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Introduction 

In many practical engineering operations such as absorption, distillation, 

extraction and ion-exchange processes, it is essential to calculate the rates 

of transport in the liquid phase. Often the number of components in the liquid 

phase exceeds two, i.e. we have multicomponent systems. The description of the 

transport behaviour in the liquid state is complicated by two factors: (i) the 

thermodynamic non-ideality of the liquid mixture and (ii) diffusional interact- 

ions between species transfers. 

It is our object here to formulate the rate relations for liquid phase 

transport in a convenient form and to obtain solutions to steady-state 

n__-component diffusion problems. The analysis presented here is essentially 

an extension of the ideal gas phase treatment of Krishna and Standart [I]. 

The treatment is restricted to unidirectional transport under isothermal - 

isobaric conditions and thermal diffusion effects are considered negligible. 

Constitutive Relations 

The generalized Fick's law formulation 
n - I  dx. 

• 3 ,  i = 1,2 .... n-I (1) 
J~ = - c [ Dxi] dz 
i j=l 

has been used in recent years to describe isobaric-isothermal n_-component 

mass transport. In equation (]), J~ is the diffusion flux of species i 
1 

with respect to the molar average reference velocity frame (other reference 

velocity frames are possible [2,~): 
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J~1 = ci(u i - u), i = 1,2,...n (2) 

but only n-I of the diffusion fluxes in (2) are independent for we haye 
n 

J~ : 0 (3) 
i=I i 

The total molar fluxes N. (relative to a stationary coordinate reference 
I 

frame): 

n 

• J~ J~ I N i N. = c u. = + c.u = + x. , i = 1,2 .... n (4) 
i i I i i i i i=l 

are the ones which appear in process calculations. These total fluxes are 

the ones which need to be calculated for design or rating purposes. 

The coefficients Dxij(i,j = 1,2,...n-l) are the multicomponent diffusion 

coefficients and may be considered 'practical' in the sense that mole fraction 

gradients, which are directly measurable, appear as driving forces in (I). 

The elements D .. reflect both the thermodynamic and kinetic interactions in 
Xlj 

the liquid state and in recent years there has been growing interest in their 

measurement (a complete bibliography on multicomponent diffusion coefficient 

measurements is available in Cussler [4]). This interest has been sparked 

off with the appreciation of the importance of diffusional interaction 

phenomena in liquid phase transport behaviour. The magnitude of the diffus- 

ional interaction may be characterized, somewhat loosely, by the size of the 

cross coefficients, Dxij(i~j) relative to the main ones Dx11... For the system 

polystyrene (I) - cyclohexane (2) - toluene (3), ]Dxl2/Dxll] exceeds unity 

for a certain range of concentrations ~] and therefore the diffusion fluxes 

will be coupled to a large extent. 

From a practical engineering viewpoint, it is important to predict the 

values of the elements of the matrix [Dy]. However, since the elements of 

[Dx] portray both the thermodynamic and kinetic interactions in the liquid 

state, they cannot be related simply to the molecular collision processes 

within the phase and are therefore not amenable to simple interpretation 

and prediction. 

An alternative, and more fundamental, formulation of the constitutive 

relations is the generalized Maxwell-Stefan equations ~,7]: 

dl~.  n x . ( u .  - u . )  
I i X J J i i = 1,2, ..n (5) 

RT dz ~.. ' " 
j=l lJ 
j#i 

Only n-I of the chemical potential gradients are independent for we have 

the Gibbs-Duhem relationship 
n d~. 

x i dz I - 0 (6) 
i=I 
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The generalized Maxwell-Stefan equations (5) are consistent with the 

theory of irreversible thermodynamics and the Maxwell-Stefan diffusion 

coefficients 9.. exhibit the synm~etry property ij 

Oij = ~ji' i,j = 1,2 .... n (7) 
i#j 

consistent with the Onsager relations. The 9.• essentially reflect the i-j ij 
pair collision phenomena and may be closely related to the molecular processes 

within the liquid phase; they can be estimated from information on the 

constituent binary pairs [4]. 

We first seek a relation between the D .. and the 9.. and then a solution 
xij 1J 

to the equations (5) for steady-state transport. 

Multiplying both sides of equations (5) by x i yields 
d~ i n x.x.(u. - u.) n xiN j - xjN i 

I xl _ [ i j j i = X (8) 
R T dz 9.. c~ . .  

j=l  zJ j=l  zJ 
j#i j#i 

or in view of equations (4) we have 

d~. n x . jX - x. jX 
I l 

_ [ i j j i i = 1,2,...n-I (9) 
R T xi dz cD.. ' 

j= l  1J 

The chemical potential gradients may be expressed in terms of composition 

gradients : 
• n-I 1 d~ i 

- 

R T xi dz 
j=1 

n-I 

j=l 

x i 3~ i dx. n-I ~iny.x. dx. 
,1 = [ x .  z z  3 = 

RT 8x. dz 1 9x. dz 
J j=] J 

x i 81n~ix i dx.~ = n-l[~ ~ + xi . l j  81nYi] dx. 

x. D lnx. dz ij x. ~-~nx. l dz j j j=1 j 

n- I  dx. 
3 i = 1,2, ..n-I 

Fi 3 " dz ' 
j=l 

( 1 o )  

where we define thermodynamic factors 

x i 81ny i 
Fij ~ 6ij + i,j = 1,2,. .n-I 

• " x. 81nx.' 
J J 

If we further define a matrix [A] with its elements given by 

x. n x k 
-- 1 ÷ [ 

Aii 9. 
in k=IBik 

k#i 

Aij = - xi(I/Dij - I/Din), 

i = 1,2,...n-I 

i,j = 1,2,...n-I 
i#j 

(11) 

(12) 

(13) 
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we may rewrite equations 

d(x) _ [A] (jx) 
c IF] dz 

where all the matrices are of dimension n-l. 

the matrix form of equations (I) 

(jx) 

shows that 

[D x] 

d(x )  
: - c  I,.- X~ dz 

= [A]-' 

(9) in view of equations (I0) - (13) as 

(14) 

Comparison of equation (14) with 

t5) 

16) 

For binary systems, equation (16) reduces to the scalar form 

[ 31ny 1 ) 
D = 9 [ I + - - J  17) 

x12 12 31nx 1 

The M a x w e l l - S t e f a n  b i n a r y  d i f f u s i v i t y  912 can be p r e d i c t e d  o v e r  t h e  e n t i r e  

c o m p o s i t i o n  r ange  g i v e n  the  i n f i n i t e  d i I u t i o n  v a l u e s  [ 8 , 9 ] .  I t  i s  i m p o r t a n t  to  

n o t e  t h a t  b o t h  ~x12 and 912 v a r y  w i t h  c o m p o s i t i o n  b u t  t h e  l a t t e r  t r a n s p o r t  

p a r a m e t e r  shows a more p r e d i c t a b l e  c o m p o s i t i o n  d e p e n d e n c e .  In  the  l i m i t i n g  

c a s e  o f  i d e a l  gas  m i x t u r e s ,  t h e  a c t i v i t y  c o e f f i c i e n t s  r e d u c e  to  u n i t y  and 

Dyl2 = 912 , (18) 

t he  b i n a r y  v a p o u r  p h a s e  d i f f u s i v i t y  i s  a l m o s t  c o m p o s i t i o n  i n d e p e n d e n t .  By 

a n a l o g y  w i t h  t h e  two-componen t  c a s e ,  we may e x p e c t  f o r  t he  m u l t i c o m p o n e n t  

s y s t e m  t h a t  t h e  9 . .  c o e f f i c i e n t s  would  show a weaker  and p r e d i c t a b l e  compos-  
l j  

i t i o n  dependence  as  compared to  t h e  F i c k ' s  law d i f f u s i v i t i e s ,  Dxi j .  

S o l u t i o n  to  S t e a d y - S t a t e  D i f f u s i o n  P r o b i e m s :  F i l m  Model 

Fo r  s t e a d y - s t a t e  c o n d i t i o n s ,  t he  e q u a t i o n s  o f  c o n t i n u i t y  f o r  t he  d i f f u s i n g  

s p e c i e s  r e d u c e  to  
dN. 

1 - O,  i = 1 , 2 , . . . n  (19) 
dz 

which  show t h a t  t h e  t o t a l  m o l a r  f l u x e s  N. a r e  c o n s t a n t  a l o n g  the  d i f f u s i o n  
1 

p a t h ;  f o r  i n t e r p h a s e  t r a n s p o r t  in  f l u i d - f l u i d  s y s t e m s ,  t h e s e  t o t a l  f l u x e s  a r e  

also phase invariants. In contrast, the diffusion fluxes are not phase invariant 

and indeed due to the variation of compositions along the diffusion path, they 

vary from one end of the diffusion path to the other (cf. equation (4)). 

In many separation and processing operations the compositions at either 

end of the diffusion path are known. We thus have the boundary conditions: 

at z = O, bulk liquid, 

at z = 6, interface, 

(x) = (x b) 

(x) = (x I) 
(20) 
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where ~ is the length of the diffusion path (or 'film' thickness). 

In order to obtain a solution for the fluxes N. using equations (8) it 
i 

becomes convenient to define the following quantities: 

a dimensionless distance within the film 

a = z/~ (21) 

'mass transfer coefficients' of the pair i-j in the multicomponent mixture 

k.. = c 9../6, i,j = 1,2 .... n (22) 
13 lJ i#j 

and a matrix of dimensionless 'rate' factors, [~], with elements given by 

N.I n N k 
~''ii - ~. + ~ ~--- , i = 1,2,...n-I (23) 

in k=l ~ik 
k#i 

~ij = - Ni(I/kij - l/kin), i,j = 1,2 .... n-I (24) 
i~j 

and a column matrix,(~), with elements given by 

= - hi/kin , i = 1,2 .... n-I (25) 

With definitions (21) - (25), equations (8) can be written in view of 

equations (I0) - (13) in n-I dimensional matrix notation as 

d(x) _ [~] (x) + (~) (26) 
IF] dn 

Equation (26) represents a first order ordinary matrix differential equation. 

The matrices IF] and [~] have elements which are strictly dependent on composit- 

ion dependent and therefore a general solution, taking such composition variat- 

ions into account, to equation (26) is not possible. If we make the assumptions 

that: (i) the ~ij (and hence the kij) are compositon independent or alternat- 

ively use values suitably averaged over the composition range of interest and 

(ii) the activity coefficient variation with composition is constant over the 

composition range of interest then the elements of the matrices IF] and [~] 

will be independent of composition. The equation (26) may therefore be solved 

for the boundary conditions: 

at ~ = O, bulk liquid, (x) = (Xb) (27) 

at n = I, interface, (x) = (Xl) 

to give the composition profiles within the 'film' as [1,I0] 

(x x b) = {exp[O]~ rlj }{exp[@] rla}-| - - - (x I - x b) (28) 

where we define the matrix [0] as 
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[@] - [F]-I [%] (29) 

The composition gradient in the bulk liquid, n = 0, may be evaluated from 

equation (28) and the result is 

_ }-~ 
d(x) = - [@]{exp[@] rlj (x b - x I) (30) 
dn ~=0 

Now, equation (;5) may be used to calculate the bulk diffusion fluxes as 

d(x) (31) 
(Jb) = - [kxb] ~ ~=0 

where we define a matrix of 'zero flux' multicomponent mass transfer coeffic- 

ients in the bulk liquid phase by 

[kxb ] - c [Dxb ] / 6 ( 32 ) 

in which the elements Dxbi~ of the matrix of diffusion coefficients are 
.J 

evaluated using relation (16) with all compositions taken to be the bulk 

values. 

Combination of equations (30) and (31) gives us the result for calculat- 

ing the bulk diffusion fluxes as 

(Jb) = [kxb] [O]{exp[O ] - rlj}-l(x b - X l )  (33) 

Equation (33) determines the n-I independent bulk diffusion fluxes in 

terms of a matrix of 'zero flux' mass transfer coefficients, which may be 

estimated from binary transport parameters, the composition driving forces 

(x b - x I) and a matrix of correction factors defined by 

[E] -: [8] { exp [O] - I-I.~ }-1 (34) 

The matrix expansion in (34) can be carried out using Sylvester's theorem 

described, for example, in Amundson [;0]. The calculation of the elements of 

[0] requires prior knowledge of the total molar fluxes N.. The determination 
i 

of n total molar fluxes from n-] independent diffusion fluxes jx using 
- -  ib 

= jx Nt Ni ib + Xib ' 

requires an additional determinancy condition. 

counter transfer are specified, then we have 
n 

N = ~ N. = 0 
t i=l l 

which gives 

X 
N. = i Jib' 

i = 1,2,...n (35) 

If conditions of equimolar 

(36) 

i = 1,2,...n (37) 
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Alternatively, we may have transfer of n-! species through a stagnant 

nth component, i.e. 

N = jx N t = 0 (38) n nb + Xnb 

for which case we may calculate the total molar fluxes from 
n-] 

N.I = ~ + Xib/Xnb) jx (6ij jb' i = ],2,...n-I (39) 
j=l 

Equations (33) and (35), together with an additional determinancy cond- 

ition such as (36) or (38), represent the final solution to the steady-state 

diffusion problem considered. The form of the solution is not explicit and 

therefore a trial-and-error procedure is involved. Convergence is assured if 

the following scheme is adopted [I]: 

(i) calculate the elements of [kxb ] using equations (32) and (16), 

(ii) assume the correction factor matrix [E] to be the identity 

matrix rl~, 

(iii) calculate the bulk diffusion fluxes using (33), 

(iv) the total molar fluxes may now be calculated with the aid of 

an additional determinancy condition, such as (36) or (38), from relations 

(37) or (39), 

(v) with this estimate of the total molar fluxes, the elements 

of the matrix [0] may be calculated from equations (29), (22)-(24) and (II). 

The correction factor matrix [E] can now be calculated using (34). Explicit 

expressions for [E] for the ternary case are given in [I]., 

(vi) a matrix of 'finite flux' mass transfer coefficients may now 

be calculated as 

[k:b ] = [kxj [E] ( 40 ) 

and the diffusion fluxes from (cf. equations (33), (34) and (40)) 

(J~) = [k:b ] (x b -x I) (41) 

(vii) steps (iv)-(vi) are repeated till convergence is obtained for 

each individual N.. 
I 

Special Cases 

For equimolar counter transfer in two-component systems, the above analysis 

yields the classical result 

N l = k a xb (Xlb xII) (42) 
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where 

k~b = c D /~ x12 

For transfer of species 

N 1 = 

where now 

1 through stagnant 2, we get 

k~b (Xlb - Xll)/(1 - Xlb) 

(43) 

(44) 

@ 
= c ~x 11 

k b ~ 12 (45) 
exP@ll - I 

It is more common in practice to combine equations (44) and (45) to give 

CDxl2 I 1 - Xli / N 1 - ~ I n - -  (46) 
[I - Xlb j 

For transfer in systems with three or more species, simplifications such 

as equations (42) and (46) are not obtained and the general calculation 

procedure suggested in this work should be used. 

Nomenclature 

Latin letters 

[A] 
C 

D , ° 
XlJ 

lj 

912 

Dxl 2 
l)y12 
qj 
J. 

1 

kxbij 

k ° 
xb i j 

k.. 
lj 

n 

N. 
i 

matrix whose elements are defined by equations (12) and (13) 

total molar density of the mixture 

generalized Fick's law diffusivities 

generalized Maxwell-Stefan diffusivities 

Maxwell-Stefan diffusivity for binary pair I-2 

Fick's law diffusivity for binary pair I-2 in liquid mixture 

Fick's law diffusivity for binary pair I-2 in vapour mixture 

identity matrix with elements ~.. lj 
molar diffusion flux of species i in mixture 

elements of matrix of 'zero flux' multicomponent mass transfer 

coefficients 

elements of matrix of 'finite flux' multicomponent mass transfer 

coefficients 

mass transfer coefficient for pair i-j in multicomponent mixture, 

defined by equation (22) 

number of species in multicomponent mixture 

total molar flux of species i 
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Latin letters (eont'd) 

N 
t 

R 

mixture total molar flux 

gas constant 

temperature 

u. diffusion velocity of species i 
i -- n 

u molar average velocity of mixture, u = ~ x.u. 
.i=l i i 

x. mole fraction of species i in liquid mlxture 
i 

z position coordinate along diffusion path 

Greek letters 

Yi activity coefficient of species ! in solution 

[r] matrix of thermodynamic factors with elements given by (II) 

film thickness 

(~) colunm matrix with elements given by equations (25) 

n dimensionless position coordinate, defined by equation (21) 

[@] matrix defined by equation (29) 

[E] matrix of correction factors defined by equation (34) 

[~] matrix of dimensionless rate factors with elements given by 

equations (23) and (24) 

Matrix notation 

( ) columm matrix with n-I elements 

[ ] square matrix, n-l×n-I 

[ ]-I inverted matrix, n-l×n-] 

r J diagonal matrix with n-I elements 

Subscripts 

b 

i,j,k 

I 

n 

t 

x 

Y 

12 

i j  

bulk liquid phase property 

indices 

interfacial property 

nth component property 

pertaining to total mixture 

liquid phase parameter 

vapour phase parameter 

binary pair I-2 

pair i-j in multicomponent mixture 
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Superscripts 

x liquid phase property 

y vapour phase property 

• coefficient corresponding to finite transfer rates 
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