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ABSTRACT 
This paper analyses steady-state mass transfer between a wall, or 
interface, and a turbulently flowing fluid phase. The system is 
assumed to be multicomponent (number of species ~ > 2) and proper 
account is taken of the diffusional coupling between the species 
transfers. The analysis results in a generalized procedure for the 
calculation of the elements of the matrix of multicomponent mass 
transfer coefficients from information on the eddy diffusivity in 
the boundary layer region, together with other physical and flow 
parameters. Appropriate correction factors to take account of high 
transfer rates have been defined and explicit expressions derived 
for these. Various special cases (small transfer rates, binary mass 
transfer, multicomponent Reynolds analogy) have been pointed out. 

INTRODUCTION 

The calculation of the mass transfer between a wall, or interface, and 

a turbulently flowing fluid phase is important in many process applications; 

examples include evaporation of lakes and rivers, condensation and evapor- 

ation of mixtures in annular flow inside tubes and transfer in falling films. 

Though most practical systems are multicomponent (here we define a multicom- 

ponent system in which the number of components exceeds two, i.e. n > 2), 

most published treatments of the subject deal with binary or two-component 

systems (~ = 2). Now, multicomponent systems often display characteristics 

completely different from a two component system. Thus in a multicomponent 

system the transfer rate of any component is dependent on the transfer rates 
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of all of the components in the mixture, i.e. we have to take account of 

interactions, or couplings, between the species transfers. There are some 

interesting consequences of multicomponent mass transfer interactions. It 

is possible to experience the phenomena of reverse diffusion (a component 

moves opposite to the direction dictated by its constituent driving force); 

osmotic diffusion (a component diffuses even though there is no driving 

present for its tranfer), diffusion barrier (a component fails to transfer 

even though its constituent driving force is non-zero). Such interaction 

phenomena have been experimentally observed in a few operations of chemical 

engineering interest; the reader is referred to the recent review of Krishna 

and Standart [I] for further information. 

One important problem in the quantitative description of multicomponent 

mass transfer processes is the prediction, or calculation, of the matrix of 

multicomponent mass transfer coefficients, [ke]. For forced convection 

mass transfer, procedures for estimating [k e] from binary correlations are 

available (see reference [I], for example). There are many situations of 

practical importance where the mass transfer takes place in a system of well 

defined geometry where detailed experimental information is available on the 

velocity distributions and fluctuations. In such cases the turbulent eddy 

diffusivity for mass transfer can be estimated. This information, together 

with the value of the molecular diffusivity, should in principle enable 

the calculation of the transfer coefficients and transfer rates. The recent 

excellent chapter by Sideman and Pinczewski [2] reviews the published 

treatments on binary mass transfer. The objective of the present commun- 

ication is to extend the binary treatment to multicomponent systems. The 

literature on multicomponent mass transfer in turbulent flow is sparse 

[3 - 7; note the error in the multicomponent analysis of [3], as is pointed 

out by Stewart [5]]; the analysis presented in the present communication 

has not been carried out. 

In the following analysis mass units and mass average reference velocity 

frames are consistently used throughout. For compactness of presentation all 

the symbols used in the text are defined fully in the nomenclature section 

and not in the main text. Compact matrix notation is used throughout. For 

an n_-component system, treated here, the matrices are all n-1 dimensional; 

[ ] is used to represent an n-I x n-I dimensional square matrix; ( ) is used 

to denote a n-I dimensional column matrix (vector). Clearly, for a binary 

system (n = 2) all the matrices reduce to one-dimensional, scalar, quantities. 
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ANALYSIS 

We consider mass transfer between a wall, or an interface, denoted by 

subscript w, anda turbulently flowing fluid phase containing~ components. 

The analysis covers flows in circular pipes and over flat plates specific- 

ally though extensions to other geometries and flow configurations are 

easily carried out. We assume a fully developed velocity profile in the 

flow direction (z-direction) and further that the mass transfer process is 

truly one dimensional (y-direction). The mass flux n i for any component is 

considered positive if directed from the wall (subscript w) to the bulk fluid 

phase (subscript b). The mass flux hi, referred to a stationary coordinate 

reference frame, is commonly split up into a purely diffusive contribution, 

Jiy, with respect to the mass average reference velocity, and a bulk flow, 

or convective contribution ~i nt. If no chemical reaction takes place in 

the boundary layer considered then the mass fluxes n i for component i and for 

the total mixture n t are y-invariant for the flat plate geometry; for tube 

flows where the thickness of the viscous sub-layer and buffer layer are very 

small compared to the radius of the tube the assumption of constant n i is a 

good approximation and we may write for both flow situations: 

ni = Jiy + ~i nt = niw ffi nib; i = 1,2,..n. (I) 

The mass diffusion flux Jiy is best expressed in terms of a generalized 

Fick's law formulation (see Stewart [5] and Standart and Krishna [7]): 

d(~) 
(Jy) = - 0 [ [D] + D t [I] ] , (2) 

dy 

where the mass diffusion flux is seen to arise out of both molecular diffus- 

ion process and due to turbulent velocity fluctuations. 

In the conventional way let us define the friction velocity u* 

u = (~w/0) ~ . (3) 

If we further take ~w ffi ½ f0 u~ then we see that the friction velocity 

can be written as: 

u = (f/2) ½ u b . (4) 

A dimensionless distance parameter y+ may be defined as: 

y+ = y u*/~, (5) 

and the equation (i) written in terms of y+: 

p u ~t d(~) 

(z) = [ [Sc]-I + Sct -I _ [I] ] + (~) = (Zw)=(z b) (6) 

n t ~ d y+ 

where Z i = ni/nt, the ratio of fluxes is also a y-invariant quantity. In the 

analysis to be presented in this paper we assume that the matrix of diffusion 
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coefficients [D] is independent of composition and is thus y-invariant. The 

turbulent eddy diffusivity D t is of course a strong function of y (and there- 

fo~ of y+) and assumes a value D t = 0 at y+ = 0. In proceeding further it 

is convenient to define a dimensionless matrix of mass transfer rate factors 

n t v t 
[~] = ~ [ [ S c ] - I  + S c t  - 1  - -  [ I ]  ] - 1  ( 7 )  

p u  

and an integral matrix [F(y+)] 
+ 

v 
[F(y+)] = ~ [¢] dy + (8) 

0 

which integral assumes a value [F(y~)] at the position y+ = y~ correspond- 

ing to the position yg where the composition (mass fraction) m i reaches the 

bulk fluid stream value mib- 

With the definitions (7) and (8) above it is easy to solve the matrix 

differential equation (6) to yield the composition profile in the form: 

(m - mw ) = [ exp[F(y+)] - [I] ] [ exp[F(yg)] - [I] ]-I (mb - mw ) (9) 

The composition profile given by equation (9) can be differentiated to yield 

the mass fraction gradient at y+ = 0: 

d(m)  
= - [~]  [ e x p [ F ( y ~ ) ]  - [ I ]  ] -1  (~w - ~ b ) .  (10 )  

d y+ y+=O 

C o m b i n i n g  e q u a t i o n s  ( 1 )  - ( 1 0 )  we c a n  w r i t e  t h e  d i f f u s i o n  f l u x  a t  t h e  

w a l l  (y+ = 0 ) ,  J i w ,  a s :  

( Jw)  = n t [ e x p [ F ( y ~ ) ]  - [ I ]  ] - 1  (~w - Wb) (11)  

and  i f  we d e f i n e  a m a t r i x  o f  m a s s  t r a n s f e r  c o e f f i c i e n t s  [k~] by  

(jw) ~ O [k~] (~w - Wb) (12) 

then we obtain: 

[k~] = n t [ exp[F(yg)]- [I] ]-I /0 . (13) 

Equation (13) represents a major new result of this communication and before 

we can rewrite this relation in a more usable form it is necessary to 

consider the special case in which we have vanishingly small transfer fluxes 

(ni, i=1,2,..~, all tending to vanish and consequently the total flux n t 

also tends to vanish: n t = 0); we call this the small mass transfer case. 

SMALL MASS TRANSFER RATES 

In the limit of vanishingly small fluxes we have n i = Ji and there is 

no need to make a distinction between [kw] and [kb] ; we have a single matrix 

of mass transfer coefficients [k], which can be determined by taking the 

limiting case of equation (13) as n t tends to zero. Thus we obtain 

[k] -I = [G(yg)]/u* (14) 

where the matrix function [G(y~)] is given by 
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[G(y~)] = [ [Sc]-I + Sc t -I v_ [I] ]-1 dy+. (15) 

0 

If we further define a matrix of Stanton numbers by the relation: 

[St] = [k]/u b (16) 

then it is easy to derive the following expression for [St]-l: 

[St] -I = (2/f) ~ [G(y~)]. (17) 

One difficulty is that the position y~, where the mass fraction mi 

reaches the bulk fluid stream value ~ib, is not known. In proceeding to 

evaluate the integral [G(y~)] using equation (15) it is convenient to split 

the integral in two parts (see the corresponding binary treatment in Sideman 

and Pinczewski [2] and Sherwood [8,9]): 

i): 0 - y~ in which the turbulent diffusivities and molecular diffus- 

ivities are both important in determining the system transport behaviour 

2): y~ - y~ in which the turbulent diffusivities predominate over the 

molecular diffusivies (~t >> ~). 

In proceeding further in the analysis we assume that Sct = 1 as is 

commonly done in turbulent heat and mass transfer analyses. Splitting the 

integral as indicated above we may write for [St]-1: 

[ S t 1 - 1  = [ [ S c ] - l +  ~ [ I I  1-1 dy + + 
0 u 

! 

Ill f" ÷ . 

y U 

NOW t h e  s h e a r  s t r e s s  a t  any p o s i t i o n  y+ w i t h i n  t h e  b o u n d a r y  l a y e r  i s  

T ~t du + 
-- = (i + -- ) - -  = I (19) 

T w v dy + 

and the second integral on the right hand side of equation (18) may be 

written as 

[ -- [I] ]-i my+ = u~ [I] - [ [I] +-- [I] ]-I dy+ 
y~ 9 0 

where u~ = Ub/U* = (2/f) ~ With the help of equation (20) we obtain: 

(20) 

2 t t 
[St] -I = - [I] + [[Sc]-l+-- [I]] -I - [[I]+-- [I]] -I dy + 

f 0 ~ ~ J(21) 

which relation allows us to evaluate [k] provided y~ is specified. There 

are many eddy diffusivity models available in the literature [2,8,9] and 

there are also many corresponding choices for the distance y~. For a 
+ 

a discussion on the choice of y, see Sherwood [8]. 
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The matrix of mass transfer coefficients [k] calculated with the help 

of equation (21) are those obtained under conditions of vanishingly small 

mass transfer fluxes; in the chemical engineering literature these are ref- 

erred to as zero-flux mass transfer coefficients [i]. Once an appropriate 

relation is available for 9t as a function of y+, the integral in eq. (21) 

can be evaluated. Any model may be used for this purpose, e.g. Deissler, 

Taylor-Prandtl, yon K~rm~n, Martinelli, etc. [2,8,9]. 

Now there are many applications in practice where the mass transfer 

fluxes are not small. One practical example is the evaporation of a mixture 

of liquids with high volatility. In such cases the complete relation (13) 

must be used. For n t = 0, [k] = [St] u b where [St] is given by 

eq. (21). 

TRANSFER COEFFICIENTS FOR FINITE TRANSFER RATES 

Below we suggest a procedure for the caiculation of the matrix of finite 

flux mass transfer coefficients [k~]. 

It is easy to see from equations (7), (8), (15) - (17) that: 

n t 
[F(y~)] ~ [k] -I (22) 

P 
where the evaluation of the right hand side has been discussed in the prev- 

ious section. With the aid of equation (22) we may write equation (13) in 

the form: 

[k~] = [k] [E]; [~] ~ [F(y~)] [exp[F(y~)]- [I]] -I (23) 

where [~] is a matrix of correction factors to account for high mass transfer 

rates. It can be easily checked that the correction factor matrix [E] redu- 

ces to the identity matrix [I] for conditions of small transfer rates (n t = 

0). Clearly a trial and error procedure is required for the calculation of 

the matrix of finite flux mass transfer coefficients [k~]. We present 

below a step-by-step procedure for the calculation of the matrix [k~] and of 

the transfer fluxes n i from a knowledge of the wall compositions (~) and the 

bulk flow variables (w b, Ub). 

Step I: Assume a certain turbulent eddy diffusivity functional relationship 

(i.e.~t = ~t(y+)); such relations can be found for example in [2]. 

Step 2: Estimate the matrix of molecular diffusion coefficients [D]; such 

estimation procedures are discussed in [i]. 

Step 3: From the information is Steps i and 2 and from a knowledge of the 

physical properties of the fluid (density, viscosity), the flow hydrodynamics 

(Ub, friction factor f, etc), the matrix of Stanton numbers can be evaluated 

by evaluating the integral (analytically or numerically) in equation (21). 

Step 4: The zero-flux matrix of mass transfer coefficients [k] can then be 

calculated by using equation (16). 
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Step 5: With the estimate of the matrix of zero-flux transfer coefficients 

the first estimate of the matrix of finite flux mass transfer coefficients 

can be obtained by using the relation: 

[k~] = [k] [E] (24) 

where for the first iteration we assume that [E] ffi [I], the identity matrix. 

Step 6: The diffusion fluxes (Jw) can be calculated using equation (12). 

Step 7: From the knowledge of (jw) we can calculate the fluxes in a station- 

ary coordinate reference frame, hi, provided an additional piece of inform- 

ation is available (see [I] for a discussion on this point). Thus if we 

have diffusion of n__~-I components in the presence of a non-transferring, or 

inert component, ~, then n n ffi 0. This is the case when we have evaporat- 

ion of volatile components in air, for example. A relation such as n n = 0 

is sufficient to allow the calculation of the ~ fluxes n i from the n-I 

independent mass diffusion fluxes at the wall, Jiw- Thus for n n = 0: 

(n )  = [ 8 ] ( J w )  (25) 

where  t h e  m a t r i x  [ 8 ] ,  t e rmed  t h e  b o o t s t r a p  m a t r i x  [ 1 ] ,  has  t h e  e l e m e n t s  

g i v e n  by: 

8 i k  ffi 8 i k  + ~iw/~nw, i , k  ffi 1 , 2 , . . . n - 1  (26) 

S t e p  8:  From t h e  e s t i m a t e  o f  t h e  f l u x e s  n i from S t e p  7 we can  c a l c u l a t e  n t 

and t h e r e f o r e  t h e  e l e m e n t s  o f  [ F ( y ~ ) ]  f rom e q u a t i o n  ( 2 2 ) .  The m a t r i x  o f  

c o r r e c t i o n  f a c t o r s  [E] can t h e n  be c a l c u l a t e d  f rom e q u a t i o n  ( 2 3 ) .  

S t e p  9: From t h e  l a s t  e s t i m a t e  o f  [E] ,  we may r e p e a t  S t e p s  5 - 8 t i l l  we 

o b t a i n  c o n v e r g e n c e  on each  i n d i v i d u a l  f l u x  n i .  

BINARY MASS TRANSFER AS A SPECIAL CASE OF GENERAL ANALYSIS 

The above a n a l y s i s  f o r  t h e  c a s e  o f  n- -component  t r a n s f e r  can  o f  c o u r s e  

be a p p l i e d  t o  t h e  c a s e  ~ ffi 2 ,  d i s c u s s e d  i n  a g r e a t  v a r i e t y  o f  t e x t s .  Our 

a n a l y s i s  above has  b e e n  d e v e l o p e d  f o r  t h e  c a s e  o f  f i n i t e  mass t r a n s f e r  r a t e s  

and t o  t h e  knowledge  o f  t h e  a u t h o r  even  t h i s  c a s e  has  n o t  b e e n  t a c k l e d  i n  t h e  

l i t e r a t u r e .  T h e r e f o r e  i t  i s  w o r t h y  o f  a t t e n t i o n .  

For  a b i n a r y  s y s t e m  t h e  S t a n t o n  number i s  g i v e n  by: 

(i1 1 0 ffi - + dy + (27) 
St f 0 I/Sc +~t/~ I + vt/~ 

which for Sc = 1 reduces to 

St = f/2 (28) 

which is Reynolds analogy. The zero-flux mass transfer coefficient is given 

by k ffi St u b. The finite flux mass transfer coefficient k~, at the wall, is 
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given by the binary analog of eq. (24): 

k~ = k ~ (29) 

where the correction factor ~ for finite fluxes is given by 

F(y~) 
~ (3o) 

exp(F(y~)) - 1 

It is again easy to check that the correction factor given by eq. (30) red- 

uces to unity for vanishing nt; when this is the case we have k~ = k. This 

is the situation considered in most treatments of binary mass transfer [2]. 

In evaluating F(y~) we need to recall that (compare with eq. (22)) 

F(y~) ~ nt/P k (31) 

MULTICOMPONENT REYNOLDS ANALOGY 

For a binary system St = f/2 when we have the special situation that 

the molecular Schmidt number equals unity (Sc = I); this situation can be 

realized for an ideal gas mixture of two-components. For a multicomponent 

system, in general, there will be differences between the constituent binary 

pair diffusivities and if one constituent binary pair Schmidt number equals 

unity, it is unlikely that the same will hold for other binary pairs. In 

other words, the equivalent situation [Sc] = [I] for a multicomponent system 

is a much more special case than a binary system. Nevertheless, it is 

interesting to present formally the multicomponent analog of Reynolds analogy 

as follows (this follows from eq. (21)): 

f 
[St] = w [I] if [Sc] = [I]. (32) 

2 

TURBULENT DIFFUSIVITY MODELS 

The analysis presented so far in this paper allows the calculation of 

the mass transfer coefficients [k~] provided an expression is available for 

for the eddy diffusivity of momentum ~t. Models for ~t are discussed widely 

in the literature (see for example [2] and [8]). We would like to give here 

one such expression to illustrate the procedure. If we choose von Karman's 

model we can derive (see Sherwood [8,9] for details for binary systems): 

[St] -| = -[11 + 5 [ Sc - I ] + ~n [I] + -[ Sc - I ] . (33) 
f 6 

In deriving eq. (33) from eq. (21) we have assumed y~ = 30 together with the 

yon K~rm~n universal velocity profile. Other published binary models [8,9] 

can be similarly generalized to multicomponent systems. 
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CONCLUDING REMARKS 

We have considered mass transfer between a wall, or interface, and a 

flowing bulk fluid stream. For the case in which the hydrodynamics of the 

flow in the region of the boundary layer is well-established, i.e. the veloc- 

ity profiles in the region of the boundary layer are known, the parameter 

characterising the eddy transport due to turbulence (~t, D t) can be estim- 

ated. The equations of continuity describing multicomponent mass transfer 

are cast into n-I dimensional matrix notation and an expression obtained for 

the calculation of the mass transfer coefficients in terms of known quantities. 

The contribution of the work presented here is that the usual treatments of 

mass transfer have been generalized in two respects: 

I) conventional treatments have been extended to multicomponent 

systems while taking into account the molecular diffusional couplings 

between the diffusing species ([D] has non-zero off-diagonal elements) 

2) conventional treatments have been extended to take account of high 

rates of transfer from the wall to the fluid. In this respect it is 

appropriate to mention that the expressions (23) and (30) represent 

the analogs of the well known Ackermann correction factor accounting 

for the effect of mass transfer on condensation heat transfer [I]. 

The calculation procedure for the case of high transfer rates involves a 

trial-and-error procedure but the head-to-tail iteration procedure suggested 

has been found to be fast in practical examples tested. 

The analysis presented here has many applications, for example: 

i) calculation of transfer rates in the gas phase during condensation or 

evaporation with a tube; the procedure given above for the estimation 

of mass transfer coefficients can be incorporated into the design 

procedure suggested by Krishna et al [I0,II] 

2) calculation of evaporation rates of multicomponent liquid mixtures 

flowing inside tubes (annular flow) 

3) calculation of the mass transfer resistances encountered during react- 

ion of gaseous components flowing in tubes and the tube wall coated 

with catalyst or solid reactant (e.g. catalytic mufflers). 

The analysis presented in this article can be extended to the case of 

coupled heat and multicomponent mass transfer where thermal diffusion and 

Soret effects can be important. 
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(note: 

D 

[D] 

D t 

f 

[F(y+)] 

[G(y+)] 

[~] 

Jly 

(Jw) 

[k] 

[ke] 

k 

[k* w] 

n 

ni 

n t 

NOMENCLATURE 

y, direction 
I of mass 

transfer ly 
z, direction of flow 

we consider only fully developed flow in this paper) 

binary molecular diffusion coefficient; (m 2 s-l) 

matrix of molecular diffusion coefficients, n-I x n-I dimensional; 

assumed independent of composition and position; (m 2 s -1) 

turbulent eddy diffusivity of mass; (note that in turbulent mass 

mass transport there are no turbulent diffusional couplings; 

the matrix [D t] reduces to a scalar times the identity matrix: 

[D t] = D t [I] ); (m 2 s -1) 

Fanning friction factor; (dimensionless) 

integral defined by equation (7),(dimensionless) 

integral defined by equaiton (15),(dimensionless) 

identity matrix with elements given by ~ik (dimensionless) 

mass diffusion flux of component i relative to the mass average 

reference velocity; Jiy = ni - ~i nt; Jiy is y-position dependent 

(kg m -2 s -1) 

column matrix of mass diffusion fluxes evaluated at y = 0 (wall) 

(kg m -2 s -1) 

matrix of zero-flux multicomponent mass transfer coefficients; 

n-1 x n-I dimensional; (m s -l) 

matrix of finite-flux multicomponent mass transfer coefficients; 

n-I x n-I dimensional; (m s -1) 

binary mass transfer coefficient; (m s -1) 

matrix of finite flux multicomponent mass transfer coefficients 

evaluated at the wall (y+ = O) (m s -1) 

number of components in fluid mixture (including inerts) 

mass flux of component i with respect to a stationary coordinate 

reference frame; (kg m -2 s -l) n 

total mixture mass flux; n t = ~ ni; (kg m -2 s -1) 
i=] 
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Sc Schmidt number for binary system; Sc ffi ~/D (dimensionless) 

Sc t t u r b u l e n t  S c h m i d t  number ;  S c t  ffi ~ t / D t ;  f o r  a m u l t i c o m p o n e n t  

s y s t e m  we have  [Sc t ]  ffi Sc t [ I ] ,  i . e .  no  t u r b u l e n t  d i f f u s i o n a l  

c o u p l i n g s ;  u s u a l l y  we t a k e  Sc t ffi 1;  Note  t h a t  i n  t h e  t e x t  

S c t  -1 d e n o t e s  1 / S c t ;  ( d i m e n s i o n l e s s )  

[Sc]  m a t r i x  o f  Schm i d t  n u m b e r s ;  [Sc]  ffi v [ D ] - I ;  ( d i m e n s i o n l e s s )  

St  S t a n t o n  number  f o r  b i n a r y  s y s t e m ;  S t  ffi k / u b ;  ( n o t e  t h a t  t h i s  

number  i s  d e f i n e d  o n l y  f o r  c o n d i t i o n s  o f  v a n i s h l n g l y  s m a l l  mass  

t r a n s f e r  f l u x e s ) ;  ( d i m e n s i o n l e s s )  

[ S t ]  m a t r i x  o f  S t a n t o n  numbers  d e f i n e d  by [ S t ]  ffi [ k ] / U b ;  ( d e f i n e d  o n l y  

f o r  c o n d i t i o n s  o f  v a n i s h i n g l y  s m a l l  t r a n s f e r  f l u x e s ) ;  ( d i m e n s i o n -  

l e s s )  

u f l u i d  v e l o c i t y  a l o n g  t h e  c o n d u i t  o r  o v e r  a f l a t  p l a t e ;  (m s - 1 )  

u b f o r  f low i n  a c i r c u l a r  p i p e  u b i s  t h e  v o l u m e t r i c  f l ow  r a t e  o f  

f l u i d  d i v i d e d  by t h e  c r o s s - s e c t i o n a l  a r e a  o f  p i p e ;  f o r  f low o v e r  

f l a t  p l a t e  u b i s  t o  be t a k e n  as  t h e  b u l k  f l u i d  s t r e a m  v e l o c i t y ;  

(m s -I ) 

u friction velocity defined by eq. (3) or (4) (m s -l) 

u + dimensionless velocity defined by u + = u/u* (dimensionless) 

y position coordinate; distance from wall (m) 

y+ dimensionless distance coordinate from wall defined by eq.(5); 

(dimensionless) 

y~ distance from the wall within which both molecular and 

turbulent diffusivities play a role; (dimensionless) 

y~ distance from wall at which the mole fraction reaches the 

bulk stream value mlb; (dimensionless) 

Z i ratio of flux of i to total mixture flux; (dimensionless) 

(Z) column matrix of flux ratios; (dimensionless) 

Greek Letters 

[8] bootstrap solution matrix which allows the calculation of the 

fluxes n i from knowledge of the mass diffusion fluxes Ji; 

elements of [8] for Stefan diffusion are given by eq.(26); 

(dimensionless) 

6ik Kronecker delta 

fluid phase viscosity, assumed independent of position; (Pa s) 

fluid kinematic (molecular) viscosity (m 2 s -1) 

~t turbulent eddy kinematic viscosity, function of y+; (m 2 s -1) 
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[z] 

P 

T 
[¢] 

(~) 

(~w) 

matrix of correction factors to account for finite mass transfer 

rates defined by eq. (23); (dimensionless) 

fluid mixture mass density; (kg m -3) 

shear stress; (N m -2) 

matrix of mass transfer rate factors defined by eq. (7); 

(dimensionless) 

mass fraction of component i; (dimensionless) 

column matrix of mass fractions; (dimensionless) 

column matrix of mass fractions.at wall; (dimensionless) 

column matrix of mass fractions in bulk fluid; (dimensionless) 

Matrix Notation 

[ ] n-I x n-1 dimensional square matrix 

[ ]-I n-~l x n-I inverted square matrix 

( ) column matrix with n-I elements 

Subscripts 

b bulk fluid parameter 

n pertaining to component n 

t pertaining to total mixture 

w pertaining to wall 

S u p e r s c r i p t s  

+ non - d i me ns i ona l i z e d  parameter  

• high-flux mass transfer entity 

t turbulent property 

* friction velocity 
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