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Introduction 

In many chemical engineering operations such as absorption, distillation, 

condensation and evaporation we have interphase transport of mass between 

vapour (gas) and liquid phases. In many, if not most, systems of practical 

interest the number of components in either phase exceeds two, i.e. we have 

multicomponent systems. Each of the contiguous fluid phases will offer 

resistance to transfer of mass (and heat) and so may the interface itself, in 

some cases. It is useful in practice to define, and calculate, overall mass 

transfer coefficients which depict the overall resistance offered by the two 

(fluid-fluid) phase system; such overall coefficients will determine the system 

behaviour. For~-component systems, the transport behaviour in either phase 

is adequately described by a matrix of transport coefficients with (n-l) 2 

elements [1,2,3]. Though procedures for adding mass transfer phase resistances 

are well established for binary systems [4], the corresponding extension to 

the general n-component case is available only for the case of equimolar 

counter transfer [3], which is relevant to distillation operations. In many 

practical cases we encounter transfer of n-I species through an inert (non- 

transferring) nth component. Such a situation arises, for example, when we 

have condensation of a mixture of vapours in the presence of an inert gas. 

This paper is concerned with the development of a procedure for adding phase 

resistances for non-equimolar mass transfer and is a generalization of the 

analysis of Toor [3]. The interfacial resistance is ignored in the analysis. 
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Analysis 

We consider a vapour (gas) - liquid system with ~ components, n ~ 3, 

in either phase and maintained at constant pressure. If we assume equilibrium 

at the interface itself, there are n-I unknown intensive interfacial state 

conditions, corresponding to the thermodynamic degrees of freedom. It is 

convenient to choose the n-I mole fractions Xil as the independent state 

variables. The interfacial temperature T I and the n-I interfacial vapour 

compositions Yil will be determined by the vapour-liquid equilibrium 

relationship. If this equilibrium relationship is linearized over the range 

of temperatures involved in passing from the bulk (subscript b) to the 

interfacial (subscript I) conditions, we can write at the interface 

(yl) = [M] (Xl) + (b) (I) 

where [M] is the matrix of equilibrium 'constants', with elements 

M..Ij = 8y~/~xj,~ i,j = 1,2 .... n-I (2) 

The matrix [M] will be non-diagonal, in general, for non-ideal systems. (b) 

is a column matrix of intercepts, whose elements will be generally non-zero. 

If we wish to combine mass transfer driving forces and resistances of 

each phase, we must require that at least one phase be saturated; this is 

necessary for 'eliminating' the partial driving force for that phase. Here 

we assume that the liquid phase is saturated; this allows us to calculate the 

composition of the vapour which would be in equilibrium with the bulk liquid 

phase as 

(y*) = [M] (Xb) + (b) (3) 

Now, it is easy to show by a material balance that if N. is the normal 
i 

constituent material flux in a given phase at the interface and with respect 

to it, 

N y = N x = Ni, i = 1,2 .... n (4) 
i i 

The only assumptions required are that no surface reaction is occurring and 

there are no constituent adsorptions at the interface. The flux N. is thus 
i 

a phase invariant. If we further assume that (i) the average state of each 
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phase can be characterized by the bulk properties, (ii) that the transport 

rates in the interfacial region in directions tangent to the interface are 

negligible compared to the normal interfacial transport rates and (iii) that 

under unsteady state conditions, the rate of accumulation in the interracial 

region is negligible compared to the normal interphase transport rate (or at 

least that the average rate of accumulation is negligible), we can similarly 

show that 

Ny x 
ib = Nib = N i, i = 1,2 .... n (5) 

In addition to these total transport fluxes, it is also convenient to 

define normal constituent material diffusion fluxes J. in the interface or in 
i 

the bulk phase. Many choices are possible, but the simplest for our purpose 

is the diffusion flux defined with respect to the total mixture material 

transport flux, Nt, defined as 

n 

N t = ~ N i, (6) 
i=! 

i,e. 

J~1 ~ N.I - Yi Nt' i = ],2,...n (7) 

with an analogous expression for the liquid phase. 

fluxes J~ are independent for we have 
1 

n 
JY-0 

i=l l 

Only n-i of the diffusion 

(8) 

These diffusion fluxes J~ are not phase invariants and vary from the bulk to 
1 

the interface. In separation operations it is the bulk vapour (or liquid) 

compositions which appear in material balances and therefore it is the bulk 

diffusion fluxes, JY defined by 
ib' 

JYib - N.I - Yib Nt' i -- ],2,...n-I (9) 

which are useful. The n-I independent bulk diffusion fluxes (9) are related 

to the n-1 independent partial vapour phase driving forces by 
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where we define a matrix [ke ] yb ,n-lxn-l, of partial vapour phase mass transfer 

coefficients. The superscript black dot • serves as a reminder that these 

transfer coefficients are themselves dependent on the interfacial mass 

transfer rates [1,2,~. 

Alternatively, we may define a matrix of overall vapour phase mass 

transfer coefficients by 

(JY) = [Koeyb] (Yb - y*) (II) 

where (y*), the composition of the vapour in equilibrium with the bulk liquid 

phase, is obtained from equation (3). 
2 

The knowledge of the (n-l) elements of the matrix of transfer coeffic- 

ients, either partial or overall, is sufficient to calculate the n-I diffusion 

fluxes JY ib; the nth diffusion flux JY is obtained from equation (8) In 
-- nb " 

order to calculate the n interfacial transfer rates N. we require an additional 
-- i 

determinancy condition. Two special determinancy conditions are usually quoted 

in the literature: 

(i) equimolar counter transfer: Here we have 

N = 0 (12) 
t 

and is usually referred to as the distillation case. 

(ii) no transfer of a reference component (inert carrier): 

N = 0 (13) 
n 

called the absorption case, which arises due to the insolubility of the 

reference component in the other phase. 

The determination of the n total fluxes N. from the n-1 independent 
-- I 

diffusion fluxes JY hereinafter termed the bootstrap solution, is simple 
ib' 

for the distillation case for we have 

N. = JY i = 1,2, ..n-I 
i ib' 

with the nth total flux determined from 

n - I  n - I  

N :N - IN 
n t i=l i i=l i 

(14) 

(~5) 



Vol. 3, No. i I~[]LTI~MASSTRANSFER 45 

The bootstrap solution (14) may be rewritten in n-I dimensional matrix 

notation as 

where the elements of 

are given by 

(16) 

[B y] , which may be termed the bootstrap solution matrix, 

B~i j = 6ij , i,j = 1,2...n-I (17) 

For the absorption case, we note that in view of equation (13) we have 

N = JY + N = 0 
n nb Ynb t 

(18) 

and therefore 

Nt = - JYb/Ynb = (JYb + JYb + ..... + Jy n-1 ,b)/Ynb 

which gives in view of equations (9) 

n-l 
N. (I + y.b/y .)J.Y. + ~ YjbJYb/Ynb , l I no io j - 1 

[ (~ i j  ÷ Yib/Ynb )J  i = 1,2 . . . .  n- I  
j=l  
j¢i 

The bootstrap solution matrix for the absorption case, therefore, has 

its elements given by 

(19) 

(20) 

BYij = 6ij + yib/Ynb , i,j = 1,2 .... n-I (21) 

The mass transport process in the liquid phase may be analysed in an 

analogous manner. The bulk diffusion fluxes in the liquid phase are given in 

terms of the partial liquid phase composition driving forces by 

(¢ = [k" 0 <22) 

where [k:b ] is the matrix of partial liquid phase mass transfer coefficients. 

The phase invariant total fluxes N. may be calculated from the liquid phase 
i 

diffusion fluxes jx by the bootstrap solution in the liquid phase 
ib 
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~.) ; [B~] ( ¢  (23) 

Now, from equations (,1) and (]6), the overall vapour phase driving 

forces may be obtained as 

(Yb- y*) = [Koyb] I[B~ ] l (N) (24) 

Equations (,0) and (,6) similarly yield 

(Yb Y~) : [kSb] '[B~]' ~.) (25) 

The partial driving forces in the liquid phase are obtained explicitly, 

in view of equations (22) and (23) as 

(26) 

Premultiplying both sides of equation (26) by [M], the equilibrium constant 

matrix, and using equations (I) and (3) we obtain 

% - y, )  = [ . j  [k'xb] -~ [B~] -~ (.) (27) 

Combination of equations (24), (25) and (27) gives the general formula 

for adding mass transfer resistances in multicomponent systems, under 

conditions of finite transfer rates, as 

• ~ m • 

[Koy b] '[By] ' = [kyb]' [B~]' ÷ [.J [k'b] '[B~] ' <2~) 

which is the result we sought; it allows calculation of the overall matrix 

of transfer coefficients from a knowledge of the partial mass transfer coeff- 

icient matrices, equilibrium relationship and the determinancy condition. 

Equation (28) is the proper generalization of the result for the special case 

of equimolar counter transfer (12), obtained earlier by Toor 9]. Toor's 

result is recovered quite simply from the equation (28) with the bootstrap 

solution matrices taken to be identity matrices (cf. equation (17)): 

" 

= b] + [M] [kxb ] ( 29 ) 
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Examination of equation (28) shows that, unlike the case of binary 

systems, it is not possible, in general, to state whether one or other phase 

controls the transport behaviour of a multicomponent system. For non-ideal 

mixtures the elements of the matrix [M] could change dramatically change 

magnitude and possibly sign in the same column with varying intensive 

properties. The mass transfer 'control' could then shift from one phase to 

the other. It is also clear from equation (28) that the requirement that the 

overall matrix [Koyb] be diagonal is very stringent; it requires that all the 

constituent matrices: [k~b], [k:b], [M], [B~] and [B~ be severally diagonal. 

The general conclusion to be drawn here is that multicomponent interphase 

mass transfer must always be described by non-dlagonal matrices of transfer 

coefficients, i.e. coupled rate relations. 

(b) 

J. 
i 

[k'J 

n 

N. 
l 

N 
t 

T 

X. 
1 

Yi 
6.. 
13 

Nomenclature 

column matrix of intercepts 

bootstrap solution matrix 

molar diffusion flux of species i 

partial matrix of multicomponent mass transfer coefficients 

overall matrix of multicomponent mass transfer coefficients 

matrix of equilibrium constants 

number of species in mixture 

total molar flux of species i 

mixture total flux 

temperature 

mole fraction of species i in liquid phase 

mole fraction of species i in vapour phase 

Kronecker delta 

Matrix Notation 

() 

-I [] 

column matrix of dimension n-1 

square matrix of dimension n-lxn-I 

Subscripts 

b 

I 

i 

n 

bulk phase property 

interracial property 

species 

species n 

inverted matrix, n - l x n - I  
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Subscripts (cont'd) 

x liquid phase property 

y vapour phase property 

Superscripts 

x liquid phase property 

y vapour phase property 

* equilibrium value 

• coefficient corresponding to finite transfer rates 
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