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ABSTRACT 

The two film resistance model for ~-component mass transfer 
across fluid-fluld interfaces is developed. Arguments are 
presented in favour of the use of the Generalized Maxwell-Stefan 
(GMS) diffusion coefficients to describe the transport process. 
The GMS diffusion coefficients are amenable to molecular inter- 
pretation and prediction and multicomponent mass transfer coeff- 
icients defined in terms of them are shown to possess simple 
addivity property. The effect of thermodynamic non-idealities 
on intra- and inter-phase mass transport processes are brought 
out in the analysis. 

Introduction 

Diffusion in a two component system is described by the Fick's law: 

dx] (I) 
Jl = - c ~12 dz 

where Dl2 is the binary diffusivity. For equimolar diffusion across a 

film of thickness ~ equation (1) can be integrated to yield the molar 

flux NI, referred to a stationary coordinate reference frame, as: 

c 912 
N I = 6 (Xlb - Xll) = k]2(Xlb - Xll) (2) 

where we define k]2 as the binary mass transfer coefficient. 

t Current Address: Koninklijke/Shell-Laboratorium, Amsterdam, 

Badhuisweg 3, Amsterdam-N, The Netherlands. 

299 



300 R. Krishna Vol. 4, No. 4 

For mass transfer across two non-ideal fluid phases, e.g. two liquld 

phases as in extraction and membrane processes, we have equation (2) 

applicable to either side of the interface. We denote the two phases by 

superscripts ' and " respectively. The system transport behaviour is 

governed by the overall resistance offered by the two phases and this 

overall resistance will be the sum of the individual phase resistances. 

In order to obtain an expression for the overall mass transfer coefficient 

it is essential to assume that equilibrium prevails at the interface. 

This equilibrium relationship reduces to: 

' ' = " x'~ (3) YI Xl YI 

We may write the equilibrium relationship at the interface as: 

v = I !  ! 

X l I  (YI /¥1 )x" 21 (4) 

Further, if we define the composition in phase ' which is in equilibrium 

with the bulk liquid phase ", we have 

, = (~" I ¥') " Xle l I X2b 

then it is easy to derive that the overall mass transfer coefficient K' 
o12 

referred to the phase ' , defined by: 

N I = K' ' - x[ ) (5) o12 (Xlb ne 

will be related to the individual phase resistances by: 

K' -1 ' - I  , 2-1 
o12 = k12 + (YI' / YI ) k'; (6) 

The thermodynamics of equilibria affects the distribution of mass 

transfer resistances between the phases. But this is not the only effect 

of thermodynamics on the system transport behaviour; it has been 

appreciated in recent years that thermodynamic non-idealities also 

influence the diffusivity ~12 in a particular phase [1,2,3]. Thus the 

diffusivity 912 can be split up into kinetic and thermodynamic factors: 

912 = ~12 F (7) 

where ~|2 is the Generalized Maxwell-Stefan diffusion coefficient. The 

factor F in equation (7) is given by: 

81n Yl 
r = l + (8) 

31n x l 

It can be seen that the equations (7) and (8) also bring out the effect of 
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solution thermodynamics, embodied in the factor F, on the diffusion behav- 

iour. The separation of kinetic and thermodynamic contributions to the 

diffusion promises to yield a general prediction of diffusion coefficients 

in the liquid phase [3]. 

Our object in this communication is to examine the effect of 

solution thermodynamics on the inter-phase mass transport in n-component 

systems. As has been noted repeatedly in recent years, systems of three 

or more species exhibit transport characteristics sometimes completely 

different from a corresponding binary system. Our analysis may therefore 

help in the modeling of multicomponent mass transfer processes. 

Analysis 

The correct generalization of equation (I) to n-component systems is 

n - l  dx k 
Ji = - c [ Dik dz , i = 1,2,..n-I (9) 

k=l 

Dik are multicomponent Fick's law diffusivities; the cross coefficients 

Dik (i~k) give the effect of the composition gradient of component k on 

the diffusion flux of component i, this effect is called the coupling 

effect. 

For further discussion it is convenient to represent the equation (9) 

in n-l dimensional matrix notation: 

d(x) 
(J) = - c [D] dz (lO) 

For equimolar diffusion in n--component system under steady state 

conditions, combination of equations (I0) with the continuity relations 

for the n species yields the differential equation: 

d--z c [D] ~ I = (0) (]]) 

If c [D] is assumed independent of z, the equation (ll) may be integrated 

over a thickness 6 to give the fluxes N i as [4,5]: 

(N) = c [~ 
6 (x b - x I )  : [k] (x  b - x i )  (12) 

In equation (12) (x 5 - Xl) represents an n-l dimensional column matrix 

of driving forces and we define a matrix of mass transfer coefficients 

[k] by analogy to equation (2) as: 
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[k] = c [D] / 6 (13) 

In order to predict the matrix of multicomponent mass transfer 

coefficients [k] within a fluid phase we need to predict the matrix of 

Fick's law diffusivities. For non-ideal liquid mixtures we may expect 

a strong thermodynamic influence in line with binary systems for which 

equations (7),(8) form a starting point for prediction methods. In 

order to separate the Fickian matrix into kinetic and thermodynamic 

factors we must turn towards a more fundamental constitutive relation 

than that given by the 'practical' Fickian approach, equation (9). 

Irreversible Thermodynamics [6] provides a framework within which 

fundamental diffusion models may be built. The irreversible thermodynamic 

approach shows that the proper driving forces for multicomponent diffusion 

are the chemical potential gradients. This is not surprising because 

thermodynamic equalibrium is described by equality of chemical potentials 

and departures from equilibrium must be described by gradients in the 

chemical potential. There are many ways of relating the chemical potential 

gradients to the diffusion fluxes. One of the most convenient ways is 

to use the Generalized Maxwell-Stefan formulation [7,8], which is essent- 

ially equivalent to the frictional formulation of Lamm [9,10]: 

x .  d~. 
1 i 

RTdz 

n 
x .  J . - x .  J .  

= [ i j J l i = 1,2,..n-I (13) 
c-D.. j--I ~] 

j#i 

where the GMS diffusion coefficients ~ik exhibit the Onsager symmetry 

relation: 

~ik = ~ki' i,k = 1,2,..n (14) 

i#k 

By defining thermodynamic factors F..: 
13 

x i ~In ¥i 
= . Fi3 6ij + i,j = 1,2, .n-I • x, Din x.' 

3 J 

(15) 

the chemical potential gradients may be expressed as [II]: 

n-I 
dx. 

d~Idz" = x. R T ~. F . --J , i = 1,2,..n-I 
i jffil i j  dz 

(~6)  
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By further defining a matrix ~] with elements given by 

x. n x k 
A = l + [ i = l 2 .n-1 
ii -D. ' ' '" 

In k=l "Dik 
k#i 

Aij - x. - i,j = 1,2,..n-I 
• l ij "9. ' in i~j 

(17) 

(18) 

the equations (13) may be written in n-l dimensional matrix notation 

as Ill]: 

d(x )  = - [A] (a) (19) c [ r ]  dz 

Comparison of equations (10) and (19) gives the matrix of Fick's 

law diffusivities as 

[D] = [*]-' it] (20) 

which is the correct generalization of the binary relationship (7). 

Equation (20) is the starting point for the estimation of multicomponent 

diffusion coefficients Dik [12]. The GMS coefficients ~ik can be 

estimated from binary transport parameters and solution thermodynamic 

models may be used to predict the multicomponent activity coefficients, 

and hence the elements r ij , from binary thermodynamic parameters such 

as the Wilson or NRTL parameters. 

Equations (13) and (20) may be combined to give the method for 

predicting multicomponent mass transfer coefficients: 

c [ ~ - I  [ r ]  
[k] = 6 (21) 

We shall see below that multicomponent mass transfer coefficients 

defined by 

[B] = c [A] -I /6 (22) 

have some fundamental and convenient property. Following the discussion 

on the GMS coefficients ~ik' it can be appreciated from equations (17), 

(]8) and (22) that the mass transfer coefficients Bik are free from 

thermodynamic influences and may be estimated from kinetic parameters 

alone. 
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Let us now consider mass transfer from phase ' to the phase " 

The molar fluxes can be wrltten for phase ' by the matrix equation: 

(N) = [k'] (x~- xl)= [B'] [F'](~- xl) (23) 

For phase " we have similarly: 

(N) = [k"] (x~-  x ~ ) =  [B"] [r"] (x I -x~)  (24) 

As in the binary case we assume that thermodynamic equilibrium at 

the interface. The equilibrium relation between two non-ideal liquid 

phases may be expressed as: 

¥i' X'il = Yi" x"il ' i = ],2,..n-I (25) 

' and ¥~ are strictly The activity coefficients in the two phases, Yi 

functions of all the intensive state variables in the two phases 

respectively: 

y~ = ' ' ' .. x' T) i = ],2,..n-I (26) l Yi (Xll'X21'" " n-l,l' ' 

" = " " " ... x" T) i = 1,2,..n-! (27) Yi Yi (Xll'X21' " n-l,l' ' 

We may linearize the equilibrium relations (25) over the composition 

range of interest in the form: 

(x~) = [F']-Irmeq~ [F"] (x~) (28) 

where the diagonal matrix of equilibrium constants m . is obtained 
eql 

by the ratio: 

" /y~ , i = 1,2,..n-I (29) meqi T i 

The activity coefficients on the right hand side of equations (29) are 

calculated at some appropriately averaged compositions x! and xU. 
i i 

In order to calculated an overall mass transfer coefficient matrix 

it is necessary to define an equilibrium composition x! which is in 
le 

equilibrium with the bulk compositions in phase ", x" • thus we have: 
ib' 

(x ; )  = [~']-~% [~,,] (~) (3o) eq~ 

Thus if we define an overall mass transfer coefficient matrix by: 

(N) = [~;] ( ~ -  x; )  = [B;] [ r ' ]  ( ~ ; -  x~) (3 , )  
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then we obtain the addivity relation for the coefficient [K~ [13]: 

[K'o] - I = [k']-I + IF ']-I r'meq~ IF"] [k"] -I (32) 

The equation (32), which represents represents the matrix analogue of 

equation (6), follows from equations (23) - (31); these equations may 

also be used to derive the addivity formula for the Bik coefficients: 

[Bo ]-I = [B,] -I + Vmeqj [B"] -I (33) 

It follows from equation (32) that the kik coefficients for either 

phase contain both kinetic and thermodynamic factors and the overall 

coefficient matrix [Ko] will be non-diagonal if the matrix of thermodyn- 

amic factors in either fluid phase are non-diagonal. Thus the overall 

coefficient will be more sensitive to the system thermodynamics. On the 

other hand the coefficients Bik in either phase, defined in terms of 

the GMS diffusion coefficients (cf. equations (17),(18) and (22)), are 

less sensitive to thermodynamic factors. It follows from equation (33) 

that if both the coefficient matrices [B'] and [B"] are diagonal, signi- 

fying negligible kinetic coupling between the diffusing species, then 

the overall matrix [B'o] will also be diagonal. The separation of the 

kinetic and thermodynamic factors as in equation (20), leading to the 

definition of the kinetic mass transfer coefficient matrices Bik, 

leads to a simpler description of interphase mass transfer. 

In the foregoing analysis we have assumed that equimolar diffusion 

prevails. For the general case in which the molar fluxes N. are related 
i 

to the diffusion fluxes Ji by the linear relations: 

n-I 

Ni = ~ 8ik Jk' i = 1,2,..n-I (34) 
k=l 

it can be shown by the analysis given in reference [13] that the 

addivity formula for the coefficients Bik now takes the form: 

- '  [B'] : + V , ] - I  (35) 

Concludin~ Remarks 

The virtues of the GMS diffusion coefficients in describing intraphase 

diffusion is now well established in the literature. In this paper we 

have defined multicomponent mass transfer coefficients Bik in terms of 
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these GMS coefficients. The multicomponent coefficients Bik have been 

shown to possess a simple additivity property. Further, description of 

the interphase mass transfer in terms of the Bik coefficients correctly 

brings out the effect of the thermodynamic non-idealities in either 

fluid phase. 

The analysis presented will be useful in modeling distillation, 

extraction, membrane and other processes involving multicomponent mixtures. 

Nomenclature 

[B] 

[Bo] 

C 

DI2 

9~k 

Dik 

[DI 
J.  

1 

k12 
K ol2 

Eel 

meqi 

Cm eqJ  

n 

matrix of inverted diffusion coefficients containing the 

GMS diffusivities; elements Aik given by (17), (18) 

matrix of multicomponent mass transfer coefficients defined 

in terms of the GMS diffusivities; [B] is given by equation 

(22) 

overall matrix of multicomponent mass transfer coefficients 

deflned by equation (31) 

molar density of fluid mixture 

Fick's law diffusivity for binary mixture 

GMS diffusivity for pair i-k in multicomponent mixture 

generalized Fick's law diffusivities for multicomponent 

mixture 

matrix of Fick's law diffusivities 

molar dlffusion flux of species with respect to molar 

average reference velocity for mixture 

binary mass transfer coefficient 

overall mass transfer coefficient in binary system 

matrix of multicomponent mass transfer coefficient defined 

in terms of the Fickian diffusion coefficients; the matrix 

[k] is defined by equation (13) 

overall matrlx of multicomponent mass transfer coefficients 

defined in terms of Fickian diffusivities 

linearized equilibrium constants defined by equations (29) 

diagonal matrix with elements meq i 

number of species in multicomponent mixture 
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N° 
i 

R 

T 

x' 
l 

x" 
l 

Xib 

xii 
x' 
le 

z 

molar flux of species ! relative to a stationary coordinate 

reference frame. For interphase mass transfer, this flux 

is invariant across the interface 

gas constant 

absolute temperature 

mole fraction of component i in phase L 

mole fraction of componene i in phase " 

bulk compositions 

interface compositions 

compositions in equilibrium with bulk x" 
ib 

distance along the diffusion path 

Greek Letters 

[B] 

7i 

rik 

6ik 

matrix relating fluxes N. to the diffusion fluxes; defined 
i 

by equation (34) 

activity coefficient of species ! in a phase 

thermodynamic factors defined by equation (15) 

film thickness 

Kronecker delta 

molar chemical potential of species in 8olution 

Operational Symbols 

d 
dz 

gradient operator 

Matrix Notation 

() 

[] 
-I [] 

F 

Subscripts 

b 

e 

eq 

i,j,k 

I 

n-I dimensional column matrix 

n-lxn-I dimensional square matrix 

n-lxn-I dimensional inverted matrix 

diagonal matrix with n-I non-zero elements 

bulk phase property 

equilibrium property 

equillbriumproperty 

indices 

interfacial property 
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O 

12 

overall property 

property of binary mixture 

Superscripts 

property of phase ' 

property of phase " 
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