
~~HEATANDMASSTRANSFER 
Vol. 3, ~. 393 - 402, 1976 

PergamonP~s 
Pr~ted~ ~eUni~ S~s 

EFFECT OF HIGH TRANSFER RATES ON THE DIFFUSION BEHAVIOUR OF 

MULTICOMPONENT SYSTEMS 

R. Krishna 

Department of Chemical Engineering 

University of Manchester Institute of Science and Technology 

Sackville Street, Manchester M60 IQD, England 

(Communicated by D.B. Spalding) 

ABSTRACT 
The effect of finite transfer rates on the diffusion behaviour of 
multicomponent systems is examined with the aid of two illustrative 
examples in steady state ternary gas diffusion. It is shown that the 
corrections due to finite transfer rates of the individual species 
on the transfer coefficients, and hence transfer rates, are signific- 
ant even when the diffusing species are dilute or when equlmolar 
counter diffusion prevails. 

Introduction 

For molecular diffusion in a fluid mixture with n components the differ- 

ential equat ions  of c o n t i n u i t y  in molar un i t s  are  given by [l] 

1 
~t + V-N.~ ~I = Ri' i = 1,2,..n (1) 

where R. is the rate of production of i due to chemical reaction and N. is the 
I -- ~I 

molar flux of i with respect to a stationary coordinate frame of reference: 

N..I = ci ~i' i = 1,2,..n (2) 

The velocity of the diffusing mixture may be defined in various ways [2]; 

here we choose the molar average velocity defined by 
n n 

c u = ~ ci ~i; ~ = ~ Yi ~i (3) 
i=l i=l 

The total mixture flux is obtained by s~nmaing equations (2) over the n 

constituent species and we obtain in view of equation (3): 
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n 

= ~ N. = c u Nt ~i ~ 
i=I 

The molar diffusion flux of species i relative to the molar average 

velocity of the mixture is 

(4) 

J'-1 = ci(u i - u)~ = N.~1 - Yi Nt' i = 1,2,..n (5) 

but in view of equations (2) to (4) only n-I of the J. are independent for 
I 

n 

Ji = 0 (6) 
i=l 

With the molar diffusion fluxes J. as defined in (5), the continuity 
~i 

equations (I) may be written as 

~c. 
I 

+ V.c. u + V-J. = Ri, i = 1,2,..n (7) 
~t i ~ ~ ~i 

In the solution of many diffusion problems, with or without chemical 

reaction, it is customary in the literature to neglect the term involving u, 

the 'convective' term, in equations (7). This neglect is justified for cases 

in which we have equimolar counter diffusion or when a single species diffuses 

through a large excess of 'solvent'. For diffusion in systems of three or 

more species - multicomponent systems - the neglect of the convective term 

is open to question and is the subject for examination in this paper. 

We take as an example steady state diffusion in n - component ideal gas 

mixtures in the absence of chemical reaction and study the diffusion behaviour 

under conditions of finite transfer rates leading to non-vanishing mixture 

flux N . 
~t 

Analysis 

For isothermal, isobaric diffusion in ideal gas mixtures the convenient 

constitutive relations to use are the Maxwell-Stefan equations, which for 

uni-(z)-directional transport are given by 

dy i _ n Yi Nk - Yk Ni n Yi Jk - Yk Ji 

dz I c = I c ' 
k= I Dik k= 1 Dik 

k~i k#i i = 1,2,..n-I (8) 

where only the n-I independent equations are considered. The molar fluxes N. 
i 

are independent of z for steady state conditions (see equations (I)) whereas 

the diffusion fluxes J. vary along the diffusion path. We assume here that 
l 

the compositions at either end of the diffusion path, of length 6, are known: 
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at z = 0, ~i = Yio' 

at z = 6, Yi = Yi6' 

The n-I independent composition differences 

i = l ) 2 ) . . . n  (9) 

AYi E Yio - Yi6' i = 1,2,..n-, (lO) 

may be viewed as the driving forces for diffusion. 

The n-I linear differential equations (8) may be solved using matrix 

analysis to give the diffusion fluxes at z = 0 as [3)4] 

(Jo)  = [ko] [~] {exp[O] - rI~ }-1 (Ay) (I I) 

where all the matrices are of dimension n-! and the matrices [ko] and [#] 

are defined in Table I. The calculation of the molar fluxes N. from the n-I 
I 

diffusion fluxes J. requires an additional determinancy condition. If 
io 

conditions of equimolar counter diffusion: 

N t = 0 (]2) 

are specified then 

Ni = Jio' i = 1,2,...n 

On the other hand if we have diffusion of n-I species through an inert or 

stagnant nth component: 

(13) 

N -- 0 (14) 
n 

then the fluxes N. may be calculated from 
i 

n 

N.m = ~ (6ik + Yio/Yno ) Jko' i-- 1,2,..n-I (15) 
k=l 

The total fluxes N i may t h e r e f o r e  be w r i t t e n  g e n e r a l l y  as 

(N) = -%)-I(Ay) (,6) 

where the elements of [8] are given for equimolar counter diffusion by 

8ik = 6ik, i,k = 1,2,..n-I (17) 

and for the stagnant ~th component case, equations (14) and (15): 

Bik = 6ik + Yio/Yno , i,k = 1,2,..n-I (18) 

The matrix 

(19) 

gives the effect of finite rates of mass transfer on the coefficients ~ J[k o! 
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TABLE 1 

Definitions of Parameters 

Zero flux mass transfer coefficients of the binary pairs in mixture: 

kik = c Dik/B 
Matrix of dimensionless mass transfer rate factors, [~] , with elements 

N. ~ N k = i 
eli ~in + ~ i k '  k=l  

k 4 i  

~lj - N 1 1 
"" i" k ij ' 

Matrix of inverted mass transfer coefficients, _ _[Bo], with elements 

i = 1,2,..n-I 

i,j = 1,2,..n-I 

Yio n 
B°ii = ~ + k=ll L~Yk° , i = 1,2,..n-I 

k#i 

Boij = - Yio ' i,j = 1,2,..n-I 

Matrix of zero flux multicomponent mass transfer coefficients, [ko], with 

elements given by the inverse of the matrix [Bo], 

Eko] = [So]-' 

Explicitly for a binary system: 

k 
oli 

ko12 

ko21 

ko22 = 

where 

B = I/k12 ; k = k o o 12 

For a ternary system the four elements of [ko] are given explicitly as 

= k13(Ylok23 + (I - Ylo)kl2)/S 
= Y l o k 2 3 ( k 1 3  - kl2)/S 
= Y2ok13(k23 - k]2)IS 

k23(Y2ok13 + (| - Y2o)k12)/S 

S = Ylok23 + Y2ok13 + Y3ok12 
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and hence on the diffusion behaviour of the system. When all the t~ansfer 

rates N. are vanishingly small, it may be verified that the matrix [E] 
I 

reduces to the identity matrix; there are no corrections to the transfer 

facility for this case. The effect of finite transfer rates is to alter 

the composition profiles themselves and hence the facilities for transfer 

offered by the system. Bird, Stewart and Lightfoot [I] give an excellent 

discussion on the effect of finite transfer rates in two-component mixtures, 

Thus for equimolar counter diffusion in a binary system we have 

ffi 0; E = I (20) 

and so 

N I = k12 Ay 1 (21) 

For transfer of species ! through stagnant 2: 

k12 
N 1 ffi Ay I ; ~ = Nl /k12  (22) 

I - Ylo exp~ - 1 

For  m a g n i t u d e s  o f  ~ I ~ s s  t han  0 .2  t h e  c o r r e c t i o n  ~ / ( e x p ~  - 1) i s  abou t  

0 .9  and t h e r e f o r e  f o r  d i l u t e  s p e c i e s  t r a n s f e r  

NI ffi ~12 AYl (23) 

i s  a good a p p r o x i m a t i o n ;  n e g l e c t  o f  t he  c o n v e c t i v e  t e rm  i s  o f t e n  j u s t i f i e d  

in  many e n g i n e e r i n g  a p p l i c a t i o n s  i n v o l v i n g  b i n a r y  s y s t e m s .  

We now t u r n  our  a t t e n t i o n  to  a t e r n a r y  s y s t e m  and to  s t a r t  w i t h  c o n s i d e r  

d i f f u s i o n  o f  two s p e c i e s  t h r o u g h  a s t a g n a n t  t h i r d  component .  The n u m e r i c a l  

v a l u e s  a r e  s , m ~ a r i z e d  i n  Tab le  2. To s t u d y  the  e f f e c t  o f  f i n i t e  t r a n s f e r  

r a t e s  on the  s y s t e m ,  the  f l u x e s  g i v e n  by e q u a t i o n  (16) a r e  o b t a i n e d  by two 

d i f f e r e n t  me thods :  

( i )  we assume t h a t  s i n c e  t he  d i f f u s i n g  s p e c i e s  a r e  d i l u t e  (maXimum 

c o m p o s i t i o n  Yl + Y2 a t  any p o s i t i o n  i s  0 . 3 ) ,  we may a p p r o x i m a t e  the  c o r r e c t i o n  

f a c t o r  m a t r i x  [E] by the  i d e n t i t y  m a t r i x ,  i . e .  we t ake  the  f i n i t e  f l u x  m a t r i x  

[k~] = [ko] (24) 

(ii) in this calculation the fluxes are evaluated exactly with the 

correction factor matrix evaluated from equation (19) using Sylvester's theorem; 

explicit expressions for [El are available in [3]. The finite flux coefficients 

[k~] are calculated from 

- [ko] Era] (25) 
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TABLE 2 

lllustrative Example: 

Diffusion of Acetone (I) and Benzene (2) through Stagnant Helium (3) 

Boundary Conditions: z = O, Ylo = 0. I0; Y2o = 0.00 

z = 6, YI6 = 0.06; Y26 = 0.24 

Diffusion Coffficients of binary pairs in the ternary mixture: 

~12 = 4 mm2/s; PI3 = 41 mm2/s; ~23 = 39 mm2/s 

Results of the calculation of [k:] and NI, N 2 (N 3 = 0) usin$ the equation: 

(N) - [k'] 

[=] -- rij 

neglect effect 
of finite trans- 
fer rates 

[E] calculated 
from equation 
(19) 

N 1 N 2 k e k e • k • 
o l l  o12  ko21 022 

777 c--/7 c/6 c/6 c/6 c/6 
mm2/s r~112/s mm2/s mm2/s ~2/s i~12/s 

-3.86 -4.99 41.00 19.24 0.00 20.80 

-1.77 -8.12 74.40 15.65 -26.79 29.36 

TABLE 3 

Equimolar Counter Diffusion in the System: CO2(1)-H20(2)-H2(3) 

Boundary conditions: Ylo = 0.5; Y2o = 0.0; Y16 = 0.2; Y26 = 0.8 

Diffusivities: PI2 = 0.922 cm2/s; D13 = 2.7064 cm2/s; P23 = 3.4576 cm2/s 

Fluxes Nl, N 2 calculated from (N) = [k~](Ay); N 3 = - N I - N 2 

N 1 N2 k° ke • o I 1 k~12  o21 ko22  

cm2/s cm2/s cm2/s cm2/s cm2/s cm2/s 

[E] = rlj -0.027 -1.57 3.265 1.258 -0.793 1.671 

[E] from eqn. 
(19) 

- 0 . 0 6 9  - 1 . 5 1  3 . 4 3 8  1 . 3 7 5  - 1 . 0 4 0  1 . 5 0 3  
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Since the fluxes N. are not known in advance of calculating the transfer 
i 

coefficients [k~], it is clear a trial and error procedure is involved in 

the second procedure involving (25). Iterations may be started by assuming 

that equation (24) holds and then repeated resubstitution assures convergence 

on the N.. 
i 

The results of the calculations of the fluxes N. in Table 2 using the 
l 

two procedures above show that neglect of the effect of finite transfer 

rates leads to extremely large % errors even though the system is very 

dilute in species 1 and 2. Moreover, the approximation 

N 1 = kI3AY 1 ffi 1 .64  ~c (26)  

g i v e s  t h e  wrong d i r e c t i o n  o f  t r a n s f e r .  I n  a c t u a l  f a c t  t h e  d i r e c t i o n  o f  

transfer of species I is opposite to that dictated by its constituent driving 

force Ayl, i.e. 

N I Ay I = (-1.77)(0.1) < 0 (27) 

Equation (27) signifies the phenomenon of reverse diffusion and Toot [5] has 

discussed this and other dlffusional interaction phenomena possible in ternary 

systems, which are typical of multicomponent behaviour. 

The diffusional interaction effects are quantified by the presence of 

the cross coefficients kol 2 and ko21 in the matrix of mass transfer coeff- 

icients. When these cross coefficients are large the interaction effects will 

be large. The magnitudes of the cross coefficients increase with increasing 

differences in the values of the diffusion coefficients of the binary pairs 

Dik. When all the binary pairs have equal facilities for transfer: 

Dik = D ; kik = c Dik/~ = c ~ /6 = k [special[ (28) 

the matrix [ko]reduces to 

[ko] = k PI~ [special I (29) 

and the matrix of correction factors degenerates to 

N t 
[HI ffi exp~- I rlJ where ~ ffi ~- (30) 

and the system will have all the characteristics of simple two-component 

systems. All the classical approximations used for binary systems may be 

used for the general multicomponent case when (28) holds. 

It is interesting to note that when the constituent binary diffusivit- 

ies are unequal the matrix of correction factors [E] does not reduce to the 
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identity matrix when conditions of equimolar counter diffusion exist. This 

result is in contrast to that obtained for a two-component system (equation 

(20)). One might therefore expect that finite flux corrections would be 

important for systems with widely differing transfer facilities for the 

constituent binary pairs. The calculations in Table 3 for diffusion in the 

system CO 2 - H20 - H 2 show that this expectation is fulfilled and the 

assumption (24) leads to a large error in the calculation of the flux of 

species I, which again suffers reverse diffusion. 

The general conclusion to be drawn from the above study is that when 

the species making up the multicomponent mixture are of different size and 

nature, diffusional interaction effects can be important and when this is so 

the finite flux corrections on the transfer coefficients and transfer rates 

cannot be ignored. The neglect of the convective term in equations (7) is 

not generally justified for a multicomponent system even when such an 

omission is reasonable for a binary system under the same circumstance. 

[Bo] 
C 

Dik 
n. 
Jo 
~l 

kik 

[ko] 
[k'] 
n 

N. 
~i 
N 
~t 
S 

t 

U. 
~I 

U 

Yi 
Z 

Nomenclature 

matrix of inverted mass transfer coefficients 

total molar density of fluid mixture 

diffusion coefficient of the binary pair i-k in mixture 

identity matrix with elements 6ik 

molar diffusion flux of i relative to molar average velocity 

mass transfer coefficient of pair i-k in mixture 

matrix of zero flux mass transfer coefficients 

matrix of finite flux mass transfer coefficients 

number of species in multicomponent mixture 

molar flux of i in stationary coordinate reference frame 

total mixture molar flux in stationary coordinate reference frame 

s-ruination parameter 

time 

velocity of species i in diffusing mixture 

molar average velocity of mixture 

mole fraction of species i in mixture 

distance coordinate along diffusion path 
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Greek Letters 

[B] 
6 

6ik 
[2] 
[3] 

matrix with elements given by equation (17) or (18) 

length of diffusion path 

Kronecker delta 

matrix of correction factors 

matrix of dimensionless mass transfer rate factors 

Matrix Notation 

() 

[ ]  
[ ] - i  
r 

J 

colunmmatrix with n-l elements 

n-lxn-l square matrix 

n-lxn-l inverted matrix 

diagonal matrix with n-] nonzero elements 

Subscripts 

o parameter or coefficient calculated at z = 0 

6 parameter or coefficient calculated at z = 6 

Superscripts 

• coefficient corresponding to finite transfer rates 
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