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ABSTRACT 
This paper analyses mass transfer from a spherical body, either 
liquid or porous solid, to an~-component fluid stream in uniform 
flow around the body. The steady-state mass transport rates are 
calculated from the Maxwell-Stefan diffusion equations (for non- 
ideal liquid mixtures, in their generalized form) using a matrix 
method of solution. Proper account is taken of the diffusional 
interactions between species transfers. The corresponding thermal 
transport phenomena is also considered in the analysis, which 
should find application in droplet evaporation, drying, catalytic 
reactions etc. 

Introduction 

Mass transfer from (or to) spherical bodies, either liquid or porous 

solid, is important in many engineering contexts: evaporation of liquid 

drops into gaseous streams, sublimation, drying, dissolution of solid 

particles, catalytic reactors etc (for surveys of published literature, 

see [I - 4]). 
The analyses of the diffusion process when only two components are 

involved start with the Fick's law formulation 

dY I 
Jlr = - c ~12 

dr 
For multicomponent (n ~ 3) systems, Newbold and Amundson [3], in their 

analysis of droplet evaporation, adopt simple non-interacting formulations 

for the diffusion fluxes of the transferring species: 

dY i 
D i , i = 1,2,...n Jir = - c ,eff dr 

(1) 

(2) 

257 
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It has been recognized in recent years that the description of the 

transport phenomena in multicomponent systems must take account of 

interactions between species transfers [5]. Such interactions may lead 

to phenomena such as osmotic diffusion (transfer of a component in the 

absence of a composition driving force for that species), diffusion barrier 

(no transfer of a component even though a driving force exists for its 

transfer) and reverse diffusion (diffusion of a species against its composition 

gradient). Clearly the formulation (2) will fail to describe such interaction 

phenomena unless we allow the effective diffusion coefficient Di,ef f to assume 

zero or negative values. 

The correct description of ~-component mass transport processes is by 

use of a matrix of diffusion coefficients of dimension n-lxn-I [6,7,8]. 

Thus the constitutive relations for the molar diffusion fluxes take the form 

n-I dy k i = 1,2,...n-I (3) 
Jir = - c ~ Dik dr ' 

k=l 
Only n-I composition gradients are considered for the composition gradient of 

the nth species is not independent and is given by 

dy n = _ n-I dy k 

dr I dr (4) 
k=l 

Also, the nth molar diffusion flux is determined from the requirement 

that the n diffusion fluxes sum to zero: 
n 

J. = 0 (5) 
k=! ir 

It is our object here to consider mass transfer from a spherical body to 

a multicomponent fluid strean~in uniform flow around the body, using the 

mass transfer formulation (3). We restrict ourselves to isobaric processes 

under steady-state conditions. The transfer process is considered to be 

uni-(r)-directional. First, the gaseous stream analysis is carried out; 

modification to include non-ideal liquid mixtures is considered towards the 

end of the paper. The method of analysis and solution is similar to the 

'planar' treatment of Krishna and Standart ~]. 

Mathematical Analysis 

Consider a spherical body immersed in a gaseous flowing stream. Let 

r represent the radius of the sphere, either liquid or porous solid. The 
o 

gas composition at the surface of the sphere is Yio which is assumed to be 

constant during the transfer process. In real situations the surface 

composi6ion is determined by the thermodynamic equilibrium condition at the 

fluid-body interface. The interface condition is therefore 



VOI. 3, NO, 3 MASS TNANSPORTFBOMASPHERICALBODY 259 

at r = ro, Yi = Yio' i = 1,2,...n (6) 

The bulk gas phase composition is taken as Yi® and the transition from 

the interface compositions (yo) to the bulk compositions (y~) is assumed to 

to r (> r ). The mass transport is ta~e place over the radial distance r ° o 

assumed to take place by molecular diffusion over the thickness r - ro; 

thus we use a 'spherical film' model for mass transfer. The second boundary 

condition is therefore expressed as 

at r = r, Yi = Yi~' 

Over the diffusion path, r ° 

n species reduce to 

i = 1,2,...n (7) 

to r , the equations of continuity for the 

d (r 2 ~-{ Nir) = O, i = 1,2,...n (8) 

which shows that 

2 2 2 
r N.Ir = ro N.io = r Ni~ , i = 1,2,...n (9) 

The fluxes N. refer to a stationary coordinate reference frame and are 
ir 

related to the d i f f u s i o n  f luxes  J .  by 
ir 

N.ir = J'ir + Yi Ntr ,  i = 1 , 2 , . . . n  (10) 

where N is the mixture total flux 
tr 

n 

Ntr = ~ Nir (ll) 
k= I 

A convenient  r e p r e s e n t a t i o n  of the c o n s t i t u t i v e  r e l a t i o n s  for  n-component 

isobaric-isothermal diffusion is the Maxwell-Stefan formulation 

dy i n Yi - Yk N n Yi - Yk J" dr - [ Nkr ir = [ Jkr Ir , 

k=l c ~ik k=l c ~ik 

k~i i = 1,2,...n-I (12) 

If suitably averaged values for the total molar concentration c and the 

diffusion coefficients ~ik are used, the relations (12) will be applicable to 

non-isothermal transport processes as well. 

In proceeding with the analysis, it is convenient to define the following 

parameters (see [9]): 

(i) dimensionless distance coordinate in the spherical film, 

n = 1 - r Ir 
O 

(ii) 'zero flux' mass transfer coefficients for the constituent 

binary pairs in the mixture, 
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by 

kik = c ~ik/ro, i,k = 1,2,...n (14) 
i~k 

(iii) a matrix of dimensionless 'rate factors' with elements given 

N° n zo Nko 

~ii = ~ + I i~ k ' zn k=l 
k~i 

0ij = - Nio(I/kij - I/k.zn )' 

(iv) a column matrix (~) with elements 

i = 1,2 .... n-l (15) 

i,j = 1,2,...n-I (16) 
i#j 

given by 

A .. 
O11 

= - Nio/kin, i = 1,2,...n-I (17) 

(v) a matrix of inverted diffusion coefficients,[Ao] , with elements 

Yio ~ Yko 
DT- + 
in k=l - i k  

k~i 

i = 1 , 2 , . . . n - I  (18) 

Aoi j  = - Y i o  ( ] / P i j  - l /D in  ) '  ~;~ = 1 , 2 , . . . n - I  (19) 

With the above definitions, equations (i2) may be written in compact 

n-l dimensional matrix notation as 

d(~) 
= [~](y) + (~) (20) 

dn 

with boundary conditions 

at q = 0, (y) = (yo) 

at q = I - r o/r~S I - K, (y) = (y®) 
(21) 

Equations (20) may be solved for the conditions (21) to give the compos- 

ition profiles within the film as [9] 

(y - yo ) = {exp[~]q - ~j}{exp{[~](! -<)} -~j}-l (y~ _ yo) (22) 

which may be differentiated to give the composition gradient at the interface, 

d(Y)dh q= 0 = [~]{exp{[~](l -K)} _~j}-l(y~ _ yo) (23) 

The composition gradient at the interface may also be obtained from 

equations (12), (18) and (19) as 

d(7) I - r°- [Ao] (Jo) (24) 
dn n = 0 c 

Equation (24) may be rewritten as 
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d(y) c [Dj (25) 

(a°) = ro n = 0 o dn = - r dn n ffi 0 

Comparison of  e q u a t i o n  (25) w i t h  e q u a t i o n s  (3) shows t h a t  the  Maxwe11- 

S t e f a n  f o r m u l a t i o n  i s  c o n s i s t e n t  w i t h  the  g e n e r a l i z e d  F i c k ' s  law f o r m u l a t i o n .  

F u r t h e r ,  the  Maxwel l -S te fan  f o r m u l a t i o n  a l s o  g ives  a means f o r  e s t i m a t i n g  

the matrix of multicomponent diffusion coefficients from binary diffusivities, 

[Do] - [Aj -I (26) 

Combining equation (23) and (25) we get the final expression for the 

diffusion fluxes at the interface as 

° EVol (Jo) = r [ q  {exp{ [#] (l - K)} - r I j } - I ( y  ° - y®) (27) 
O 

It is convenient to define a matrix of 'finite flux' mass transfer coeff- 

icients, [k~, by the matrix relation 

(Jo) = [k~3 (yo - y~) (28) 

which gives in view of equation (27), 

c [Do] 
[ky] ffi ~ [#] (exp{ [@] (l - K)} - r l j } - I  (29) 

0 

The matrix factor 

[-~] - [~](e~{[~]('- K))- r~ ~-' (30) 

reduces to the identity matrix for vanishing rates of transfer, i.e. 

l i m i t  [El = r l j  (31) 
N. ÷ 0 ,  

1 0  

i = 1 , 2 , . . n  

and when this happens, the matrix of mass transfer coefficients reduces to 

l i m i t  C k ' ]  = c [Do] - [ky] (32) 
N. ÷ 0, Y ro 
IO 

i = 1 , 2 , . . n  

and therefore the matrix [kj may be termed as the matrix of 'zero flux' mass 
.? 

transfer coefficients. The factor [E] corrects this 'zero flux' matrix of 

coefficients for c o n d i t i o n s  of finite transfer rates. 

As an extension of binary transport concepts amatrix of Sherwood 

numbers may be d e f i n e d  as 
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c (33) 

where d is the diameter of the spherical body. Equations (29), (30) and (33) 

give the matrix of Sherwood numbers as 

[Sh] = 2 [E] (34) 

which reduces to twice the identity matrix for vanishing rates of transfer, N. 
1 

(cf. equation (31)). For two-component systems, equation (34) simplifies to 

N 1 + N 2 
Sh = 2 with ~ - 

~ ( l  - <) ~"12 
for e - 1 

which/vanishing rates of transfer further simplifies to give the classical 

result 

(35) 

Sh = 2 (36) 

Equation (27) determines the diffusion fluxes J. ; the determination of 
io 

the total fluxes N. requires a further determinancy condition. If conditions 
iO 

of equimolar transfer prevail then we have 

Nto = 0 (37) 

and therefore (cf. equations (I0)) 

N.lo = Jio' i = 1,2,...n-I (38) 

with the nth total flux determined from 
n-| 

N = N - ~ N. (39) 
no to io 

k=l 

For transfer of n-I species through a stagnant nth component we have 

N = J + N = 0 (40) no no Yno to 

and the total fluxes are related to the diffusion fluxes by 
n-I 

Nio = ~ (~ik + Yio/Yno ) Jko' i = 1,2 .... n-I (41) 
k=l 

The calculation of the total fluxes N. from knowledge of the diffusivities 
io 

of the constituent binary pairs and the composition driving forces by use of 

equations (27) with (38) or (41) requires a trial and error procedure [9]. 

A convenient calculation method is to start the iterations by assuming the 

matrix of correction factors [El is the identity matrix. This matrix can be 

revaluated once an estimate of N. is available. Repeated re-substitution 
io 

may be used to converge on the final values for the total fluxes. 
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For non-ideal liquid mixtures, the generalized Maxwell-Stefan equations 

! dBi n x i - N. 
R T dr = [ Nkr Xk ir , 

k=l c ~ i k  
k~i 

afford a convenient starting point for the analysis. 

ers as below: 

i = 1,2,...n-I (42) 

By defining the paramet- 

x i 81n7 i 
FIj = ~i3 + "" ° x. ~inx.' 

J J 

Krishna [10] has shown that the equations 

ional matrix notation as 

[ ~d(x) 
rJ an = [#] (x) + (~) (44) 

where the remainder of the parameters are as defined by equations (13) - (17), 

taking the generalized Maxwell-Stefan diffusivities ~ik in place of the 

binary gas pair diffusivities Dik. 

If we assume that the elements of IF] and [#] are independent of 

composition, we may use the solution procedure as outlined in this paper, 

taking 

[+] (45) 

in place of the matrix [~] in equation (27). 

i,j = 1,2,...n-I (43) 

(42) may be written in n-I dimens, 

Thermal Transport Phenomena 

A differential energy balance in the film provides the appropriate 

starting point for the discussions on the accompanying thermal transport 

phenomena. Thus for r-directional transfer from the spherical body into the 

multicomponent fluid stream we have 

d_._(r2 
dr E r) = 0 (46) 

where E., the total energy flux is given by 
n 

E = qr + [ ~" N. (47) 
r ir ir 

k--I 
qr represents the conductive heat flux in the fluid mixture and is given by 

Fourier' s law as 

dT 
qr -- - kT ~ (48) 
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where k T is the thermal conductivity of the fluid mixture. If we define the 

following parameters: 

(i) 'zero flux' heat transfer coefficient in the fluid phase, 

h = k T/r ° 

(ii) dimensionless heat transfer rate factor, 
n 

= [ CpiNio/h 
k=l 

we may solve equations (46) - (48) for the boundary conditions: 

(49) 

(49') 

at n = 0, T = T 
O 

at ~ = I - <, T = T 

to give the conductive heat flux at the interface as 

(5o) 

E 

qo = h (T O - T ) = h ° (T O - T ) (51) 
~(I - <) 

e - ] 

The total energy flux E is determined from equation (47), with the total 
o 

molar fluxes N. given by the mass transfer analysis. 
iO 

The Nusselt number, defined by 

Nu ~ hed (52) 

k T ' 

is therefore given as (cf. equation (51)) 

E 

Nu = 2 (53) 
~(I - <) 

e - ] 

which for vanishing transfer rates (N i + 0) gives another classical result 

Nu = 2 (54) 

Concludin$ Remarks 

We have presented a general analysis of mass and thermal transport 

processes between a spherical body and a surrounding fluid stream. The 

analysis, which is based on a film model, allows calculation of the mass and 

thermal transport rates from information on the transport parameters of the 

constituent binar~ pairs. The results have been presented in convenient 

matrix notation and are seen to be exact matrix analogues of classical binary 

relations. This single body analysis is easily extendable to include a bed 

of particles or swarm of droplets of liquid. 
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Nomenclature 

[Ao] 
C 

d 

Dik 

"gik 
Dik 
[D] 
g 

h 
H. 

1 rIj 
J. 

1 

kik 

k T 

[k] 

n 

N° 
1 

N 
t 

q 

r 

r 
o 

r 
oo 

T 

X. 
1 

Yi 

matrix whose elements are defined by equations (18) and (|9) 

total molar concentration of fluid mixture 

diameter of spherical body 

diffusivity of binary i-k in gaseous mixture 

generalized Maxwell-Stefan diffusivity of pair i-k 

generalized Fick's law diffusivities 

matrix of generalized Fick's law diffusion coefficients 

total energy flux 

heat transfer coefficient in fluid mixture 

partial molar enthalpy of species i in fluid mixture 

Identity matrix with elements 6ik 

molar diffusion flux of species i 

zero-flux mass transfer coefficient for pair i-j in multicomponent 

mixture 

thermal conductivity of fluid mixture 

matrix of zero flux mass transfer coefficients 

matrix of finite flux mass transfer coefficients 

number of species in multicomponent fluid mixture 

total molar flux of species i 

total mixture molar flux 

conductive heat flux 

radial distance parameter 

radius of spherical body 

radial distance at which the fluid phase attains its bulk phase 

composition 

temperature 

mole fraction of species i in liquid mixture 
i 

mole fraction of species i in gaseous mixture 

Greek Letters 

7 i 

6ik 
E 

activity of species ~ in solution 

matrix of thermodynamic factors defined by equations (43) 

Kronecker delta 

heat transfer rate factor defined by (49') 
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Greek Letters (cont'd) 

n 

K 

dimensionless distance along film 

ratio of radii ro/r ~ 

molar chemical potential of species i 

matrix of correction factors 

matrix of dimensionless mass transfer rate factors 

Matrix Notation 

() 

E] 
[]] 
r 

J 

n-I dimensional column matrix 

n-]xn-I dimensional square matrix 

n-]×n-I dimensional inverted matrix 

diagonal matrix with n-I elements 

Subscripts 

i,j,k 

n 

0 

r 

indices 

species n 

property or parameter at interface between body and fluid 

at any radial distance r from centre of spherical body 

property or parameter in the bulk fluid phase 

Superscript 

• coefficient corresponding to finite transfer rates 
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