.7 1.44710-5 

H2 3.7 7.7010-8 

 

T = 296 K:   

bp

bpq
q sat




1
 

qsat 

mol kg-1 

b 

1Pa   

CO2 3.7 5.9410-6 

H2 3.7 5.5010-8 
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Table 5. Flory-Huggins parameters for permeation of penetrants CO2 (1) and C2H6 (2) across a 

cross-linked polyethylene oxide (XLPEO) membrane (indicated by subscript m) at T = 263.15 K. 

The input parameters are based on calculations using the information presented in Appendix A of  

Ribeiro et al.31 In the Supplementary material of the paper by Krishna,55 detailed comparison of 

experimental phase equilibrium data with predictions of the F-H equations are provided. 

 
135

2
135

1

1221
1

12

5
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5
,1

mol m1014.4;mol m1031.3

76.4421.2;3.120421.1;
ln
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2.28

Pa105.14Pa;1021
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Modified Maxwell-Stefan diffusivities for permeation of penetrants CO2 (component 1) and 

C2H6 (Component 2) across a cross-linked polyethylene oxide (XLPEO) membrane (indicated by 

subscript m) at T = 263.15 K.  
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Input data for diffusivities used in the mixture permeability calculations: 
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Three different scenarios are chosen to describe the magnitude of 1-2 friction: 
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Table 6. Flory-Huggins parameters for permeation of penetrants CO2 (1) and C2H6 (2) across a 

cross-linked polyethylene oxide (XLPEO) membrane (indicated by subscript m) at T = 298.15 K. 

The input parameters are based on calculations using the information presented in Appendix A of  

Ribeiro et al.31 In the Supplementary material of the paper by Krishna,55 detailed comparison of 

experimental phase equilibrium data with predictions of the F-H equations are provided. 

135
2

135
1

2112

5
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5
,1

mol m1004.6;mol m10174.4

0804.2;9085.0;52.1
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Modified Maxwell-Stefan diffusivities for permeation of penetrants CO2 (component 1) and 

C2H6 (Component 2) across a cross-linked polyethylene oxide (XLPEO) membrane (indicated by 

subscript m) at T = 298.15 K.  
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Table 7. The Flory-Huggins parameters for penetrants water (1) and ethanol (2) in cellulose 

acetate (CA) membrane (indicated by subscript m) at T = 293.15 K. The data are taken from 

Mulder et al.:30, 32, 44  

       
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Modified Maxwell-Stefan diffusivities for permeation of penetrants water (component 1) and 

ethanol (Component 2) across a cellulose acetate (CA) membrane (indicated by subscript m) at T 

= 293.15 K. The data are taken from the legend to Figure 5 of Mulder and Smolders.44 
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Table 8. The Flory-Huggins parameters for penetrants water (1) and ethanol (2) in Polyimide 

membrane (indicated by subscript m) at T = 293.15 K. The data are based on the information 

provided from Ni et al.37 The 12  parameters were taken to be the same as for water/ethanol/CA.  
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Modified Maxwell-Stefan diffusivities for permeation of penetrants water (component 1) and 

ethanol (Component 2) across the polyimide membrane (indicated by subscript m) at T = 293.15 

K. The data on modified M-S diffusivities are zero volume fractions are taken from Table 1 of Ni 

et al.37.  
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Table 9. Flory-Huggins parameters for permeation of penetrants water (1) and ethanol (2) across 

a poly (vinyl alcohol) /poly (acrylonitrile) (PVA/PAN) composite membrane (indicated by 

subscript m) at T = 333 K. The 12  parameters were taken to be the same as for 

water/ethanol/CA. The values of mm 21 ,   were chosen to match the  experimental sorption data 

presented in Figure 2 of Heintz and Stephan.38   
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Membrane thickness: m103.1 7 . Modified Maxwell-Stefan diffusivities for permeation 

of penetrants water (1) and ethanol (2) across the PVA/PAN (indicated by subscript m) at T = 

333 K.  The M-S diffusivities for water and ethanol penetrants are assumed to follow an 

exponential dependence on the volume fractions 
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Table 10. The Flory-Huggins parameters for penetrants water (anti-solvent, component 1) and 

acetone (solvent, Component 2) in cellulose acetate (CA) (polymer, indicated by subscript m) at 

T = 298.15 K. The Flory-Huggins parameters are taken from Altena and Smolders49 and 

Altinkaya and Ozbas.56  
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Modified Maxwell-Stefan diffusivities for permeation of penetrants water (component 1) and 

acetone (Component 2) are taken to be the same as for water/ethanol/CA system.44 
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36.  Captions for Figures 

 

Figure 1. Pore landscape of all-silica BEA zeolite. 

 

Figure 2. Structural details for BEA zeolite. 

 

Figure 3. Pore landscape of all-silica CHA zeolite. 

 

Figure 4. Structural details for CHA zeolite. 

 

Figure 5. Pore landscape of all-silica DDR zeolite. 

 

Figure 6. Structural details for DDR zeolite. 

 

Figure 7. Pore landscape of all-silica ERI zeolite. 

 

Figure 8. Structural details for ERI zeolite. 

 

Figure 9. Pore landscape of all-silica FAU zeolite. 

 

Figure 10. Structural details for FAU zeolite. 

 

Figure 11. Pore landscape of all-silica ISV zeolite. 

 

Figure 12. Structural details for ISV zeolite. 
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Figure 13. Pore landscape of all-silica LTA zeolite. 

 

Figure 14. Structural details for LTAzeolite. 

 

Figure 15. Pore landscape for MFI zeolite. 

 

Figure 16. Structural details for MFI zeolite. 

 

Figure 17. Pore landscape of IRMOF-1. 

 

Figure 18. Structural details for IRMOF-1. 

 

Figure 19. Pore landscape of MgMOF-74. 

 

Figure 20. Structural details of MgMOF-74. 

 

Figure 21. Pore landscape of ZIF-8. 

 

Figure 22. Structural details of ZIF-8. 

 

 

Figure 23. MD data4-11 on the loading dependence of the M-S diffusivities of various guest 

molecules in all-silica (a) MFI, (b) FAU, and (c) LTA zeolites at 300 K.  The data demonstrate 

“weak confinement”. 
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Figure 24. MD data4-11 on the loading dependence of the M-S diffusivities of various guest 

molecules in all-silica (a) MFI, and (b) FAU zeolites at 300 K. The data demonstrate “strong 

confinement”. 

 

 

Figure 25. MD data4-11 on the loading dependence of the M-S diffusivities of various guest 

molecules in all-silica (a) LTA, and (b) CHA zeolites at 300 K. The data demonstrate an increase 

in the diffusivity with loading for initial increase in the loading. 

 

Figure 26.  Schematic of zeolite membrane permeation device. 

 

Figure 27. Comparison of experimental data of Feng et al.20 on component loadings for Kr and 

Xe at 278 K, and 298 K with Langmuir fits, with parameters specified in Table 1. 

 

Figure 28. Comparison of experimental data of Kwon et al.3 on component loadings for Kr and 

Xe at 308 K, 323 K and 343 K with Langmuir fits, with parameters specified in Table 2.  

 

Figure 29. (a) Elements of the matrix of thermodynamic correction factors ij as a function of 

total pressure, tppp  21 , calculated using the mixed-gas Langmuir model for binary 
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Kr(1)/Xe(2) mixture adsorption in SAPO-34 at 298  K. The ratio of partial pressures in the gas 

phase is 10:90. In these calculations the total gas pressure, pt, was varied from 0 to 1 MPa. (b) 

Elements of the matrix of thermodynamic correction factors ij as function of the mole fraction 

of Kr(1) in the bulk gas phase for total pressure  2.021  tppp  MPa. (c) Ratios of the 

elements of thermodynamic correction factors, 
22

21

11

12 ,






 as function of the mole fraction of Kr(1) 

in the bulk gas phase for total pressure 2.021  tppp  MPa. The calculations are based on 

the Langmuir isotherm fit parameters specified in Table 2.  

 

 

Figure 30. (a) Component permeances of Kr (1) and Xe (2) across SAPO-34 membranes of 

varying thicknesses, , as reported by Feng et al.20 The upstream total pressure was kept 

constant at 140 kPa. The downstream total pressure is 2 kPa, and the total pressure drop across 

the membrane was 138 kPa. Two different upstream compositions of Kr/Xe were used in the 

experiments: 90/10, and 9/91. (b) Calculations of the Maxwell-Stefan diffusivities, Ði, using 

Equation (54).  

 

 

Figure 31. Maxwell-Stefan diffusivities, Ði, of Kr (1) and Xe (2) across SAPO-34 tubular 

membrane of thickness = 4.9 m thickness, backed out from data on unary and binary 10/90 

Kr/Xe mixture permeances as reported by Kwon et al.3; the data were scanned from Figure 6 and 

Figure 7 of their paper. For unary permeance data, the Ði are backed out using Equation (55). For 
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10/90 mixture permeance data, the Ði are backed out using Equation (54). The straight lines are 

Arrhenius fits of the Ði with parameters as specified in Table 3. 

 

 

Figure 32. Comparison of transport coefficients,Ði/, backed out from unary permeation and 

binary mixtures permeation across SAPO-34 membrane; data culled from Li et al.22 The four 

different mixtures considered are (a) CO2/CH4, (b) N2 /CH4, (c) CH4/H2, and (d) CO/H2. 

 

 

Figure 33. (a) Component fluxes for steady-state permeation of 40/60 Kr (1)/Xe (2) across 

SAPO-34 membrane of thickness = 4.9 m at T = 298 K, with varying upstream total 

pressures. (b) Loading profiles in the membrane for operation at upstream pressure of 5 bar. The 

continuous solid lines are the flux calculations using the exact analytic solution given by 

Equation (51). The dashed lines are the linearized model described by equation (67). The 

isotherm data are based on Kwon et al.3; see Table 2. The M-S diffusivity values are based on the 

Arrhenius fits of the Ði; the fit constants are provided in Table 3. 

 

Figure 34. Transient permeation of 10/90 Kr (1)/Xe (2) across SAPO-34 membrane of thickness 

= 8.7 m at upstream total pressure of 140 kPa, and temperature T = 298 K.  The isotherm 

data are based on Feng et al.20; see Table 1. The M-S diffusivity values are Ð1= 610-11 m2 s-1, 

Ð2= 410-13 m2 s-1. 
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Figure 35. Transient permeation 10/90 Kr (1)/Xe (2) across SAPO-34 membrane of thickness 

= 4.9 m at upstream total pressure of 400 kPa, and temperatures (a) T = 254 K, and (b)   T = 

298 K.  The isotherm data are based on Kwon et al.3; see Table 2. The M-S diffusivity values are 

based on the Arrhenius fits of the Ði; the fit constants are provided in Table 3.  

 

 

 

Figure 36. (a) Permeances CO2 (1) and H2 (2) determined for unary and binary mixture 

permeation across MFI membrane; data of Sandström et al.24 (b) Comparison of experimental 

data on unary permeances of H2 and CO2 with the model predictions using equation (61), along 

with the values of the transport coefficients 2.3)0(1 Ð , and  100)0(2 Ð  kg m-2 s-1.  

The Langmuir isotherm data fits used in the calculations are provided in Table 4. 

 

 

Figure 37. (a) Snapshot showing the location of CO2 (1) and H2 (2) adsorbates within the 

intersecting channel structures of MFI.  (b) MD simulation data on the unary M-S diffusivities, 

1Ð , and 2Ð ,  of CO2, and H2 as a function of the component loadings. (c) MD simulation data on 

the M-S diffusivities, 1Ð , and 2Ð , of CO2, and H2 determined for equimolar binary 

CO2(1)/H2(2) mixtures a function of the total mixture loading. (d) MD simulation data for the 

degree of correlations, 122 ÐÐ , for diffusion of equimolar binary CO2(1)/H2(2) mixtures in MFI 
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zeolite at 300 K, as a function of the total mixture loading, qt. The Langmuir isotherm data fits 

used in the calculations are provided in Table 4. 

 

Figure 38. (a) Experimental data of Sandström et al.24 on permeances of CO2(1) and H2(2) 

compared with the estimations using equations (59) and (67), along with the values of  

2.3)0(1 Ð , and  100)0(2 Ð  kg m-2 s-1. The degree of correlations is chosen to be 

8122 ÐÐ . (b) Experimental data on permeances of H2 and compared with the estimations 

based on varying degrees of correlations, 122 ÐÐ . The Langmuir isotherm data fits used in the 

calculations are provided in Table 4. 

 

 

Figure 39. (a) Experimental data of Sjöberg et al.25 on permeation fluxes of CO2(1) and H2(2) 

compared with the estimations using equation (67), along with the values of  2.3)0(1 Ð , 

and 100)0(2 Ð  kg m-2 s-1. The degree of correlations is chosen to be 8122 ÐÐ . (b) 

Experimental data on permeances of H2 and compared with the estimations based on varying 

degrees of correlations, 122 ÐÐ . The Langmuir isotherm data fits used in the calculations are 

provided in Table 4. 

 

Figure 40. Schematic showing mixture permeation across polymeric membrane. Also shown is 

the schematic of the Flory-Huggins lattice model. 
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Figure 41. Calculations of the volume fractions of penetrants (a) CO2 (1) and (b) C2H6 (2) in a 

cross-linked polyethylene oxide (XLPEO) membrane (m) at (a, b) 298.15 K, and (c, d). The 

upstream face of the membrane is in equilibrium with CO2/C2H6 mixtures of five different 

compositions. The experimental data (symbols) on mixed-gas sorption are those presented in 

Figures 5 and 6 of Ribeiro and Freeman.36 Note that the experimental component solubility data 

are converted to volume fractions of penetrants, using the molar volumes. The continuous solid 

lines are the the simultaneous solutions to equations (73) and (76). The input data are 

summarized in Table 5 and Table 6. In these calculations, the ratio 01 
mV

V
, i.e. the molar volume 

of the penetrant is negligible in comparison to the molar volume of the polymer. 

 

 

Figure 42. (a) Calculations of the volume fractions of penetrants water (1), ethanol (2) in a 

cellulose acetate membrane (m) at 293.15 K, plotted as function of the mass fraction of water(1) 

in the liquid feed mixture in the upstream compartment L
1 . (b) Thermodynamic correction 

factors. (c)  Ratios of the elements of thermodynamic correction factors, 
22

21

11

12 ,







 . The 

upstream face of the membrane is in equilibrium with water/ethanol liquid mixture of varying 

mass fractions. In the calculations, mm 21 ,   are composition independent, and 12  follows the 

composition dependence described by equations (79) and (80). The Flory-Huggins parameters 

are specified in Table 7. 
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Figure 43. (a, b) Flory-Huggins calculations (continuous solid lines) of the compositions of 

penetrants (a) water (1), (b) ethanol (2) in polyimide membrane (m) at 293.15 K as a function of 

the composition of the liquid feed mixture in the upstream compartment. The experimental data 

(shown by the symbols) are taken from Figure 1 (for ethanol) and Figure 2 (for water) of  Ni et 

al.37. The Flory-Huggins parameters are specified in Table 8. 

 

 

 

Figure 44.  Experimental data (symbols) of Heintz and Stephan38 for binary sorption of 

water(1)/ethanol(2) mixtures in poly (vinyl alcohol) /poly (acrylonitrile) (PVA/PAN) composite 

membrane. The continuous solid lines are the F-H model calculations using the input data in 

Table 9. 

 

 

Figure 45. Volume fractions within cellulose acetate (CA) membrane layer for a liquid phase 

water(1)/ethanol(2) feed mixture with volume fraction 35.01 L , or mass fraction 

40563.01 L . From the F-H phase equilibrium relations, the volume fractions at the upstream 

face are 26327.016187.0 21   . The continuous solid lines are the profiles obtained from 

an exact numerical solution to the set of two coupled ODEs, resulting in the flux values 

7
1 104.2 VN , and  7

2 102.2 VN  m3 m-2 s-1. The dashed lines are the linear profiles 

resulting from the linearized model, using equations (122), that result in the permeation flux 
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values of 7
1 1033.2 VN , and  7

2 1098.1 VN  m3 m-2 s-1. The input data on F-H 

thermodynamics and diffusivities are provided in Table 7. 

 

 

Figure 46. Volume fractions within the polyimide membrane layer for a bulk liquid phase 

water(1)/ethanol(2) feed mixture with volume fraction 7.01 L , or mass fraction 7473.01 L . 

From the F-H phase equilibrium relations, the volume fractions at the upstream face are 

0639.0;1549.0 21   . The continuous solid lines are the profiles obtained from an exact 

numerical solution to the set of two coupled ODEs, resulting in the flux values 

9
1 1025.14 VN , and  9

2 10585.0 VN  m3 m-2 s-1. The dashed lines are the linear profiles 

resulting from the linearized model, using equations (122), that result in the permeation flux 

values of 9
1 101.14 VN , and  9

2 10603.0 VN  m3 m-2 s-1. The Flory-Huggins parameters, 

and diffusivity input data are provided in Table 8. 

 

 

 

Figure 47. (a) Thermodynamic correction factors for the ternary mixture consisting of water(1), 

ethanol(2) and polyimide (m), plotted as function of the mass fraction of water(1) in the liquid 

feedcmixture in the upstream compartment L
1 . (b) Ratios of the elements of thermodynamic 

correction factors, 
22

21

11

12 ,







  as function of the mass fraction of water(1) in the liquid feed 

mixture in the upstream compartment L
1 . (c, d) Volumetric fluxes of water, and ethanol across 
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polyimide membrane calculated using the linearized equations (122), plotted as function of the 

mass fraction of water(1) in the liquid mixture in the upstream compartment L
1 . Three different 

scenarios are chosen to describe the magnitude of 1-2 friction: 
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The symbols represent the experimental data as presented in Figure 3 and Figure 4 of  Ni et al.37.  

The Flory-Huggins parameters, and diffusivity input data are provided in Table 8. 

 

 

 

Figure 48. Experimental data (symbols) of Heintz and Stephan45 for permeation of 

water(1)/ethanol(2) mixtures across a poly (vinyl alcohol) /poly (acrylonitrile) (PVA/PAN) 

composite membrane (m) at 333 K, plotted as function of the mass fraction of water(1) in the 

liquid feed mixture in the upstream compartment L
1 .  

 

Figure 49. (a) Thermodynamic correction factors for the ternary mixture consisting of water(1), 

ethanol(2), and poly (vinyl alcohol) /poly (acrylonitrile) (PVA/PAN) composite membrane (m) 

at 333 K, plotted as function of the mass fraction of water(1) in the liquid feed mixture in the 

upstream compartment L
1 . (b) Ratios of the elements of thermodynamic correction factors, 

22

21

11

12 ,







  as function of the mass fraction of water(1) in the liquid feed mixture in the 

upstream compartment L
1 . (c, d) Calculations of the pervaporation fluxes for permeation of 
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water(1)/ethanol(2) mixtures across PVA/PAN composite membrane (m) at 333 K. Three 

different scenarios are chosen to describe the magnitude of 1-2 

friction: 2.0
21

2 
V

V
m

Ð

Ð
, 4

21

2 
V

V
m

Ð

Ð
; 20

21

2 
V

V
m

Ð

Ð
. The experimental data are shown by the symbols. The 

input data on F-H thermodynamics and diffusivities are provided in Table 9. 

 

 

 

Figure 50. Averaged values of the Maxwell-Stefan diffusivities V
imÐ  for CO2(1) and C2H6(2)  in 

cross-linked polyethylene oxide (XLPEO) membrane at (a, c) 263.15 K, and (b, d) 298.15 K. 

The x-axis represents the average volume fraction in the membrane, calculated from 

 
2

0
,

 ii
avi


 , assuming 0i . The diffusivities are backed out from the (a, b) unary 

permeabilities, and (c,d) mixture permeabilities (expressed in Barrers), as reported in Figures 2, 

4, and 5 of Ribeiro et al.46 The continuous solid lines are the exponential fits using 

 ii
V
im

V
im AÐÐ exp0, ; these are not the fits using the parameters provided by Ribeiro et al.31 The 

input data on Flory-Huggins parameters, and molar volumes, and diffusivities used in the 

calculations are summarized in Tables 5, and 6. Furthermore, in these calculations, the ratio 

01 
mV

V
, i.e. the molar volume of the penetrant is negligible in comparison to the molar volume 

of the polymer. 

 

 



 

Supplementary Material 97 

Figure 51. Membrane permeabilities, expressed in Barrers, of (a, c) CO2(1), and (b, d) C2H6(2)   

for binary CO2(1)/C2H6(2) mixture permeation across a cross-linked polyethylene oxide 

(XLPEO) membrane at (a, b) 263.15 K, (c, d) 298.15 K. The x-axis represents the partial 

fugacity of (a, c) CO2(1), and (b, d) C2H6(2)   in the bulk gas phase in the upstream compartment. 

The experimental data (symbols) on component permeabilities are those presented in Figures 2, 

4, and 5 of Ribeiro et al.46 The continuous solid lines are the calculations using the linearized 

equations (122), and (123). The input data on Flory-Huggins parameters, and molar volumes, 

and diffusivities used in the calculations are summarized in Tables 5, and 6. Furthermore, in 

these calculations, the ratio 01 
mV

V
, i.e. the molar volume of the penetrant is negligible in 

comparison to the molar volume of the polymer. 

 

 

Figure 52. Comparison of the experimental data on membrane permeabilities reported by Ribeiro 

et al.46 of (a, c) CO2, and (b, d) C2H6 for binary CO2/C2H6 mixture permeation across cross-

linked polyethylene oxide (XLPEO) membrane at (a, b) 263.15 K,  (c, d) 298.15 K with the 

model predictions using the linearized equations (122). The model calculations use three 

different scenarios for estimation of 1-2 friction. The input data on Flory-Huggins parameters, 

and molar volumes, and diffusivities used in the calculations are summarized in Tables 5, and 6. 

Furthermore, in these calculations, the ratio 01 
mV

V
, i.e. the molar volume of the penetrant is 

negligible in comparison to the molar volume of the polymer. 
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Figure 53. (a) The binodal and spinodal curves, plotted in volume fraction space, for the ternary 

mixture consisting of water (non-solvent, component 1), acetone (solvent, component 2) and 

cellulose acetate (polymer, component m). (b) Calculations of the thermodynamic correction 

factors 
22

21

11

12 ,







  at compositions that lie along the dotted line indicated in the phase diagram. 

The Flory-Huggins parameters are provided in Table 10. 

 

Figure 54. Diffusional equilibration trajectory in a ternary system consisting of water (non-

solvent, component 1), acetone (solvent, component 2) and cellulose acetate (polymer, 

component m). The plotted data in ternary composition space are in terms of volume fractions. 

The equilibration trajectory is indicated by the blue line in ternary composition space. The inset 

shows the volume fraction profiles in the coagulation bath (left compartment) and in the polymer 

solution (right compartment) at time t = 1 s after the start. The Flory-Huggins parameters and 

diffusivity data are provided in Table 10. 

 



Fig.  S1BEA pore landscape
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, fractional pore volume 0.408
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Fig.  S2BEA pore dimensions
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This plot of surface area versus pore dimension is determined using a 
combination of the DeLaunay triangulation method for pore dimension 
determination, and the procedure of Düren for determination of the 
surface area. 

Intersecting channels of two sizes: 12-ring 
of 6.8 Å - 6.2 Å and 10-ring of 5.6 – 5.6 Å  



Fig.  S3CHA landscape

Snapshots 
showing location 
of CH4 and CO2

Snapshots 
showing location 
of CH4

There are 6 cages per unit cell.
The volume of one CHA cage is 
316.4 Å3, slightly larger than that of 
a single cage of DDR (278 Å3), but 
significantly lower than FAU (786 
Å3).

Structural information from: C. Baerlocher, L.B. 
McCusker, Database of Zeolite Structures, 
International Zeolite Association, http://www.iza-
structure.org/databases/



Fig.  S4CHA window and pore dimensions

The window dimensions calculated using the van der 
Waals diameter of framework atoms = 2.7 Å  are 
indicated above by the arrows.  

3.77 Å

4.23 Å

CHA

CHA
a /Å 15.075

b /Å 23.907

c /Å 13.803

Cell volume / Å3 4974.574

conversion factor for  [molec/uc] to [mol per kg Framework] 0.2312

conversion factor for  [molec/uc] to [kmol/m3] 0.8747

 [kg/m3] 1444.1

MW unit cell [g/mol(framework)] 4326.106

, fractional pore volume 0.382

open space / Å3/uc 1898.4

Pore volume / cm3/g 0.264

Surface area /m2/g 758.0

DeLaunay diameter /Å 3.77

Pore dimension / Å

5.0 5.5 6.0 6.5 7.0 7.5 8.0

S
ur

fa
ce

 a
re

a 
/ m

2
 g

-1

0

100

200

300

400

500

600

700

CHA

This plot of surface area versus pore dimension 
is determined using a combination of the 
DeLaunay triangulation method for pore 
dimension determination, and the procedure of 
Düren for determination of the surface area. 



Fig.  S5

Inaccessible pockets

278 Å3 cages

3.64.4 Å windows

To convert from molecules per unit cell to mol kg-1, multiply by 0.06936.
The pore volume is 0.182 cm3/g.

There are 12 cages per unit cell.
The volume of one DDR cage is 
278 Å3, significantly smaller than 
that of a single cage of FAU (786 
Å3), or ZIF-8 (1168 Å3). 

Structural information from: C. Baerlocher, L.B. McCusker, 
Database of Zeolite Structures, International Zeolite 
Association, http://www.iza-structure.org/databases/

DDR landscape



Fig.  S6DDR window and pore dimensions

The window dimensions calculated using the van 
der Waals diameter of framework atoms = 2.7 Å 
are indicated above by the arrows.  
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This plot of surface area versus pore 
dimension is determined using a 
combination of the DeLaunay 
triangulation method for pore 
dimension determination, and the 
procedure of Düren for determination 
of the surface area. 



Fig.  S7ERI pore landscape

x-y projection
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Snapshots 
showing location 
of CH4 and CO2

There are 4 cages per unit cell.
The volume of one ERI cage is 408.7 Å3, 
significantly smaller than that of a single cage 
of FAU-Si (786 Å3), or ZIF-8 (1168 Å3). 

Structural information from: C. Baerlocher, L.B. 
McCusker, Database of Zeolite Structures, 
International Zeolite Association, http://www.iza-
structure.org/databases/



Fig.  S8ERI window and pore dimensions

The window dimensions calculated using the van 
der Waals diameter of framework atoms = 2.7 Å 
are indicated above by the arrows.  
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This plot of surface area versus pore 
dimension is determined using a 
combination of the DeLaunay 
triangulation method for pore dimension 
determination, and the procedure of 
Düren for determination of the surface 
area. 



Fig.  S9

12-ring
window of FAU

FAU-Si pore landscape

There are 8 cages per unit cell.
The volume of one FAU cage is 
786 Å3, larger in size than that of 
LTA (743 Å3) and DDR (278 Å3).

Structural information from: C. Baerlocher, 
L.B. McCusker, Database of Zeolite 
Structures, International Zeolite Association, 
http://www.iza-structure.org/databases/



Fig.  S10FAU-Si window and pore dimensions
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This plot of surface area versus pore 
dimension is determined using a 
combination of the DeLaunay 
triangulation method for pore dimension 
determination, and the procedure of 
Düren for determination of the surface 
area. 



Fig.  S11ISV pore landscape

ISV
a /Å 12.853

b /Å 12.853

c /Å 25.214

Cell volume / Å3 4165.343

conversion factor for  [molec/uc] to [mol per kg Framework] 0.2600

conversion factor for  [molec/uc] to [kmol/m3] 0.9361

 [kg/m3] 1533.027

MW unit cell [g/mol(framework)] 3845.427

, fractional pore volume 0.426

open space / Å3/uc 1773.9

Pore volume / cm3/g 0.278

Surface area /m2/g 911.0

DeLaunay diameter /Å 5.96

Structural information from: C. Baerlocher, L.B. McCusker, Database of Zeolite Structures, International Zeolite Association,
http://www.iza-structure.org/databases/

Intersecting 12-ring channels structure



Fig.  S12ISV pore dimensions
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This plot of surface area versus pore 
dimension is determined using a 
combination of the DeLaunay 
triangulation method for pore dimension 
determination, and the procedure of 
Düren for determination of the surface 
area. 

Intersecting 12-ring channels structure



Fig.  S13LTA-Si landscapes

There are 8 cages per unit cell.
The volume of one LTA cage is 743 
Å3, intermediate in size between a 
single cage of ZIF-8 (1168 Å3) and of 
DDR (278 Å3).

Inaccessible 
sodalite cages

278 Å3 cages4.1 Å windows

This is a hypothetical structure 
constructed from dealuminized 
LTA-5A structure 



Fig.  S14LTA-Si window and pore dimensions

8-ring
window
of LTA

The window dimension calculated using the van 
der Waals diameter of framework atoms = 2.7 Å is 
indicated above by the arrows.  
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This plot of surface area versus pore 
dimension is determined using a 
combination of the DeLaunay 
triangulation method for pore dimension 
determination, and the procedure of 
Düren for determination of the surface 
area. 



Fig.  S15MFI pore landscape

MFI
a /Å 20.022

b /Å 19.899

c /Å 13.383

Cell volume / Å3 5332.025

conversion factor for  [molec/uc] to [mol per kg Framework] 0.1734

conversion factor for  [molec/uc] to [kmol/m3] 1.0477

 [kg/m3] 1796.386

MW unit cell [g/mol(framework)] 5768.141

, fractional pore volume 0.297

open space / Å3/uc 1584.9

Pore volume / cm3/g 0.165

Surface area /m2/g 487.0

DeLaunay diameter /Å 5.16

Structural information from: C. Baerlocher, L.B. McCusker, 
Database of Zeolite Structures, International Zeolite Association, 
http://www.iza-structure.org/databases/



Fig.  S16MFI pore dimensions
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Fig.  S17IRMOF-1 pore landscape

Snapshot of CO2/CH4 mixture

For IRMOF-1 (= MOF 5 = Zn4O(BDC)3 with BDC2- = 1-4 
benzenedicarboxylate) the structural information was 
obtained from
D. Dubbeldam, K.S. Walton, D.E. Ellis, R.Q. Snurr, 
Exceptional Negative Thermal Expansion in Isoreticular 
Metal–Organic Frameworks, Angew. Chem. Int. Ed. 46 
(2007) 4496-4499.
D. Dubbeldam, H. Frost, K.S. Walton, R.Q. Snurr, 
Molecular simulation of adsorption sites of light gases in 
the metal-organic framework IRMOF-1, Fluid Phase 
Equilib. 261 (2007) 152-161. 



Fig.  S18
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This plot of surface area versus pore 
dimension is determined using a 
combination of the DeLaunay 
triangulation method for pore dimension 
determination, and the procedure of 
Düren for determination of the surface 
area. 

Two alternating, inter-connected, cavities of 11 Å and 15 Å with window size of 8 Å.



Fig.  S19MgMOF-74 pore landscapes

The structural information on MgMOF-74 ( = Mg2(dobdc) = Mg\(dobdc = CPO-27-Mg) with dobdc = (dobdc4– = 2,5-
dioxido-1,4-benzenedicarboxylate)) were obtained from

A.Ö. Yazaydın, R.Q. Snurr, T.H. Park, K. Koh, J. Liu, M.D. LeVan, A.I. Benin, P. Jakubczak, M. Lanuza, D.B. 
Galloway, J.J. Low, R.R. Willis, Screening of Metal-Organic Frameworks for Carbon Dioxide Capture from Flue 
Gas using a Combined Experimental and Modeling Approach, J. Am. Chem. Soc. 131 (2009) 18198-18199. 
D. Britt, H. Furukawa, B. Wang, T.G. Glover, O.M. Yaghi, Highly efficient separation of carbon dioxide by a metal-
organic framework replete with open metal sites, Proc. Natl. Acad. Sci. U.S.A. 106 (2009) 20637-20640. 
N.L. Rosi, J. Kim, M. Eddaoudi, B. Chen, M. O’Keeffe, O.M. Yaghi, Rod Packings and Metal-Organic Frameworks 
Constructed from Rod-Shaped Secondary Building Units, J. Am. Chem. Soc. 127 (2005) 1504-1518.
P.D.C. Dietzel, B. Panella, M. Hirscher, R. Blom, H. Fjellvåg, Hydrogen adsorption in a nickel based coordination 
polymer with open metal sites in the cylindrical cavities of the desolvated framework, Chem. Commun. (2006) 
959-961. 
P.D.C. Dietzel, V. Besikiotis, R. Blom, Application of metal–organic frameworks with coordinatively unsaturated 
metal sites in storage and separation of methane and carbon dioxide, J. Mater. Chem. 19 (2009) 7362-7370. 
S.R. Caskey, A.G. Wong-Foy, A.J. Matzger, Dramatic Tuning of Carbon Dioxide Uptake via Metal Substitution in a 
Coordination Polymer with Cylindrical Pores, J. Am. Chem. Soc. 130 (2008) 10870-10871.

One-dimensional hexagonal-shaped 
channels with free internal diameter of ca. 
11 Å



Fig.  S20MgMOF-74 pore dimensions
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This plot of surface area versus pore 
dimension is determined using a 
combination of the DeLaunay 
triangulation method for pore dimension 
determination, and the procedure of 
Düren for determination of the surface 
area. 



Fig.  S21ZIF-8 pore landscapes

There are 2 cages per unit cell.
The volume of one ZIF-8 cage is 
1168 Å3, significantly larger than 
that of a single cage of DDR (278 
Å3), or FAU (786 Å3).

The ZIF-8 = Zn(methylimidazole)2 structure was taken 
from 
R. Banerjee, A. Phan, B. Wang, C. Knobler, H. 
Furukawa, M. O’Keeffe, O.M. Yaghi, High-Throughput 
Synthesis of Zeolitic Imidazolate Frameworks and 
Application to CO2 Capture, Science 319 (2008) 939-
943.
The original structural data (cif file) contains solvent 
molecules; these were removed and the solvent-free 
structures were simulated. 



Fig.  S22ZIF-8 dimensions
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This plot of surface area versus pore 
dimension is determined using a 
combination of the DeLaunay 
triangulation method for pore dimension 
determination, and the procedure of 
Düren for determination of the surface 
area. 



Fig.  S23
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Fig.  S24Strong confinement in zeolites
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Fig.  S25Inter-cage hopping in LTA and CHA
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Fig.  S26

Schematic for zeolite membrane permeation
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Fig.  S27

Isotherm fits: Feng isotherm data
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Fig.  S28

Isotherm fits: Kwon isotherm data
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Fig.  S29

Thermodynamic Correction Factors

Total pressure, p1 +p2 / MPa
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Fig.  S30

Permeances and Diffusivities: Feng expt data
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Fig.  S31

Permeances and diffusivities: Kwon expt data
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Fig.  S32M-S diffusivities in SAPO-34 membrane
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Fig.  S33

Exact vs Linearized Model: Kwon isotherm data
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Fig.  S34

Transient Overshoot: Feng isotherm data
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Fig.  S35
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Fig.  S36

Unary and mixture permeances in MFI zeolite
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Fig.  S37

Total mixture loading, qt / mol kg-1
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Fig.  S38
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Fig.  S39
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Fig.  S40

Permeation across polymeric membrane
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Fig.  S41

Partial fugacity of CO2 in gas mixture, f1 / bar
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Fig.  S42

mass fraction of water in bulk liquid mixture, 1
L
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Fig.  S43

mole fraction of ethanol in bulk liquid mixture, x2
L
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Fig.  S44Water/ethanol/PVA/PAN equilibrium
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Fig.  S45Water/ethanol/cellulose acetate
pervaporation
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Fig.  S46Water/ethanol/polyimide
pervaporation
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Fig.  S47

mass fraction of water in liquid feed mixture, 1
L
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Fig.  S48Water/ethanol/PVA/PAN pervaporation

mass fraction of water in liquid feed mixture, 1
L
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Fig.  S49

mass fraction of water in liquid feed mixture, 1
L
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Fig.  S50

Average volume fraction in membrane,i,av
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Fig.  S51

Partial fugacity of CO2 in gas mixture, f1 / bar
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Fig.  S52

Experimental permeability of CO2, 1 / Barrer
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Fig.  S53Phase equilibrium in water/acetone/cellulose 
acetate
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Fig.  S54
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