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Simulating the motion of
gas bubbles in a liquid

Understanding the motion of gas bubbles
in a liquid is a problem of both scientific
and engineering importance. About 500
years ago, Leonardo da Vinci1 summarized
his observations on the motion of air bub-
bles in a liquid: “The air that submerged
itself with the water… returns to the air,
penetrating the water in sinuous move-
ment, changing its substance into a great
number of forms… it never spreads itself
out from its path except to the extent to
which it avoids the water which covers it”.
We have attempted to simulate the motion
of single gas bubbles in a liquid using the
volume-of-fluid (VOF) technique, which
allows us to describe the complex bubble
dynamics using only the fluid phase proper-
ties as inputs.

The VOF model resolves the transient
motion of the gas and liquid phases using
the Navier–Stokes equations, and accounts
for the topology changes of the gas–liquid
interface induced by the relative motion
between the dispersed gas bubble and the
surrounding liquid. The finite-difference
VOF model uses a donor–acceptor algo-
rithm2 to obtain and maintain an accurate
and sharp representation of the gas–liquid
interface. The VOF method defines a frac-
tional volume or ‘colour’ function c(x, t),
which is a function of position vector x and
time, t. The colour function indicates the
fraction of the computational cell that is
filled with liquid, and varies between 0, if
the cell is completely occupied by gas, and
1, if it consists only of liquid.The location of
the bubble interface is tracked in time by
solving a balance equation for this function,
(!c(x, t)/!t)&?ü(uc(x, t)40, where u is the
velocity vector.

The liquid and gas velocities are
assumed to equilibrate over a very small
distance, and essentially uk4u at the bubble
interface, where the subscript k corresponds
to either liquid or gas. The mass and
momentum conservation equations are
considered to be homogeneous. The contin-
uum surface force model3 is used to model
the force arising from surface tension acting
on the gas–liquid interface. In this model,
the surface tension is modelled as a body
force Fsf, which is non-zero only at the bub-
ble interface and is given by the gradient of
the colour function, Fsf4sk(x)?c(x, t),
where s is the surface tension and k(x) is
the local mean curvature of the bubble
interface k(x, t)41?ü(n/änä), where n is
the vector normal to the bubble interface.

All our simulations were carried out in a
rectangular column using a uniform two-
dimensional cartesian-coordinate grid. The

front of the two-dimensional rectangular
grid is formed by the x–z plane. The front
and rear faces of the column are modelled
as symmetry planes. At the two walls, the
no-slip boundary condition is imposed.
The column is modelled as an open system,
so the pressure in the gas space above the
initial liquid column is equal to the ambient
pressure (101 kPa). Hybrid differencing was
used for the convective terms in the equa-
tions, and upwind differencing was used for
time integration. The time steps used in the
simulations were usually 0.0003 s or smaller.
To counteract excessive smearing of the 
liquid–gas interface by numerical diffusion,
a surface-sharpening routine was invoked.
This routine identifies gas and liquid on the
‘wrong’ side of the interface, and moves it
back to the correct side, while conserving
the volume of the respective phases.

To avoid dissolution of the bubble by
surface sharpening, we ensured that the
area of each bubble encompassed a few
hundred cells. For simulations of bubbles
smaller than 12 mm, we found that the rich
dynamic features could be captured only by
allowing at least 800 grid cells per bubble
cross-section, resulting in grid sizes as small
as 0.125 mm for the smallest bubble size we
could simulate with adequate accuracy. To
simulate the rise of spherical cap bubbles,
typically found with sizes above 17 mm, a
grid size of 1 mm was found to be small
enough; in this case, there were more than
300 grid cells per bubble cross-section.

All simulations were carried out using
the parallel version of CFX 4.1c (AEA, Har-
well, UK) running on a Silicon Graphics
Power Challenge machine with six R8000
processors. This package is a finite volume
solver that uses body-fitted grids, which
were non-staggered, and all variables were
evaluated at the cell centres. We used an
improved version of the Rhie–Chow algo-
rithm4 to calculate the velocity at the cell

faces, and the SIMPLEC algorithm5 to
obtain the pressure–velocity coupling. Sim-
ulating the rise of a bubble 7 mm in diame-
ter for 0.75 s in a column 0.025 m wide and
0.09 m high, involving 144,000 grid cells,
required about two weeks of computer pro-
cessing time.

Typical bubble trajectories are shown in
Fig. 1. Bubbles of 4 and 5 mm in diameter
meander up the column with large lateral
movements, conforming with the observa-
tions of Leonardo da Vinci. The 7-mm
bubble oscillates from side to side when
moving up the column. Bubbles 8 and 9
mm in diameter behave rather like jelly-
fish. The 12-mm bubble moved like a bird
flapping its wings; we could find no men-
tion of this type of bubble motion in the lit-
erature, but we were able to observe it in
our experiments.

The two-dimensional VOF simulations
give velocity values for the rising bubbles
that are roughly half those measured experi-
mentally in cylindrical columns. A three-
dimensional simulation would be required
to determine rise velocity quantitatively
and to reproduce precisely the experimen-
tal observations of Da Vinci. Such a simula-
tion would require a grid with a few million
grid cells and the use of a massively parallel
computer.
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FFiigguurree  11 Two-dimensional volume-of-fluid simulations of the rise trajectories of bubbles in the size range
4–20 mm. The bubble sizes are: a, 4 mm; b, 5 mm; c, 7 mm; d, 9 mm; e, 12 mm; f, 20 mm. In all simulations,
the gas phase was air (density, 1.29 kg m13; viscosity, 1.721015 Pa s) and the liquid was water (density, 998
kg m13; viscosity, 1013 Pa s; surface tension, 0.072 N m11). The Morton number6 for all simulations was
2.63210111. The Eötvös numbers6 for the various bubble sizes were: a, 2.2; b, 3.4; c, 6.7; d, 11.0; e, 19.6; 
f, 54.5. Animations of the simulations can be seen on our website (http://ct-cr4.chem.uva.nl/single_bubble/).


