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ABSTRACT 
This paper presents a local analysis of simultaneous mass and energy 
transfer processes in vapour-liquid systems, with n components in 
either phase. Using a simple one-dimensional inte~phase transport 
model, a general procedure for determining the interfacial state, 
given information on the parameters in the bulk fluid phases, is 
obtained. The calculation of the interfacial 'total' mass and 
energy transport rates from knowledge of the 'diffusive' fluxes 
is discussed and the final results presented in compact matrix 
notation. 

Two specific examples of condensation of mixed vapours and multicom- 
ponent distillation are examined in light of the general analysis and 
the validity of some classical assumptions questioned. 

Introduction 

Simultaneous mass and energy transport phenomena in vapour-liquid systems 

are common in many operations of engineering interest such as condensation, 

evaporation, distillation and absorption etc. Most published treatments of 

the transport processes are restricted to simple two-component (binary) systems 

A general discussion of n_-component systems without restriction to one or 

other processing operation does not seem to be available. In this paper we 

attempt a general analysis of the problem as applied to a differential section 

of the vapour-liquid contacting operation. We use a simple one-dimensional 

interphase model and restrict discussions to non-reacting systems in the 

absence of electric, magnetic and centrifugal force fields. 
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Interfacial Mass and Energy Fluxes 

Consider a vapour-liquid system; let 'y' denote the vapour phase and 'x', 

the liquid phase. It is easy to show by a material balance that if N. is the 
i 

normal constituent material flux in a given position at the interface and with 

respect to it, we must have 

N~I = N~I = Ni' i = ;,2,...n (I) 

The only assumptions required are that no surface reaction is occurring and 

there are no constituent adsorptions at the interface. The flux N. is thus 
l 

a phase invariant. If we further assume that (i) the average state of each 

phase can be characterized by the bulk phase properties (denoted by subscript 

b), (ii) the transport rates in the interfacial region in directions tangent 

to the interface are negligible compared to the normal interfacial transport 

rates and (iii) that under unsteady state conditions, the rate of accumulation 

in the interfacial region is negligible compared to the normal interphase 

transport rate (or at least that the average rate of accumulation is 

negligible), we can similarly show that 

NYib = N.~ = N~b , i = ],2,...n (2) 

In addition to these 'total' transport fluxes, it is also convenient to 

define normal constituent material diffusion fluxes J.. Many definitions for 
l 

the diffusion fluxes are possible but the simplest for our purposes is the 

diffusion flux defined with respect to the total mixture material transport 

flux, Nt, defined as 
n 

N t = ~ N.I = NYt = NXt (3) 
i=! 

Thus for the vapour phase we have 

J~1 ~ N.I - Yi Nt' i = 1,2 .... n (4) 

with an analogous definition for the liquid phase, 

J~ ~ N. - x i N , i = ],2 .... n (5) 
I i t 

The mole fractions Yi' xi are not all independent for we have 
n n 

Yi = ]; ~ x. = I (6) 
i=! i=! i 

From equations (3) - (6) we see that the n diffusion fluxes in either 

phase are not all independent for we have 
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n n 
JY = 0; ~ jx = 0 (7) 
l i 

i=l i=l 
and therefore only n-I of the diffusion fluxes J. can be independent. These 

i 
diffusion fluxes are not phase invariants and indeed in view of equations (4) 

and (5), we see that due to the variation of the compositions along the 

direction of transfer, they vary even within a phase from the bulk phase to 

the interface value. For a particular phase, given the compositions at the 

ends of the transfer path: at the interface and in the bulk, and the mass 

transport coefficients, it is possible to calculate these diffusion fluxes. 

For n__-component systems the appropriate rate relations are: 
n - I  n - I  

JY = ~ k'. "(Yjb - Yjl ) ; jx = ~ kexij (Xjl _ Xjb) ' 
I j=l yij i j=l (8) 

i = 1,2,...n-I 
where [k;] and [k~ are the partial matrices of multicomponent mass transfer 

coefficients, of dimension n-lxn-l, in the vapour and liquid phases respect- 

ively. Methods for estimating the elements of these matrices are discussed 

in [1,2,3,4]. 

The bulk fluid compositions are determined by the overall material 

balances along the flow path and are considered known in the present analysis. 

Two problems still remain: (i) determination of the interfacial state and 

(ii) determination of the total molar fluxes N.. It is clear from equations l 
(4), (5) and (8) that even if the diffusion fluxes J. can be calculated 

i 
from equations (8), the determination of the total fluxes N. requires an 

i 
additional piece of information. This information is provided by an energy 

balance at the interface. 

With assumptions parallel to those given below equation (I) we find that 

an energy balance at the interface leads to 

E y Ey x = E x 
= = E b = E (9) 

which shows that the 'total' energy flux E is a phase invariant. In many 

engineering operations we can neglect the terms in the normal energy flux 

expressing the rate of transfer of kinetic energy and the rate of doing work 

by the surface frictional stresses. 

energy flux may be written as 
n 

E y= qY + [ HY N. = E x 
i=l i i 

qY and qX are the 'diffusive' 

With this simplification, the invariant 

n 
x 

= q + ~ H~i Ni (I0) 
i=I 

(or  c o n d u c t i v e )  h e a t  f l u x e s  i n  the  vapour  

and liquid phases respectively. They are analogous to the diffusion fluxes, 

Ji' and are not phase invariants but must be considered to give a more 
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intrinsic expression of the thermal transport behaviour of the particular 

phase than the total energy flux E. It is usual to relate these diffusive 

heat fluxes to the temperature driving forces by use of appropriate heat 

transfer coefficients. Thus we have 

qy = h • (T y x y b - TI); q = h~ (T I - T~) (II) 

x will be determined where the bulk vapour and liquid temperatures, T and Tb, 

by overall energy balances along the vapour-liquid contactor and are consid- 

ered to be known for the purposes of the present analysis. 

Determination of the Interfacial State 

Under normal conditions of interphase mass and energy transfer we may 

safely assume that the two bulk phase pressures are equal to the interface 

pressure, which is thus known. If we assume that equilibrium prevails at 

the interface, we have n-I unknown intensive state conditions. It is 

convenient to take the n-I liquid phase compositions at the interface, Xil , 

as the unknowns. Alternatively, n-2 of the interface liquid compositions 

together with the interface temperature T I may be taken as the unknown 

parameters to be determined. For the determination of the n-I unknown 

interfacial parameters, we need n-I independent equations; these equations 

are obtained as follows. 

Equations (4) and (5) may be combined to give for each of the n-I 

independent species 
J~ - j~ 

N l x i = 1,2,...n-I (12) 
t xi Yi 

Also, equation (10) may be re-written in view of equations (4) and (5) as 
n n 

X 

i=l i=l 
n n n n 

= ~ %-J~ + 1%iYiNt = ~ %.J~ + ~ %ixiNt 
i=l I I i=I i=l I I i=I 

n - I  n - 1  

= ~ (h i -%n)J~ + ~ N = I (% - % )J~ + ~ N (13) 
i=I y t i n 1 x t i=I 

where we define 
n n 

= ~ %iy i" ~ = ~ %.x. (14) 
y i= 1 " x i=|xl 

Equations (12) and (13) may be combined to give n~l independent relations 

which will determine the interracial state: 
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n-1 
jx- jy qX - qy ~ (~k - ~n )Jy 

z z k=l 
- = Nt, (15) 

xi - Yi ~ 
Y Y 

In equations (15) we use the vapour phase diffusion fluxes. 

may use the liquid phase diffusion fluxes to obtain 

n-1 
x 

jx _ jy qX _ qy ~ (%k - %n)Jk 
z z k=l 

- = Nt, 
xi - Yi ~ 

X X 

Equations (15) or (16) allow the calculation of the n-1 unknown interf- 

acial parameters. With this information, the composition and temperature 

driving forces in the vapour and liquid phases may be calculated; this 

allows the calculation of the diffusive mass and heat fluxes from equations 

(8) and (! ]). The final problem is the calculation of the total mass and 

i = 1,2,...n-I 

Alternatively we 

i = 1,2 .... n-l (16) 

energy fluxes. 

Determination of Interfacial 'Total' Transport Fluxes 

We may combine n-1 of the equations (4) with equations (15) to give 
n-1 

N i = (I- AiYi)J ~ - Yi ~ AkJ~ + Yi A q ,% i = 1,2 .... n-1 (17) 

Y 

where we have defined the parameters 

Ak = (%k - In )/ ~y; Aq = qX _ qy (17') 

Equation (17) may be re-written in neat matrix notation (n-1 dimensional) as 

(N) = [By ] (jy) + (y) Aq (18) 

Y 

where the matrix [B y ] which may be termed the bootstrap solution matrix has 

the elements 

B y ik = 6ik - Yi Ak' i,k = 1,2 .... n-] (19) 

An expression analogous to (18) may be written in terms of the liquid 

phase mass diffusion fluxes. Thus 

(N) = ~ (jx) + (x) &q (20) 

T 
X 

Equation (18) or (20) may be used to determine the n-1 total fluxes, 

Ni, i = 1,2,...n-I. The ~th total flux is determined from 
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n-I 
N = N - N. 
n t ~ i 

i=l 
and the total energy flux obtained from equation (IO). 

(2]) 

Analysis of Special Cases 

Condensation of Mixed Vapours 

The classic Colburn and Drew analysis [5] forms the basis of many design 

procedures for condensation of binary vapour mixtures on vertical or horizon- 

tal surfaces. Employing essentially a 'film' model for the simultaneous mass 

and energy transfer process in the vapour phase, Colburn and Drew derived an 

expression for the total rate of condensation of the binary vapour mixture 

(with components and 2) as 1 - Yli/Zl] 
N t = ~ i n  (22) 

Y 1 Y l b / Z l  

w h e r e  k i s  t h e  v a p o u r  p h a s e  b i n a r y  mass t r a n s f e r  c o e f f i c i e n t  and z I r e p r e s e n t s  
Y 

the ratio of the rate of condensation of species 1 to the total rate of cond- 

ensation of the mixture, i.e. 

z I = NI/N t = NI/(N l + N 2) = 1 - z 2 (23) 

When a binary vapour mixture is just brought into contact with a cold 

surface, say at the top of a vertical condenser, the composition of the 

liquid condensate formed may be identified with this ratio zl, i.e. 

Xll = z I (24) 

The special relationship (24) will be strictly valid for the case where 

the condensed liquid film is just being formed for it implies (cf. equations 

( 5 ) ,  (23)  and ( 2 4 ) )  

x 0 ( 2 5 )  J l  = 

w h i c h  can  o n l y  a r i s e  w i t h  a v a n i s h i n g  mass t r a n s f e r  c o e f f i c i e n t  i n  t h e  l i q u i d  

p h a s e .  F o r  a v e r t i c a l  c o n d e n s e r ,  r e l a t i o n  (24)  w i l l  n o t  be  v a i i d  f o r  c o n d i t i o n s  

p r e v a i l i n g  f u r t h e r  down t h e  s u r f a c e  w h e r e  t h e r e  w i l l  be  a b u i l d - u p  o f  c o n d e n s e d  

l i q u i d  and t h e  mass t r a n s f e r  c o e f f i c i e n t  i n  t h e  l i q u i d  p h a s e  c a n n o t  v a n i s h  i n  

t h e  g e n e r a l  c a s e .  Fo r  p r o c e s s e s  i n v o l v i n g  c o n d e n s a t i o n  o f  some c o m p o n e n t s  

w h i l s t  o t h e r  c o m p o n e n t s  i n  t h e  m i x t u r e  a r e  e v a p o r a t i n g ,  r e l a t i o n s h i p s  s u c h  as 

Xil = z.z = Ni/Nt (26) 

will clearly not hold for it would mean negative interface liquid compositions 

for the evaporating components. 
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Multicomponent Distillation 

In the treatment of transport processes during distillation, most text- 

book treatments [e.g. 6] assume that conditions of equimolar counter diffusion, i.e 

N = 0 (27) 
t 

hold. It is clear from equations (15) that the requirement (27) will be 

realized if the following two conditions are satisfied: 

and 

(ii) ~ k = In' i = 1,2 .... n-I (29) 

Let us consider the first condition (i). The difference between the 

conductive heat fluxes in the liquid and vapour phases can only vanish if 

these fluxes fortuitously cancel each other; we cannot expect (28) to represent 

a general, even common, result. 

Equation (29) requires the molar latent heats of vapourization of the 

constituent species to be identical. In practice, molar latent heats of many 

compounds are close to one another but the differences will not be zero. 

Typically we may expect the term A., defined in equation (17') to be of the 
1 

order of magnitude 0.1.; the sign of A. can be either positive or negative. 
1 

Let us examine the effect of such small differences in the latent heats on the 

interfacial rates of transfer. 

For a three component system, equations (18) may be written explicitly as 

= (I - YlAI )J~ J - YlA2 J~ z + Yl Aq/ ~ (30) N 1 
Y 

and 

= - YmAI J~ l + (I - YmA2 ")J~ z + Y2 Aq/ ~ (31) N 2 
Y 

The diffusion fluxes J~ and J~ need not have the same magnitude for 

non-ideal ternary mixtures. It is quite possible to have a situation in which 

we have 

J~ = 5 J~ (32) 

Further, let us suppose that the following values hold 

Yl A1 = + 0.05; Yl A2 = + 0.05 (33) 

Equation (30) will then give in view of values in (32) and (33), 

N 1 = 0.70 J~ (34) 
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The assumption of equimolar counter transfer (27) will of course give 

= J~, 30% in error. In multicomponent systems it is quite feasible to N I 

have the diffusion fluxes differ by a factor of five as assumed for the 

purposes of illustration above. Therefore extremely small cross coefficients 

in the matrix [B y ] can give rise to large deviations from the condition (27). 

Such effects are not present to such a dramatic extent for binary systems 

because for this case we must necessarily have (cf. equation (7)) 

and there will be no enhancement of the differences in latent heats. For 

binary systems (27) represents a good approximation and this explains its 

enshrinement in so many texts. However, for systems with three or more 

species large deviations from the equimolar counter transfer condition may 

be experienced, thus underlining the fundamental differences between the 

transport characteristics of binary and multicomponent systems. 

Nomenclature 

[B] 
E 

h e 

gY 
3. 

1 

J .  
1 

k° . .  

x l J  
k 

Y 
N. 

1 

N 
t 

X° 
1 

Yi 

Z° 
1 

bootstrap solution matrix, with elements given by equations (]9) 

phase invariant total energy flux 

heat transfer coefficient 

partial molar enthalpy of species in vapour mixture 

partial molar enthalpy of species in liquid mixture 

molar diffusion flux of species i 

multicomponent mass transfer coefficients in the vapour phase 

multicomponent mass transfer coefficients in the liquid phase 

vapour phase binary mass transfer coefficient 

total molar flux of species i 

total mixture molar flux 

conductive heat flux 

absolute temperature 

mole fraction of species i in liquid mixture 

mole fraction of species i in vapour mixture 

ratio of total molar flux of species i to mixture total flux 

Greek Letters 

6ik 
i 

Kronecker delta 

H~l - ~XHi, differences in the partial molar enthalpies of the 

vapour and liquid phases 
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Greek Letters (cont'd) 

A. ~ (~i - ~ ) / Y 
i n 

Matrix Notation 

( ) column matrix of dimension n-I 

[ ] square matrix of dimension n-l×n-I 

Subscripts 

b bulk phase property or parameter 

i species i 

I interfacial property 

j,k indices 

x liquid phase property or parameter 

y vapour phase property or parameter 

Superscripts 

x liquid phase property or parameter 

y vapour phase property or parameter 

• transfer coefficient corresponding to finite rates of mass transfer 
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